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1. Introduction

The model has been described and quantified in papers by Wilson & Devinney (1971), by

Wilson (1979, 1990, 1993), and by Van Hamme & Wilson (2003) that include its main theory,

organization, and concepts, as well as much of the mathematics. The reader is referred to those

papers for background. Since it would be impractical to cover the programming ideas within a

reasonable length, only the 1993 paper goes significantly into programming, and there only in

abbreviated form. This booklet also is not an explanation of programming ideas – its purpose is to

tell how to use the model.

The overall program consists of a main FORTRAN program (LC) for generating light and

radial velocity curves, spectral line profiles, and images, plus a differential corrections main pro-

gram (DC) for parameter adjustment of light and velocity curves by the Least Squares criterion,

and somewhat over two dozen subroutines used by both main programs. [In this monograph, pro-

gram and subprogram names are in boldface type (e.g. LC), FORTRAN variable names are in

sans serif style (e.g. XINCL), and FORTRAN statements and file names are in typewriter style (e.g.

open(unit=22,...).] The present program has grown over the years from much simpler beginnings.

Growth has consisted of occasional improvements in regard to generality, speed, and elimination

of bugs, perhaps about every six months, punctuated by four revisions. The revision of 1982 in-

troduced eccentric orbits, asynchronous rotation, capacities to do several new kinds of constrained

solutions, computation of velocity curves (with proximity and eclipse effects), simultaneous light

and radial velocity solutions, and a simple star spot capability. Most features of the 1982 version are

described in Wilson (1979). The revision of 1992 had options for detailed reflection and non-linear

(logarithmic) limb darkening, adjustment of spot parameters, an optional provision for spots to

move with the rotating surface, capability for following light curve development over large numbers

of orbits, and greater speed. At that time an accuracy improvement was expected for the near term,

but insufficient resources have been available for completion of that project, which is still on the

“back burner.” Instead, the third revision (1998) included semi-transparent circumstellar clouds,

a simple spectral line profile capability for fast-rotating stars, inclusion of the Marquardt λ factor

in differential corrections solutions, generation of sky coordinates for images, an option to work

with either observed times or phases, additional solution parameters (T0, P0, dP/dt, and dω/dt),

conversion of the entire program to double precision, and some other improvements that are listed

near the end of this document. An accuracy improvement still is expected, but the effective date

is hard to predict. The fourth revision (2003) is mainly a conversion from the previous effective

wavelength characterization of bandpasses to one based on integrations over actual bandpasses

of standard photometric systems. The radiative functions depend on effective temperature, log g,

and chemical composition and are applied locally. There also are a few changes in the constraints

applied to some overcontact binaries (mode 3).
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2. Running the Programs

To make things simple, the light and velocity curve program (LC) and the differential correc-

tions program (DC) are supplied complete with sample input data sets, so that all one needs to

do to get started is to run the programs with the input data. There should be few, if any, machine-

dependent problems, as those have been eliminated via feedback from users. If such a problem is

found, please communicate it to R.E.W. However, there may be a trivial problem with the arcsine

and arccosine routines, which are DASIN and DACOS on some systems and DARSIN and DARCOS on

others. That problem can easily be fixed. Then just change the numbers to run a particular binary

star problem. Be sure to keep at least one copy of the supplied sample data in case the input

formatting gets scrambled or shifted. Of course, one always can re-construct the correct format by

comparing the program’s READ and FORMAT statements with the input lines, but save the original

data anyway in the interest of keeping things simple. It is not recommended to change the pro-

grams, but if you must, be sure to keep a copy of the original version for comparison. Tinkering

can introduce a bug that may not show up in particular cases, but jumps out at you later on.

Compilation is quite direct as LC is supplied in one large file and so is DC, including all

required subroutines. This arrangement differs from older versions where there was one large file

that had to be re-arranged into LC and DC modules prior to compilation. The new way should

be more convenient. Most subroutines are in both modules, with memory cost of the redundancy

being of little significance.

The type of output produced by LC is determined by control integer MPAGE and can be

light curves (MPAGE=1), radial velocity curves (MPAGE=2), spectral line profiles (MPAGE=3),

star dimensions (MPAGE=4), or sky coordinates for producing images (MPAGE=5).

For MPAGE=1 (light curves), the first four columns contain time (col. 1), phase (col. 2),

separate light for stars 1 and 2 (cols. 3, 4), and the combined system light from stars 1 and 2 plus

third light (col. 5). Star 1 is, by definition, the one at superior conjunction near phase

zero when parameter PSHIFT is entered as zero. It will be the one eclipsed near phase zero if

there are eclipses. Light is in the program unit, which is explained in Wilson (1993). The program

unit is, in a sense, an absolute unit of observable flux because it can be converted to absolute flux

if definite star luminosities and a definite observer distance are specified. Light (observable flux) is

discussed in §4 on page 12. Column 6 contains the light of column 5 re-scaled (normalized) to a

specified input value (labeled FACTOR) at a specified input phase (labeled PHN). For example, one

can require that the normalized light be 1.2000 at phase 0.1500. This re-scaling provision is only

for convenience in working with graphs, and has no relevance to differential corrections solutions.

That is, the DC program works only with direct flux (column 5 of LC output) and does not even

know about normalized light. Column 7 is the star separation, with the unit being the relative

orbital semi-major axis (a = a1 + a2). Column 8 is the system brightness expressed in magnitudes,

with a user-specified zero point (labeled MZERO). For example, if MZERO is +7.300, column 8 will

read 7.300 at the phase of normalization (PHN), which is the same phase of normalization used for
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column 6.

For MPAGE=2 (radial velocities), the first two output columns are again time and phase.

Columns 3 and 4 are dimensionless radial velocities for the two stars (in circular relative orbit

circumference [2πa] per orbit period). Columns 5 and 6 are the eclipse-proximity corrections cor-

responding to columns 3 and 4, respectively, and in the same dimensionless unit. Columns 7 and

8 are velocities in kilometers per second if velocity unit VUNIT was entered as 1.00, or, in general,

in unit VUNIT.

For MPAGE=3 (spectral line profiles), the output is by blocks according to phase, with re-

sults for stars 1 and 2 given first and second, respectively, within each phase block. Column 1

is the equivalent velocity difference between the reference wavelength and the wavelength of the

profile point, in unit VUNIT. Column 2 is the corresponding wavelength difference, in microns. The

reference wavelength is that entered with the main binary star parameters (labeled “wv lth” in

the output). Column 3 has the actual wavelengths of the profile points, in microns. Column 4 is

the profile in terms of a flat continuum at flux 1.0000000. Column 5 is the profile in terms of a

continuum that can be shifted vertically and can have a slope. Guard against generating excessive

output with MPAGE=3 (usually one does only one phase at a time). Input for MPAGE=3 operation

is described in §6, page 14.

For MPAGE=4 (star figures), LC lists the pole, point, side, and back radii of each star vs. time

and phase. This provision can be useful for eccentric orbit cases, as it shows the variation of figure

with phase.

For MPAGE=5 (images), LC produces only two output columns for each time/phase (beyond

the usual header information, essentially composed of the input quantities and their labels). Those

columns are ysky and zsky rectangular plane of sky coordinates of the projected surface elements

of the two stars. A picture of the binary at a given phase can be made by sending just those two

columns to a plot program such as GNUPLOT, MONGO, etc. Any spots or parts of spots that

may be in view will show in the pictures, although there is no distinction in the pictures between

bright and dark spots. The images show only spot location, not spot surface brightness (there is

no gray scale). The origin (0, 0) of the image coordinates is at the system center of mass.

Adjustment of parameters while fitting light and velocity curves normally involves both sub-

jective (LC) and objective (DC) iteration. It is assumed that the user has reasonable background

knowledge of binary stars and can show good judgment in deciding which parameters to fix from

theory, which to fix from other kinds of observations, and which to adjust. Solution constraints,

if there are to be any, must also be decided upon. In most situations, some of the decisions are

obvious while others are debatable, and seldom will two persons make the same set of choices, even

if given exactly the same circumstances. Therefore, this section goes only into the “mechanics” of

solutions, which means how to use the LC and DC programs.
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2.1. Does Light Curve Computation Require Correct Absolute Dimensions?

Persons familiar with earlier program versions will notice a (usually subtle) response of light

curve output to changes in absolute masses and dimensional scaling in the new LC and DC.

Previously one could enter any period or orbit size without affecting light curves, as the scaling of

observable light (output) from luminosities (input) involved temperature but not log g or chemical

composition. That was because the old stellar atmosphere routine applied only to main sequence

stars of normal composition, but now log g and composition do affect light curve output, and the

programs essentially compute log g from GM/R2 (really from local conditions, including rotation

and the other star’s gravity) with M and R dependent on period and absolute size. In older program

versions one can even enter grossly wrong P, a’s without adverse light curve effects, and most users

will have become accustomed to that circumstance. However correct P, a, [M/H]’s should be used

with the new radiative treatment. Actually, the attendant effects are small, barring radically wrong

values, but one should be consistent. Where orbit size is unknown, make a best guess rather than

entering unrealistic numbers. In a non-simultaneous light-velociy solution, be sure that the final

semi-major axis (a) from the velocities is the same a used for the light curves. That condition

will be satisfied automatically in a simultaneous solution. LC and DC are made to be mutually

consistent but will have different L2’s and light if absolute dimensions and masses differ between

the two programs. Naturally the foregoing warnings do not apply for black body computations,

where the programs’ light curves are unaffected by absolute masses and dimensions.

2.2. Getting Started

Most persons will want to begin with a quick graphical fit, so as to be somewhere near to a

proper solution. It is a good idea to interface LC to a graphics package to facilitate eye inspections.

The following discussion specifically concerns light curves (MPAGE=1 in LC), although radial

velocities (MPAGE=2) would be fitted in much the same way. It is best to be ready to feed either

column 5 (light in program units) or column 6 (normalized light) to the graph. Remember that

the normalized light column has no counterpart in DC, so after a few first cuts with normalized

light (to reach rough agreement with the observations) switch from use of column 6 to use of

column 5. At this point one should effect a correct transfer such that the column 5 numbers will be

approximately the same as the column 6 (normalized) numbers that have been made to fit the light

curve(s). This little problem involves the estimation of a scaling constant, or sometimes more than

one. Please consult §4, page 12, Luminosity vs. Light (Flux), if you are not conversant with

the distinction between “light” or “flux” on the one hand (an output quantity), and “luminosity”

on the other (an input quantity). This will sound trickier than it is, but do not be concerned with

making a perfect transfer from column 6 to column 5 output, because you are iterating anyway and

only need to get close. Remember that the light of each star scales with its luminosity, while third

light (`3) is just a direct add-on. Also remember that in all modes of program operation except

modes 0 and -1, the luminosity of star 2 (L2) is computed by the program and scales with that of
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star 1 (L1), assuming fixed values for all other parameters. Therefore, the main, or perhaps only,

scaling parameter in most situations is L1. The simplest case is in mode 1, 2, 3, 4, 5, or 6 with

no third light. Then, for example, doubling L1 will double column 5 output light. If there is third

light, that also should be doubled if column 5 light (`1 + `2 + `3) is supposed to double. In mode

0, L2 does not scale with L1, so L2 also would then need to be doubled. In mode -1, L1 has only

minor influence (through reflection heating), so L2 and `3 mostly control the scaling, although L1

also needs to be scaled in the general case. So to make column 5 agree with column 6, bump L1

and `3 (most modes) or L1, L2, and `3 (modes 0 and -1) up or down by a fixed factor.

When you use normalized output the idea is to select some phase where you make the syn-

thesized curve match the observed curve so that you can concentrate on form rather than the

absolute scale. Usually one chooses some innocuous phase outside eclipse where the brightness is

not changing very fast. Vertical shifts of the whole normalized curve are made by changing input

quantity FACTOR, if working in direct light, or MZERO if working in magnitudes. After you switch

to column 5 output (getting ready for DC), control of vertical scaling passes to L1, L2, and `3, as

explained above. After gaining some experience with LC, you will be using the normalized output

only for a few preliminary runs and staying with program-unit light thereafter.

To start running DC, begin with the sample data, which contains control integers, initial

parameter estimates, radial velocity curves for star 2, and light curves in two bands. The sample

data file is set up to do a simultaneous solution of two velocity curves and three light curves. Run

DC and inspect the output to be sure you understand everything. You may want to change a few

things in the input to verify that the output responds as expected.

To begin a solution with your own data, change the sample input numbers to those appropriate

to the observed binary, being careful to keep the original format. By this time you should have made

a reasonable number of fitting experiments with LC, decided on the mode of program operation,

decided on the parameter set and subsets to be adjusted, and estimated the SIGMA’s (standard

deviations) of the observed curves (see below). You should also give a reasonable amount of thought

to the sizes of the increments (DEL’s) used in forming the numerical derivatives. It is easy to fall

into the error of trusting the DEL’s in the sample data to be appropriate for your binary, and

sometimes they will be, but you cannot rely on that assumption. For example, suppose the mass

ratio DEL is 0.01 and you just leave that value in for two binaries with mass ratios of 5.00 and

0.10. The increment for the first binary is one part in 500 (probably too small), while that for the

second is one part in 10 (grossly too large, of course). Also remember not to try star spots that

are unduly small in angular radius, because there are no fractional areas to the spots – they have

staircase-like boundaries where their idealized circular outlines encounter the finite grid elements.

Of course, the roughness of this simple treatment becomes particularly troublesome for small spots,

and very small spots might not show up at all. Differential correction of spot parameters requires

fine grids and considerable patience.

DC writes a table of numbers that are useful for estimating the SIGMA’s (standard deviations
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= σ’s) of the 1 or 2 velocity curves and NLC light curves. The table is labeled “Sums of squares

of residuals for separate curves, including only individual weights,” which is exactly what is listed

(neither curve-dependent nor level-dependent weights are included). The sums of squares are just

listed in the order their curves occur in the input. To form SIGMA’s, calculate

σ =

√

ΣWr2

n − m

where n is the number of data points in a curve and m is the number of adjusted parameters in the

subset of primary interest. Usually n is much larger than m, so that the actual value of m makes

little difference. The SIGMA’s are used by DC to calculate curve-dependent weights – that is, to

control the relative influences of the various curves. One can enter rough guesses for the SIGMA’s

in the first few iterations, then calculate them properly for the middle runs and fine tuning runs.

The rough guesses can be made by putting a straight line through a representative section of the

data.

3. Modes of Program Operation (Solution Constraints)

Imagine that you know or are convinced of something about possible parameter values, and

your “fact” is not in the form of a definite parameter value, but rather is a functional relationship

among parameters. You do not claim to know the value of parameter c, but if someone tells you

the values of parameters a and b, you then can compute c. The most common example is connected

with one of the stars accurately filling a limiting lobe, as in a semi-detached case. It is impossible (or

anyway, inadvisable) to say in less than a small monograph why we believe in the phenomenon of

lobe filling and our ability to recognize semi-detached binaries as such. Of course, there are binaries

for which we cannot be sure – the lobe may or may not be filled – but there are many for which

we would “bet the ranch” that they are. In fact, for more than a few of the classical Algol type

binaries, conflicts between mass ratios determined from radial velocities and mass ratios found from

a lobe filling condition (through light curves) were eventually resolved in favor of lobe filling and

light curves. S Cancri is a good example. For the simple case of a circular orbit and synchronous

rotation, the mass ratio, q, of a semi-detached binary determines the relative size of the lobe

filling star, Rlobe/a. Since the model expresses star size via the Ω potential energy function, Ωlobe is

determined by q and cannot be adjusted under a semi-detached or double contact constraint (modes

4, 5, 6). If we have lobe filling with non-synchronous rotation there is a functional relation among

three parameters (now also F to express the rotation rate), and we add parameters e and ω if the

orbit is eccentric. In general, application of the lobe filling condition, or another condition, reduces

the number of free parameters by one. Now because every parameter enlarges and complicates the

parameter correlation matrix and thus weakens the solution, we should take advantage of every

opportunity to eliminate free parameters. Essentially we thereby introduce information from sources

external to the light and velocity curves, and we tell the Least Squares program “here is something

about the binary that you cannot figure out from the data, but we are letting you know so that you
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can eliminate a whole dimension of incorrect solutions.” Each such condition can be represented

as a constraint among possible parameter values, and a constraint or set of constraints is identified

with a particular operation mode of LC and DC. Parameters that are set by constraints are

no longer free parameters. The program computes them from the constraint relations and ignores

their input values. Of course, they cannot be adjusted. Unfortunately, a few authors have failed to

understand the idea of constrained solutions and have made comments something like “our program

allows each star to have the radius that gives the best fit to the light curve, so that application of a

lobe filling constraint is unnecessary.” This is akin to saying “we amputate the legs so as to make

walking unnecessary.”

Mode -1: This mode is for X-ray binaries for which the eclipse duration of a compact object

is known from X-ray observations. The compact star must be star 1. The applied constraint is that

the surface potential of the ordinary star (star 2) must be such as to produce the observed X-ray

eclipse duration. Therefore, the program computes the Ω2 potential from the input q, F2, e, ω, i,

and X-ray eclipse semi-duration, φe (FORTRAN name is THE). Note that solutions are not limited

to circular orbits or synchronous rotation – any e between 0 and 1 is allowed, as is any F2. Note

also that lobe filling is not implied. It is recommended to use equal temperatures for the two stars

in most situations where one would apply mode -1 logic. With component 1 a neutron star, for

example, it will be unrealistic to deal with the actual surface temperature (which usually will be in

a bizarre distribution – perhaps 50,000,000 K in a small hot spot or two and far lower over the rest

of the surface. The tiny ultra hot surface will contribute negligible optical flux anyway. Usually it

will be best to assign star 1 a temperature equal to that of star 2, so as to be sure of having zero

bolometric correction in the reflection effect, thereby keeping things relatively simple.

Mode 0: No constraints are applied in mode 0, and the component luminosity ratio is not

even required to be consistent with the surface temperatures. That is, the program uses L1 and L2

as supplied, and does not re-compute L2, based on the input temperatures. A star may even be

larger than its Roche lobe in mode 0 (and will then have a hole in one end).

Mode 1: This is a mode for overcontact binaries, such as W UMa stars. Seven constraints

are applied. The first is that the surface potential of star 2 is equal to that of star 1 (Ω2 = Ω1).

Another is that the polar temperature of star 2 is set by the gravity brightening law of the entire

common envelope, which is done via Eqn. 8 of Wilson (1979). Other constraints are that the

gravity brightening, bolometric albedo, and limb darkening parameters of star 2 are the same

as those of star 1. Finally, the luminosity of star 2 is computed from the other parameters via

black body or stellar atmosphere radiation formulas. Therefore, the seven parameters Ω2, g2, T2,

A2, L2, x2, and y2 are not free in mode 1. A consequence of mode 1 operation is that there is

a smooth variation of surface brightness over the entire common envelope with no discontinuity

where the stars join together and thus one continuous gravity brightening law. In mode 1 light

curve fitting experiments, there will be essentially no freedom to change the relative primary and

secondary eclipse depths, which will be set almost entirely by geometry (although a little by gravity

brightening, limb darkening, etc.).
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Mode 2: This is for detached binaries with no constraints on the potentials. The only constraint

is that the secondary luminosity, L2, is computed from the other parameters via the specified

radiation prescription (black body or stellar atmosphere). That is, L2 is coupled to the temperatures.

The temperature-luminosity coupling can be severed by setting control integer IPB to 1 (normal

value = 0). Mode 2 is the same as mode 0 except for the one constraint, and is exactly like mode

0 if IPB is set to 1.

Mode 3: This is for overcontact binaries and is like mode 1 except that the constraints on g2,

T2, A2, x2, and y2 are not applied. The other two constraints of mode 1 are applied in mode 3, but

T2, A2, g2, x2, and y2 are free. This treatment is changed from the 1998 version (see §20, page 44).

The stars can be overcontact in mode 3, yet have much different surface brightnesses. In structural

language, they can be in geometrical contact without being in thermal contact.

Mode 4: This is for semi-detached binaries with star 1 accurately filling its limiting lobe,

which is the classical Roche lobe for synchronous rotation and a circular orbit, but is different from

the ordinary Roche lobe for non-synchronous and eccentric cases. The applied constraints are that

Ω1 has the lobe filling value and that L2 is coupled to the temperatures (unless IPB=1).

Mode 5: The same as mode 4, except that it is star 2 that fills its limiting lobe. This is the

usual mode for Algol-type binaries.

Mode 6: This is for double contact binaries, in which both stars accurately fill their limiting

lobes (Wilson 1979). Astrophysically this makes sense only if at least one of the stars rotates

non-synchronously. Mode 6 applies the surface potential constraints of modes 4 and 5 together.

Note on lobe filling: The program operates under a general definition of a limiting lobe that

applies for non-synchronous as well as synchronous rotation and for eccentric as well as circular

orbits. The classical Roche lobe is a special case that obtains for the synchronous, circular orbit

case. In the general definition, a limiting lobe is an equipotential for which the effective gravity is

zero on the line of star centers at periastron. In a strict sense, equipotentials do not exist in the

eccentric orbit case, but in essence the concept of equipotentials still is useful in most realistic

situations (Avni 1976; Wilson 1979).

4. Luminosity vs. Light (Flux)

It is essential to emphasize the very important, yet commonly ignored, distinction between

“light” or “flux” on the one hand, and luminosity on the other. As simple as this is, it has led to

remarkable confusion in the literature. The problem has its roots in models of past decades that

could have made the distinction but did not, and it has carried over into the general binary star

literature of today. A luminosity as discussed here is characterized by a bandpass and bandpass

properties (sometimes written “band” for brevity). Where it is necessary to refer to a bolometric

luminosity, the qualifier “bolometric” can specifically be attached. In some papers, unqualified lumi-
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nosity means bolometric luminosity, but in this document unqualified luminosity means bandpass

luminosity.

A discussion of this point is in the description of subroutine LUM in Wilson (1993). The

main thing to remember is that luminosity is a global quantity, represented by a single number

for each star and band. It does not depend on aspect (neither on inclination nor on phase). Some

authors write of “normalizing luminosities by the sum of the luminosities outside eclipse.” However,

luminosity has nothing to do with eclipses or their absence, nor with any other aspect-dependent

variation. Flux (or, in more relaxed terminology, “light”) is a directly observable (aspect-dependent)

quantity, while luminosity is a model parameter that cannot be observed directly but must be

inferred as part of a photometric solution. The luminosities, L1 and L2, still can be normalized by

their sum (a common and reasonable practice) but two points need to be kept in mind. The first is

that the normalization must be made only after completion of a solution, not during its progress.

The reason is that the luminosities are the main handles for scaling of (output) flux. As such they

need to float freely so that the model is able to match the observed fluxes, which almost always are

in an arbitrary unit, since the measurements are made with respect to the flux from a comparison

star. The second point is that L1 and L2 are not the same kind of quantity as third light (a flux),

and are not to be compared directly with third light. This is important because many papers have

listed values of third light with no indication of what the number means. Not only is the printed

`3 thereby rendered useless, but strictly speaking the entire solution is made meaningless because

`3 usually is significantly correlated with other parameters. An estimate of third luminosity, based

on third light, involves an assumption about the direction dependence of the radiation of the third

source. If that radiation is emitted isotropically, then third luminosity, L3, will be 4π times `3,

which is per 1/4π of the area of a sphere centered on the binary (“a steradian’s worth of area”).

That L3 value is to be compared with the un-normalized L1 and L2. A meaningful way to specify

the unit of a published `3 is to express it in the light (relative flux) of the multiple star system at a

definite phase. For example, suppose the solution output light is 1.0500 at reference phase 0.2500

for a particular light curve. Then divide `3 and its error estimate by 1.0500, list those numbers, not

the direct `3 program output, and tell the reference phase in a footnote to the table of results.

5. Circumstellar Light-Attenuating Regions

Light curves of some interacting binaries show effects of attenuation of star light by circum-

stellar matter. Most such matter is gaseous, although dust attenuation may be significant in a few

cases. The attenuation may be due to Thomson scattering, Rayleigh scattering, another scattering

process, or true absorption. Since circumstellar matter follows dynamical trajectories, one might

expect there to be little interest in attenuating regions that are fixed in a coordinate frame that

rotates with the binary, but such is not entirely the case. A few binaries (e.g. RZ Sct, AX Mon)

have approximately stationary loci of circumstellar gas that distort their light curves. The loci

may be stream-stream, stream-disk, or stream-wind interaction regions. Efforts to represent such
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light curve distortions via bright or dark star spots sometimes can rule out a spot explanation and

point to essentially fixed attenuation regions (hereafter “clouds,” for brevity). The model includes

n spherical semi-transparent clouds specified by their locations (x, y, z) [in a rectangular frame that

co-rotates with the stars], cloud radius (r), density (ρ), electron density (ne), and mean molecular

weight per free electron (µe). The x coordinate is zero at the center of star 1 and increases toward

star 2, reaching +D at the center of star 2. The x, y, z system is right handed and serves for the

entire binary system. The part of the line of sight that passes through the various clouds is com-

puted individually for the lines of sight to all surface points and individually for all clouds. Regions

of variable density can be made by nesting individual clouds. Regions of non-spherical shape can

be approximated by overlapping spherical clouds. Each cloud is allowed its own attenuation law,

whose general form is
dτ

ds
= σene + (κλ + κsb) ρ (1)

where τ is optical thickness, σe is the Thomson scattering cross section per electron, s is distance

along the line of sight (in cm), κλ is a wavelength-dependent opacity, and κsb is an additional

opacity for a specific band (κ in cm2/g). The κsb term might represent, for example, opacity due

to absorption lines averaged over a particular band. The κλ term is

κλ = κ0λ
α (2)

where κ0 and α are input quantities. Each cloud has its individual κ0, α, and κsb. However, to make

it easy to change the κsb’s of all clouds together, the κsb’s are not entered directly as individual

numbers. Instead one enters an overall κsb and the fraction of it that applies for each cloud. Thus

κsb = fiκsb0 (3)

where all the fi can be unity if κsb is to be the same for all clouds, or non-unity if κsb is to differ

from cloud to cloud. The program figures absolute lengths from the system geometry, including the

orbital semi-major axis.

At present the clouds only attenuate starlight that passes through them, but they may be

made to scatter starlight toward the observer in a future program version.

6. Spectral Line Profiles

Profiles of absorption and emission lines are generated for MPAGE=3. The profiles are for

rotation only, although other broadening mechanisms will be added later. Blending is incorporated,

including blending of mixed absorption and emission lines. Lines can originate either from an entire

star or from designated sub-areas of the surface, as explained below. Only LC (not DC) computes

line profiles at present. Spectra are formed by binning, with the spectra of the two stars formed

separately. The user can add them (weighted by observable flux) if spectra of the binary are needed.

Computations for each star are characterized by four quantities related to spectral and accuracy
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characteristics (BINWM1, SC1, SL1, NF1 for star 1 and BINWM2, SC2, SL2, NF2 for star 2), that

have the following meanings:

BINWM1(2): The bin width in microns. Too small a bin width gives noisy profiles. Too large

a bin width gives insufficient spectral resolution.

SC1(2): The continuum scale (continuum flux at the reference wavelength). The unit is decided

by the user.

SL1(2): The continuum slope in flux units per micron.

NF1(2): Grid fineness for micro-integration on each surface element. NF1(2)=1 means that

there is no micro-integration. NF1(2)=n breaks each surface element into n2 pieces, each with its

own radial velocity, thus improving integration accuracy.

With MPAGE=3, an LC input line with the above quantities is required for each star, even if

one of the stars is assigned no spectral lines (see sample input file lcin.dat3). DC program input

does not have the analogous data lines at present.

Following the star-dependent input are data for individual spectral lines in two sets (for star 1,

then star 2). The quantities are (FORTRAN names):

WLL1(2): The line rest wavelength in microns for a line of star 1 or (2).

EWID1(2): The line equivalent width, in microns – the traditional measure of line strength, for

a line of star 1 or (2). Absorption and emission lines both have positive equivalent width by program

convention. Whether a line is in absorption or emission is controlled by parameters DEPTH1 and

DEPTH2 (next ¶).

DEPTH1(2): Rectangular line depth for a line of star 1 or (2). Line profiles are formed by

binning of Doppler shifted elements that have rectangular profiles, each with a depth and a width.

The user supplies the depth and the program then calculates the width needed to reproduce the

specified equivalent width. The depth is relative to a unit continuum, so 0.80000 means that 80

percent of the continuum flux is missing within the rectangular profile element, or that the residual

flux is 20 percent of the continuum. Negative depths correspond to emission lines, so −0.50000

means 50 percent above the continuum. Depths must be less than 1.0000 (i.e. an absorption line

cannot go to zero flux or below), but can be less than −1.0000 (an emission line can go arbitrarily

high).

KKS: This integer specifies a surface region associated with a given spectral line. If KKS=0,

the line is not specific to a location but applies to the entire star. If KKS=1, then the line applies

only to the first spot on that star; if KKS=2 it applies only to the second spot, and so on. Naturally

the star must have spots for this scheme to work, but the spots need not be hot or cool spots – they

can have temperature factors of unity. Negative KKS specifies avoidance of regions. Thus KKS=−4

means that the spectral line applies everywhere on the star except within spot 4. If you find this

confusing, just set KKS=0 and the line applies in the old simple way – everywhere on the star.
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If computed absorption lines have flat bottoms, you probably used too small a depth. What

happens is that the computed line is a superposition of many elemental bar-like lines, so if the

bars are not deep, then they have to be wide in order to have the specified equivalent width. So

essentially the problem is one of DEPTH being too small for a given equivalent width. The “flat-

bottom” problem may be especially troublesome for slowly rotating stars. The converse problem is

where the equivalent width is very small and DEPTH is large (like 0.99). The elemental bars are

then very narrow (needle-like). This situation can produce raggedy lines, especially for fast rotating

stars. The remedy is to use a smaller DEPTH.

7. Model Parameters

These are the same for the LC and DC programs, although some of the parameters are

not among the 35 that can be adjusted by the present version of DC. The actual number of

parameters subject to adjustment is greater than 35 for two reasons. First, although DC can adjust

the parameters of at most two star spots in any one run (iteration), successive iterations can adjust

the parameters of different spots (viz. definitions of KSPA, KSPB, NSPA and NSPB on page 21 in §8).
Second, curve-dependent parameters (limb darkening coefficients, relative bandpass luminosities,

third light) have n values for n simultaneously fitted light curves. For example, specifying the

adjustment of `3 in a simultaneous solution of four light curves will produce four `3 corrections,

one for each curve. The word “curve” is used here in the sense of “light curve” or “radial velocity

curve,” etc. Parameters are identified below according to their FORTRAN names.

7.1. Curve-independent parameters that cannot be adjusted by DC

THE (φe): The semi-duration of primary eclipse in phase units (i.e. range 0 to 1 for a whole

cycle). This parameter is used only in mode -1 and relates only to binaries in which star 1 is a

compact object (i.e. has negligible size compared to the other star). The idea is to fix φe according

to X-ray eclipses of a neutron star, black hole, or white dwarf, and require the overall solution to

be consistent with that value. The orbit can be eccentric and rotation can be non-synchronous.

Parameter φe is ignored in all other operation modes. See the explanation of mode -1 on page 11

in §3.

XBOL1, XBOL2 (xbol1, xbol2): The coefficients of cos γ in the bolometric limb darkening law.

Used only in computation of “detailed” reflection (Wilson 1990), with MREF=2. See ybol1, ybol2

below for the complete law and explanation.

YBOL1, YBOL2 (ybol1, ybol2): If control integer LD=2, these are the coefficients of the

cos γ ln(cos γ) term in the bolometric logarithmic limb darkening law. The complete logarithmic
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law is
I

I0
= 1 − x + x cos γ − y cos γ ln(cos γ),

which was advocated by Klinglesmith & Sobieski (1970). If LD=3, they are the coefficients of the

bolometric square root law. The complete square root law (Diaz-Cordovés & Giménez 1992) is

I

I0
= 1 − x + x cos γ − y (1 −√

cos γ) .

Coefficients for all these darkening laws have been tabulated by Van Hamme (1993).

XCL, YCL, ZCL: Rectangular coordinates of the centers of spherical circumstellar clouds. See

page 13, §5.

RCL: Radii of individual circumstellar spherical attenuating regions in unit of a.

EDENS (ne): Electron densities in cm−3 for individual attenuating clouds. For a given cloud,

ne is constant, although clouds can be nested or overlapped.

XMUE (µe): Mean molecular weight in atomic mass units per free electron for individual

attenuating clouds, and constant throughout a given cloud.

ENCL (α): Exponent in the wavelength-dependent term of the attenuation law for individual

attenuating clouds (see page 13, §5). The program internally computes densities, ρ, from ne and

µe.

7.2. Curve-dependent parameters that cannot be adjusted by DC

WLA: The observational wavelengths in microns of each light or velocity curve. Wavelengths

need to be entered for velocity curves, although they have little effect on the output, and any

wavelength somewhere near the spectral region of interest should be adequate. Wavelengths are no

longer used for light curves, which now are based on integrated bandpass radiation (see pages 32–35,

§12). Wavelengths are still entered for use as reference wavelengths for line profiles and for opacity

computations in circumstellar attenuation.

Y1A, Y2A (y1, y2): These are the bandpass-specific limb darkening coefficients in the non-linear

terms. The laws have the same forms as for bolometric limb darkening (page 16). There is one

value for each of these coefficients for each light or velocity curve or set of line profiles. LC uses

both wavelength and bandpass input for line profile computation (wavelength for basic profiles,

bandpass for weighting by flux). Enter integer parameter LD=1 for the linear cosine law (in which

case y1 and y2 are assumed to be zero), LD=2 for the logarithmic law, or LD=3 for the square root

law. Although y1 and y2 cannot be adjusted by the present version of DC, they may be adjustable

in a future version.
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7.3. Curve-independent parameters that can be adjusted by DC

HJD0 (t0): This is the zero point of the orbital ephemeris. Usually one uses Heliocentric Julian

Date, although that is only a convention and any consistent system of time can be used.

PERIOD (P ): The binary orbit period at the reference time, t0, ordinarily in mean solar days.

P affects radial velocity amplitudes and is used to compute phase from time (if JDPHS=1) and

time from phase (if JDPHS=2). P can be adjusted only if JDPHS=1 and observation times (rather

than phases) are entered.

DPDT (dP
dt

): The first time derivative of the orbital period. Second and higher derivatives are

not used in the present program. DPDT can be adjusted only if JDPHS=1 and observation times

(rather than phases) are entered. This quantity is dimensionless.

E (e): Binary orbital eccentricity.

PERR0 (ω0): Initial argument of periastron for star 1. The argument of periastron for star 2

differs by π radians. PERR0 is ω at the reference time of the ephemeris, t0. The program is written

so that, as the argument of periastron changes, both eclipses have excursions in phase in the same

way as a real binary. In old versions the input unit was degrees but the corrections produced by

DC were in radians, so one had to convert units to apply the corrections. Now both input and

corrections are in radians, which should reduce confusion. The DEL for ω also is in radians. For

circular orbits, the program ignores the input value and sets ω to π/2 radians.

DPERDT (dω
dt

): The first time derivative of ω. DPERDT can be adjusted only if JDPHS=1

and observation times (rather than phases) are entered. The instantaneous argument of periastron

is ω = ω0 + dω
dt

(t − t0). The present program does not consider any more complicated variations of

ω. The unit is radians per adopted time unit (usually a mean solar day).

A (a): The length of the semi-major axis of the relative orbital ellipse, in solar radii

(6.960 × 105 km). It is the sum of the two absolute semi-major axes, so a = a1 + a2.

F1, F2 (F1, F2): The ratio of the (constant) axial rotation rate to the mean orbital rate for

stars 1 and 2, respectively. The angular rotation is assumed to be uniform (not latitude dependent).

Value unity represents synchronous rotation in a circular orbit. In eccentric cases it is expected that

rotation will tend to synchronize to the periastron angular rate because of the strong dependence

of the tide raising force on distance. Periastron-synchronized F is given by

F =

√

1 + e

(1 − e)3
.

The F ’s affect star figures, surface brightnesses (gravity effect), limiting lobe sizes, and thus both

light curves and radial velocities.

VGA (Vγ): The radial velocity of the binary system center of mass (assumed constant) in the

unit (so many km/sec) specified by the input quantity VUNIT.
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PSHIFT (φ0): A constant shift applied to computed phases. Usually one enters +0.0000 for φ0,

but it may be convenient to shift the phases. For example, a phase shift of about half a cycle can

effectively interchange the star labels (1 vs. 2) without altering the observational data. The main

purpose of φ0 is to allow the DC program to adjust for a zero point error in the ephemeris used to

compute the phases. The unit is the orbital period. One should not adjust both PSHIFT and HJD0

because they will be perfectly correlated.

XINCL (i): The binary orbital inclination to the plane of the sky, in degrees. If the inclination

is in the range 0 to 90◦, the binary orbits counter-clockwise as projected onto the plane of the

sky, while above 90◦ it orbits clockwise, according to the coordinate conventions adopted for the

program. Those conventions were different prior to the revision of 1992.

GR1, GR2 (g1, g2): The exponents in the bolometric gravity brightening (a.k.a. darkening)

law for stars 1 and 2, respectively. Value 1.000 means that bolometric flux is proportional to local

effective gravity, while 0.000 means that it is constant over the surface (ignoring other effects such as

spots, reflection heating, etc.). The g’s are expected to be unity for radiative envelopes, while they

should be smaller for convective envelopes, perhaps about 0.3. Some other programs use a gravity

brightening exponent expressed in terms of effective temperature, for which the usual symbol is β.

The quantities are related by g = 4β.

TAVH, TAVC (T1, T2): The mean surface effective temperatures of stars 1 and 2, respectively,

not including re-radiation (reflection) or spots. The mean is weighted by the local bolometric flux.

The program accepts T1 and T2 as model parameters and converts to local surface temperatures for

internal computations. The conversion between mean and polar temperatures is made via Eqn. 8 of

Wilson (1979), and the local surface temperatures are then computed from the polar temperatures

and the gravity brightening law. The unit is 10000 K.

ALB1, ALB2 (A1, A2): The bolometric albedos for reflection heating and re-radiation on stars

1 and 2, respectively. The bolometric albedo is the local ratio of re-radiated bolometric energy

to received bolometric energy. It is assumed to be constant for each star. The expected value

for radiative envelopes is 1.00, while for convective envelopes it should be perhaps 0.5, although

observations sometimes indicate values between 0.5 and 1.0.

PHSV, PCSV (Ω1, Ω2): These are the “potentials” for stars 1 and 2, respectively, that originally

were defined by Kopal (1954) for the synchronous, circular orbit case. They would be actual po-

tentials, except that a term was deleted in Kopal’s convention. The deleted term depends on mass

ratio but not on position, so Ω gradients are equivalent to potential gradients. Fixed Ω specifies a

constant potential energy (gravitational plus rotational) over the surface of each star. A generalized

defining equation (Eqn. 1 of Wilson 1979), based on contributions by Plavec (1958), Limber (1963),

and Avni (1976), allows the Ω’s to serve also for non-synchronous rotation and eccentric orbits.

Together with the mass ratio, rotation rate, orbital eccentricity, argument of periastron, and phase,

the Ω’s specify the size, figure, surface gravity, and certain other geometric properties of the stars.

Special values of the Ω’s correspond to exact filling of limiting lobes.
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RM (q): The mass ratio, m2/m1, of stars 1 and 2.

XLAT: The “latitude” of a star spot center, measured from 0 radians at the “north” (+z) pole

to π radians at the “south” pole. XLAT’s are subscripted by star (1 or 2) and by spot number on

a star (viz. explanation of KSPA, NSPA, KSPB and NSPB on page 25, §9.3).

XLONG: The longitude of a star spot center, measured counter-clockwise (as viewed from above

the +z axis) from the line of star centers from 0 to 2π radians. XLONG is subscripted in the same

way as XLAT.

RADSP: The angular radius of a star spot, in radians. The angle is subtended by the spot

radius at the center of the star. RADSP is subscripted in the same way as XLAT.

TEMSP: The “temperature factor” of a spot, that specifies the ratio of local spot temperature

to local temperature that would obtain without the spot. A TEMSP larger or smaller than unity

corresponds to the spot being hotter or cooler than the un-spotted surface, respectively. TEMSP is

constant for a given spot, but local temperature will vary over a spot if the underlying un-spotted

temperature varies. TEMSP is subscripted in the same way as XLAT.

7.4. Curve-dependent parameters that can be adjusted by DC

HLA, CLA (L1, L2): Bandpass luminosities for stars 1 and 2, respectively. There has been

some confusion about the units of luminosity and of light, which is partly due to a tradition in the

binary star field of normalizing luminosity and light separately, and failing to recognize that they are

fundamentally distinct (although connected) quantities (viz. §4, page 12). The program luminosity

unit is effectively user-supplied, and determines the unit of output light (i.e. `1 or `2 bandpass flux).

The output flux will integrate to the luminosity over a sphere at any large distance, centered on the

binary system. The computed fluxes will be in the unit 1/4π luminosity units/(steradian’s worth

of area). Now this may not sound like correct flux units – with “steradian” in there it sounds

like intensity. However, that last item, “steradian’s worth of area” is indeed an area, not a solid

angle. So to be formally correct, replace “steradian’s worth of area” with “d2 cm2,” where d is the

assumed binary–observer distance in cm. Pictorially, imagine the observer’s detecting instrument

covering 1 steradian (a little on the big side, but one can always re-scale to more practical units).

To keep things simple, imagine that the star radiates isotropically and that we enter a luminosity

of 4π, in our chosen unit, for one of the stars. The program will produce an output flux of 1.000 for

that star for all phases and inclinations (outside eclipse), and since that flux refers to 1 steradian,

the 4π steradians surrounding the star would have 4π units, which is just what we entered as the

luminosity. If we specified the luminosity unit to be, say, 1×1033 erg/sec/micron, then the luminosity

is 4π× 1033 erg/sec/micron, and the flux (light) is 1× 1033 erg/sec/micron/d2 cm2 (constant in this

special case).

X1A, X2A (x1, x2): These are the wavelength-specific limb darkening coefficients in the linear
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terms. The laws have the same forms as for bolometric limb darkening (page 16). There is one value

for each of these coefficients for each light or velocity curve or set of line profiles.

EL3A (`3): Third light. There is one value for each light curve, but of course no value for a

radial velocity curve. The unit should be the total system light at a specified phase. For example,

suppose `3 (program input-output value) for some particular light curve is 0.0500, the specified

phase is chosen to be 0.2500, and the total system light produced by LC at phase 0.2500 is 1.0400.

Then the number to be published for the `3 of that curve would be 0.0500 divided by 1.0400, or

0.0481. The standard error printed by DC for `3 also should be divided by 1.0400 for publication.

A footnote can be placed in the publication to tell the reference phase.

8. Parameter Order

The 35 DC parameter channels are assigned as follows:

(1) - Spot 1 latitude

(2) - Spot 1 longitude

(3) - Spot 1 angular radius

(4) - Spot 1 temperature factor

(5) - Spot 2 latitude

(6) - Spot 2 longitude

(7) - Spot 2 angular radius

(8) - Spot 2 temperature factor

(9) - Orbital semi-major axis, a = a1 + a2

(10) - Orbital eccentricity, e

(11) - Initial argument of periastron, ω0

(12) - Rotation parameter for star 1, F1

(13) - Rotation parameter for star 2, F2

(14) - Phase shift = phase of primary conjunction (for ω = π/2), φ0

(15) - System center of mass radial velocity (systemic velocity), Vγ

(16) - Orbital inclination, i

(17) - Gravity law exponent for star 1, g1

(18) - Gravity law exponent for star 2, g2
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(19) - Mean surface temperature of star 1, T1

(20) - Mean surface temperature of star 2, T2

(21) - Bolometric albedo of star 1, A1

(22) - Bolometric albedo of star 2, A2

(23) - Surface “potential” of star 1, Ω1

(24) - Surface “potential” of star 2, Ω2

(25) - Mass ratio, q = m2/m1

(26) - Reference time in ephemeris (initial epoch, usually Heliocentric JD), t0

(27) - Orbital period at initial epoch, P0

(28) - First time derivative of the orbital period, dP/dt

(29) - First time derivative of the argument of periastron, dω/dt

(30) - Unused channel reserved for future expansion

(31) - Bandpass luminosity of star 1, L1

(32) - Bandpass luminosity of star 2, L2

(33) - Bandpass linear limb darkening coefficient for star 1, x1

(34) - Bandpass linear limb darkening coefficient for star 2, x2

(35) - Bandpass third light, `3

9. Control Integers, Units, Scaling Factors, Special Quantities

These numbers control program operation and are assigned according to the aims of the user.

They are given here by their FORTRAN names.

9.1. Those common to LC and DC

JDPHS: This is 1 if the independent variable is time and 2 if it is phase. Setting JDPHS=1

in LC causes time (ordinarily Heliocentric Julian Date) to be stepped from HJDST to HJDSP in

uniform intervals of length HJDIN (see below). Phases for those times are computed according to

the supplied ephemeris, including the effect of dP/dt. Setting JDPHS=2 in LC causes phase to be

stepped from PHSTRT to PHSTOP in uniform intervals of length PHIN. Times for those phases are

computed according to the supplied ephemeris, again including the effect of dP/dt. Regardless of
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whether JDPHS is 1 or 2, mutually consistent time and phase are both listed in the output (columns

1 and 2, respectively).

Setting JDPHS=1 causes DC to treat the entered independent variable as time and, therefore,

to compute phases from the input times according to the supplied ephemeris. Setting JDPHS=2 in

DC causes it to treat the independent variable as phase. At present, the ephemeris includes only

the initial epoch (t0), the period at that epoch (P0), and the first time derivative of the period,

dP/dt.

MODE: This integer can be -1, 0, 1, 2, 3, 4, 5, or 6 according to the constraints or lack of

constraints to be applied. The operation modes are described in Wilson (1993) and on pages 10–12,

§3.

IPB: Assign IPB=0 for normal MODE 1, 2, 3, 4, 5, or 6 operation in which star 2’s luminosity

(L2) is to be computed from temperatures T1 and T2, the luminosity of star 1, and the radiation

laws (as well as other information known by the program about system geometry, etc.). If you want

to set L2 independently (perhaps because you have no trust in the radiation laws in a particular

situation), set IPB=1 and the program will use the input L2 value. Modes 0 and -1 always accept

the input L2, so they operate as if IPB=1. See Van Hamme & Wilson (1986) for ideas on the use

of IPB in practical situations.

IFAT1, IFAT2: These control whether a black body or a stellar atmosphere formulation is used

for local emission on stars 1 and 2, respectively. Set IFAT1(2)=0 or 1 for black body or atmosphere,

respectively.

N1, N2: These are the grid size integers for stars 1 and 2, respectively. Each is the number of

latitude rows per hemisphere. The number of surface elements in longitude scales with N1(2) and

scales approximately with the sine of the “latitude” coordinate, which runs from 0 at the “North”

(+z) pole to π radians at the “South” (−z) pole.

VUNIT: This is the unit for radial velocity input and output, in km/sec. Usually it is a round

number, such as 100 km/sec, of the order of the input velocities for DC.

MREF: The reflection effect can be handled either in detail (viz. Wilson 1990) or by the inverse

square law, with corrections for penumbral and ellipsoidal effects. The latter method is much faster

and is adequate for many realistic situations. Set MREF=1 for the simple treatment and MREF=2

for the detailed treatment. It is not advisable to use the detailed treatment for eccentric orbit cases

because the required computing time will be almost prohibitively long. Cases for which the detailed

treatment is especially recommended include super-synchronous rotators and overcontact binaries.

NREF: If detailed reflection is selected (MREF=2), then NREF specifies the number of reflections

in a multiple reflection effect. Set NREF=1 for 1 reflection from each star, NREF=2 for 2 reflections,

etc. More reflections use more computing time. If MREF=1, the value of NREF is irrelevant.

IFSMV1, IFSMV2: These integers tell whether spots on stars 1 and 2, respectively, are to move
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in longitude due to asynchronous rotation and orbital eccentricity. For example, if IFSMV1 is set

to 0, the spots on star 1 remain at fixed longitudes, referenced to the line of centers of the two

stars. This behavior is expected for hot spots due to an accretion stream. If IFSMV1=1 and the

star rotates asynchronously, then the spots on star 1 follow the physical surface as time progresses.

This behavior is expected for magnetic spots. In both cases, there is no motion in latitude.

ICOR1, ICOR2: These integers refer to proximity and eclipse effects on radial velocities for

stars 1 and 2, respectively. Value 0 turns the effects off, 1 turns them on.

LD: This integer sets the limb darkening law. LD=1 for the linear cosine law, LD=2 for a

logarithmic law, and LD=3 for a square root law.

9.2. Those for LC only

HJDST: The time at which LC is to start computing output points. HJDST and the next two

quantities, HJDSP and HJDIN, are utilized only if JDPHS=1. They are ignored if JDPHS=2.

HJDSP: The time at which LC is to stop computing output points.

HJDIN: The time increment for output points. HJDIN = 0.001 will produce output points

spaced by 0.001 day.

PHN: The phase of normalization, which is the phase at which the column of normalized light is

normalized to the input value FACTOR and the magnitude column is caused to equal the magnitude

zero point, whose name is ZERO.

PHSTRT, PHSTOP: The first and last phases at which output points are to be produced.

PHSTOP should be larger than PHSTRT, but neither has to be in the range 0 to 1. For example,

PHSTRT = −3.2000, PHSTOP = 27.4422 is a valid phase range. PHSTRT, PHSTOP, and the next

quantity, PHIN, are utilized only if JDPHS=2.

PHIN: The phase increment for output points. PHIN = 0.020 will produce output points every

0.020 in phase, within the range PHSTRT to PHSTOP.

MPAGE: This integer is 1, 2, 3, 4 or 5 according to whether the output is a light curve, radial

velocity curves, spectral line profile(s), star radii, or sky image coordinates, respectively.

ZERO: This is the reference level for output magnitudes (the magnitude at phase PHN).

FACTOR: This is the scaling factor for the normalized light column. The number in that column

will equal FACTOR at phase PHN.
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9.3. Those for DC only

DEL’s: Most of the partial derivatives needed by DC must be computed numerically. The DEL’s

are the parameter increments applied when approximating those derivatives by finite differences.

A few derivatives can be computed by scaling relations and require no DEL’s. That is why the

number of DEL’s is smaller than the number of parameters. However, the numerical labels of the

DEL’s match those of the parameters. The order in which the DEL’s appear in the input lines can

be read from the output of DC, where they are labeled by parameter name, or from the DC input

in Appendix B, where they are labeled by parameter number. Give some thought to reasonable

values for the DEL’s. DEL’s that are too large will cause systematic errors in the derivatives, and

DEL’s that are too small will cause excessive numerical noise.

KEP or KEEP: These mean the same thing generically. The difference in meaning in a program-

ming sense is not something the user needs to be concerned with. The KEEP’s determine which

parameters are to be adjusted, and have only two possible values, 0 to allow adjustment and 1

to keep a fixed value. There are 35 adjustable parameters and therefore 35 KEEP’s in the present

program (actually 34 adjustable parameters plus 1 parameter channel reserved for future expan-

sion, so that 35 KEEP’s are entered). They are all entered together on an input line, separated into

blocks so as to be easy to count off. There is one such input line for the base set, early in the data

stream, and a set of n such input lines at the end of the data stream (for the n subset solutions).

The order of appearance within the string of 1’s and 0’s is the same as that of the 35 parameters,

which are listed in §8 (pages 21–22) and also printed with every run of DC.

IFDER, IFM, IFR: These are three print control integers that follow the KEEP integers on the

same input lines. Each is set to 1 for “yes, print” or to 0 for “do not print.” IFDER decides whether

the matrix of derivatives and O − C residuals, or observational equations (both the unweighted

and the weighted matrices) are printed. Usually one would print the derivatives and residuals

only for the base set solution, since the numbers are unchanged in the subset solutions (except

for missing columns). IFM decides on the printing of the matrix of normal equations, the product

matrix of the normal equations times their inverse (which should be an identity matrix), the matrix

of correlation coefficients, and the sum of absolute values of residuals (a single number) obtained

by back-substitution of the answers into the normal equations. The user may want to see these

numbers for all subset solutions or perhaps only for certain solutions. IFR decides on the printing

(after each subset solution) of a block of information about radii, the derivatives of radii with

respect to surface potential and mass ratio, and the standard errors of the radii.

XLAMDA (λ): The Marquardt multiplier (see page 29, §10.2). XLAMDA is the final entry on

the “KEEP” lines and is the only floating point number on those lines.

KSPA, NSPA, KSPB, NSPB: Each of the two stars may have many spots, but DC can adjust

the parameters of at most two spots in any one run. This does not imply a limit to the number of

spots adjusted overall, since other spots can be adjusted in other runs. Think in terms of spot A

and spot B, which may be on the same or different stars. KSPA, NSPA, KSPB, and NSPB are best
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understood as a set. Given that some spot parameters are to be adjusted (which is determined by

KEEP’s 1 to 4 for spot A and KEEP’s 5 to 8 for spot B), the four integers (KSPA, etc.) determine

for which of the (perhaps) many spots on the two stars those parameters will be adjusted. KSPA=1

means that spot A is on star 1, and KSPA=2 means that it is on star 2. NSPA determines which

spot on the thus determined star is spot A. If KSPA=2 and NSPA=3, then star 2’s third spot is

spot A. Star 2 might have some large number of spots, say 10, and spot A will be the third one.

Of course, the program will do something crazy if you ask it to adjust the third spot on a star that

has only two spots – we have not bothered to find out what. The order assigned to the spots is just

the order in which their parameters are read in the input lines. Naturally, KSPB and NSPB apply

the same way in identifying spot B. If you want to adjust, say four spots, you can use the MMS

(see next section) and adjust two of them in one DC iteration, the other two in the next iteration,

and so on.

IFVC1, IFVC2: These tell DC whether or not to expect a radial velocity curve in the input

stream for star 1 and star 2, respectively (0 for no, 1 for yes). Velocity curves precede light curves

in the input. So with IFVC1=0 and IFVC2=1, DC expects the first curve it sees to be a velocity

curve of star 2.

NLC: This integer is the number of light curves in the input stream. With IFVC1=1, IFVC2=1,

and NLC =3, DC expects to encounter two velocity curves (the first for star 1, the second for star 2)

and then 3 light curves. It will do a simultaneous adjustment (one iteration) of these five curves

together, producing one correction for each parameter that is the same for all curves (e.g. mass

ratio) and 3 corrections for each parameter that is different for each of the 3 light curves (e.g. limb

darkening). The 3 curve-dependent parameter corrections for a given stellar component are printed

in direct succession. Input and output parameters, their differences (corrections from input values)

and their estimated standard errors are listed by parameter number (see list in §8, pages 21–22).

Curve-dependent parameters are listed also by curve number, according to the input order of the

curves. “Curve 0” means “curve-independent.”

KO: DC can process multiple parameter subsets in a given run, as explained under the

method of multiple subsets (MMS). Control integer KO provides three options to the user who has

established a “scratch pad” data file on the local computer. Such a scratch file should be designated

as input-output unit 9. The purpose of this provision is to save computing time by writing all of

the numerical derivatives and residuals on the scratch file so that they can be read back for further

subset solutions in a later submission (in case you think of some subsets that you first thought

were not needed). Weighting can be changed for the re-submission. The later run(s) then will take

extremely little computing time, since all the hard computation has been done. This feature is much

less important than it once was because of improvements in machine speed and intrinsic program

speed, but it is still available. Multiple subsets can be processed within a given run without using

the scratch pad (set KO=2, KDISK=0). KO can be 0, 1, or 2, as follows:

KO=0. Do the base set and stop. Actually KO=0 serves no significant purpose, as simple
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omission of subsets has the same result.

KO=1: Read in the derivatives and residuals that were written to the scratch pad in a previous

run. Process these according to the weighting schemes and subsets requested in this run. Do not re-

compute any derivatives. A run with this option should take only a few seconds or less of computing

time.

KO=2: Write the derivatives and residuals generated in this run on the scratch pad for future

use. KO=2 can be used with KDISK=0 if the user does not wish to change the present contents of

the scratch pad (or if there is no scratch pad). In this case the program still can process multiple

subsets of the parameter list but, of course, cannot come back later to process the data further.

KDISK: Set KDISK=1 to use the scratch pad, or KDISK=0 not to use it. Caution: the program

will crash if no scratch pad has been set up and you set KDISK=1.

ISYM: DC can carry out its solutions with either asymmetrical (ISYM=0) or symmetrical

(ISYM=1) derivatives. Solution convergence is somewhat better with symmetrical derivatives, but

they take almost twice as long to compute as asymmetrical derivatives. Because of the improved

convergence, fewer iterations may be needed with ISYM=1, but the individual iterations will take

more machine time. Recommendations are to use ISYM=0 for strong (well determined) solution

situations, and ISYM=1 when convergence is a problem or you are in the final fine-tuning stages.

Setting ISYM=1 is particularly advisable when large increments (DEL’s) are used to compute the

numerical derivatives. See Wilson & Biermann (1976) or Wilson (1979), Eqns. 20–21.

NPPL: (number of points per line) The number of data triplets (time or phase, velocity or

light, weight) on each line of the input data stream. The number of points per output line is the

same. NPPL can be as small as 1 or as large as 5.

N1L, N2L: These are the coarse (low) grid integers. As explained on page 35 in §13 (Special

Features), they apply to certain derivatives for which computing time can be saved by using coarse

grids. Otherwise they are just like N1 and N2.

NOISE: This integer is on the same input lines as the curve-dependent parameters for light

curves, so there is one value for each light curve (no values for velocity curves). NOISE specifies

how level-dependent weights are to be applied (see discussion of weighting on page 38, §15).

SIGMA: The estimated standard deviations of the various observed light and velocity curves.

SIGMA specifies the relative weights of the curves in the solution (weight is inversely proportional

to SIGMA squared). See discussion of weighting on page 38 in §15.

10. Problems with Solution Convergence

There are three main reasons for poor convergence or convergence failure in differential correc-

tions solutions, and it is important to understand all three. The problems can occur in combination,
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but let us try to understand them separately.

One problem is a broad, shallow minimum in parameter space. This problem can result in slow

convergence, even when only a few parameters are being adjusted, if the minimum is very shallow

indeed. It is a problem not only for DC, but for any minimization scheme, since it is intrinsic to

parameter space itself. Nothing can be done except to compute with precision (use a fine grid) and

do many iterations.

A second problem, also easy to understand, is lack of precision in computing residuals and

derivatives. Since most derivatives are computed numerically in DC, we have two obvious sources

of error connected with finite differencing, which approximates the true derivative of a synthesized

observable, f , by the slope near to a given operating point, either asymmetrically,

∂f

∂pn
=

f (pn + δpn) − f (pn)

δpn
,

or symmetrically,
∂f

∂pn
=

f
(

pn + 1
2δpn

)

− f
(

pn − 1
2δpn

)

δpn
.

Here, pn is a parameter and δpn is its increment. Pseudo-random errors arise from lack of accuracy

in the computed f while systematic errors come from approximation of ∂f/∂pn by δf/δpn. A

symmetrical derivative is a better representative of the true derivative, but takes longer to compute.

Of course, the systematic error can be reduced by taking smaller δpn, but the increment should not

be too small or errors in computation of f will become important. Inaccuracy in computing f can

be reduced by use of a finer numerical grid, but at the cost of increased machine time.

The third problem is more subtle – particularly because it is due to a combination of two

conditions, neither of which causes convergence failure when acting alone. It is important to realize

that this third problem is quite distinct from the other two, and can destroy convergence even if the

other problems are completely absent. The two interacting conditions that cause the problem are

non-linearity in the appropriate equation of condition and parameter correlation. The first of these

conditions can be expressed equivalently by saying that second or even higher order derivatives

are required in the differential corrections equation of condition (which normally is written with

only first derivatives). One way of seeing into the nature of this problem is to notice that a correct

solution algorithm needs to know about parameter correlations, but a linear Least Squares algorithm

cannot compute them correctly because it has no knowledge of the higher order derivatives. As a

result there will be virtual tradeoffs among the invisible higher order terms that result in incorrect

predictions of parameter corrections. It usually is not practical to add second order terms to the

equation of condition for several reasons, so two procedures that improve convergence greatly while

keeping only linear terms will now be discussed.
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10.1. Method of Multiple Subsets (MMS)

One realistic remedy for the problem is to break the full parameter set into subsets and thus

reduce the complexity of the correlations in a given iteration (Wilson & Biermann 1976). This

procedure, in which subsets A and B, or A, B and C, etc., are solved iteratively in a closed loop

has come to be known as the Method of Multiple Subsets (MMS), and it works very well in

practice. It seems that a DC solution has only minor difficulty in dealing with one or two fairly

strong correlations among parameters. The real difficulty comes when there are many large or even

moderately large correlations, and this circumstance accounts for the success of the MMS. Two

important points need to be emphasized. First, the published standard errors should come from

a final run that includes all adjusted parameters together – not from the subset solutions (which

will give unrealistically low error estimates because they see only part of the correlation matrix).

It must be said that even the standard errors for the full set will be of questionable accuracy

when there is a complicated correlation matrix, but they will have to do in the absence of more

rigorously computed standard errors. The second point is that one must resist the temptation to

apply the corrections printed in this final run (which is for error estimates only). It is the nature

of the problem that, when the MMS is needed, it is needed all the way to the end. Even if you

start from the exactly correct Least Squares minimum, the correlation problem discussed here will

produce relatively large, erroneous corrections for the full parameter set. This has nothing to do

with the accuracy of the derivatives computed by DC, but only with the form of parameter space.

Some persons have misunderstood this point and assumed that correlation problems occur only

away from the correct solution and that they will disappear at the correct solution. Not only do

the problems not then disappear, but they do not even lessen in severity.

10.2. Levenberg-Marquardt

A very good trick for effecting convergence is the Levenberg-Marquardt procedure (Levenberg

1944; Marquardt 1963), which has been utilized with excellent success in several binary star solution

programs such as those by Hill & Rucinski (1993), by Kallrath et al. (1998), and by Djurasevic

(1992). The L-M algorithm operates on the matrix of normal equations so as to effect a compromise

between the ordinary DC corrections (which usually give fast convergence but sometimes lead to

convergence failure) and those of the method of steepest descent (convergent but sometimes slow).

The normal equations are re-scaled as prescribed by Marquardt, so as to have diagonal elements of

unity, although it would be possible to apply the procedure without re-scaling. At the heart of the

scheme is a quantity λ that is added to each diagonal element of the re-scaled normal equations. A

decision faced by all those who adopt the scheme is that of how to fix the value of λ, and various

kinds of iterations have been used in the literature to optimize λ, including one in the original

Marquardt (1963) reference. The DC program operates on a somewhat different idea, following

experience that – at least in binary star problems – a broad range of λ’s typically gives nearly the

same corrections. Usually such λ’s are very small, and one finds results for say λ = 10−4, 10−5, or
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10−6 that differ by so little that the choice is inconsequential. Because the DC program already

has been set up to make solutions for many subsets of the main parameter set, it is easy to do

solutions for many λ values, so that no iteration on λ is needed. One simply includes a line of data

for each such solution. For example, if not sure of the λ value to use, just do solutions (same DC

submission) for as many as deemed potentially interesting, all for the same parameter set or subset.

The lines will look like this:

1111 1111 0111100 01110 11010 11111 01110 0 1 0 1.000d-6

1111 1111 0111100 01110 11010 11111 01110 0 1 0 1.000d-5

1111 1111 0111100 01110 11010 11111 01110 0 1 0 1.000d-4

where the integer 1’s and 0’s are the KEEP’s and print control integers for a subset solution, while

the final 1.000d-n is λ for that solution. The execution time to do the several solutions (even very

many) is negligible. Usually it makes little difference which λ value is adopted within such a range,

although 10−11 or 100 may give much different answers.

10.3. MMS or L-M?

Either the MMS or Levenberg-Marquardt algorithm will nicely solve most convergence prob-

lems of the correlation – non-linearity type. The L-M algorithm is the more convenient because it

does not extend the level of iteration. However, L-M alone cannot handle the most severe conver-

gence problems, where a combination of L-M and MMS may be needed.

10.4. Error Distributions and Standard Error Estimates

Estimated standard errors are printed along with the parameter corrections for the base set

and subset solutions. Published comments occasionally appear to the effect that the DC program

produces unrealistic error estimates, although the errors are computed from the covariance matrix

by the standard method. For example, a 1997 paper comments about DC: “. . . the estimates of

errors of the adjustable parameters are unrealistically small. The reason is partly the strong correla-

tion between the relatively many parameters, and partly the non-normal distribution of measurement

errors.” Such remarks have some formal validity, but are misleading for the following reasons:

1. Strong correlation between the relatively many parameters: In significantly non-linear situa-

tions the standard errors will be only approximately right, but that is also the case with all

other binary star fitting programs that now exist. The shortcoming is not peculiar to DC.

However, an impression that the problem is peculiar to DC obviously has arisen, and one

can speculate as to why that is so. An obvious point is that some solution programs avoid

such complaints by not computing error estimates at all, or by doing so with invented rules

that produce comfortably large estimates. However, some other solution programs do com-
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pute standard error estimates, but usually not for adjusted mass ratios. Experience shows that

mass ratios cause most of the problems with fitting and with error computation. This is so

because mass ratio often has major correlations with other parameters, and it also shows par-

ticularly non-linear behavior. Programs that cannot adjust the mass ratio parameter (most

programs) will not encounter the problem.

2. The non-normal distribution of measurement errors: The cited phrase probably does not

literally refer to measurement errors, whose distributions for light curves are as close to

Gaussian as one is likely to find for any astrophysical measurements. (Observers measure

light with respect to nearby comparison stars whose brightness and color are close to that of

the variable star. They typically expend considerable thought and effort to eradicate possible

systematic errors.) The phrase more likely refers to non-normal distribution of residuals,

which one finds when a real binary does not match the model very well (perhaps it has un-

recognized spots or circumstellar gas, etc.), or if the solution is at an incorrect local minimum.

If interpreted in this way, the statement is quite correct, although trivially obvious. Under

any interpretation, the comment has nothing to say about DC.

D. Terrell has carried out experiments by solving synthetic light curves by means of DC.

The light curves contained simulated Gaussian errors and, of course, their parameters were

known. He found that the parameter errors [solution – known] agreed with those expected

from the standard errors in output from DC.

11. Interactive Branching and the Lack of Automatic Iteration in DC

Many persons have been surprised at having to re-submit the program at each DC iteration.

The lack of automatic iteration is not an oversight, but a way to force users to look at the progress

of a solution. Even without automatic iteration, some persons believe whatever comes out of the

machine, even when the results violate common sense. In this highly non-linear problem, the solution

process can indeed get into trouble and produce inappropriate corrections. To some extent it is

possible to have a program detect inconsistent and strange results. There are a few such kinds of

detection and message generation, and further messages about such problems may be worked into

future versions. However, until such screening has been made very extensive, the user is encouraged

to think about every iteration.

There is another important reason to avoid automatic iteration. In real situations, an experi-

enced user will decide which parameters to adjust and which to hold fixed as part of a “dynamical”

process of interaction with the iterative solution. Occasionally the set of adjusted parameters will

remain unchanged from start to finish, but usually it will not. Because of this reality, DC is set

up for interactive branching, by which each iteration produces solutions of as many subsets of the

main (base) set as are requested (control integer KO must be set to 2). Notice that the sample

input data supplied with the program requests several subset solutions via extra lines of KEEP’s
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at the end of the data block. There is no limit to the number of such subset solutions – you can

ask for a hundred or more if you like – and they require almost no machine time since solving the

observational equations takes almost no time compared to generating them. The only penalty for

requesting a large number of subset solutions is the proliferation of output, with possible attendant

confusion. So the idea is to decide, after each iteration, which set of adjustable parameters to follow

from that point on (to the next such change). Interactive branching is discussed in Wilson (1988).

However, the most cogent reason for personal monitoring of DC iterations is simply this:

There is more to astrophysics than parameter estimation. Recognition of strange and unusual be-

havior points the way to the really major insights and discoveries. Many close binaries are not

well represented by even our best generic models, and in some cases the problem is not due just

to approximate computation but to quite unsuspected features. To drive this point home, imagine

applying one’s favorite “standard” light curve model automatically to one of the classic strange

objects – perhaps one with an unusual kind of circumstellar disk. Persons familiar with β Lyrae

might be amused by imagining the outcome for that binary. One will get answers (meaningless ones,

naturally), but will have at best only a much reduced chance for insights into the real problems.

Often one really needs to get in there and watch things develop.

12. Radiative Physics

The radiative treatment has been re-done for 2003, with the previous effective wavelength pre-

scription replaced by a bandpass prescription (Van Hamme & Wilson 2003), based on model stellar

atmospheres by Kurucz (1993). The radiative routine computes bandpass-integrated normal emer-

gent intensities, as well as Planck intensities, by means of Legendre polynomials whose coefficients

are in data files atmcof.dat and atmcofplanck.dat. A path to these files must be set within the

computing system or they must be in the same sub-directory as the programs. Besides 25 bands

(viz. Table 2, page 34), there are coefficients for 19 chemical compositions and 11 surface gravities

(Table 1, page 33).

12.1. Radiative Parameters and Control Integers

Temperature ranges vary according to log g and are listed in Table 1 on page 33, together with

19 abundances (relative to the Sun). Bands, band identification numbers (IBAND), and references

for band response curves are in Table 2 on page 34. Chemical composition needs to be specified via

input parameter ABUNIN. If ABUNIN is not one of the 19 Kurucz values (Table 1, page 33), it is

reset automatically to the nearest Kurucz value, as there is no interpolation in [M/H]. (Important

note: program logic requires that data files atmcof.dat and atmcofplanck.dat remain unchanged.

Please make these files “write protected” so they cannot be changed inadvertently.)
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Table 1. Temperature Limits

[M/H]a log g (cgs) Teff Range (K) [M/H]a log g (cgs) Teff Range (K)

-5.0 to 0.5 0.0 3500 to 6000 -5.0 3.5 4000 to 31000

1.0 0.0 3500 to 5750 -4.5 to -4.0 3.5 3750 to 31000

-5.0 to -3.5 0.5 3500 to 7000 -3.5 to -2.5 3.5 3500 to 31000

-3.0 0.5 3500 to 7250 -2.0 3.5 3500 to 29000

-2.5 to 0.2 0.5 3500 to 7500 -1.5 to 0.1 3.5 3500 to 31000

0.3 0.5 3500 to 7250 0.2 to 0.3 3.5 3500 to 30000

0.5 0.5 3500 to 7000 0.5 3.5 3500 to 29000

1.0 0.5 3500 to 7250 1.0 3.5 3500 to 27000

-5.0 to -3.0 1.0 3500 to 7500 -5.0 to -4.5 4.0 4250 to 35000

-2.5 1.0 3500 to 7750 -4.0 4.0 4000 to 35000

-2.0 to -1.5 1.0 3500 to 8000 -3.5 4.0 3750 to 35000

-1.0 1.0 3500 to 8250 -3.0 to -2.5 4.0 3500 to 35000

-0.5 to -0.1 1.0 3500 to 8500 -2.0 4.0 3500 to 32000

0.0 1.0 3500 to 8250 -1.5 to -0.1 4.0 3500 to 35000

0.1 to 0.3 1.0 3500 to 8500 0.0 4.0 3500 to 39000

0.5 to 1.0 1.0 3500 to 8250 0.1 to 0.2 4.0 3500 to 35000

-5.0 to -3.0 1.5 3500 to 9000 0.3 4.0 3500 to 34000

-2.5 to -1.5 1.5 3500 to 8500 0.5 4.0 3500 to 33000

-1.0 to 0.5 1.5 3500 to 9000 1.0 4.0 3500 to 31000

1.0 1.5 3500 to 8750 -5.0 4.5 4750 to 40000

-5.0 to 0.1 2.0 3500 to 14000 -4.5 4.5 4250 to 40000

0.2 to 0.5 2.0 3500 to 10500 -4.0 4.5 4500 to 40000

1.0 2.0 3500 to 10000 -3.5 to -3.0 4.5 4000 to 40000

-5.0 to 0.2 2.5 3500 to 19000 -2.5 4.5 3750 to 40000

0.3 2.5 3500 to 18000 -2.0 to -0.1 4.5 3500 to 40000

0.5 2.5 3500 to 17000 0.0 4.5 3500 to 49000

1.0 2.5 3500 to 11000 0.1 to 0.3 4.5 3500 to 40000

-5.0 3.0 3500 to 26000 0.5 4.5 3500 to 37500

-4.5 3.0 3750 to 26000 1.0 4.5 3500 to 35000

-4.0 to -3.5 3.0 3500 to 26000 -5.0 5.0 5000 to 50000

-3.0 3.0 3500 to 27000 -4.5 to -3.5 5.0 4500 to 50000

-2.5 to 0.1 3.0 3500 to 26000 -3.0 to -2.5 5.0 4250 to 50000

0.2 to 0.3 3.0 3500 to 25000 -2.0 to 0.3 5.0 3500 to 50000

0.5 3.0 3500 to 24000 0.5 5.0 3500 to 45000

1.0 3.0 3500 to 21000 1.0 5.0 3500 to 40000

alog(M
H ) − log (M

H )
�
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Table 2. Bandpass List

Bandpass IBAND Reference Bandpass IBAND Reference

u 1 1 RC 15 5

v 2 1 IC 16 5

b 3 1 230 17 6

y 4 1 250 18 6

U 5 2 270 19 6

B 6 3 290 20 6

V 7 3 310 21 6

R 8 4 330 22 6

I 9 4 TyB 23 7

J 10 4 TyV 24 7

K 11 4 HIP 25 7

L 12 4

M 13 4

N 14 4

Note. — Response curves for bands 17 to 22 are rectangular, have

widths of 20 nm and are centered on the wavelength (in nm) indicated

by their names. They are useful for certain space-based observations in

the UV.

References. — (1) Crawford & Barnes (1974); (2) Buser (1978); (3)

Ažusienis & Straižys (1969); (4) Johnson (1965); (5) Bessell (1983); (6)

Kallrath et al. (1998); (7) Bessell (2000).
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12.2. Atmosphere to Black Body Transitions

If the Teff , log g combination is outside the range of applicability (see Table 1 on page 33), the

program smoothly transfers to the Planck intensity curve for the given band over a predetermined

range that is coded into the program. We call the procedure ramping. Four ramp parameters

are required, two for log g that set the ramp interval below log g = 0.0 (GLOWTOL) and above

log g = 5.0 (GHIGHTOL), and two for Teff . At the lower Teff limit, there is only one temperature

ramp interval, TLOWTOL. For each log g, the ramp interval at the upper Teff limit is a fixed

percentage of the maximum ‘atmosphere’ temperature. This fixed percentage is determined from the

ramp interval of the highest model temperature of 50,000 K (THIGHTOL). The program comes with

values GLOWTOL = 4.0, GHIGHTOL = 4.0, TLOWTOL = 1500 K, and THIGHTOL = 50,000 K. As

an example of what this means, consider the THIGHTOL of 50,000 K coupled with a highest Kurucz

Teff of 50,000 K. The LC and DC programs will then apply Kurucz atmosphere intensities for local

surface elements with Teff up to 50,000 K, smoothly transfer between the 50,000 K atmosphere and

a 100,000 K black body between 50,000 K and 100,000 K, and use black body intensities above

100,000 K. GLOWTOL and GHIGHTOL were smaller prior to February, 2004. The current numbers

seem to work well but the user may change them. They should be the same in LC and DC.

13. Special Features

Coarse and fine grids: In order to save computing time, DC uses both coarse and fine com-

puting grids, and applies the fine grids only where accuracy requires them. The fine grids are for

the residuals [(O − C)’s] and for derivatives with respect to parameters e, ω, F1, F2, φ0, i, Ω1, Ω2,

q, spot latitude, spot longitude, and spot radius. Fine grids are required for parameters that are in

some way geometrical. The derivatives of the non-geometrical parameters g1, g2, T1, T2, A1, A2, L1,

L2, x1, x2, and spot temperature are computed with the coarse grids. The fine grids are specified

by N1, N2 and the coarse grids by N1L, N2L, for stars 1 and 2, respectively.

Synthetic Noise: Light curves with synthetic Gaussian noise can be produced by entering a

non-zero value for the input quantity STDEV, which is labeled “fract. sd.” in the output. As the

label suggests, it is in the unit of the light at the reference phase (PHN). The way that the noise

(scatter) scales with light level is controlled by input integer NOISE. Scatter is proportional to light

level for NOISE=2, proportional to the square root of the light level for NOISE=1, and independent

of light level for NOISE=0. The random number generator needs a seed (FORTRAN name SEED),

labeled “seed” in the output. SEED should be larger than 100000001. and smaller than twice that

value. At present there is no provision for synthetic noise in radial velocity curves or line profiles.

Users who have a favorite random number generator should find it easy to replace the program

generator with their own.
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14. Simultaneous Solutions

A capability of DC that should be used in most circumstances is that of making simultaneous

multi-band light curve solutions as well as simultaneous (one or two curve) radial velocity and

multi-band light curve solutions (Wilson 1979). The advantages are to avoid inconsistencies among

solutions of the separate curves, to reduce the number of free parameters (no need to have both

photometric and spectroscopic mass ratios, nor to have a separate inclination for each light curve),

and to utilize information that is discarded in separate solutions (the knowledge that there is

only one true mass ratio, one true eccentricity, etc.). Weighting is very important in simultaneous

solutions and is discussed in Wilson (1979) and on page 38 in §15. The sample DC data supplied

with the program are for a simultaneous solution of two radial velocity and three light curves. There

can be 0, 1, or 2 velocity curves and any number of light curves (the program is dimensioned for up

to 25 light curves, which seems ample for realistic situations). Input integers IFVC1 and IFVC2 tell

the program how many velocity curves to expect, and NLC tells it how many light curves to expect.

The DC solution will produce one correction for each adjusted curve-independent parameter (most

of them) and n corrections for each adjusted curve-dependent parameter (L1, L2, x1, x2, `3). It

takes no more (actually somewhat less) machine time for a simultaneous solution of n curves than

for n individual curve solutions, so there really is no reason not to take advantage of this feature.

If one has misgivings about the simultaneous solution, separate solutions always can be carried

out in addition. One particularly illogical practice in a few papers has been to publish averaged

parameters from separate solutions and to offer the averages as a substitute for a simultaneous

solution. However, the average of separate solutions will not be a correct solution of any of the

separate curves. Ask “what is the proper way to take such an average?” The answer is that there

is no self-consistent way – the only way to have the results of a simultaneous solution is to do a

simultaneous solution in the first place.

15. Input Lines, Including Observations and Weights

Getting started should only be a matter of running the programs with the supplied sample

input data and changing the numbers to those of particular binaries. Identifying the various input

quantities can be done in several ways, for example via Appendices A or B, by examining the

output where the numbers are printed with labels, or by comparing the input data lines with the

FORTRAN READ statements.

For LC (see Appendix A, page 48), there is a “more or less standard” set of input lines

with control integers and parameters for each curve that is to be computed, and n such sets of

lines can be concatenated to produce n output curves. An output curve can be a light curve,

a radial velocity curve, or a spectral region containing mixed absorption and emission spectral

lines (perhaps blended). The “standard set” of input data lines is only “more or less standard”

because there can be extra lines to tell about circumstellar attenuating clouds and/or about bright
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or dark star spots and/or about spectral lines. For light or velocity curves, the number of input

lines for a given curve is (10 + c + s), where c is the number of circumstellar clouds and s is the

number of star spots for the two stars combined. One of the 10 mandatory lines is the stop line

for clouds and two others are stop lines for star spots, one to follow the lines of spot parameters

for each star. The cloud stop line should contain a number greater than 100. but less than 200.

in the first field, which corresponds to a cloud “x” coordinate. Each of the two stop lines for

spots should contain a number greater than 200. in the first field, which corresponds to a spot

latitude on the normal spot parameter lines. According to the value of MPAGE, LC computes a

light curve (MPAGE=1), a radial velocity curve (MPAGE=2), a set of spectral regions (MPAGE=3),

star dimensions (MPAGE=4), or plane of sky coordinates for images (MPAGE=5). Spectral line

profile computation requires extra input lines for the line characteristics. Therefore, the sample

data include an input file for line profiles (called lcin.dat3). The sample files for light curves and

velocity curves are called lcin.dat1 and lcin.dat2, respectively. For dimensions and images they

are lcin.dat4 and lcin.dat5, respectively. The several sets of input lines need not be of the same

binary, since each curve computation is an independent operation. A final line stops execution and

should contain integer 9 in the field normally occupied by MPAGE (that final line is not counted in

the 10 + c + s lines of the individual curves).

For DC (see Appendix B, page 50), three lines of DEL’s enter first. The next line pertains to

the base parameter set and contains 35 KEEP’s for the 34 adjustable parameters and one blank

channel, 3 print control integers (IFDER, IFM, and IFR), and the Marquardt λ (XLAMDA). Next

comes a line of spot identification integers (KSPA, NSPA, KSPB, NSPB), then five lines of control

integers and curve-independent parameters, then as many lines of curve-dependent parameters as

there are observed curves, then as many lines of spot parameters as there are spots, then as many

lines of circumstellar cloud parameters as there are clouds, then the observed radial velocities, then

the observed light curves, and finally as many lines of KEEP’s for subset solutions as the user wants.

These final KEEP lines are of the same format as the KEEP line for the base set and also contain

the 3 print control integers and the Marquardt λ. Note that the solutions that are triggered by

these KEEP, etc., lines can be for varied λ as well as for selected parameter subsets. For example,

one can run two solutions for exactly the same parameters but with different λ.

The observed radial velocity curves and light curves of the DC input data stream are entered

as triplets (time or phase, velocity or light, weight), with up to 5 triplets (i.e. data points) per

line. The number of data points per line is set by input integer NPPL (number of points per line).

A possible formatting problem, caused by velocities not being of the same order of magnitude as

light measures, is solved by providing for the separate entry of a convenient sized velocity unit.

The (0, 1, or 2) velocity curves and NLC light curves are separated by “data stop lines” that serve

two purposes. They identify the last data line for each velocity or light curve and also tell how

many data points are on that last line (1, 2, 3, 4, or 5). The only number on a data stop line

should be in the first field and should be −(10000 + k), where k is the number of data points on

the preceding line. Example: if there are 2 data points on the preceding line, the “stop” number
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should be −10002. Some computing systems require “something” in the remaining fields of the line

and blanks are suitable, but there must be at least blanks (not an absence of all characters). No

special stop information is to follow the final curve because the program already knows how many

curves to expect, and it knows which is a velocity curve and which is a light curve because it has

already read IFVC1, IFVC2, and NLC. However, a line with integer 2 in column 2 should follow the

final line of subset KEEP’s to signal the end of subset processing and of the entire job.

Weighting of observations is discussed in Wilson (1979, pp. 1064, 1065), Wilson (1988) and

Kallrath & Milone (1999). Briefly, the program applies three kinds of weights, which are “intrinsic”

weights (assigned by the user to the individual observations), “curve-dependent” weights (based

on estimated standard deviations [SIGMA’s] at a reference phase), and “level-dependent” weights

(computed by DC according to the input parameter NOISE, which tells how observational scatter

scales with light level). NOISE should be set to 1 for scatter that scales with the square root of

the light level, such as counting statistics, and to 2 for scatter that scales with the light level, such

as scintillation noise or fluctuations in sky transparency. If NOISE is set to 0, no level-dependent

weighting is applied. Level-dependent weighting does not apply to velocity curves. SIGMA’s pertain

to the directly entered velocity and light values. An exception is where the SIGMA’s were actually

measured from individual observations, but normal points (i.e. averages) are entered. In that case,

the number of individual points in each normal point should be incorporated in the “intrinsic”

weight of each point. Some persons have contrived their curve-dependent weighting (through the

SIGMA’s) so as to increase the influence of one or a subset of the curves according to pre-conceptions

– for example, of the relative importance or radial velocity and light curves. However, the SIGMA’s

should properly be based on measurements, not prejudice.

16. The Scaling of Run Time

The main computational activity of LC consists of summations over surface grid elements in

forming the observable fluxes and velocities. The number of grid elements on each star is essentially

proportional to the square of the grid fineness integer for that star (N1, N2, number of latitude rows

per hemisphere), so run time very nearly scales with N 2
1 +N2

2 . Computations of all other kinds take

negligible time. Of course, run time in LC also scales with the number of phase points, or more

precisely with that number plus 1 (because one extra point is done at the phase of normalization).

Eccentric orbits take longer than circular orbits because the local physical computations must be

done anew at each phase. Note that a very small eccentricity (say 0.000001) differs in this regard

from one of exactly zero, because the program skips the extra computations only if e = 0. The

actual time factor depends on whether the old approximate (MREF=1) or detailed (MREF=2)

reflection model is specified. The MREF=2 case takes longer for both circular and eccentric orbits,

but it takes much longer (usually impractically longer) for eccentric orbits. If MREF=2, then run

time also depends on NREF, the number of multiple reflections. There will also be some dependence

on the particular binary star configuration. For example, runs for stars with small r = R/a go faster



– 39 –

than those with large r. The situation is sufficiently complicated so that actual speed factors are

best estimated via a few experiments at low grid fineness.

For DC, many of the same considerations apply as for LC. However, there are four grid fineness

integers because DC uses both a high and a low grid for each star (viz. §13, page 35), so run time

scales with (P + 1)
(

N2
1 + N2

2

)

+ PL

(

N2
1 + N2

2

)

L
, where P is the number of fine grid parameters

and PL is the number of low (coarse) grid parameters under adjustment in the main (base) set of

parameters. The first term involves P + 1 rather than just P because not only derivatives but also

residuals [(O − C)’s] must be computed, and the residuals are done with the fine grid. Run time

in DC also scales with the number of observations (not with the number of observations plus 1

because there is no phase of normalization, as there is with LC). The numbers of parameters in

subset solutions are not relevant to run time because run time for the subsets is negligible. DC

iterations with ISYM=1 (i.e. symmetrical derivatives) will take nearly twice as long as those with

ISYM=0 (i.e. asymmetrical derivatives).

17. Common Difficulties

1. Minimum dimensioning: One of the most frequent reasons for failure in program execu-

tion is under-dimensioning of arrays. These failures are disconcerting because very strange things

can happen and usually no logical interpretation of the machine error messages is apparent. The

dimensioning of LC and DC, as supplied, may not be sufficient for all cases. Array dimensions

need be changed only in the main programs (LC and DC), not in the subroutines. See Table 3

(Dimensioning vs. Grid Fineness) on page 41 for minimum dimensions of the arrays RV, GRX, GRY,

GRZ, RVQ, GRXQ, GRYQ, GRZQ, SLUMP1, SLUMP2, SRV, SGRX, SGRY, SGRZ, SRVQ, SGRXQ,

SGRYQ, SGRZQ, SRVL, SGRXL, SGRYL, SGRZL, SRVQL, SGRXQL, SGRYQL, SGRZQL, SLMP1,

SLMP2, SLMP1L, SLMP2L, FR1, FR2, GLUMP1, GLUMP2, GRV1, GRV2, XX1, XX2, YY1, YY2,

ZZ1, ZZ2, GMAG1, GMAG2, CSBT1, CSBT2, RF1, RF2, RFTEMP, SXX1, SXX2, SYY1, SYY2, SZZ1,

SZZ2, SGMG1, SGMG2, SGRV1, SGRV2, SGLM1, SGLM2, SCSB1, SCSB2, SRF1, SRF2, SGLM1L,

SGLM2L, SGRV1L, SGRV2L, SXX1L, SXX2L, SYY1L, SYY2L, SZZ1L, SZZ2L, SGMG1L, SGMG2L,

SCSB1L, SCSB2L, SRF1L, SRF2L, ERV, EGRX, EGRY, EGRZ, ELMP1, EGLM1, EGRV1, EXX1, EYY1,

EZZ1, EGMG1, ECSB1, ERF1, ERVQ, EGRXQ, EGRYQ, EGRZQ, ELMP2, EGLM2, EGRV2, EXX2,

EYY2, EZZ2, EGMG2, ECSB2, ERF2, ERVL, EGRXL, EGRYL, EGRZL, ELMP1L, EGLM1L, EGRV1L,

EXX1L, EYY1L, EZZ1L, EGMG1L, ECSB1L, ERF1L, ERVQL, EGRXQL, EGRYQL, EGRZQL, ELMP2L,

EGLM2L, EGRV2L, EXX2L, EYY2L, EZZ2L, EGMG2L, ECSB2L, ERF2L, SFR1, SFR!L, ERF1, ERF1L,

SFR2, SFR2L, EFR2, and EFR2L. The minimum dimension of each of these arrays depends on the

grid fineness. For example, if the grid fineness integer (N1, N2, N1L, or N2L) is 30, the minimum

dimension is 762. The arrays STLDH, STLDL, ETLDH, and ETLDL are dimensioned to the sum

of the minimum dimensions for both stars (in above long list of arrays). For N’s of 30, this would

then be 762 + 762 = 1524. The arrays PHAS, FLUX, and WT are dimensioned to include all the

observations in all bands plus the blanks on the last data lines plus the blank observations on
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the data stop lines (see DC sample input file). Arrays OBS and HOLD are dimensioned to [(num-

ber of observations) × (number of parameters in Least Squares solution +1)]. A curve-dependent

parameter counts n times for n light curves. Thus if you had 98 observations in star 1’s velocity

curve, 102 in star 2’s velocity curve, 470 in one light curve, and 530 in another, the first factor

would be 1200 = 98 + 102 + 470 + 530. Then, if you adjust i, g2, L2, and x1, the second factor is

7 = 2 + 2× 2 + 1 (remember, L2 and x1 are curve-dependent and count twice each, since there are

two light curves. The last +1 is for the O−C residuals. OBS and HOLD need then be dimensioned

to a minimum of 1200 × 7 = 8400.

2. The parameter increments must be neither too large (gives systematic errors) nor too small

(gives numerical noise). These increments are called the DEL’s (FORTRAN name). For most

parameters, DEL’s of about 1% of the parameter value are appropriate. However, particular cir-

cumstances sometimes affect that guideline, so common sense and experience are the best guides.

Finer grids allow smaller DEL’s. Use of the ISYM=1 option allows larger DEL’s before curvature

effects become important.

3. It is best to have the initial parameter guesses for differential corrections based on experi-

ments with the light–velocity program. Column 5 in the main block of output from LC, which is

`1 + `2 + `3, should approximately match the observed light values.

4. The distinction between direct light (column 5 of LC output) and normalized light (column

6) can be a source of confusion. Remember that normalized light is only intended for convenience

in initial graphical trials and that it has no counterpart in DC, which deals with direct light only.

If this continues to confuse you, forget that normalized light exists and work always with direct

light.

5. Always check Ω1 and Ω2 to be sure they are in the permitted range for given q, F , and e.

Exact lobe filling or otherwise special Ω’s that are computed by the program in modes -1, 4, 5, and

6 will be correct and need not be checked. In differential corrections, be sure that the incremented

values of Ω1 and Ω2 are within allowed ranges. Overcontact Ω’s should be between the critical

values for inner and outer contact (see table critout.tab of critical Ω’s). For detached stars, Ω is

greater than the critical Ω for inner contact.

6. Certain parameters cannot be adjusted in certain program modes. The reason is either that

the parameters are not free, but functionally determined from the mode logic, or that they have

no effect on the computed light or velocity. Attempts to adjust those parameters are the most

common cause of blowups in subroutines SQUARE and DMINV. L2 cannot be adjusted in any

mode greater than 0 unless IPB has been set to 1. In mode -1, parameters g1, T1, T2, A1, Ω1, Ω2,

and x1 cannot be adjusted. In mode 1, parameters g2, T2, A2, Ω2, L2, and x2 cannot be adjusted.

In mode 3, Ω2, and L2 cannot be adjusted. In mode 4, Ω1 and L2 cannot be adjusted. In mode

5, Ω2 and L2 cannot be adjusted. In mode 6, Ω1, Ω2, and L2 cannot be adjusted. As a practical

matter, one should try to adjust both temperatures only under unusual circumstances.

7. Luminosities (input L1 and L2) are approximately 4π times larger than computed light values
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Table 3. Dimensioning vs. Grid Fineness

N Minimum Dimensiona N Minimum Dimensiona N Minimum Dimensiona

1 · · · 21 378 41 1418

2 4 22 413 42 1482

3 9 23 452 43 1555

4 16 24 491 44 1628

5 23 25 530 45 1703

6 33 26 575 46 1777

7 45 27 617 47 1857

8 58 28 667 48 1935

9 72 29 713 49 2013

10 88 30 762 50 2098

11 106 31 813 51 2180

12 125 32 867 52 2269

13 147 33 919 53 2352

14 169 34 978 54 2445

15 195 35 1034 55 2533

16 220 36 1092 56 2628

17 250 37 1157 57 2722

18 278 38 1217 58 2818

19 310 39 1281 59 2915

20 342 40 1345 60 3011

aFor arrays enumerated on page 39
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(output `’s). Therefore, to obtain `1+`2 of about unity outside eclipse, enter input luminosities that

add to about 4π. Note that the traditional treatment of third light as if it were third luminosity is

incorrect (see §4, page 12, for a discussion of luminosity vs. light).

8. Critical Ω’s depend on e. Although a table of lobe filling circular orbit potentials for syn-

chronous and non-synchronous rotation is available along with this document (file critout.tab),

such tables for eccentricity and rotation combined would be too extensive for practicality. There-

fore, to find critical eccentric Ω1 and Ω2, run LC in mode 6. The program will replace your input

Ω’s for both stars with the critical Ω’s in the output listing.

9. Overcontact binaries, such as W UMa stars, require finer grids than do detached and semi-

detached binaries. This is because the numerics of the neck region are particularly difficult to treat

accurately. N ’s about 50% larger than normal are recommended for overcontact systems.

10. The programs can apply the detailed reflection model of Wilson (1990) for eccentric as

well as circular orbits, but eccentric cases use an enormous amount of machine time. If you are

doing an eccentric binary and the programs run almost forever, check to see if you set MREF=2.

In most realistic situations, the old approximate reflection (MREF=1) should be entirely adequate

for eccentric binaries.

11. A very common cause of failed runs is simply inadvertent shifting of numbers on the input

lines out of their proper fields, so that leading digits or signs are clipped away, or the numbers are

not read at all, or they are read under the wrong name. Be sure to keep a copy of the sample data

in exactly its original form, for later comparison.

12. Sometimes users make changes that cause the programs not to work. Perhaps the program

will work for the immediate application, but will fail in another situation. Be sure to keep a copy

of the entire program in exactly the form supplied, so that you can see whether it runs correctly in

the circumstances under question.

13. Be sure not to mix subroutines from program versions.

18. Summary: Differences from Pre-1992 Versions

1. Star spot parameters can now be adjusted.

2. One can now use optional non-linear limb darkening laws (pre-1992 versions had only the

linear cosine law).

3. The reflection effect now can be computed either with the detailed model of Wilson (1990)

or with the approximate reflection model of the old program (which is faster). Multiple reflection

is included in the detailed model.

4. The present LC and DC programs are much faster than pre-1992 versions.
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5. The specification of phase range in LC was made more convenient than before, with al-

lowance for phases outside the range 0 to 1.

8. The stars now orbit counter-clockwise (for i < 90◦), rather than clockwise as in the old

program. This make a difference only for pictures of the binary (MPAGE=5).

9. Messages about exceeding limiting lobes are now generated if the stars exceed the lobes at

all, instead of only when at least one grid point falls in the hole near the inner Lagrangian point,

as in the old program.

10. Star spots now can optionally move in longitude, keeping pace with the physical surface of

an asynchronously rotating star, rather than being tied to the coordinate grid.

11. For both stars, LC now provides absolute mass, bolometric luminosity, equivalent sphere

radius, and approximate absolute mean surface gravity.

19. Summary: Differences between 1998 & 1992 Versions

1. The output from LC now is determined by setting integer MPAGE to 0, 1, 2, 3, 4, or 5.

Older versions had light and velocity curve output on the same pages, which made the page format

inconveniently wide. The output should now be easier to read. The input file format now is different

for the various values of MPAGE (samples are provided with the distributed program).

2. DC solutions can include the Marquardt λ factor.

3. The Least Squares normal equations are in re-scaled form (diagonal terms are unity before

application of λ).

4. Semi-transparent circumstellar clouds (at fixed locations in rotating frame) can be included.

5. Rotational spectral line profiles can be computed (other broadening mechanisms no; blending

yes).

6. The program now is entirely in double precision.

7. Non-linear limb darkening via a square root law is an added option (1992 version had only

the logarithmic and linear laws).

8. One can now use either time or phase as the independent variable in DC. Previously only

phase could be used. Use of time as the independent variable allows solutions for the ephemeris

parameters t0, P , and dP/dt, as well as the apsidal motion parameter dω/dt.

9. The stepped independent variable in LC now can be either time or phase. Previously only

phase could be stepped. If time is the stepped variable, phase is computed and also listed. If phase

is the stepped variable, time is computed and also listed.
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10. DC now can read the observational input in 1, 2, 3, 4, or 5 data triplets per line, according

the the value of NPPL. The old version read only 5 triplets per line.

11. Input and output formats for the parameters of both LC and DC have been expanded

to more digits. Some quantities that are likely to range over many orders of magnitude are now

entered and printed in D format. See the sample input data sets in Appendices A (page 48) and B

(page 50) for examples.

12. The argument of periastron, ω, now is in radians rather than degrees. The new parameter

dω/dt is in radians per day (since t is Julian Date in days).

13. Spot longitudes, latitudes, and angular radii now are in radians, as are their DEL’s and

corrections. Previously they were in degrees.

14. The DC output format for solution results has been changed and should now be more

convenient.

15. LC now generates coordinates of plane of sky projected images for use with an external

plot program (MPAGE=5).

16. Error estimates printed by DC are now standard errors. Previously they were probable

errors. Standard errors seem to be more commonly used in the literature than probable errors.

17. Simulated observational scatter can be applied to the light curves computed by LC. Similar

provisions for radial velocities and line profiles are not yet included.

18. The DC output now lists the corrected parameter values in addition to the corrections.

Previously one had to apply the corrections by hand – the idea being to make certain that users

compare new and old values at every iteration. In deference to the significant amount of grumbling

generated by that practice, the machine now does the addition. However, DC still does only one

iteration in a given submission.

20. Summary: Differences between 2003 & 1998 Versions

1. The bandpass-based radiative prescription that is discussed extensively in §12 (pages 32–35)

replaces the much simpler previous one based on effective wavelength. The (Kurucz) atmospheres

are newer, log g is now a parameter (allowing for handling giants, sub-giants, etc., in addition to

main sequence stars), and 19 chemical compositions can be specified.

2. Another significant change concerns MODE=3 operation, where A2, g2, x2, and y2 now are

free parameters, not set equal to A1, g1, x1, and y1. Since T2 may differ considerably from T1, it

seems logical to eliminate those constraints.

3. A minor change is that input now is via LC and DC files with standard names that are

accessed by OPEN statements (FORTRAN). The 1998 and earlier versions utilized the UNIX or
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LINUX command line syntax, e.g. lcjob.exe < algolin.d1 > algolout.d1, but that syntax

does not work in some computing environments. The 2003 version of LC automatically looks for a

file called lcin.active, so the idea is to copy algolin.d1 (or whatever file) into lcin.active. The

DC program looks for a file called dcin.active. Of course, persons who like the UNIX command

line scheme can just comment out the relevant LC and DC OPEN statements.

21. Summary of [0,1] Control Integers

Integer 0 1

IPB normal value decouple L from T

IFAT1, IFAT2 black body atmospheres

IFSMV1, IFSMV2 spots fixed in longitude spots move in longitude

IFDER not print derivative matrix print derivative matrix

IFM not print normal equations print normal equations

IFR not print radii & their derivatives print radii and their derivatives

ISYM asymmetrical partial derivatives symmetrical partial derivatives

ICOR1, ICOR2 not apply RV proximity corrections apply RV proximity corrections

KDISK not use disk scratch pad use disk scratch pad

22. Summary of [0,1,2] & [1,2] Control Integers

Integer 0 1 2

JDPHS n.a. ind. variable is time ind. variable is phase

NOISE no level-dependent weights scatter scales with
√

level scatter scales with level

KO DC does base set only read from scratch pad write on scratch pad

MREF n.a. approximate reflection detailed reflection

23. Summary of [1,2,3] & [1,2,3,4,5] Control Integers

Integer 1 2 3 4 5

LD linear cosine law log law square root law n.a. n.a.

MPAGE light curves velocity curves line profiles radii vs. phase pictures
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A. Sample LC Input File

Below is a sample LC input file with three input blocks. The first block will generate a light

curve and has two dark spots on star 1 and one hot spot on star 2. The second block is for a light

curve with two light-attenuating clouds. The third block is a MPAGE=3 (line profiles) sample.

1 2 2 1 1 1 1 3

2 0040204.395925 .3430969559d01 -.322000d-09 +000.0000 .0000d-10 1 138472375.

0044937.000000 0044939.500000 00000.002000 -000.250000 +000.749000 +000.250000 +000.250000

02 0 1 1 30 30 +0004.082872 +.59200d-05 .00000 0100.00

.16379 0.172439d+02 +001.0000 +001.0000 -000.0681 +088.903 01.000 01.000 000.00

01.1500 00.9888 +1.000 +1.000 0.777681d+01 0.819531d+01 0.766490d-00 +0.566 +0.530 +0.179 +0.173

07 008.35277 003.61127 -0.060 -0.019 0.712 0.724 00.0412 .0000d-00 +17.693 01.0000 00.550000

0.38994 0.28469 0.34558 0.83023

0.57994 2.35275 0.19224 0.91461

300.

1.45151 0.06236 0.22542 1.12987

300.

150.

1 1 1 1 1 1 1 2

1 0024820.000000 .9565000000d03 0.000000d-00 +000.0000 .0000d-10 1 138472375.

0045000.000000 0050000.000000 00100.000000 -000.250000 +000.749000 +000.250000 +000.250000

04 0 1 0 30 30 +0001.572872 +.00000d-00 .00000 0001.00

.00000 0.700000d+03 +001.0000 +001.0000 000.0000 +030.000 00.300 01.000 000.00

00.2500 40.0000 +0.100 +1.000 0.400000d+01 0.100000d+05 0.200000d-00 +0.500 +0.600 +0.000 +0.000

06 010.35277 000.61127 0.826 0.535 -0.225 0.281 00.0000 .0000d-00 +12.000 01.0000 00.440000

300.

300.

000.0000 000.0500 000.0000 0.3500 0.0004d+02 001.0000 1.500d+09 001.3000 -4.000

000.0100 000.0000 000.0000 0.6500 0.0007d+02 001.0000 2.000d+09 001.3000 -4.000

150.

3 1 1 1 1 1 1 3

2 0040204.396739 .3430968357d01 0.000000d-00 +000.0000 .0000d-10 1 138472375.

0050698.100000 0050703.000000 00000.002000 +000.455000 +000.455000 +000.001000 +000.250000

06 0 1 1 30 30 +0004.076719 +.70194d-05 .00000 0001.00

.16346 0.172393d+02 +005.0000 +005.0000 -006.8000 +089.057 01.000 01.000 000.00

01.1500 00.9911 +1.000 +1.000 0.778655d+00 0.818142d+00 0.766310d-00 +0.500 +0.600 +0.000 +0.000

07 008.30199 003.61127 -0.060 -0.014 0.712 0.723 00.0445 .0000d-00 +17.693 01.0000 00.500000

0.10000d-03 000.9900 -0005.00 03

00.447148 1.50000d-04 +00.80000 +001

00.446990 1.45000d-04 +00.70000 +002

00.448115 1.40000d-04 +00.50000 -001

-1.

0.10000d-04 001.0000 -0000.00 03

00.447100 1.20000d-05 +00.80000 +000

-1.

300.

300.

150.

9
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MPAGE,NREF,MREF,IFSMV1,IFSMV2,ICOR1,ICOR2,LD

8(I1,1X)

JDPHS,HJD0,PERIOD,DPDT,PSHIFT,STDEV,NOISE,SEED

I1,F15.6,D15.10,D13.6,F10.4,D10.4,I2,F11.0

HJDST,HJDSP,HJDIN,PHSTRT,PHSTOP,PHIN,PHN

F14.6,F15.6,F13.6,4F12.6

MODE,IPB,IFAT1,IFAT2,N1,N2,PERR0,DPERDT,THE,VUNIT

4I2,2I3,F13.6,D12.5,F7.5,F8.2

E,A,F1,F2,VGA,XINCL,GR1,GR2,ABUNIN

F6.5,D13.6,2F10.4,F10.4,F9.3,2F7.3,F7.2

TAVH,TAVC,ALB1,ALB2,POTH,POTC,RM,XBOL1,XBOL2,YBOL1,YBOL2

2(F7.4,1X),2F7.3,3D13.6,4F7.3)

IBAND,HLUM,CLUM,XH,XC,YH,YC,EL3,OPSF,ZERO,FACTOR,WL

I3,2F10.5,4F7.3,F8.4,D10.4,F8.3,F8.4,F9.6

BINWM1,SC1,SL1,NF1 −→ star 1 line profile parameters, for MPAGE=3 only

D11.5,F9.4,F9.2,I3

WLL1,EWID1,DEPTH1,KKS −→ star 1 line profile parameters, for MPAGE=3 only

F9.6,D12.5,F10.5,I5

BINWM2,SC2,SL2,NF2 −→ star 2 line profile parameters, for MPAGE=3 only

D11.5,F9.4,F9.2,I3

WLL2,EWID2,DEPTH2,KKS −→ star 2 line profile parameters, for MPAGE=3 only

F9.6,D12.5,F10.5,I5

XLAT,XLONG,RADSP,TEMSP −→ spot parameters

4F9.5

XCL,YCL,ZCL,RCL,OP1,FCL,EDENS,XMUE,ENCL −→ cloud parameters

3F9.4,F7.4,D11.4,F9.4,D11.3,F9.4,F7.3
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B. Sample DC Input File

+2.0d-2 +2.0d-2 +2.0d-2 +2.0d-2 +2.0d-2 +2.0d-2 +2.0d-2 +2.0d-2

+1.0d-2 +1.0d-1 +1.0d-1 +1.0d-1 +2.0d-3 -1.0d00 +1.0d-2 +1.0d-2 +1.0d-2 +3.0d-3

+1.0d-2 +1.0d-2 +3.0d-2 +3.0d-2 +5.0d-3 +1.0d-2 +1.0d-2 +1.0d-2 +1.0d-2

1111 1111 0001110 01110 11000 00001 01110 1 1 1 1.000d-05

1 0 2 0

1 1 03 2 0 0 3

1 1 1 1 1 1 3

1 40204.395488 0.3430974719D+01 -0.196610D-08 0.0000

2 0 1 1 30 30 15 15 4.078541 0.60354D-05 0.00000 100.000

.16246 0.172477D+02 1.0000 1.0000 -0.0683 88.950 1.000 1.000 0.000

1.1500 0.9892 1.000 1.000 0.776455D+01 0.814990D+01 0.764970D-02 0.566 0.530 0.179 0.173

6 8.50000 1.31319 -0.077 -0.013 +0.839 +0.833 0.000D+00 0.33100D-01 0.440000

6 8.50000 1.31319 -0.077 -0.013 +0.839 +0.833 0.000D+00 0.43300D-01 0.440000

7 8.31360 1.31319 -0.060 -0.019 +0.712 +0.724 0.0440 0.000D+00 1 0.53500D-02 0.550000

6 8.69860 1.31319 -0.077 -0.013 +0.839 +0.833 0.0304 0.000D+00 1 0.13930D-01 0.440000

5 9.39575 1.31319 +0.057 +0.103 +0.608 +0.587 0.0013 0.000D+00 1 0.19600D-01 0.360000

300.00000

300.00000

150.

40938.90400 -0.4900 1.90 41312.97200 -0.6540 0.30 41241.00900 -0.7190 0.70

...

40910.69500 0.6390 1.30 40914.45700 0.1850 0.50 41370.82000 0.2140 1.70

-10003.

40938.90400 0.4480 1.40 41312.97200 0.6630 0.20 41241.00900 0.8500 0.70

...

40910.69500 -1.1050 1.00 40914.45700 -0.5600 0.30 41370.82000 -0.4220 1.20

-10003.

44939.14620 0.8574 1.00 44939.14910 0.8543 1.00 44939.15100 0.8418 1.00

...

47079.86872 0.9982 1.00 0.00000 -1.0000 0.00 0.00000 -1.0000 0.00

-10001.

40204.39706 0.9501 1.00 40269.58617 0.9200 1.00 40269.59057 0.9107 1.00

...

40269.57729 0.9484 1.00 40204.39159 0.9598 1.00 40269.58159 0.9311 1.00

-10003.

40204.39741 0.9296 1.00 40269.58652 0.8788 1.00 40269.59092 0.8756 1.00

...

40626.40140 0.8841 1.00 0.00000 -1.0000 0.00 0.00000 -1.0000 0.00

-10001.

1111 1111 0001110 01110 11000 00101 01110 0 1 1 1.000d-05

1111 1111 0001110 01110 11000 00101 01111 0 1 0 1.000d-05

1111 1111 1111111 11111 11111 11111 11110 0 1 0 1.000d-05

2
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(DEL(I),I=1,8)

10(1X,D7.1)

(DEL(I),I=10,14),(DEL(I),I=16,20)

10(1X,D7.1)

(DEL(I),I=21,25),(DEL(I),I=31,34)

10(1X,D7.1)

(KEP(I),I=1,35),IFDER,IFM,IFR,XLAMDA

1X,2(4I1,1X),7I1,1X,4(5I1,1X),I1,1X,I1,1X,I1,D10.3

KSPA,NSPA,KSPB,NSPB

4I3

IFVC1,IFVC2,NLC,KO,KDISK,ISYM,NPP

I1,1X,I1,1X,5I2

NREF,MREF,IFSMV1,IFSMV2,ICOR1,ICOR2,LD

7(I1,1X)

JDPHS,PHS,HJD0,PERIOD,DPDT,PSHIFT

I1,F15.6,D17.10,D14.6,F10.4

MODE,IPB,IFAT1,IFAT2,N1,N2,N1L,N2L,PERR0,DPERDT,THE,VUNIT

4I2,4I3,F13.6,D12.5,F8.5,F9.3

E,A,F1,F2,VGA,XINCL,GR1,GR2,ABUNIN

F6.5,D13.6,2F10.4,F10.4,F9.3,3F7.3

TAVH,TAVC,ALB1,ALB2,PHSV,PCSV,RM,XBOL1,XBOL2,YBOL1,YBOL2

F7.4,f8.4,2F7.3,3D13.6,4F7.3

IBAND,HLA,CLA,X1A,X2A,Y1A,Y2A,OPSFA,SIGMA,WLA

I3,2F10.5,4F7.3,D10.3,D12.5,F10.6

IBAND,HLA,CLA,X1A,X2A,Y1A,Y2A,EL3A,OPSFA,NOISE,SIGMA,WLA

I3,2F10.5,4F7.3,F8.4,D10.3,I2,D12.5,F10.6

XLAT,XLONG,RADSP,TEMSP

4F9.5

XCL,YCL,ZCL,RCL,OP1,FCL,EDENS,XMUE,ENCL

3F9.4,F7.4,D11.4,F9.4,D11.3,F9.4,F7.3

(PHJD(in),FLUX(in),WT(in),in=ifirst,last)

5(F14.5,F8.4,F6.2)

(KEP(I),I=1,35),IFDER,IFM,IFR,XLAMDA

1X,2(4I1,1X),7I1,1X,4(5I1,1X),I1,1X,I1,1X,I1,D10.3



FORTRAN Name Index

ABUNIN, 32

ALB1, ALB2, 19

A, 18

BINWM1, BINWM2, 15

DEL, 9, 25, 37, 40

for ω, 18

for spot parameters, 44

DEPTH1, DEPTH2, 15–16

DPDT, 18

DPERDT, 18

EDENS, 17

EL3A, 21

ENCL, 17

EWID1, EWID2, 15

E, 18

F1, F2, 18

FACTOR, 6, 9, 24

GLOWTOL, GHIGHTOL, 35

GR1, GR2, 19

HJD0, 18

HJDST, HJDSP, HJDIN, 24

HLA, CLA, 20

IBAND, 32

ICOR1, ICOR2, 24

IFAT1, IFAT2, 23

IFDER, 25, 37

IFM, 25, 37

IFR, 25, 37

IFSMV1, IFSMV2, 23

IFVC1, IFVC2, 26, 36, 38

IPB, 12, 23

ISYM, 27, 39, 40

for large DEL’s, 27

JDPHS, 18, 22

KDISK, 27

KEP, KEEP, 25, 32, 37

KKS, 15

KO, 26, 31

KSPA, NSPA, KSPB, NSPB, 25, 37

LD, 17, 24

MODE, 23

MPAGE, 6–8, 24, 37, 43, 44

MREF, 23, 38, 42

MZERO, 6, 9

N1, N2, 23, 27, 35, 39

N1L, N2L, 27, 35, 39

NF1, NF2, 15

NLC, 10, 26, 36, 37

NOISE, 27, 35, 38

NPPL, 27, 37, 44

NREF, 23, 38

PERIOD, 18

PERR0, 18

PHIN, 22, 24

PHN, 6, 24, 35

PHSTRT, PHSROP, 22

PHSTRT, PHSTOP, 24

PHSV, PCSV, 19

PSHIFT, 6, 19

RADSP, 20

RCL, 17

RM, 20

SC1, SC2, 15

SEED, 35

SIGMA, 9–10, 27, 38

SL1, SL2, 15

STDEV, 35

TAVH, TAVC, 19

TEMSP, 20

THE, 11, 16

TLOWTOL, THIGHTOL, 35

VGA, 18

VUNIT, 7, 18, 23

WLA, 17

WLL1, WLL2, 15

X1A, X2A, 20

XBOL1, XBOL2, 16

XCL, YCL, ZCL, 17

52
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XINCL, 19

XLAMDA, 25, 37

XLAT, 20

XLONG, 20

XMUE, 17

Y1A, Y2A, 17

YBOL1, YBOL2, 16

ZERO, 24



Subject Index

Absolute dimensions

as light curve requirement, 8

Accuracy

improvement of, 5

Apsidal motion rate, 5, 18

Arcsine, arccosine

problems with, 6

Arrays

minimum dimensions, 39–40

table of, 41

Asynchronous rotation, 5

and star spot motion, 23

Bandpasses, 34

Binaries

Algol-type, 10, 12

detached, 12

double contact, 12

overcontact, 11

and grid fineness, 42

semi-detached, 12

W UMa-type, 11

X-ray, 11

Circumstellar clouds, 5, 13–14

parameters for, 14, 17

Control integers

description of, 22–27

summary of, 45

Derivatives

increments for, 9, 25, 40

symmetrical, 27

Double precision, 5

Eccentric orbit, 5

and run time, 38

Eclipse effects, 5

in radial velocity output, 7

turning on or off, 24

Ephemeris parameters, 5, 18

Grid

coarse or fine, 35

fineness

control integers, 38

for overcontact binaries, 42

size, 23, 27

Increments for numerical derivatives, 9, 25, 40

Independent variable

time or phase, 5, 22

Input

for DC, 37–38

sample, 50

for LC, 36–37

sample, 48

from scratch pad, 26–27

number of data triplets, 27

Light

vs. luminosity, 8, 12–13, 20

attenuation of, 13

from third star, 6

magnitude zero point, 24

normalized, 6, 8

phase of normalization, 9, 24

scaling factor, 24

program unit, 6, 8, 20

Limb darkening

bandpass-specific coefficients, 17, 20

bolometric coefficients, 16, 17, 20

linear, 17

logarithmic, 5, 17

selection of law, 24

square root, 17

Lobe filling, 10

and eccentric orbits, 12

and non-synchronous rotation, 12

Luminosity

54
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vs. light, 8, 12–13, 20, 40

as scaling factor, 9

bandpass-specific, 20

computed from temperatures, 23

unit of, 20

Marquardt λ, 5, 25, 29–30

Model

concepts, 5

mathematics, 5

organization, 5

theory, 5

Multiple subsets, 29–30

Orbit

argument of periastron, 18

eccentricity, 18

inclination, 19

period, 18

period time derivative, 18

semi-major axis, 6, 18

Output

excessive, 7

print control, 25

produced by LC, 6–7

selection of, 24

star images, 7

to scratch pad, 26–27

Parameters

apsidal motion rate, 18

argument of periastron, 18

axial rotation rate, 18

bandpass-specific limb darkening, 17, 20

bandpass-specific luminosity, 20

bolometric albedo, 19

bolometric gravity brightening, 19

bolometric limb darkening, 16

center-of-mass radial velocity, 18

cloud attenuation law exponent, 17

cloud coordinates, 17

cloud electron density, 17

cloud molecular weight, 17

cloud radius, 17

curve wavelength, 17

curve-dependent, 16

description of, 16–21

eccentricity, 18

eclipse semi-duration, 16

ephemeris zero point, 18

for atmosphere to black body ramping, 35

increments for numerical derivatives, 9,

25, 40

initial guesses, 40

list of, 21–22

mass ratio, 20

mean effective temperature, 19

orbit inclination, 19

orbit period, 18

orbit period time derivative, 18

phase shift, 19

potential, 19

selection of adjusted, 25

semi-major axis, 18

third light, 21

Potentials

allowed ranges for, 40

critical, 42

Problems

arcsine, arccosine, 6

convergence, 27–30

input format shifted, 6

machine-dependent, 6

Program

DC main, 5

LC main, 5

compiling of, 6

interactive branching in DC, 31–32

operation modes, 11–12

radiative treatment, 32–35

revisions, 5

run time, 38–39
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and eccentric orbits, 38

and grid fineness, 38

and grid fineness in DC, 39

and reflection, 38

and star size, 39

for detailed reflection and eccentric or-

bits, 42

running of, 6

tinkering with, 6

versions, 42

differences between, 42–44

Programming ideas, 5

Proximity effects, 5

in radial velocity output, 7

turning on or off, 24

Radial velocity

dimensionless, 7

unit of, 23

Radiative model, 5, 32–35

abundance, 32

atmosphere temperature limits, 33

atmosphere to black body transition, 35

stellar atmosphere or black body

control integers for, 23

Reflection

and run time, 38

detailed, 5

simple or detailed, 23

Solution

and absolute dimensions, 8

constraints, 5, 10

modes, 11–12, 23

number of curves, 36

simultaneous light–radial velocity, 5, 36

misgivings about, 36

simultaneous multi-bandpass, 36

Spectral lines

profiles, 5

output for, 7

parameters for, 15–16

reference wavelength, 7

Standard deviations

for curve-dependent weights, 10

Standard errors

discussion of, 30–31

Star

fast-rotating, 5

images, 5

output for, 7

magnitude, 6

number, 6

radii, 7

separation, 6

Star spots, 5

and asynchronous rotation, 23

angular radius, 9, 20

images, 7

latitude, 20

longitude, 20

motion, 5

parameters, 5

adjusting of, 16, 25

temperature factor, 20

Subroutines for LC and DC, 6

Synthetic noise, 35

seed for, 35

Third light, 6, 8, 13, 21, 42

User feedback, 6

Weights

curve-dependent, 10, 27, 38

intrinsic, 38

level-dependent, 10, 27, 38


