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APPENDIX

C. EXAMPLES OF DYNAMICAL EFFECTS

To demonstrate some capabilities of our N-body model we present several numerical simulations

that can be treated as examples of what can be fitted to observational data (more examples can be

found in Fabrycky 2010).

C.1. Precession of ω and Ω

Probably the most trivial perturbation is the precession of the argument of pericentre ω. In our

case however, the temporal derivative ω̇ is not a free parameter; it is directly tied to the masses and

initial osculating elements of the bodies. The same holds for the longitude of the ascending node Ω

and the corresponding Ω̇. It is thus not necessary to use any secular theories, because all secular

perturbations are implicitly included in our N-body model. Moreover, one can expect that neither

ω̇(t) nor Ω̇(t) are exactly constant, because some short-periodic perturbations are always present.

Depending on the distribution of the angular momentum L in the system, the precession of indi-

vidual orbits can occur with different amplitudes, although the secular time scales for a pair of orbits

are the same. In the Laplace coordinate system (aligned with total L), all ω̄j and Ω̄j circulate from

0 to 360◦. On the other hand, our frame of reference is tied to the observers direction and the sky

plane, so that ωj or Ωj often librate, in other words oscillate in a limited interval, due to the purely

geometrical projection.

Apart from the above basic secular perturbations, we also account for an additional precession

caused by tides, oblateness and general-relativistic effects (Eqs. (2) to (4)).

C.2. Inclination vs eclipse durations

As a result of the nodal precession Ω̇j of each orbit, the inclinations ij with respect to the sky

plane also often librate. Regarding the case of i1, the eclipsing binary may exhibit one or more
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photometric effects: changes of eclipse durations, eclipse depths, or completely disappearing (and

later reappearing) eclipses. All of these are accounted for and contribute to χ2
ecl, χ

2
lc, or χ2

ttv terms.

Our model is also extremely sensitive to the mutual inclination J of the orbits, because the pre-

cession rates are functions of it (see Eqs. 26 and 27 in Nemravová et al. 2016, but these are suitable

only for low e1, low J and large a2/a1). This may significantly contribute to χ2
sky, or χ2

vis.

C.3. Eccentricity oscillations

Yet another phenomenon may occur on secular time scales, namely oscillations of the osculating

eccentricity e1(t) forced by the 3rd body. In an ’extreme’ case, e1(t = T0) ' 0.1, it is manifested as

forced oscillations of radial velocities which no longer have constant amplitudes.

For low eccentricities of the order of 0.01, one can search for some phase shifts of RVs of components

1 and 2. This turns out to be a strong constraint for the initial eccentricity e1(t = T0), because the

phase shifts occur as soon as e1 6= 0. An example for ξ Tau system is shown in Figure ??.

C.4. Kozai cycles

A closely related classical example are the Kozai cycles (Kozai 1962, Lidov 1962), or coupled oscilla-

tions of the eccentricity e and mutual inclination J which preserve the invariant Lz =
√

1− e2 cos J .

They occur for high-inclination orbits with a certain minimum (critical) inclination Jmin.

We can easily demonstrate such oscillations, if we substantially increase the mutual inclination J

in ξ Tau system (see Figure C1). However, in this particular case the system is so massive and

compact that the approximations involved in the derivation of Lz integral do not hold anymore! The

respective time scale (19 yr) of the oscillations is also much shorter than predicted by the analytical

theory; and there is a 4th body with a 51 yr orbit involved, so that the phasing of e, i is not exact.

For compact systems it is worth to verify if tides or oblateness are capable of suppressing Kozai

oscillations or not by enforcing a different precession rate (for a reasonably high value of kL, i.e. ' 0.3
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Figure C1. The Kozai cycles in a hypothetical quadruple system with the mutual inclination J = 50◦ of

the first two orbits, i.e. larger than the critical value Jmin. The coupled oscillations of the eccentricity e1

(orange) and inclination i1 (black) would be visible, on the time scale as short as TKozai ' 19 yr. Note in

this case tides or oblateness are not strong enough to suppress these oscillations (cf. Fabrycky 2010), when

we assume the Love number kL = 0.3.

for M dwarfs, or as small as 10−2 for solar-like stars; Mardling & Lin 2004).

C.5. Variation and evection

Leaving secular perturbations aside, there are short-periodic perturbations which occur on the

orbital time scales Pj of individual orbits. In a classical Hills theory, we would have five terms

contributing to departures of the true longitude ∆λ (Fitzpatrick 2012): eccentricity, ellipticity, incli-

nation, variation and evection. The last two are of interest, as they arise from interactions with an

external 3rd body. One can recognise the variation is maximal in octant points, and the evection in

quadrant points (wrt. to the 3rd body).

In Figure C2 we demonstrate these short-periodic effects for a system similar to ξ Tau. Note the

3rd body may be virtually ‘fixed’ and still cause variation or evection which contribute mostly to

χ2
rv, but not directly to χ2

ttv, since the eclipses are always measured at the same true longitude λ.
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Figure C2. A general trajectory of the inner eclipsing binary as output from our N-body model, affected

by the 3rd and 4th component in ξ Tauri quadruple system. The differences (orange lines) with respect to a

keplerian orbit (black curve) — fixed at the initial conditions — were exaggerated 100 times to make them

visible at all. Two most important terms describing departures in longitude ∆λ are called the variation and

evection. Alternatively, the keplerian orbit could have been optimized, so that ∆λ are smaller at certain λ,

but never zero everywhere.

C.6. Prograde vs retrograde orbits

Traditionally, it is practically impossible to distinguish prograde and retrograde orbits, because

the corresponding RVs are the same. But luckily, mutual interactions within the N-body model can

contribute to χ2
ttv sufficiently (cf. Fig. 12 in Nemravová et al. 2016). The principle is as follows: if

the distance of the 3rd body is increasing (or decreasing) during one P1, the gravitational potential

at around the binary is less negative (or more) and consequently the value of P1 is inevitably larger

(smaller).

C.7. Long-term evolution and stability

It is also possible to run the N-body integrator separately, regardless of an observational time span,

and study a long-term evolution and stability of stellar systems. We may wish to prefer those orbital

solutions which are indeed stable.

One of the difficulties is that the output of osculating elements is either prohibitively long or an
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aliasing occurs when the output time step ∆tout is larger than an half of the shortest orbital period,

P1/2 (cf. Figure C3, top).

In a modified version of the BS integrator (swift bs fp), we can use an on-line digital filtering of

non-singular osculating elements hj, kj, pj, qj to overcome these problems: first a multi-level con-

volution based on the Kaiser windows (Quinn et al. 1991) to obtain mean elements, and second

a frequency-modified Fourier transform (Šidlichovký & Nesvorný 1997) to extract proper elements.

For N mutually interacting bodies, one can expect 2N eigen-frequencies of the system, which are

usually denoted gj and sj. The corresponding amplitudes epj, sin 1
2
Ipj can be considered approximate

integrals of motion which only evolve on time scales longer than secular (see Figure C3, bottom).

C.8. Close encounters

Additionally, one can model hyperbolic trajectories and three-body encounters or captures, even

though from a historical perspective such stellar models do not seem very convincing (Tokovinin 1986),

because some observations might have been affected by raw measurement errors (e.g. a wrong plate

scale), an abrupt change of the orbital period may turn out to be rather quasiperiodic (possibly

related to magnetic phenomena) and any inter-stellar encounter is considered an exceedingly rare

event.

Finally, let us mention that all mean-motion resonances (Rivera et al. 2005), secular resonances,

three-body resonances (Nesvorný and Morbidelli 1998), or chaotic diffusion due to overlapping reso-

nances are also naturally accounted for in our N-body model.
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Figure C3. A long-term evolution of ξ Tauri quadruple system, or the eccentricity e1(t) of the 1st orbit,

respectively. There are osculating (top), mean (middle), and proper (bottom) orbital elements shown. Note

the osculating elements may exhibit aliasing , i.e. artificial long-period changes, because the output time

step ∆tout = 100 yr is too long and the corresponding Nyquist period is PNy = ∆tout/2. The mean elements

were computed with the following setup: input sampling ∆t = 3 d, sequence of filters denoted A, A, A,

and B (from Quinn et al. 1991), with decimation factors 10, 10, 10, 3, output sampling ∆tmean = 24.6 yr,

so that the passband P > 164.271 yr, the total ripple at most 10−4, the stopband P < 54.757 yr, and a

minimum suppression of 10−9. The proper elements were then computed from Nsamples = 512, after every

∆tproper = 104 yr. There might be some minor glitches, arising from frequency peak splittings, but with very

low amplitude.


