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ABSTRACT

We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories
with a numerical N-body integrator, namely the Bulirch–Stoer from the SWIFT package. We can then de-
rive various observables: astrometric positions, radial velocities, minima timings (TTVs), minima durations,
interferometric visibilities, closure phases, and even complete light curves. We use a modified version of the
Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing
binary are governed by the N-body integration. If one has all kinds of observations at disposal, a joint χ2

metric and an optimisation algorithm (simplex or simulated annealing) allow to search for a global minimum
and construct very robust models of stellar systems. At the same time, our N-body model is free from artefacts
which may arise if mutual gravitational interactions among all components are not self-consistently accounted
for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and
we discuss how systematic errors may affect the results (and how to prevent this from happening).

Keywords: celestial mechanics — methods: numerical — binaries (including multiple): close, eclipsing —
techniques: radial velocities, photometric, interferometric

1. INTRODUCTION

Traditional models of eclipsing binaries have to often ac-
count for additional external bodies, most importantly as the
third light, which makes the depths of primary and secondary
minima shallower; light-time effect, causing periodic varia-
tions on O − C diagrams; precession of the argument of pe-
riastron ω, shifting the secondary minimum due to perturba-
tions by the 3rd body; or changes of inclination with respect
to the sky plane, in other words disappearing eclipses.

While analytical theories exist for a description of dynam-
ical perturbations in triple stellar systems and corresponding
minima timing variations (also known as TTVs, ETVs; see
e.g. Breiter & Vokrouhlický 2015, Borkovits et al. 2016), we
would prefer a more general approach — to account for all
observational data; or at least as much as feasible. So, our
aim is to incorporate astrometric or speckle-interferometric
positions, radial velocities, minima timings, eclipse dura-
tions, spectro-interferometric visibilities, closure phases, and
light curves too. At the same time, we do not want to be
limited by inevitable approximations of analytical theories
(the N-body problem is not integrable) and the only way out
seems to be an N-body integrator.

Another aspect is we cannot use analytical photometric
models (like those used for exoplanet transits; Mandel &
Agol 2002, Carter et al. 2008), because the respective simpli-
fications are not acceptable for stellar eclipses, not speaking

about ellipsoidal variations.
In principle, our approach should be rather straightfor-

ward: we merge two codes into a single one; namely Levi-
son & Duncan (1974) SWIFT code, and Wilson & Devinney
(1971) WD code. In practice, a lot of work has to be done,
because both of them have to be modified, we need to extract
and derive observable quantities, read observational data and
compare them by means of χ2 statistics. Last but not least,
all these computations should be performed in memory, in
order to run a minimisation algorithm on top of them.

Even though we do not present new observational data
here, there is one recent application of our N-body model
to ξ Tauri quadruple system which was described in a great
amount of detail in Nemravová et al. (2016). Moreover, there
is a comparison with a number of traditional, observation-
specific models. In this ‘technical’ paper, we prefer to show
mostly results of numerical simulations, or even negative re-
sults contradicting the observations, to demonstrate a sensi-
tivity of our model,

We have a few motivations to do so: (i) no self-consistent
N-body model exists yet, which can account for that many
observational constraints; (ii) we improved the model signif-
icantly compared to Nemravová et al. as we can now model
also complete light curves and optionally individual spectra
(to be matched by synthetic ones); (iii) the previous paper
was a bit lengthy and there was simply not enough room



2

for a more technical description of our code; (iv) we have to
discuss the role of systematics, an experience gained during
modelling of real multiple stellar systems.

2. MODEL DESCRIPTION

Let us begin with a description of the numerical integrator
and the photometric model; then we present a list principal
equations and a definition of χ2 metric used to compare the
model with observational data.

2.1. Numerical integrator

We use the Bulirsch–Stoer numerical integrator, with an
adaptive time step, controlled by a unit-less parameter εBS.
The integrator sequentially divides the time step ∆t by fac-
tors 2, 4, 6, . . . , checks if the relative difference between
successive divisions is less than εBS and then performs an
extrapolation ∆t → 0 by means of a rational function (see
Figure 1). If the maximum number of divisions nmax = 10 is
reached, the basic time step ∆t has to be decreased, with an-
other maximum number of trials ntry = 30. We beg to recall
this well-known principle here as it is important to always
understand principles and limitations of numerical methods
in use. This kind of integrator is quite general and there are
no restrictions for magnitudes of perturbations, so we can
handle keplerian orbits, tiny N-body perturbations or even
violent close encounters. Even though it is not symplectic, it
does not suffer from an artificial periastron advance.

Apart from the internal time step, a user can choose the
output time step ∆tout. The time stepping was adapted so
that we first prepare a list of ‘times of interest’ (correspond-
ing to all observations) and the integrator outputs coordinates
and velocities at exactly these times. Consequently, the need
for additional interpolations is eliminated, except for min-
ima timings and minima durations, where a linear interpola-
tion from two close neighbouring points separated by the ex-
pected duration is used, and optionally for light curves (see
below).

2.2. Photometric model

The only assumption about geometry of the stellar system,
is that only bodies 1 and 2 may be components of an eclipsing
binary (or an ellipsoidal variable). Nevertheless, there can be
any number of additional bodies, which do contribute to the
total light, but we do not compute eclipses for them.

For light curve computations, we use the WD 2005 ver-
sion, in order to produce compatible and comparable results
to Phoebe 1.0, but we plan to upgrade in the future. In brief,
the WD code accounts for: black-body radiation or Kurucz
atmospheres, bolometric limb darkening, gravity darkening,
reflection heating and corresponding thermal emission, axial
rotation, or Rossiter–McLaughlin effect. This is a relatively
complex photometric model (more complex than analytical
models of Mandel & Agol 2002, Carter et al. 2008). We use
no spots or circumstellar clouds in this version. Usually, the
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Figure 1. A principle of the Bulirsch–Stoer integrator. There is the
time t as the independent variable on the abscissa and one of the
coordinates xb on the ordinate. A series of integrations with de-
creasing time steps ∆ti = ∆t
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6
, . . . is performed and then

extrapolated for ∆t → 0 using a rational function. At the same
time, relative differences between successive iterations has to be
smaller than εBS.

code is called with mode 0 (no constraints on potentials) or 2
(luminosity L2 of secondary is computed from temperature
T2). Note a number of parameters in lc.in are useless (e.g.
orbital elements, precession and period rates, luminosities,
potentials etc.) because they are driven from elsewhere.

To speed up light curve computations, we can use a bin-
ning of times ∆tbin and then linearly interpolate light curve
points to the times of observations. For high-cadence data,
we can possibly gain a factor of 10 or 100 speed-up this
way, but we have to be sure there is no physical process in
our model which could change magnitudes on the timescale
shorter than ∆tbin.

2.3. Principal equations

Principal equations of our N-body model can be sum-
marized as follows: the equation of motion, eclipse detec-
tion (including light-time effects), eclipse duration, black-
body approximation, uniform-disk complex visibility, com-
plex triple product, true phase of the eclipsing binary, incli-
nation, and Kopal potential (for the WD code), and synthetic
spectrum (with Doppler shifts):1

r̈bi = −
Nbod∑
j 6=i

Gmj

r3
bji

rbji , (1)

t′ecl = tmin +
zb1+2 − zb1+2(t = T0)

c
− zh2

c
, (2)

ε′ecl =
2
√

(R1 +R2)2 −∆2
min

v̄h2
, (3)

Lj(Teffj , Rj)
.
=

∫ λ+∆λ/2

λ−∆λ/2

4πR2
j πBλ(Teffj) dλ , (4)

1 The program, including sources and example input data, is available at
http://sirrah.troja.mff.cuni.cz/˜mira/xitau/.

http://sirrah.troja.mff.cuni.cz/~mira/xitau/
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V ′(u, v) =

Nbod∑
j=1

Lj
Ltot

2
J1

(
πθj
√
u2+v2

)
πθj
√
u2+v2

e−2πi(ux′
aj+vy′aj) ,

(5)
T ′3 = V ′(u1, v1)V ′(u2, v2)V ′(−(u1+u2),−(v1+v2)) , (6)

ϕ′ecl =
1

2π
arctan

Ô · Ŷ
Ô · X̂

, (7)

i′ecl = arccos(−Ô · Ẑ) , (8)

ΩKopal 1 or 2 =
1

r1
+

q

r2
+

1

2
(1 + q)r2

3 , where (9)

{
r1 = R1

r12
, r2 = 1− r1, r3 = r1, q = m2

m1
, or

r2 = R2

r12
, r1 = 1− r2, r3 = r1, and

I ′λ =

Nbod∑
j=1

Lj
Ltot

Isyn

[
λ
(

1− vzbj+γ
c

)]
. (10)

The notation for all the quantities is described in Table 1.
Internally, we use a barycentric left-handed Cartesian co-

ordinate system with x negative in the right-ascension di-
rection, y positive in declination, and z positive in radial,
i.e. away from the observer; the units are day, au, au/day
and au3/day2 for time, coordinated, velocities and masses,
respectively. We also need additional coordinate systems,
namely: Jacobian (for computations of hierarchical orbital
elements), 1-centric (for an eclipse detection), 1+2 photocen-
tric, or 1+2+3 photocentric (for a comparison with astromet-
ric observations of components 3 and 4).

One may immediately note a minor caveat of our model:
the geometric radius (in Eq. (3)), the effective radius (in
Eq. (4)), the uniform-disk radius (a.k.a. θj in Eq. (5)), and
the equatorial radius (used in Eq. (9)) are all assumed to be
approximately the same. If this does not hold, it would be
necessary to add some three more equations describing rela-
tions between them.

2.4. Observational data

When we compare our model with observations, we
can compute χ2 for astrometric positions, radial velocities,
eclipse timing variations, eclipse duration variations, inter-
ferometric squared visibilities, closure phases, triple product
amplitudes, light curves, synthetic spectra, and mass con-
straints (according to spectroscopic classification):

χ2 =χ2
sky + χ2

rv + χ2
ttv + χ2

ecl + χ2
vis + χ2

clo + χ2
t3 +

+χ2
lc + χ2

syn + χ2
mass , (11)

(∆xji,∆yji) = R
(
−φellipse −

π

2

)
×
(
x′p ji − xp ji

y′p ji − yp ji

)
,

(12)

χ2
sky =

Nbod∑
j=1

Nsky j∑
i=1

{
(∆xji)

2

σ2
sky majorji

+
(∆yji)

2

σ2
sky minorji

}
, (13)

Table 1. Notation used for coordinates, velocities, other quantities
and uncertainties, which we use in our N-body model.

Nbod number of bodies

m mass (GM� units)

xb, yb, zb barycentric coordinates

vxb, vyb, vzb barycentric velocities

xh, yh, zh 1-centric coordinates

vxh, vyh, vzh 1-centric velocities

xp, yp 1+2 photocentric sky-plane coordinates

xp3, yp3 1+2+3 photocentric coordinates

xa = xh
d
, ya 1-centric coordinates in an angular measure

X̂, Ŷ , Ẑ unitvectors aligned with 1+2 eclipsing pair

Ô = (0, 0,−1) observers direction

γ systemic velocity

vrad observed radial velocity

tecl mid-epoch of an eclipse of 1+2 pair

εecl eclipse duration

V complex visibility, squared visibility is |V |2

T3 complex triple product, closure phase is arg T3

u, v projected baselines (expressed in cycles, B
λ

)

θ = 2R
d

angular diameter

d distance to the system

L,Ltot component luminosity and the total one

Teff effective temperature

R stellar radius (uniform-disk)

λ, ∆λ effective wavelength and bandwidth

Bλ(T ) the Planck function

mV magnitude (in V band or another)

Iλ normalized monochromatic intensity

σsky major,minor uncertainty of the astrometric position,

angular sizes of the uncertainty ellipse

φellipse position angle of the ellipse

R(. . .) the corresponding 2× 2 rotation matrix

σrv uncertainty of the radial velocity

σttv uncertainty of the eclipse mid-epoch timing

σecl uncertainty of the eclipse duration

σvis uncertainty of the squared visibility

σclo uncertainty of the closure phase

σt3 uncertainty of the triple product amplitude

σlc uncertainty of the light-curve data

σsyn uncertainty of the normalized intensity

mmin
j ,mmax

j minimum and maximum masses

χ2
rv =

Nbod∑
j=1

Nrv j∑
i=1

(
v′zb ji + γ − vrad ji

)2

σ2
rv ji

, (14)

χ2
ttv =

Nttv∑
i=1

(t′ecl i − tecl i)
2

σ2
ttv i

, (15)
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χ2
ecl =

Necl∑
i=1

(ε′ecl i − εecl i)
2

σ2
ecl i

, (16)

χ2
vis =

Nvis∑
i=1

(
|V ′(ui, vi)|2 − |V |2i

)2

σ2
vis i

, (17)

χ2
clo =

Nclo∑
i=1

(arg T ′3i − arg T3i)
2

σ2
clo i

, (18)

χ2
t3 =

Nt3∑
i=1

(|T3i|′ − |T3i|)2

σ2
t3 i

, (19)

χ2
lc =

Nband∑
k=1

Nlc k∑
i=1

(m′V ki −mV ki)
2

σ2
lc ki

, (20)

χ2
syn =

Nsyn∑
i=1

(I ′λ i − Iλ i)
2

σ2
syn i

, (21)

χ2
mass =

Nbod∑
j=1

(
2mj −mmin

j +mmax
j

mmax
j −mmin

j

)100

. (22)

Again, the quantities are described in Table 1. The index i al-
ways corresponds to observational data, j to individual bod-
ies, and k to sets of data. The dashed quantities correspond
to synthetic data, integrated (or interpolated) to the times of
observations ti.

To find a local or a global minimum, we can use a stan-
dard simplex algorithm or simulated annealing (Press et al.
1997), with the cooling schedule T i+1 = (1 − εtemp)T i,
after given number of iterations at T i. Free parameters of
the model (which can be optionally fixed) are: masses mj

of the components, orbital elements aj , ej , ij ,Ωj , ωj ,Mj of
the respective orbits, systemic velocity γ, distance d, radii
Rj , and effective temperatures Teff j . For Nbod bodies, this
represents a set of (9Nbod − 4) parameters in total.

As usually, observational data have to be in a suitable for-
mat and we provide some example scripts for a conversion
or extraction of data from OIFITS files (Pauls et al. 2005).
Note that one shall not use the triple product amplitude |T3|
when the same interferometric measurements are used as the
squared visibility |V |2. Similarly, no minima timings or du-
rations are needed when we have complete light curves at
disposal (cf. Figure 2); and no RV measurements when we fit
the observed spectra with synthetic ones.

3. EXAMPLES OF DYNAMICAL EFFECTS

To demonstrate some capabilities of our N-body model we
present several numerical simulations that can be treated as
examples of what can be fitted to observational data (more
examples can be found in Fabrycky et al. 2010).
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Figure 2. Light curves of a detached eclipsing binary and three dy-
namical models: (i) a keplerian (2-body) assuming a fixed circular
orbit (e = 0, black dotted line), (ii) a keplerian with a non-zero
fixed eccentricity e = 0.0139 (yellow), and (iii) an N-body with
the initial osculating e1(t = T0) = 0 (red), but with a general
trajectory affected by perturbations among four components. The
last case corresponds to the arrangement of ξ Tauri quadruple sys-
tem (as described in Nemravová et al. 2016). The light curves and
minima timings differ more than the usual uncertainty σttv, or σlc

achievable by space-born observations like that of MOST (Walker
et al. 2003; cf. blue line with tiny error bars). It is thus necessary
to use the N-body model for such compact stellar systems, even on
this very short (orbital) time scale.

3.1. Precession of ω and Ω

Probably the most trivial perturbation is the precession of
the argument of pericentre ω. In our case however, the tem-
poral derivative ω̇ is not a free parameter; it is directly tied to
the masses and initial osculating elements of the bodies. The
same holds for the longitude of the ascending node Ω and the
corresponding Ω̇. It is thus not necessary to use any secular
theories, because all secular perturbations are implicitly in-
cluded in our N-body model. Moreover, one can expect that
neither ω̇(t) nor Ω̇(t) are constants, but some short-periodic
perturbations are always present.

Depending on the distribution of the angular momentum L

in the system, the precession of individual orbits can occur
with different amplitudes, although the secular time scales
for a pair of orbits are the same. In the Laplace coordinate
system (aligned with total L), all ω̄j and Ω̄j circulate from
0 to 360◦. On the other hand, our frame of reference is tied
to the observers direction and the sky plane, so that ωj or Ωj
often librate, in other words oscillate in a limited interval of
values, due to a purely geometrical projection.

3.2. Inclination vs eclipse durations

As a result of the nodal precession Ω̇j of each orbit, the in-
clinations ij with respect to the sky plane also often librate.
Regarding the case of i1, the eclipsing binary may exhibit
one or more photometric effects: changes of eclipse dura-
tions, eclipse depths, or completely disappearing (and then
reappearing) eclipses. All of these are accounted for and con-
tribute to χ2

ecl, χ
2
lc, or χ2

ttv terms.
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Figure 3. An evolution of radial velocities (RVs) of the four components of ξ Tauri (denoted Aa, Ab, B and C), assuming two different values
of the initial osculating eccentricity e1(t = T0): (i) zero (thick lines); (ii) an increased non-zero e1 = 0.01 (dotted lines). There is a significant
phase shift between them, when can be easily detected because the respective RV measurements cover the interval of JD from 2449300 to
2456889. For even larger e1 ' 0.1, the oscillations of RVs forced by the 3rd body also have larger amplitude, related to the evolution of e1(t).
For comparison, there are some of the observations plotted (black points with error bars) and residua wrt. the worse non-zero e1 model (red
lines).

Our model is also extremely sensitive to the mutual incli-
nation J of the orbits, because the precession rates are func-
tions of it (see Eqs. 26 and 27 in Nemravová et al. 2016, but
these are suitable only for low e1, low J and large a2/a1).
This may significantly contribute to χ2

sky, or χ2
vis.

3.3. Eccentricity oscillations

Yet another phenomenon may occur on secular time
scales, namely oscillations of the osculating eccentricity
e1(t) forced by the 3rd body. In an ’extreme’ case, e1(t =

T0) ' 0.1, it is manifested as forced oscillations of radial
velocities which no longer have constant amplitude.

For low eccentricities of the order of 0.01, one can search
for some phase shifts of RVs of components 1 and 2. This
turns out to be a strong constraint for the initial eccentricity
e1(t = T0), because the phase shifts occur as soon as e1 6= 0.
An example for χ Tau system is shown in Figure 3.

3.4. Variation and evection

Apart from secular perturbations, there are short-periodic
perturbations which occur on the orbital time scales Pj of
the individual orbits. In a classical Hills theory, we would
have five terms contributing to departures of the true longi-
tude ∆λ (Fitzpatrick 2012): eccentricity, ellipticity, inclina-
tion, variation and evection. The last two are of interest, as
they arise from interactions with the external 3rd body. One
can recognise the variation is maximal in octant points, and
the evection in quadrant points (wrt. to the 3rd body).

In Figure 4 we demonstrate these short-periodic effects for
a system similar to ξ Tau. In this example, however, we in-
creased the eccentricity e1 = 0.01, so that the evection is not
zero. Note the 3rd may be practically ‘fixed’ and still cause
variation or evection which contribute mostly to χ2

rv, but not
directly to χ2

ttv, since the eclipses are always measured at the
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Figure 4. A general trajectory of the inner eclipsing binary as out-
put from our N-body model, affected by the 3rd and 4th component
in ξ Tauri quadruple system. The differences (orange lines) with
respect to a keplerian orbit (black curve) — fixed at the initial con-
ditions — were exaggerated 100 times to make them visible at all.
Two most important terms describing departures in longitude ∆λ
are called the variation and evection.

same true longitude λ.

3.5. Prograde vs retrograde orbits

Traditionally, it is practically impossible to distinguish
prograde and retrograde orbits, because the corresponding
RVs are the same. But luckily, mutual interactions within the
N-body model can contribute to χ2

ttv sufficiently (cf. Fig. 12
in Nemravová et al. 2016). The principle is as follows: if the
distance of the 3rd body is increasing (or decreasing) dur-
ing one P1, the gravitational potential at around the binary is
less negative (or more) and consequently the value of P1 is
inevitably larger (smaller).
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Figure 5. Kozai cycles in a hypothetical quadruple system with the
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critical value imin. The coupled oscillations of the eccentricity e1

(orange) and inclination i1 (black) would be visible, on the time
scale as short as TKozai ' 19 yr.

3.6. Kozai cycles

It we turn our attention to long-periodic effects, one clas-
sical example are Kozai cycles (Kozai 1962), or coupled os-
cillations of the eccentricity e and inclination i which pre-
serve the invariant Lz =

√
1− e2 cos i. They occur for high-

inclination orbits with a certain minimum (critical) inclina-
tion imin.

We can easily demonstrate such oscillations, if we substan-
tially increase the mutual inclination J in ξ Tau system (see
Figure 5). However, in this particular case the system is so
massive and compact that the approximations involved in the
derivation of Lz integral do not hold anymore! The respec-
tive time scale (19 yr) of the oscillations is also shorter than
predicted by the analytical theory; and there is a 4th body
with a 51 yr orbit involved, so that the phasing of e, i is not
exact.

3.7. Long-term evolution and stability

It is also possible to run the N-body integrator separately,
regardless of observational time span, and study a long-term
evolution and stability of stellar systems. One of the diffi-
culties is that and the output of osculating elements is either
prohibitively long or an aliasing occurs when the output time
step ∆tout is larger than an half of the shortest orbital period,
P1/2.

In a modified version of the BS integrator (swift bs fp),
we can use on-line digital filtering of non-singular osculat-
ing elements hj , kj , pj , qj to overcome these problems: first
a multi-level convolution based on Kaiser windows (Quinn et
al. 1991) to obtain mean elements, and second a frequency-
modified Fourier transform (Šidlichovký & Nesvorný 1997)
to extract proper elements. For N mutually interacting bod-
ies, one can expect 2N eigen-frequencies of the system,
which are usually denoted gj and sj . The corresponding
amplitudes epj , sin 1

2Ipj can be considered approximate inte-
grals of motion which only evolve on long time scales (longer
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Figure 6. A long-term evolution of ξ Tauri quadruple system, or the
eccentricity e2(t) of the 2nd orbit, respectively. There are oscu-
lating (top), mean (middle), and proper (bottom) orbital elements
shown. Note the osculating elements may exhibit aliasing, i.e. arti-
ficial long-period changes, because the sampling ∆tout = 100 yr is
limited and the corresponding Nyquist period is PNy = ∆tout/2.

than secular; see Figure 6).

3.8. Close encounters

Additionally, one can model also hyperbolic trajectories
and three-body encounters or captures, even though from a
historical perspective such stellar models do not seem very
convincing (Tokovinin 1986), because some observations
may be affected by raw measurement errors (e.g. a wrong
plate scale), a change of the orbital period may turn out to be
rather quasiperiodic (possibly related to magnetic phenom-
ena) and any interstellar encounter is considered a too rare
event.

Finally, let us mention that all mean-motion resonances
(Rivera et al. 2005), secular resonances, tree-body reso-
nances (Nesvorný and Morbidelli 1998), or chaotic diffusion
due to overlapping resonances are also naturally accounted
for in our N-body model.

4. POSSIBLE PROBLEMS DUE TO SYSTEMATICS

We have to admit that any modelling (compact stellar sys-
tems included) can be spoiled, either when there are sys-
tematic deficiencies of the model, e.g. keplerian vs N-body,
or serious systematic errors in observational data, especially
when we use very heterogeneous datasets. In the following,
we thus discuss several ‘dangerous’ cases.

4.1. Discretisation errors
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Of course, any numerical computation suffers from dis-
cretisation errors and interpolation errors, even thought we
tried to decrease the latter as much as possible (cf. Section 2).
This is probably the most important disadvantage compared
to analytical computations. A general rule is a convergence
of results (and corresponding χ2 values) for ∆t→ 0.

However, let us add a warning that rarely a decrease of
time step, e.g. by a factor of 2, may lead to unexpected re-
sults. For example, when eclipses are almost disappearing,
the trajectory with ∆t/2 is more curved and may thus miss
the last eclipse, which suddenly increases the χ2

ttv because
the next eclipse is now one orbital period P far away.

Let’s not forget, there is yet another discretisation related
to the WD code, or the surfaces of the eclipsing binary. For
low numbers Nwd, one can see numerical artefacts on the
light curve, as the rectangular surface facets appear from
behind the limb, or disappear. Again, it is worth to check
larger Nwd.

4.2. Mirror solutions

Sometimes we can expect one or more (m) mirror solu-
tions (and 2m combinations of them). A typical situation
is we have no RVs for faint components (so that both in-
clinations i and i′ = −i are admissible), or no unambigu-
ous astrometry or closure-phase measurements (so that Ω and
Ω′ = 180◦ − Ω are both admissible).

However, with our N-body model it is worth to check not
only the total χ2 but also individual components of χ2; espe-
cially χ2

ttv is very sensitive to the mutual perturbations. Of
course, it must not be spoiled by systematics or strongly un-
derestimated uncertainties in other observational data. If this
is the unfortunate case, one may try to use weights w of in-
dividual χ2’s, but this should be used as “a method of a last
resort”. The reason is that it is too easy to hide all system-
atics this way, even though it is better to get rid of them (see
below).

4.3. Heterogeneous datasets of RVs

Radial-velocity measurements might be affected by zero
point offsets, which then lead to different systemic velocities
γ for different observatories. This can be a bit misleading,
because it is not possible to a-priori distinguish systematic
differences in dispersion relations from real perturbations,
when the observations were acquired at epochs distant in
time.

A well-known approach is to use an independent calibra-
tion by narrow interstellar lines (DIBs; Chini et al. 2012),
if they are present and resolved in the given spectral range.
If this is impossible, one should use the N-body model with
a great caution, because simply increasing σv ' ∆γ, to get
χ2

rv ' Nrv is an apparently wrong idea. The RV measure-
ments in question will still ‘push’ the model elsewhere and
there will be systematic departures wrt. other (more or less
orthogonal) observational data.

It may be a too much freedom, but if the dispersion re-
lations can be considered stable from night to night, some
calibration factors frv k of RVs — assigned to individual ob-
servatories or datasets — might be actually a better solution.
In any case, such factors have to be always treaded as addi-
tional free parameters of the N-body model.

4.4. RVs from disentangling

Another possibility is to derive RVs in the Fourier domain,
by means of disentangling (e.g. by Korel; Hadrava 2009).
Moreover, there is an advantage in obtaining disentangled
spectra of individual components. In case of this method,
one can expect a strong correlation of RVs and the fixed ke-
plerian orbital elements used during the disentangling pro-
cedure. This represents a problem, because we do vary ini-
tial osculating orbital elements in the N-body model and they
most likely will contradict the previous elements.

Note the disentangled spectra should not be re-used as tem-
plates, because they contain slight systematic asymmetries or
wavy continua. If we try to match the observed spectra with
these templates again, we would obtain artificially small un-
certainties σrv (and extremely large χ2

rv). A solution is to use
synthetic spectra similar to the disentangled ones, but with
no direct relation to Korel, as an intermediate step to derive
new RVs.

4.5. RVs from synthetic spectra

Alternatively, RVs of the individual components can be
derived directly in the time domain by fitting a luminosity-
weighted sum of suitable synthetic spectra (e.g. by Pyterpol;
Nemravová et al. 2016). Instead of fitting the observed spec-
tra individually (one-by-one), it is advisable to assume that
most of the free parameters (projected vrot j , Teff j , log gj of
the stellar components) are the same for all spectra, with the
exception of RVs which are surely time dependent. Luck-
ily, these RVs are not strongly correlated with the orbital
elements, so they seem suitable as an input for an N-body
model.

On the other hand, this method can have problems when
RVs are small (at conjunctions) and vrot large, so that the
lines are totally blended. As a provisional solution, one may
try to discard the lowest RVs which cause the problems, or
do not use RVs at all and rather fit synthetic spectra directly
with the N-body model, which is definitely a better approach,
because RVs will be correctly tied to each other.

4.6. Rectification procedure

Inevitably, RVs might be systematically affected already
during a basic reduction, namely a rectification (normalisa-
tion) of spectra. If the rectification procedure is automated
by fitting a low-degree polynomial to continua, it is worth to
try a different maximum degree of the polynomial and run
the above synthetic spectra optimisation once again.
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4.7. Visibility calibration

Contrary to closure phase arg T3 measurements, the
squared visibility |V |2 has to be calibrated by close-in-time
observations of comparison stars with known angular diam-
eters or unresolved (point-like) sources. Sometimes even
the calibrated measurements exhibit unrealistically quick
changes of |V |2 or sudden decreases of |V |2, possibly caused
by unfavorable weather conditions, or seeing comparable
to the slit width, affecting a light contribution from barely-
resolved components, or other instrumental defects.

In the end, dropping of these suspicious observational data
may be the only way to prevent the systematics to unrealisti-
cally ’push’ the model. Using a low weight wvis = 0.1 is not
a satisfactory option. To this point, we always retain a dataset
identification for each single measurement which enables us
to ‘quickly’ perform a bootstrap testing.

4.8. Quasiperiodic oscillations

A removal of quasiperiodic oscillations which are some-
times (or rather always) present outside eclipses is very im-
portant, because it may otherwise systematically offset the
minima timings themselves. One wave of the oscillations be-
haves like a ‘ramp’, which skews the light curve at around
the minimum.

The observed light curve should be thus locally fitted by a
suitable function (e.g. harmonic with a variable period and
amplitude) and then subtracted from the data. If the (syn-
thetic) light curve out of eclipses is flat beyond doubt, it
seems better to drop these segments of the (observed) light
curve, because they increase χ2

rc and there is no useful infor-
mation as we have no physical model for these oscillations.

4.9. Osculating vs fixed elements

Some care is needed when comparing results of (old) ke-
plerian and (new) N-body models. They actually can differ
by more than a few σ, because the former orbital elements
are fixed, while the latter are only osculating initial condi-
tions at t = T0. Generally, all elements are time-dependent
quantities, a1(t), e1(t), i1(t), etc., where the oscillations are
often larger than the uncertainties of the initial osculating el-
ements. In fact, one can perform some averaging over the
observational time span. Nevertheless, the N-body model is
more complete, and it should be probably preferred.

4.10. Jacobian osculating elements

Unlike the usual stellar-astronomy convention, where the
brightest component is always at the origin of the reference

frame, in our N-body model we usually select the most com-
pact eclipsing pair as bodies 1 and 2, or the most massive
component as 1. The reason is that orbital elements in hi-
erarchical systems are usually computed in Jacobian coordi-
nates, where the centre of mass 1+2 is the reference point
for the coordinates and velocities of the 3rd body; the 1+2+3
centre of mass is a suitable reference for the 4th body, and so
on. The corresponding Jacobian elements then have a nice
interpretation.

Because of the above definition, it may be necessary to
adjust to-be-fitted astrometric measurements by 180◦ in the
position angle — not due to an ambiguity, but simply because
the reference body is different in our case. Similarly, a value
of Ω from literature may actually differ by 180◦.

To conclude in a pessimistic way, the above list of possi-
ble problems and systematics cannot be treated as complete,
unfortunately.

5. CONCLUSIONS AND FUTURE WORK

Today, N-body models seem to be absolutely necessary
tool for a careful inspection of observational data. It is im-
portant to take care that discrepancies between keplerian and
full N-body dynamics no longer spoil derived stellar parame-
ters. After a removal of (some) systematic errors (sometimes)
present in observations or reductions, it enables us to reveal
even tiny N-body perturbations and construct robust models
of compact stellar systems.

Regarding future developments of (our or other) N-body
models, it seems to be worthwhile to also account for: cali-
bration factors of individual interferometric telescopes, limb
darkening in the visibility calculation, especially when mea-
suring on longest baselines, general-relativistic precession in
some cases, and eventually one may think of an upgrade to
the WD 2015, or Phoebe 2.0.

Yet another work is needed to compute trajectories even
more accurately, with physics going beyond point-like
masses, namely: gravitational moments J2, J4 due to non-
sphericity of stellar components, tidal interactions, corre-
sponding long-term circularisation of orbits, Kozai cycles
with tides, spin–orbital resonances, or radiation of gravita-
tional waves in extreme cases.

The work of MB was supported by the grants no. P209-
15-02112S and P209-13-01308S of the Czech Science Foun-
dation. I also thank Jana Nemravová for valuable discussions
on the subject and a fruitful collaboration on the ξ Tauri pa-
per.
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