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8. N-body model of ξ Tauri with mutual interactions

Given the quadruple nature of ξ Tauri and its relatively close
packing, it is necessary to proceed with an advanced N-body
model which would account for mutual gravitational interactions
of all four components. To this point, we shall now describe
our numerical integrator, a definition of a suitable χ2 metric and
overall results of our fitting procedure. Hereinafter, we beg to
switch to a numerical notation for individual ξ Tau components
— namely 1 ... Aa, 2 ... Ab, 3 ... B, 4 ... C — in order to simplify
the equations below.

8.1. Numerical integrator and χ2 metric

We use a standard Bulirsch–Stöer N-body numerical integra-
tor from the SWIFT package (Levison & Duncan 1994). Our
method is quite general — we can model classical Keplerian or-
bits, of course, but also non-Keplerian ones (involving N-body
interactions). We treat all the stars as point masses only thought;
we have no higher-order gravitational terms and no tides in our
model.

As explained below, this is a significant improvement of our
previous application in Brož et al. (2010), because we can now
account not only for the light-time effect but for complete TTV
variations of the eclipsing binary, arising from both direct and
indirect gravitational perturbations. At the same time, we do not
use the simplification of Brož et al. (2010) and we consider all
the components separately, because the equivalent gravitational
moment:
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(m1 + m2)2 � 2 × 10−3 (1)

of the inner eclipsing binary is large at the distance of the 3rd
body.

We are forced to use five different coordinate systems:
(i) 1-centric (usually, for a specification of initial conditions);
(ii) barycentric (for the numerical integration itself); (iii) 1+2
photocentric (for a comparison with interferometric observations
of the 3rd body); (iv) 1+2+3 photocentric (dtto for the 4th body);
(v) Jacobian (for computations of hierarchical orbital elements).

Initial conditions at a selected epoch T0 can be specified ei-
ther in Cartesian coordinates — with x, y in the sky plane and
z in the radial direction — or in osculating orbital elements.
This very choice has a substantial role, because the outcome of
the fitting procedure will be generally different. The orbital ele-

ments can be considered less correlated quantities than 1-centric
Cartesian coordinates.

We try to account for as much observational data as we can
using the following joint metric:
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where the notation is briefly described in Table 1. The dashed
quantities are the model values linearly interpolated to the exact
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Table 1. Notation used for various coordinates, velocities, other quan-
tities and uncertainties. which we use in our N-body model.

xh, yh, zh 1-centric (“heliocentric”) coordinates
vxh, vyh, vzh 1-centric velocities
xp3, yp3 1+2 photocentric sky-plane coordinates (3rd body)
xp4, yp4 1+2+3 photocentric coordinates (4th body)
xa, ya 1-centric coordinates in an angular measure
vzb the barycentric radial velocity
γ the systemic velocity
vrad the observed radial velocity
t1+2 the minimum of the eclipsing binary
ε1+2 the eclipse duration
V complex visibility, squared visibility is |V |2
T3 complex triple product, closure phase is arg T3

u, v projected baselines (expressed in cycles, B
λ

)
θ = 2R

d angular diameter
d distance
L, Ltot component luminosity and the total one
Teff effective temperature
R stellar radius (uniform-disk)
λ, ∆λ effective wavelength and bandwidth
Bλ(T ) the Planck function

σrv uncertainty of the radial velocity
σttv uncertainty of the minimum timing
σecl uncertainty of the eclipse duration
σsky major,minor uncertainty of the astrometric position,

angular sizes of the uncertainty ellipse
φellipse position angle of the ellipse
R(. . .) the corresponding rotation matrix
σvis uncertainty of the squared visibility
σclo phase,modul uncertainty of the closure phase and |T3|

times ti of observations. The index j corresponds to the individ-
ual components of ξ Tau and i to the observational data.

Regarding the observational data, we have radial-velocity
measurements for the three components (1, 2, 3), Nrv = 843,
minima timings for the eclipsing binary (1+2), Nttv = 35, and
interferometry (for components 3 and 4), Nsky = 49, i.e. a
subset of measurements from NPOI and WDS, for which it
was possible to convert fringe visibilities (averaged over one
night) to distance–angle values.1 The individual uncertainties
of the observations used in this section were modified as fol-
lows: σrv ≥ 2 km s−1 due to calibration uncertainties, σttv ≥

0.001 d = 1.5 min, because the quasiperiodic oscillations visible
on MOST light curves shift minima timings in a random fash-
ion, and σsky = 3 mas (as in Tokovinin et al. 2015) or 5 mas if
not reported in WDS.

We assumed the (nominal) distance d = 64.1 pc for ξ Tau.
The radii for eclipses detection were R1 = 1.752 R�, R2 =
1.542 R�, in accord with photometric inversion. Note that a to-
be-expected correlation between R1, R2, eclipse depth, eclipse
duration and third light contribution is removed to some extent
thanks to spectroscopic observations (cf. Table ??).

The synthetic minimum distance ∆′ between components 1
and 2 in the sky plane was computed analytically as the dis-
tance of the piece-wise straight line (xh2, yh2) from the origin in
1-centric coordinates, as given by the numerical integration. The
condition for an eclipse is then simply ∆′ ≤ R1 + R2 and the cor-

1 To be crystal clear, in this N-body model we do not fit the observed
spectra by synthetic ones, individual light curve points, or interferomet-
ric fringes. We use higher-level observational data instead which were
reduced and derived in previous sections.

Table 2. Minima timings t1+2 and eclipse durations ε1+2 determined
from MOST light curves — corrected for quasiperiodic oscillations by
means of Eq. (13) — and corresponding uncertainties σttv, σecl.

t1+2 σttv ε1+2 σecl
JD day day day
2456224.724205 0.0010 0.2656 0.0069
2456228.301662 0.0012 0.2611 0.0035
2456231.868584 0.0010 0.2678 0.0069
2456235.445218 0.0010 0.2573 0.0035

responding time t′1+2 is linearly interpolated from neighbouring
points. The eclipse duration is then given by a simple geometry,
ε′1+2 = 2

√
(R1 + R2)2 − ∆′2/v̄, where v̄ denotes the average ve-

locity between the points. We thus straightforwardly account for
disappearing eclipses and their durations, but we do not model
(possible) eclipse depth variations at this stage.

In order to remove minor systematics in minima timings and
eclipse durations, we attempted to suppress quasiperiodic oscil-
lations visible in MOST light curves by subtracting a function of
the following form:

f (t) = C0+C1(t−T1)−[A0+A1(t−T1)] sin
[

2π(t − T1)
P0 + P1(t − T1)

]
; (13)

its coefficients (C0,C1,T1, A0, A1, P0, P1) were always deter-
mined by a local fit in the surroundings of the given minimum.
The resulting data are reported in Table 2.

The relative luminosities for photocentre computations were
set L1 = 0.1362, L2 = 0.1067, and L3 = 0.7571 — again, in
accord with photometric observations.

There are also mass constraints arising from from the spec-
troscopic classification of ξ Tau components (AV, AV, BV, FV).
We can easily enforce reasonable limits for the component
masses with the following artificial term:
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2
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·

2
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]100

, (14)

where we used m1 and m2 ∈ (0.9, 3.0) M�, m3 ∈ (3.5, 3.9) M�,
m4 ∈ (0.9, 2.0) M� as the limits.

Optional weights wsky = 10, wecl = 10, wttv = 1, wrv = 1
of the χ2 terms in Eq. (2) can be also used to prevent systematic
deviations of the model from astrometric measurements of the
4th body or eclipse durations of the 1+2 pair which are (alas)
not as numerous as other data sets.

The integrator and its internal time step was controlled by
the parameter εBS = 10−8 (unitless) which ensures a sufficient
accuracy. The time span was 1,000 d forward and 11,000 d back-
ward, the output time step ∆t = 0.5 d for initial runs. We verified
that this sampling is sufficient even for the trajectory with the
largest curvature and all necessary interpolations to the times of
observations. For final optimisations we decreased the value fur-
ther down to ∆t = 0.1 d to suppress interpolation errors.

We use a standard simplex algorithm (Press et al. 1997)
to search for (local) minima of χ2. We have 23 of potentially
free parameters — masses m j, coordinates xh j, yh j, zh j, velocities
vxh j, vyh j, vzh j in 1-centric frame — or, alternatively, masses m j
and three sets of orbital elements a j, e j, I j,Ω j, ω j,M j in Jacobian
coordinates, and the systemic velocity γ. The convergence toler-
ance for χ2 was set εtol = 10−6, the maximum number of iter-
ations 10,000 or as low as 300 for extended surveys of the pa-
rameter space. We verified that this low number is sufficient to
quickly find local minima or to exclude their existence.
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The initial epoch T0 = 2456224.724705 corresponds to the
first very precise minimum on MOST light curve. We can thus
(almost) fix xh2 � yh2 � 0. At the same time, it is possible to
(approximately) fix positions xp3, yp3 and xp4, yp4, derived by in-
terferometry for an epoch close to T0.
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