Hydrodynamické a N-částicové simulace srážek asteroidů

Pavel Ševeček, Miroslav Brož

Astronomický ústav, Univerzita Karlova v Praze

Dynamika hlavního pásu

- srážky asteroidů hrají důležitou roli v evoluci hlavního pásu
- rozpad asteroidu —> asteroidální rodina
- observační data:
 - rozdělení velikostí (SFD)
 - rychlostní pole
- hmotnost mateřského tělesa ≠ součet hmotností členů observační neúplnost
- SFD se mění s časem (kolizní evoluce, Jarkovského drift) pro studium rozpadu potřebujeme mladé rodiny < 10 Myr
- laboratorní experimenty není možné porovnat → numerické modely
- výsledky numerických modelů: určení velikosti mateřského tělesa, parametrické relace do Monte Carlo modelů evoluce hlavního pásu, ...

Určení velikosti mateřského tělesa

- Durda et al. (2007) sada simulací se 100km tělesy
- nejlepší fit pozorovaného SFD
- uvážení observační neúplnosti
- posun SFD předpoklad lineárního škálování
- ale existují rodiny s $D_{\rm pb} \sim 10$ km, např. Datura (Nesvorný et al. 2015)

Rozdíl mezi 10km a 100km mateřskými tělesy

- škálování zákon → 10km tělesa jsou méně pevná Benz & Asphaug (1999)
- kinetická energie $Q \equiv \frac{\frac{1}{2}m_{\text{project}}v_{\text{imp}}^2}{M_{\text{tot}}}$
- stejné $Q/Q_{\rm D}^{\star} \longrightarrow$ relativně menší projektily

 pro malé rodiny lze škálovat výsledky 10km tělesa nahoru a 100km tělesa dolů

・ コット (雪) (小田) (コット 日)

Parametry impaktu

Největší zbytek — průměr druhého největšího tělesa nepřesahuje 0.8D_{lr}

katastrofické impakty

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Numerický model vzniku asteroidálních rodin

- složitá fyzika nelineární stavová rovnice, šíření prasklin v tělese, self-gravitace, ...
- potřebný časový krok: Courantovo kriterium

$$\Delta t \leq rac{\Delta x}{c_{
m s}} \simeq 10^{-3}\,{
m s}$$

- čas potřebný na reakumulaci \sim 10 dnů
- celkový čas simulace: 10^9 kroků $\sim 10^5$ dnů

$$au_{
m fragmentace} \equiv rac{D_{
m pb}}{c_{
m s}} \ll au_{
m reakumulace} \equiv \sqrt{rac{1}{G
ho}}$$

(日) (日) (日) (日) (日) (日) (日)

Metoda shlazených částic (SPH)

hustota dána shlazením bodových částic (Cossins 2010)

• gradient veličiny $\nabla A(\mathbf{r})$:

$$\nabla A(\mathbf{r}) = \sum_{j=1}^{N} \frac{m_j}{\rho_j} A_j \nabla W(\mathbf{r} - \mathbf{r}_j, h)$$

イロト イ理ト イヨト イヨト

Hydrodynamické rovnice

rovnice kontinuity

$$\frac{\mathsf{d}\rho}{\mathsf{d}t} = -\rho\nabla\cdot\mathbf{v}$$

pohybová rovnice

$$\frac{\mathsf{d}\boldsymbol{v}}{\mathsf{d}t} = -\frac{1}{\rho}\nabla\cdot\boldsymbol{\sigma}$$

energetická rovnice

$$rac{{\mathrm d} u}{{\mathrm d} t} = -rac{P}{
ho}
abla \cdot oldsymbol{
u} + rac{1}{
ho} oldsymbol{S}: \dot{oldsymbol{\epsilon}}$$

konstituční rovnice — Hookův zákon

$$\frac{\mathrm{d}\boldsymbol{S}}{\mathrm{d}t} = 2\mu \left(\dot{\boldsymbol{\epsilon}} - \frac{1}{3} \nabla \cdot \boldsymbol{v} \right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Kráterovací impakty

poškození D

rychlost částic v

Katastrofické impakty

poškození D

rychlost částic v

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Předání N-částicovému integrátoru

- je třeba převést SPH částice na koule
- shlazovací délka $h \stackrel{?}{\longrightarrow}$ poloměr koule R
- Durda et al. (2007) $R \equiv h/3$
 - příliš velká reakumulace na středních velikostech kvůli částicím v expandované fázi
- Nesvorný et al. (2006) konstantní hustota

$$ho=$$
 2700 kg/m 3

 Michel et al. (2002) – R podle místní hustoty:

$$R \equiv \left(\frac{3m}{4\pi\rho}\right)^{\frac{1}{3}}$$

N-částicový integrátor

- kód pkdgrav (Richardson et al. 2000)
- stromová struktura gravitační momenty vzdálených buněk (hexadekupólní aproximace) namísto interakce každé dvojice částic
- srážky částic dokonalé spojování → ztráta informace o tvaru

(ロ) (同) (三) (三) (三) (三) (○) (○)

reakumulace → rozdělení velikostí, rychlostní pole

N-částicový integrátor

Středně-energetické impakty ($Q/Q_D^{\star} \sim 1$)

10km simulace srovnatelné se 100km

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Katastrofické rozpady ($Q/Q_D^{\star} \gg 1$)

- 100km se více rozpadne → větší sklon SFD
- SFD roste strmě, největší remnant neexistuje

Kráterovací impakty $(Q/Q_D^{\star} \ll 1)$

100km se méně rozpadne → větší sklon SFD

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Porovnání simulací 10km těles s rodinou Karin

pozorovaná rodina — Nesvorný & Bottke (2004)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Porovnání simulací 100km těles s rodinou Karin

• Durda et al. (2007)

Závislost největšího zbytku na kinetické energii

• průměrování přes $\phi_{
m imp},\, p(\phi)=\sin 2\phi$ (= 0 pro $\phi_{
m imp}=$ 0°, 90°)

Menší v → silnější impakt (pro Q/Q^{*}_D = konst.)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Závislost největšího zbytku na kinetické energii

• průměrování přes $\phi_{
m imp},\, p(\phi)=\sin 2\phi$ (= 0 pro $\phi_{
m imp}=$ 0°, 90°)

• Impakty s impaktním úhlem $\phi = 75^{\circ}$ výrazně slabší

ヘロン 人間 とくほ とくほ とう

Impakty pod úhlem 75°

Oprava o efektivní plochu impaktu

Histogram rozdělení rychlostí

- chceme velikost rychlosti záleží na vztažné soustavě
- těžišťová soustava bez outlierů

Histogram rozdělení rychlostí

 dvě lokální maxima rozdělení — první přibližně odpovídá únikové rychlosti v_{esc}, druhé z antipodu

Histogram rozdělení rychlostí

 dvě lokální maxima rozdělení — první přibližně odpovídá únikové rychlosti v_{esc}, druhé z antipodu

Úhlové rozdělení rychlostí

- katastrofické rozpady více izotropní
- u slabších impaktů protažení ve směru impaktního úhlu

Shrnutí

- Lineární škálování funguje dobře pro Q/Q^{*}_D ~ 1, větší rozdíly pro kráterovací i pro katastrofické impakty
- Pro rodinu Karin pro 10km simulace je D_{pb} menší než pro simulace 100km
- Impaktní úhel $\phi = 75^{\circ}$ slabší kvůli geometrii
 - větší vliv na 100km simulace
- Rychlostní pole více izotropní pro katastrofické rozpady

(日) (日) (日) (日) (日) (日) (日)

Nejistoty modelu

- N-částicová simulace chaotická
- test citlivosti výsledků: na 'startu' nastavíme mírně větší rychlosti ve směru x
- rozdíl ve střední části histogramu, sklon q a největší zbytek D_{Ir} takřka nezměněn.

Nejistoty pozorování

- interlopeři zejména pokud je největší zbytek interloperem, dostaneme zcela chybný výsledek
- tvar mateřského tělesa pro D_{pb} = 10 km může být daleko od sféry
- hustoty asteroidů (Carry 2012)
- mikro-/makro-porozita je potřeba složitější reologický model (Asphaug et al. 2015)

Extrapolace parametrických relací

- parametrické relace jsou dány hodnotami v intervalu
 [0, 01; 100] (v jednotkách Q_{eff}/Q^{*}_D)
- mimo interval chybí data, volíme "rozumné" limity chceme se např. vyhnout problému s divergencí
- pro sklon volíme tvar funkce stejně jako Durda et al. (2007)

$$q = -10 + 7 \left(rac{Q}{Q_{
m D}^{\star}}
ight)^{0.4} \exp\left(-rac{Q}{7 Q_{
m D}^{\star}}
ight)$$

(ačkoliv pokles sklonu pro $Q_{\rm eff}/Q_{\rm D}^{\star}$ není v datech patrný)

Kontaktní diskontinuita

- u povrchu nefyzikální gradient tlaku na škále ~ h
 → větší rozlišení místa impaktu
- chová se jako impakty s větší energií, ale rozdělení velikostí má uměle menší sklon (částice SPH nemají stejnou "velikost").

Balsarův přepínač

- umělá viskozita Π_{ii} nežádoucí ve smyku
- problém lze omezit 'opravením' umělé viskozity:

$$\Pi_{ij} \longrightarrow \Pi_{ij} rac{f_i + f_j}{2}$$

kde

$$f_i = \frac{|\nabla \cdot \boldsymbol{v}_i|}{|\nabla \cdot \boldsymbol{v}_i| + ||\nabla \times \boldsymbol{v}_i|| + \epsilon c_{\rm s}/h_i}$$

Pro nevířivé proudění (||∇ × v_i|| = 0) dostaneme původní vztah, viskozita vymizí při čistě smykovém toku (∇ · v_i = 0)