Dynamics of protoplanets embedded in gas/pebble disks

1 and its dependence on Σ and $\boldsymbol{\nu}$ parameters

Miroslav Brož¹, Ondřej Chrenko¹, David Nesvorný² ¹ Charles University, Czech Republic ² South-West Research Institute, Boulder, CO

Q: What is the (fastest) mechanism of giant-planet core formation?

pebble accretion

pebbles

$$\frac{\partial \Sigma_{\rm p}}{\partial t} + \boldsymbol{u} \cdot \nabla \Sigma_{\rm p} = -\Sigma_{\rm p} \nabla \cdot \boldsymbol{u} - \left(\underbrace{\frac{\partial \Sigma_{\rm p}}{\partial t}}_{\text{acc}} \right)_{\rm acc}$$

aerodynamic drag

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{\int \rho_{\mathrm{p}} \nabla \phi \, \mathrm{d}z}{\Sigma_{\mathrm{p}}} - \overbrace{\frac{\sigma_{\mathrm{K}}}{\tau} (\boldsymbol{u} - \boldsymbol{v})}^{\mathbf{N}}$$

vertical damping

protoplanets
$$\ddot{\mathbf{r}}_i = -\frac{GM_{\star}}{r_i^3}\mathbf{r}_i - \sum_{j \neq i} \frac{GM_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}(\mathbf{r}_i - \mathbf{r}_j) - \int \int \frac{G\Sigma}{|\mathbf{r}_i - \mathbf{r}_{cell}|^3}(\mathbf{r}_i - \mathbf{r}_{cell})rd\theta dr + \widehat{f_z \hat{z}}$$
 for $\forall i$

Casell_nominal ← from Chrenko etal. (2017)

- semimajor axis *a* vs time *t*
- oscillations of *r* (a.k.a. *e*)
 ← hot-trail effect
 - \rightarrow no resonant captures
- 2 mergers, 1 coorbital
- BUT see details...

surface density $\Sigma_0 = 750 \text{ g/cm}^2$, slope -0.5, kinematic viscosity $\nu = 10^{-5}$ [c.u.], embryo mass $M_{em} = 3 M_{E}$, pebble flux $dM_p/dt = 10^{-4} M_E/\text{yr}$, ...

Detail: Merger

- restarted from sparse output \rightarrow detailed output (1/20 $P_{\rm orb}$)
- 3-body encounters are needed for mergers! small statistics

deep encounter...

3 protoplanets...

. different encounter...

merger

Sigma_3times

- i.e. $\Sigma_0 = 2250 \text{ g/cm}^2$
- substantial interior disk mass
 → a offset from r
- many 'repulsions' (3 and 4)
- HD also determines encounter geometry

viscosity_le-6

- i.e. $\nu = 10^{-6}$ [c.u.]
- massive coorbital formation
 & its stabilisation
- too-many-coorbitals problem...
- pebble isolation beyond
 → no heating
 - \rightarrow inward migration

Torque details of 4 events

- normalized disk torque Γ/Γ_0 vs time *t*, with $\Gamma_0 = (q/h)^2 \Sigma r^4 \Omega^2$
- encounters perturbed by torques, which also determine (next) geometry

totmass_20ME

- i.e. $M_{\rm em} = 5 M_{\rm E}$
- convergence zone @ 20 au
- 3-body interactions again
- coorbital + embryo 1
- initial 'kick' → dynamical torque drives it to 30 au
- returns back to 20 au
 & interacts with coorbital
- a solution of too-manycoorbitals problem?

Dynamical tadpole torque

• a vortex behind the protoplanet (Pierens 2015) & its decay \rightarrow migration cycles

embryos_0.1ME_120

- i.e. Mars-size embryos
- robust runaway growth:

 (i) merging, (ii) Hill regime of accretion, dM/dt ~ Mem,
 (iii) pebble filtering,
 (iv) lower inclinations of massive embryos
 (Levison etal. 2015)
- hot-trail → encounters
 → random walk
- BUT also...

Stochastic disk torques

 \uparrow overlapping spiral arms, affected corotation regions, incl. non-linear terms (T^3 , T^4 , Q_{visc})

Conclusions

- **3-body encounters** are needed for mergers
- in high- Σ disks **repulsion** events are frequent
- a massive coorbital pair develops a **pebble isolation**
- stabilisation & inward migration of c. then occurs
- a **dynamical torque** can arise in the ice-giant zone
- this leads to outward ↔ inward **migration cycles**
- disk torques for many (>100) low-mass embryos are **stochastic**
- Brož, Chrenko, Nesvorný & Lambrechts (A&A, submitted)
- Fargo-Thorin: http://sirrah.troja.mff.cuni.cz/~chrenko/

Inclination vs pebble accretion

• massive embryos \rightarrow low (mean) inclinations, close to pebble disk midplane

