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1 Introduction

Asteroids (formerly, star-like bodies) and stars (i.e. real ones) are clearly closely related from an ety-
mologist point of view. Coined by William Herschel in 1802, both objects exhibit the same point-like
appearance on the sky, the only notable difference being the proper motion and the paralax.

Well, everybody knows there are a couple of additional differences. Nevertheless, we found this par-
ticular combination of subjects very fruitful. The quest for understanding both the central body and the
small stuff bound to it by gravity is definitely logical. As a profound example, we may recall the age of the
Sun that was actually inferred from radiometric ages of meteorites — or calcium–aluminium inclusions
in ordinary chondrites, to be more specific — which pile up at t = (4.559±0.004) Gyr and no one is older
(Jacobsen and Wasserburg 1980; Tilton 1988; Guenther 1989).

There are also a number of similarities from a physicist point of view. You know, there are many useful
papers which treat both as abstract point masses (e.g. Poincaré 1892). In ‘advanced’ applications, all the
objects are spheres and no more than that (Eddington 1931). However, state-of-the-art models (Flock et
al. 2013, Morbidelli et al. 2014, Bitsch et al. 2014) aspiring to capture all of the relevant physics are, in
plain words, horribly complicated. Let us summarize it in four words: turbulence, chaos, irreversibility
and t = 0.

In more words, radiative magneto–hydrodynamical (RMHD) equations exhibit several inherent insta-
bilities which manifest themselves as turbulence (Figure 1) or collapse. Even in simple N -body problems,
deterministic chaos can drive the overall evolution. The processes like mutual collisions are often thermo-
dynamically irreversible, so no one can integrate the equations backward in time. And finally, we cannot
measure the initial conditions, regardless of fantastic advances in instrumentation and observations (Par-
ker et al. 2008, Mainzer et al. 2011, Schenk et al. 2012, Marchis et al. 2014).
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Figure 1: An evolution of the Rayleigh–Taylor instability from a small initial perturbation of the boundary.
Since there appear mutual motions of the fluid, the Kelvin–Helmholtz instability occurs inevitably too. Initial
conditions: ρ1 = 2, ρ2 = 1, Φ = y, or g = −∇Φ = (0,−1), respectively, P (y) corresponds to a hydrostatic
equilibrium, v1 = v2 = (0, 0). Boundary conditions: periodic on the left and right, ∂ρ

∂t
= 0, ∂v

∂t
= 0, ∂P

∂t
= 0 up

and down. The state equation corresponds to ideal gas. A computation by the Pluto code (Mignone et al. 2007)
in two dimensions, on a mesh with 100 × 200 points. The integration by a linearized Roe Riemann solver was
controlled by the Courant-Friedrichs-Lewy condition, C = 0.4.

In order to stay on the safe side, we are going to discuss a sort of ‘intermediate’ models — it means
neither pure point masses nor full RMHD — of asteroids and stars. In this thesis, we present nine research
papers on the former subject and three on the latter, and also two relevant textbooks. Apart from that,
I am glad to state that years of teaching resulted in nine bachelor theses and three diploma theses (and
counting).

1.1 Contents and structure of the thesis

Briefly speaking, the papers selected for this thesis mostly deal with asteroid families, gravitational
resonances and mutual relations between them, which are strongly enhanced by non-gravitational forces.
The term families essentially means a similarity of orbits, strongly indicating a common origin. The term
resonance is closely related to commensurable orbital or secular frequencies present in the system.
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Figure 2: The observed state of the Solar System displayed on a plot semimajor axis a vs eccentricity e. Symbols
and colour discriminate various types and populations of small bodies: asteroids are shown as circles, trans-
neptunian objects as squares and comets as crosses. There are more than 5 · 105 objects plotted, which might be
either Aten, Apollo, Amor, Mars crosser, Hungaria, main belt, Cybele, Hilda, Jupiter Trojan, Centaur, Neptune
Trojan, scattered disk, detached disk, Kuiper belt, Plutino, Kruetz, Jupiter family, Encke, Chiron, Halley, external,
or new comet. Data were downloaded from the Minor Planet Center, AstOrb and AstDyS catalogues. Vertical
lines denote major mean-motion resonances with Jupiter or Neptune and the ν6 secular resonance. The dotted
line (close to the top) corresponds to a perihelion distance q equal to the radius R� of the Sun.

In Section 2.1, we study populations of asteroids located in the mean-motion resonances with Jupiter,
namely 2:1, 3:2 and 4:3 (see Figure 2), which seem to be quite diverse and consequently interesting. We
identified one already known (Schubart) and one entirely new family (Hilda). And more importantly, we
realized there is a clear fingerprint of non-gravitational forces and torques visible in their eccentricity
distributions.

In Section 2.2 we focus on our new discovery, the Hilda family located in the 3:2 resonance. We
constructed a rather complex model of its long-term orbital and spin evolution and it turned out, this
is (likely) the oldest asteroid family in the Solar System, dating back to the Late Heavy Bombardment,
approximately 3.85 billion years ago.

We then pay a close attention to the 1:1 resonance with Jupiter, i.e. the famous Trojan region, in
Section 2.3. We reexamined previous family identifications and come up with a surprising conclusion, that
there is actually only one family (and one new) which is definitely an important number for collisional
models.

In Section 2.4, we try to understand the Eos family which is surrounded by a distinct halo. We explain
its existence by the presence of 7:3, 9:4 and z1 resonances which scatter asteroids in both eccentricity and
inclination. We were also able to exclude a possibility that such halos are created during the migration
of planets.

A complex study of the Late Heavy Bombardment is presented in Section 2.5. We attempt to combine
various types of models — for the planetary migration, collisions between comets and asteroids, orbital
evolution of asteroid families — in order to answer the question, how the bombardment affected the main
asteroid belt. As a pre-requisite, we had to prepare an up-to-date list of asteroid families, including their
physical properties. By the way, this is the work I am mostly proud of.

In Section 2.6, we construct a new collisional model of the main belt, split into six parts along major
resonances, in order to use new observational data from WISE and the new family identification. As a
major result, we conclude that an assumption of monolithic structure is better that a rubble-pile one.

In a series of two papers (Sections 2.7 and 2.8), we use our orbital and spin evolution model to match
the observed distribution of spin pole latitudes for both large and small asteroids. A similar analysis is
presented in Section 2.9 for individual families, which was only possible thanks to significantly increasing
number of available and derived spin and shape models of asteroids.

Moving towards astrophysics, in Section 3.1 we interpret observations of the multiple star V505 Sagit-
tarii for which multiple datasets exist: light-time effect measurements, speckle interferometry and radial
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velocities. We heavily build up on known methods from the Solar System dynamics here. Section 3.2 is also
devoted to an individual object, V2368 Ophiuichi this time, for which we compute and interpret stellar
evolution tracks. Finally, the Section 3.3 touches a bit interstellar medium as we try to independently
estimate the distance to ε Aurigae, an eclipsing binary with the longest known orbital period.

Regarding the two textbooks, the one presented in Section 4.1 is based on the course ‘Fyzika malých
těles sluneční soustavy’ (Physics of the small Solar System bodies, denoted NAST020) which was held at
the Astronomical Institute from 2005 to 2014, with a two-year interval.

Similarly, ‘Stavba a vývoj hvězd’ (Structure and evolution of stars) in Section 4.2 reflects a basic course
called Astrophysics II (NAST014). This course was first led together with Petr Harmanec, starting from
2008. We subsequently added several new chapters, namely 2.2 Stellar spectra, 14.3 Hydrodynamics
of simple waves, and most importantly, 15 Gravitational collapse of protostars 16 Explosive stadia in
evolution of stars. To prepare (a lot of) illustrations, we used an up-to-date stellar evolution code called
MesaStar (Paxton et al. 2011) quite extensively.

Individual papers are reprinted in Appendix A. Abstracts of bachelor and diploma theses are included
as Appendix B.

1.2 Behind the scenes

Let me also add some ‘behind-the-scenes’ information, because the papers alone are much more boring
than real life. It would be a shame to loose the thrill of discovery, wouldn’t be?

In 2008, we prepared an update of resonant population, a usual work. At the same time we thought that
the Yarkovsky effect cannot be efficient at all in resonances. While I was finalising a presentation for the
DDA meeting in Boulder, I decided to process one more numerical integration which was started about a
month ago. At about midnight, I was astonished to realise, that there is a clear and systematic Yarkovsky
drift in eccentricity , not in semimajor axis, as usually! Of course, this allowed an age determination of
asteroid families, so I quickly rewrote the whole presentation, which was scheduled in the morning. This
was a ‘last-night’ discovery.

Another story is related to a strange orbit of the V505 Sgr triple star. This was an idea of Dr. Mayer,
who suggested we should try a 4th-body which would perturb the system in order to explain all the
observational data. We submitted the resulting 10-page long paper to A&A and a few days later, I was
really surprised by a rejection. Both the referee and editor thought that the speckle measurements are
wrong and that the light-time effect is not related to the orbital motion. It was a sad experience for me,
but today I better understand the reasons: a wrong title and one completely wrong conclusion. Well, we
resubmitted a rewritten paper to AJ without any problems. Moreover, in 2013, we succeeded with an
ESO proposal for follow-up spectroscopic observations.

Back in 2011, there were several papers discussing Trojan families and we thus were really motiva-
ted to study their orbital evolution. Soon, we found out that something is wrong: it was surprisingly
difficult to identify the families using new orbital data, except the Eurybates which was clear beyond
doubt. Moreover, our orbital evolution models provided only very poor fits. It took a few weeks until we
understood that no other families exist! In other words, we experienced a sort of ‘paradigm shift’ which
is a worthwhile experience, in any case.

Regarding the 2013 paper about the Eos family halo, it is fair to admit, that I was initially disappointed
by the conclusion, because a possibility that halos originate from perturbations by planetary migration
seems much more attractive. Regardless of my disappointment, it popped up during our discussions in
Nice there should be many more families created in the main belt during the migration and the associated
Late Heavy Bombardment — more than 100 with a minimum 100-km parent body size! The very fact
that we observe only 20 of them was indeed a perfect motivation for us to work hard on our next paper
and prepare new models, much more complex than we used ever before.

Being on the other side, as a referee of about 16 papers (mostly for the Icarus journal, and individual
ones for Celestial Mechanics, Planetary and Space Science, Monthly Notices, and Nature) I enjoyed
discussions and scientific debates which occasionally were quite emotional, or at least not emotionless.
That was a minor note, but worth to mention.1

1Something I want to remember myself: when I was writing these words, the Rosetta/Philae had landed on 67P! Jean–
Jacques Dordain (director general of ESA) commented on this as follows: The biggest problem of a success is that it looks
easy, and especially for us who are not doing anything.
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2 Physics of small Solar System bodies

2.1 Asteroid families in the first order resonances with Jupiter

Gravitational resonances are particular parts of the phase space where a body is under a strong influence
of another distant body and exhibits a particular type of motion, characterized by librations of a given
critical angle (see Figure 3). In the case of an asteroid and Jupiter, the critical angle of a mean-motion
resonance is defined as:

σ ≡ (p+ q)λ′ − pλ−$ , (1)

where λ′ denotes the true longitude of Jupiter, λ and $ are the true longitude and the longitude of the
pericentre of the asteroid, and p and q are small integer numbers.

As explained in our paper Brož and Vokrouhlický (2008), we studied the distribution of asteroids
captured in the 2:1, 3:2 and 4:3 mean-motion resonance with Jupiter. In order to recognize fine details, it
is necessary to compute suitable resonant elements ar, er, sin Ir (Roig et al. 2002), instead of osculating
ones. More specifically, we use the following (approximate) condition:

|σ| < 5◦ ∧ ∆σ
∆t

< 0 ∧ |$ −$′| < 5◦ , (2)

when we register the osculating elements and then we perform an averaging over 10 Myr to suppress
long-period oscillations and obtain quasi-integrals of motion. Resonant semimajor axis then essentially
corresponds to the (average) libration amplitude.
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Figure 3: A typical trajectory of an asteroid located inside the 2:1 mean-motion resonance with Jupiter on a
polar plot eccentricity e vs the critical angle σ, as defined by Eq. (1). The angle σ exhibits librations in this case,
not circulations about the origin.

We identified 274 asteroids in the 2:1 resonance, 1197 in 3:2 — including two asteroid families, Schubart
and Hilda — and only 3 in 4:3. Current statistics (as of 2014) are higher by approximately 50 % but we
see no qualitative differences yet. More importantly, we realised that the Yarkovsky effect (actually, any
sort of energy dissipation) causes a systematic drift in eccentricity when objects are captured in 1st order
resonances. While this is a standard part of celestial mechanics (Murray and Dermott 1999), it seems to
be the first use in this context. Of course, this enabled us to determine dynamical ages of the families.
Using our ‘standard’ dynamical model (Brož 2006), we derived tage = (1.7 ± 0.7) Gyr for Schubart and
& 4 Gyr for Hilda. The latter result motivated us to perform also simulations which include the planetary
migration, as the age might correspond to late dynamical instabilities of our planetary system and the
late heavy bombardment (LHB), dated back to ' 3.85 Gyr (Gomes et al. 2005, Morbidelli et al. 2005,
Tsiganis et al. 2005). It turned out that the whole 3:2 resonance with Jupiter is unstable when Jupiter
and Saturn cross their mutual 2:1 resonance and so the correspondence of the age/LHB is not a mere
coincidence.

We were also curious why there are no families observed in the 2:1 resonance with Jupiter. In order
to address this question, we prepared a model of a synthetic family, assuming an isotropic disruption
(see Figure 4). In this case, however, we must account for the terrestrial planets too, as they partially
break the protection mechanism of the resonance (Skoulidou et al. 2014). It seems that any family will
be dispersed in less then 0.5 Gyr, so that the initial concentration of bodies is not recognisable anymore.
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Figure 4: Long-term orbital evolution of a synthetic family created in the J2/1 resonance, the resonant semimajor
axis ar vs the eccentricity er. Left: initial conditions at t = 0 (after a 10 Myr of averaging). We assumed an
isotropic velocity field, which would create a regular ‘ellipse’ in the space of osculating elements, however, due
to the very definition of the pseudo-proper elements, bodies which fall on the right-hand side of the libration
centre are displayed on the left. Right: an evolved family at t = 0.5 Gyr, as computed by a modified SWIFT
symplectic integrator (Levison and Duncan 1994). Our model included gravitational perturbations by both giant
and terrestrial planets, the Yarkovsky and YORP thermal effects and spin axis reorientations by non-disruptive
collisions. A detailed description of all parameters is included in Brož and Vokrouhlický (2008). The letters A
and B denote two stable island, where the chaotic diffusion is slow. Note there are no fragments located in the
island A.

2.2 Did the Hilda collisional family form during the late heavy bombard-
ment?

In Brož et al. (2011), we focused our attention on the Hilda group — which is a name used for the whole
population in the 3:2 mean-motion resonance with Jupiter — and the Hilda family in particular, which is
a part of it, significantly concentrated between the resonant inclination sin Ir = 0.14 and 0.17. The family
is spectrally homogeneous (C-type; see Figure 5) and its size-frequency distribution is steeper than that
of background which are both indications that it is indeed of collisional origin. And moreover, we have
numerical model capable to explain its overall structure. Before we proceed, let us schematically describe
its basic ingredients.

We use a symplectic integration scheme (Levison and Duncan 1994), denoted as kick–drift–kick, where
the ‘kick’ (actually, a perturbation) is performed as:

ṙn+1 = ṙn + r̈
∆t
2
, (3)

and the ‘drift’ corresponds to an analytical solution of the two-body problem (the Sun–asteroid), which
involves a numerical solution of the transcendent Kepler equation:

M = E − e sinE , (4)

rn+1 = p(E)rn + q(E)ṙn , (5)

ṙn+1 = ṗ(E)rn + q̇(E)ṙn ; (6)

we account for gravitational perturbations by planets, expressed in the heliocentric frame:

r̈j =
∑

i

[
−Gmi

r3
i

ri −
Gmi

r3
ji

rji

]
, (7)

possibly, the planetary migration, in an analytical way (Malhotra 1995), and also eccentricity damping
(Morbidelli et al. 2010):

ṙn+1 = ṙn

[
1 +

∆v
ṙ

∆t
τmig

exp

(
− t− t0
τmig

)]
, (8)

the Yarkovsky thermal effect (Vokrouhlický 1998, Vokrouhlický and Farinella 1999):

fX(ζ) + ifY (ζ) = − 8

3
√

3π
Φ t′1−1(R′; ζ) , (9)
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fZ(ζ) = −4
3

√
2

3π
Φ t′10(R′; ζ) , (10)

Φ ≡ (1−A)E?πR2

mjcvac
, (11)

the YORP effect (Čapek and Vokrouhlický 2004):

ω̇ = cfk(γ) , (12)

γ̇ =
cgk(γ)
ω

, (13)

c ≡ cYORP

(
a

a0

)−2(
R

R0

)−2(
ρ

ρ0

)−1

, (14)

mass shedding beyond the critical angular frequency (Pravec and Harris 2000):

ωcrit =

√
4
3
πGρ , (15)

and random collisional reorientations with the time scale (Farinella et al. 1998):

τreor = B

(
ω

ω0

)β1 ( R

R0

)β2
. (16)

The notation is as usual: the index i corresponds to planets, j to test particles (i.e. asteroids with negligible
masses), t time (independent variable), ∆t the time step, rj position vector(s) (for all test particles),
ṙ the velocity, ṙ the acceleration, M the mean anomaly, E the eccentric anomaly, e the eccentricity, p(E),
q(E) functions of orbital elements, G the gravitational constant, mi planetary mass(es), mj mass(es)
of ‘mass-less’ particles, ∆v =

√
GM/aini −

√
GM/afin a measure of the total change of the semimajor

axis, τmig the migration time scale, edamp eccentricity damping parameter(s), (fX , fY , fZ) the Yarkovsky
acceleration vector expressed in the body-centric frame (that is the place where γ is hidden), t′ dipole
coefficients R′ a radius scaled by the seasonal thermal wave penetration depth ls ≡

√
K/(ρsurfCωrev),

K the thermal conductivity, C the specific heat capacity, ρsurf the density (of surface layers), ωrev orbital
angular frequency, ζ ≡ exp(iω(t − t0)) a complex phase of rotation, A the Bond albedo, E? subsolar
insolation, R the radius, cvac the speed of light, ω the angular frequency of rotation, γ the obliquity,
fk(γ), gk(γ) parametric functions describing the YORP torques (computed numerically), cYORP the
scaling parameter, a the semimajor axis, ρ the bulk density, and finally, B, β1, β2 the normalisation and
exponents describing the reorientations.

So, using the model above, we verified that a synthetic family, which is assumed to be initially isot-
ropic, evolves naturally towards the observed state — with a size-dependent extension in the resonant
eccentricity er values (i.e. the result of the thermal acceleration) and the central depletion of er for small
bodies (i.e. the consequence of the thermal torque). We then constructed a simple stationary collisional
model to estimate the number of disruption events during the last 4 Gyr. The result nevents = 0.004 is
clearly too small and we treat it as an independent evidence that the LHB is responsible for the origin of
the Hilda family. Indeed, a non-stationary model of the LHB produces nevents up to 0.2 which is of the
right order.

Last, but not least, we ran an extensive set of about 103 planetary-migration simulations. The synthetic
family is often dispersed too much, because of the secondary resonances between the libration frequency
f3:2 of an asteroid in the 3:2 resonance with Jupiter and the frequency f1J−2S of the critical argument
of Jupiter–Saturn 1:2 resonance (similar as in Kortenkamp et al. 2004). Consequently, the family must
have been created during the later migration phase. Nevertheless, if the planetary migration was not
smooth but rather violent, involving close encounter between giant planets (Morbidelli et al. 2010), these
conclusions may change.

Finally, let us note there is a disagreement with Grav et al. (2012) who classified the Hilda family as
D-type. However, their conclusion was based on 11 measurements of the infrared albedo pIR and they
probably picked up the scattered D-types only (cf. Figure 5).

2.3 Eurybates — the only asteroid family among Trojans?

Trojans of Jupiter, captured in the 1:1 mean-motion resonance, is a very important group of asteroids
which has been used many times to address the early orbital evolution of planets (Marzari and Scholl
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Figure 5: A subset of asteroids located in the 3:2 mean-motion resonance with Jupiter for which colour indices
were measured by the Sloan Digital Sky Survey (ADR4 catalogue; Parker et al. 2008). The plots show the
proper eccentricity ep vs the proper inclination sin Ip, taken from the AstDyS catalogue (Knežević and Milani
2003). Sizes of symbols are inversely proportional to the absolute magnitude H. Left: asteroids with the index
a∗ = 0.89(g − r) + 0.45(r − i) − 0.57 ≤ 0 (i.e. mostly corresponding to C-type reflectance spectra; Ivezić et al.
2001). Right: those with a∗ > 0 (i.e. D-type). There are two families clearly visible: associated with (153) Hilda
and (1911) Schubart; both of them are C-type.

1998, Morbidelli et al. 2005, Levison et al. 2009, Nesvorný et al. 2013). It was also extensively studied
by means of spectroscopy and broad-band photometry, both visual and infrared (Fornasier et al. 2007,
Roig et al. 2008, Emery et al. 2011, Grav et al. 2011). There also exist Trojans of Mars (Christou et al.
2013) and Neptune (Sheppard and Trujillo 2010), but the former are not very numerous and the latter
are much more difficult to observe because of their darkness and distance.

As the interpretation of data and simulations often depends on the observed number of collisional
families, we chose this topic for our study Brož and Rozehnal (2011). We computed suitable resonant
elements by means of Milani (1993). We then used the hierarchical clustering algorithm (Zappalá et al.
1994), the slope of size-frequency distributions, and colour data (Parker et al. 2008), to conclude there is
only one reliable family identified previously, namely around the asteroid (3548) Eurybates. At the same
time, we reported a discovery of two small clusters associated with (4709) Ennomos and (9799) 1996 RJ.

We also performed several numerical simulations of synthetic families. As before, we assumed a simple
isotropic disruption (Farinella et al. 1994) and computed orbital evolution of fragments over 4 Gyr, which
is controlled by the chaotic diffusion, the Yarkovsky drift being inefficient in the 0th resonance. It turned
out that it would be indeed impossible to explain extended groups like Aneas or 1988 RG10, which span
the whole range of stable semimajor axis. Moreover, given the intrinsic probability of Trojan–Trojan
collisions (Dell’Oro et al. 1998), the total number of collisional families should be indeed low (about one).
This essentially confirms our previous conclusion.

Since the numbers of objects in orbital catalogues steadily increase, we continue monitoring of the
Trojan families (Rozehnal and Brož 2014). It seems, there are three more, composed of mostly small
objects and thus not visible in previous data: (624) Hektor, (20961) Arkesilaos, and (247341) 2001 UV209.
The Hektor family is particularly interesting, because (624) Hektor has a satellite (Marchis et al. 2014). Its
association with the family, created by a cratering event, is a topic worth of a separate study. A preliminary
model of the orbital evolution of the Hektor family (Figure 6) shows that we can exclude at least some
of the initial geometries, namely those having the true anomaly fimp ' 0◦.

2.4 The Eos family halo

The Eos family is a very prominent group, one of the three mentioned already by Hirayama (1918). When
colour data for almost 105 asteroids became available (Ivezić et al. 2001, Parker et al. 2008), it occurred as
even more prominent, because of its unique colour corresponding to the K taxonomic type and a distinct
halo dispersed both in eccentricity and inclination (see Figure 7, left). Morbidelli et al. (2010) suggested
that it could have been created during the giant-planet migration, by purely gravitational perturbations.

In Brož and Morbidelli (2013), we tried to assess the contribution of the classical long-term orbital
evolution to the creation of this halo. Using an N -body model, we found out that orbits interacting with
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Figure 6: The observed Hektor family located in the 1:1 resonance with Jupiter (i.e. the Trojan region, namely
the L4 cloud) and a comparison with an N -body model of a long-term evolution. The initial conditions (t = 0)
correspond to an isotropic velocity field with the peak at about the escape velocity, vesc = 70 m/s. The true
anomaly of the break-up was fimp = 0◦ and the argument of perihelion ωimp = 30◦. We used the Swift integrator
(Levison and Duncan 1994), modified according to Laskar and Robutel (2001), with the time step ∆t = 91.3 day.
The Yarkovsky/YORP effects were also included, but they are not effective in the 0th-order resonance. The
situation at t = 1 Gyr indicates that the shape of the synthetic family remains incompatible with the observed
family.
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parameters correspond to regolith-covered basaltic asteroids, with the bulk density ρ = 2 500 kg m−3 and the
surface thermal conductivity K = 0.001 W m−1K−1. The probable age of the Eos family was derived from the
observed ratio of the halo/core populations as tage = 1.5 to 1.9 Gyr. Adapted from Brož and Morbidelli (2013).
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the 9:4, 7:3 and resonances are scattered into the surroundings and the number of objects in the halo
thus increases with time (Figure 7, right). This may actually serve as an independent age estimate, which
is tage = 1.5 to 1.9 Gyr, and consequently no migration is needed to explain the halo.

According to Carruba et al. (2013), who analysed families in the multi-domain space of proper orbital
elements, colours and albedos, halos are quite common. While we might think that all of them may be
created by a similar mechanism, this has not been actually computed yet, in a systematic way.

2.5 Constraining the cometary flux through the asteroid belt during the late
heavy bombardment

The late heavy bombardment (LHB) as a concept was introduced after Apollo and Luna missions delivered
lunar samples and their radiometric (U–Pb, Rb–Sr) ages were too ‘young’ — 4.1 to 3.8 billion years (Tera
et al. 1974, Ryder et al. 2000). The stratigraphy of the lunar surface also strongly indicates that a number
of large basins, e.g. Imbrium, Crisium and Orientale, were created during this cataclysm. At the same
time, it is not likely that these may be created by leftover planetesimals (Bottke et al. 2007). Furthermore,
there are many signs of intense bombardment throughout the Solar System — ranging from terrestrial
planets (Mercury), shock ages of meteorites, to basins on icy moons of giant planets (Marchi et al. 2013,
Cohen et al. 2000, Kring and Swindle 2008 Charnoz et al. 2009). In Brož et al. (2013), we studied the
LHB in the context of the Nice model (Gomes et al. 2005, Morbidelli et al. 2012), in which one assumes
that (at least a part of) the bombardment was caused by a sudden dynamical dispersal of a by then
massive trans-neptunian disk of comets.

As a (substantial) preparatory work, we had to estimate basic physical properties, most importantly
the parent-body sizes DPB, for all known large asteroid families, because this is the major observati-
onal constraint for all collisional models. There are a few awaited problems, thought: the method to
determine DPB (Durda et al. 2007) involves a somewhat dangerous extrapolation, the value of DPB may
sometimes depend on individual membership, and family lists are not always consistent (cf. Parker et al.
2008, Nesvorný 2010, Masiero et al. 2013, Carruba et al. 2013). Nevertheless, the resulting production
function of asteroid families (Figure 8) does not depend much on individual cases, it is rather a statistical
characterisation of the whole main asteroid belt. It is also reassuring that the dynamical ages of families
(well, mostly the upper-limits derived by means of Nesvorný et al. 2005) are spanned across the whole
interval of 4 Gyr and not beyond that (Figure 9).
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Figure 8: A production function (i.e. the cumulative number N(>D) of families with parent-body size DPB larger
than D) for all observed main-belt families (thin gray) and families corresponding to catastrophic disruptions
(thick black), i.e. with largest remnant/parent body mass ratio lower than 0.5. Adapted from Brož et al. (2013)
and updated according to Nesvorný et al. (submitted).

Our collisional model is based on the Boulder code (Morbidelli et al. 2009). We shall briefly describe
its features as follows. The number of collisions is given by:

nij = pi(t)fg
(Di + dj)2

4
ninj∆t , (17)

the size of the largest remnant (Benz and Asphaug 1999):

MLR =

[
−1

2

(
Q

Q?D
− 1

)
+

1
2

]
Mtot for Q < Q?D , (18)

MLR =

[
−0.35

(
Q

Q?D
− 1

)
+

1
2

]
Mtot for Q > Q?D , (19)
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the size of the largest fragment (Durda et al. 2007):

MLF = 8× 10−3

[
Q

Q?D
exp

(
−
(

Q

4Q?D

)2
)]

Mtot , (20)

(21)

and the slope of the respective size distribution (dtto):

q = −10 + 7

(
Q

Q?D

)0.4

exp

(
− Q

7Q?D

)
, (22)

where the index i always corresponds to a target, j to a projectile, pi denotes the (time-dependent)
intrinsic collisional probability, fg the gravitational focussing factor (Greenzweig and Lissauer 1990),
Di, dj the diameters, ni, nj the numbers of bodies (in given bins), ∆t the time step, Q ≡ 1

2Mjv
2
imp(t)/Mtot

the specific energy of a collision, vimp the impact velocity, of course, Q?D = Q0r
a +Bρrb the scaling law

(Benz and Asphaug 1999), and Mtot ≡Mi+Mj is the total mass. So, it is now clear that this is essentially
a Monte-Carlo statistical model, which includes parametric relations inferred from SPH simulations of
asteroidal collisions and, inevitably, a number of material parameters too.

One of our results is shown in Figure 10. The LHB is indeed capable to create on average more
than 100 (synthetic) families with DPB > 100 km, which seems like a big problem, since we observe
only 20 of them. At the same time, without the LHB we would have problems to explain the number of
DPB > 200 km families. However, we tested several processes: i) overlapping of families, ii) dispersion by
the Yarkovsky drift, iii) reduction of physical lifetime of comets, iv) perturbation by planetary migration,
v) secondary bombardment (comminution), and v) with the help of iii) may decrease the former number
while keep the latter.

We also paid a closer attention to the ‘pristine zone’, i.e. a narrow part of the main belt between
the 5:2 and 7:3 mean-motion resonances with Jupiter (ap = 2.825 to 2.955 AU), in which no big families
are located (well, except Koronis at low inclinations) and the number density of asteroids is much lower
than in the neighbouring middle and outer belts. Small families are then best visible in the (ep, sin Ip)
projection. It is possible that some of them are actually remnants of large (DPB > 100 km) families we
spoke about above. One of the promising cases is associated with the asteroid (918) Itha (see also Brož
et al. 2012).

2.6 A six-part collisional model of the main asteroid belt

In our subsequent and somewhat contradicting study Cibulková, Brož and Benavidez (2014), we tried
to explain the observed number of families in a classical way, assuming the current values of the impact
probability pi velocity vimp (as in Bottke et al. 2005), and a time scale of 4 Gyr (i.e. after the LHB).
In order to exploit new observational data, especially the albedos measured by WISE (Mainzer et al.
2011), we constructed reliable size-frequency distributions (SFD) for the six individual parts of the main
asteroid belt: inner, middle, pristine belt, outer, Cybele zone, and the high-inclination region (Figure 11,
black lines).
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Figure 10: The outcomes of the bombardment of the main asteroid belt by trans-neptunian comets, as mode-
led by Brož et al. (2013). The plot shows the family production functions (i.e. the cumulative number N(>D)
of families with parent-body size DPB larger than D) and a comparison to the observed one. In order to dis-
tinguish 100 individual simulations (differing only by random-seed values) we plot them using lines of different
colours, ranging from black to yellow. The assumptions of the model were as follows: a massive (25M⊕) disk of
trans-neptunian comets, with a size-frequency distribution having about 1012 bodies larger than D > 1 km (i.e.
corresponding to the observed broken power law for the current Kuiper Belt; Fraser and Kavelaars 2008), intrinsic
collisional probabilities reaching up to 6× 10−21 km−2 yr−1, average impact velocities vimp = 10 km/s (according
to Vokrouhlický et al. 2008) and a dynamical decay of the main belt population by a factor of ∼ 3 (Minton and
Malhotra 2010).

Figure 11: The observed (black line) and simulated (green line) size-frequency distributions for the six parts of
the main belt: inner, middle, ‘pristine’ belt (a ∈ (2.823, 2.956) AU), outer, Cybele zone, high-inclination region
(sin I > 0.34). Sigma error bars denote the (prescribed) uncertainties of the observed SFDs. This result is for
the simulation with monoliths, i.e. the scaling law of Benz and Asphaug (1999) and parametric relations from
Morbidelli et al. (2009). The largest differences can be seen for the inner and outer belt.
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We improved the collisional model presented in the previous section by implementing a χ2 calculation
and a simplex algorithm which allowed us to survey a significant part of the parameter space. One set of
simulations for monolithic bodies consisted of more than 105 runs. The evolution is in fact very stochastic,
because the outcome depends on individual disruptions of large asteroids and we thus cannot find a global
and statistically significant minimum of χ2. Nonetheless, this allowed us to conclude that it is neither
possible nor easy to find a better fit than the one presented in Figure 11. The problems seen in the inner
and outer belt (in between D = 1 and 10 km) may be possibly solved by incorporating a dynamical decay
due to the Yarkovsky effect.

What is even more interesting, we derived parametric relations for rubble-pile bodies with macropo-
rosity, based on SPH modelling of Benavidez et al. (2012). If we assume that the scaling law is simply
a scaled-down version of Benz and Asphaug (1999), the corresponding set of simulations led to a χ2

which is about twice as large as for monoliths. The interpretation of this ‘failure’ means that majority
of asteroids cannot be rubble piles, which is an unexpected result, contradicting previous expectations
based on rotational rate distribution (Pravec and Harris 2000).

Well, we have have to admit there are alternative explanations too. Apart from 11 enumerated in our
paper, the rubble piles may be actually microporous, which have a substantially larger strength (Jutzi
et al. 2014). Alternatively, we should use additional observational constraints — apart from the main-
belt SFDs and numbers of families — primarily the observed (debiased) SFD of the near-Earth objects
(Bottke et al. 2002, Granvik et al. 2014) which would help to constrain the small-size end. Or, what a
nice coincidence, we may turn back to Section 2.5.

2.7 A study of asteroid pole-latitude distribution based on an extended set
of shape models derived by the lightcurve inversion method

Most of the work in Hanuš et al. (2011) was devoted to lightcurve inversion, an important technique used
to interpret disk-integrated photometric measurements (Kaasalainen and Torppa 2001, Kaasalainen et
al. 2001) and to constrain some of the physical properties, most importantly shape, pole direction (λ, β),
scattering law, size, albedo, even though some of them are often rather assumed than derived. Since the
problem for non-convex shapes is degenerate (different shapes may produce the same flux), one usually
computes only a convex hull as a proxy for the real shape. It was also absolutely necessary to estimate
the bias of the method itself; the ratio between recovered models in | sinβ| > 0.8 and | sinβ| < 0.2 bins
is approximately 60 %.

We analysed about 200 convex-hull shape models (80 of them new). While it is not always possible
to find a single solution (two mirror solutions in longitude λ are very common), the derived latitudes β
are more reliable, with an uncertainty ±10◦, or in some cases ±20◦ for limited datasets. The observed
and debiased distribution of sinβ is clearly not uniform (isotropic), but the situation is different for
different sizes: D > 60 km asteroids exhibit a preference for prograde rotation (cf. Magnusson 1986) and
D < 30 km a depletion near the ecliptic plane (Drummond et al. 1988). It was worth to verify, if this
kind of distribution may be induced by the YORP effect.

To this point, we constructed a dynamical model of the pole-latitude distribution which consisted,
in principle, of Equations (12) to (16). Furthermore, we had to account for gravitational torques and
spin-orbital resonances (Vokrouhlický et al. 2006). In a crudest approximation, these may be treated as
large-amplitude oscillations of β. Our results shown in Figure 12 confirm the prograde rotation of large
asteroids is primordial (Johansen and Lacerda 2010) and indicate that the thermal torques (of Čapek
and Vokrouhlický 2004) are capable to deplete small asteroids near the ecliptic. The asymmetry between
sinβ > 0.8 and sinβ < −0.8 bins is on the other hand caused by the spin-orbital resonances which are
only affecting prograde asteroids.

2.8 Asteroids’ physical models from combined dense and sparse photometry
and scaling of the YORP effect by the observed obliquity distribution

Hanuš et al. (2013) is a direct continuation of the previous work (and I actually thought about merging
these two Sections into one). Nonetheless, the number of models is substantially higher (330; 119 new)
and it allowed us to better constrain the semiempirical scaling by the cYORP parameter, introduced in
Eq. (14). We ran 10 sets of simulations, with 100 runs in each of them, and in every time step we computed
the χ2 from simulated and observed sinβ distributions. The most probable values of cYORP then range
from 0.05 to 0.6.

The scaling above might seem artificial, but it has a very natural explanation. We are missing an
important information, namely the small-scale topography. Even small boulders or craters, which cannot
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be captured by global shape models, may contribute to the total YORP torque (Statler 2009, Golubov
and Krugly 2012, Rozitis and Green 2012). Given the values of cYORP above, the contribution seems to
be significant. Another possibility is that there is some systematic difference between the shapes used for
the computation of the YORP torques and our convex-hull shapes (and the real shapes, in order not to
forget them).

2.9 An anisotropic distribution of spin vectors in asteroid families

The number of available shape models and poles will likely increase by an order of magnitude in a few
years, because sparse photometric data from ongoing surveys will be processed and infrared photometry
will be used to resolve ambiguities (Müller et al. 2011, Ďurech et al. 2012). Already the current situation
(shown in Figure 13) is sufficient to preliminarily analyse the distribution of pole latitudes in several
asteroid families, a topic of Hanuš, Brož, Ďurech et al. (2013).

We choose the Flora, Koronis, Eos, Eunomia, Phocaea, Themis, Maria, and Alauda families for a
detailed inspection. A preliminary membership was taken from Nesvorný (2012), but we had to carefully
check for possible or even likely interlopers, e.g. by inspecting reflectance spectra from the SMASS II
database (Bus and Binzel 2002) or the distribution in the proper semimajor axis ap vs the absolute
magnitude H diagrams.

All families exhibit a correlation (a positive one) between the proper semimajor axis ap and the pole
latitude β, although not all bodies strictly follow the rule. To fully understand the distribution including
outliers we used by now standard model of Brož et al. (2011) to simulate the long-term evolution of
synthetic Flora (Figure 22), Koronis and Eos families. The Flora is a profound example demonstrating
the necessity of a combined model, accounting for the orbital, spin and collisional evolution: the Yarkovsky
drift da/dt pushes the objects in ap, the YORP effect tilts obliquities γ (and β), affecting da/dt(γ) too,
the ν6 secular resonance removes objects at small ap, non-disruptive collisions randomly reorient β, mass
shedding occasionally changes the YORP evolution to a random walk. Still, we are missing a detailed
treatment of spin-orbital resonances in our model, but it does not seem to be a major flaw with respect
to observations. The match is acceptable within uncertainties which are dominated by a limited number
of observed family members.

Finally, let us address one of our assumptions. We usually imagine that a parent-body disruption
produces an isotropic distribution of poles and a maxwellian distribution of spin rates (cf. experiments
of Giblin et al. 1998). Well, everybody knows that this not a ground truth. We may definitely hope
that future photometric observations will reach also small (sub-km) members of young families, or next-
generation collisional models will be capable to handle shapes, rotation and tidal interaction of fragments.
Regarding the models, we shall keep in mind a few ‘small’ problems: i) total damage of the parent body
in the fragmentation phase (Michel et al. 2003), which may correspond to a production of dust particles
and leading to interactions of dust clouds (Nesvorný, personal communication); ii) bouncing and friction
in the reaccumulation phase (Richardson et al. 2009), with unknown coefficients of restitution, leading
to different outcomes and extremely short time steps; iii) phase transitions are often modelled by an
approximate equation of state (Tillotson 1962, Melosh 2000), but if chemical reactions in gaseous phase
play a role then everything is complicated.
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3 Physics of stars and interstellar medium

3.1 A unified solution for the orbit and light-time effect in the V505 Sgr
system

V505 Sagittarii = HR 7571 = HD 187949 is a multiple star, at least a triple, with a very interesting data
set we used in Brož et al. (2010). The stars denoted hereinafter 1 and 2 form a close eclipsing binary (Algol
type, A2V and G5IV), while a star 3 is seen on a more distant orbit. There are speckle-interferometry
measurements of the star 3 (namely,Nsky = 20 of them), minima timings of the stars 1+2 (Nlite = 54), and
also radial velocities of the star 3 (Nrv = 39). What is actually intriguing, two positional measurements
are offset by 50 mas with respect to an elliptical orbit, while the precision of these measurements is 5 mas
and we have an indirect evidence that the plate scale was not wrong — these measurements were taken
by two different telescopes on two different nights (McAllister et al. 1987a, 1987b). Moreover, the O−C
diagram shows a clear light-time effect with a sudden change of the period at around 2000.0 epoch (see
Figure 14).
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Figure 14: A model for the V505 Sagittarii multiple stellar system. The best-fit solution for the trajectory of
the 4th body, which explains the observed trajectory of the 3rd body, light-time effect and radial velocities:
m4 = 0.8M�, xh4 = 45.0 AU, yh4 = 39.5 AU, zh4 = 28.0 AU, vxh4 = −0.0105 AU/day, vyh4 = −0.008 AU/day,
vzh4 = −0.0075 AU/day. The resulting χ2 = 331, with the total number of data points N = 102. The motion of
the 4th body captured in the left panel spans from 1994 to 2003. The squares connected by a straight line indicate
the closest encounter between the 3rd and 4th body.

In order to study this system, we used a general N -body integrator and the Bulirsch–Stöer method
(Levison and Duncan 1994) which allowed us to simulate all types of orbits. We constructed a χ2 metric
to compare our model with the observations in a usual way:

χ2 = χ2
sky + χ2

lite + χ2
rv , (23)

χ2
sky =

Nsky∑

i=1

(x′h3 − xh3[i])2 + (y′h3 − yh3[i])2

σ2
sky[i]

, (24)

χ2
lite =

Nlite∑

i=1

(
z′b1+2 − zb1+2[i]

)2

σ2
lite[i]

, (25)

χ2
rv =

Nrv∑

i=1

(v′zh3 − vzh3[i])2

σ2
rv[i]

, (26)

where xh3, yh3 are the observed sky-plane positions of the 3rd body (with respect to 1 + 2), zb1+2 is the
barycentric radial position of the eclipsing pair 1 + 2, vzh3 the radial velocity of the 3rd body (again,
with respect to 1 + 2), σ’s always denote the corresponding uncertainties, dashed quantities are model
values, always interpolated to the times t[i] of observations. We then used a simplex algorithm (Press et
al. 1997) to efficiently find local minima of χ2 and to map an extensive parameter space.

We were able to test the following seven hypotheses: 1. there are three bodies only in V505 Sgr; 2. the
third body directly perturbs the central pair; 3. a steady mass transfer causes minima timing variations;
4. there is modulation of mass transfer by the third body; 5. a sudden mass transfer occurred around 2000;
6. Appelgate’s (1992) mechanism is operating; 7. a fourth body is present (either on a bound or hyperbolic
orbit). Out of these, only the last one may explain all the observational data at once (cf. Figure 14).
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Figure 15: Spectra of V505 Sgr obtained from JD = 2454266.5221 to 2456924.3181 at the Ondřejov observatory,
with the 2.0-m Perek reflector and the Coudé-focus spectrograph with the CCD camera SITe-005. Their resolution
reaches R = 12 600. They were rectified using the Spefo program (Horn et al. 1996, Škoda 1996). The spectra are
sorted according to the orbital phase of the eclipsing pair (i.e. stars 1+2). We are going to interpret these spectra
in a subsequent study. We thank all the observers P. Zasche, M. Šlechta, M. Wolf and P. Chadima who acquired
these spectra.

The ‘only’ remaining problem is that either a deep encounter with a passing star, a perturbation
caused by a distant passing star, or an intrinsic late instability of the system all have too low probability,
given the average number density of stars in the solar neighbourhood n? = 0.073 pc−3 (Fernandéz 2005).
On the other hand, there are strong indications that late instabilities are not uncommon among older
stars and their exoplanetary systems, indicated for example by an excess IR emission, explained as dust
production during collisions (Lisse et al. 2012), or a misalignment of the stellar spin axis and orbit(s) of
giant planets, observed thanks to the Rossiter–McLaughlin effect (Rossiter 1924, McLaughlin 1924, Ohta
et al. 2005).

Anyway, it seems worthwhile to continue studies of V505 Sgr along following directions: a detailed
analysis of new spectra which may potentially confirm the fourth-body hypothesis by a change of the
systemic velocity vrad1+2 = (1.9± 1.4) km s−1, measured previously by Tomkin (1992). Luckily, there are
nine spectra from 2010 to 2014 in the archive of Ondřejov observatory (Figure 15). Another opportunity
might be an observation by an instrument like the FEROS at the 2.2-m telescope at La Silla, which is
capable to cover also the NUV region, with magnetically-sensitive lines CaII H and K, in order to study
a correlation between the orbital evolution and magnetic field strength.

3.2 V2368 Ophiuchi: an eclipsing and double-lined spectroscopic binary used
as a photometric comparison star for U Ophiuchi

V2368 Oph = HR 6412 = HD 156208, selected for our study Harmanec et al. (2011), is a star selected
essentially by chance. In the course of the analyses of a really-well-studied eclipsing binary U Oph (cf.
Pickering 1896), it turned out that one of the comparison stars is actually variable. While the physical
parameters of U Oph are already established, with a clear signature of light-time effect and rapid apsidal
motion (Vaz et al. 2007), for V2368 Oph we were able to derive only a preliminary model, using the
Phoebe program (Prša and Zwitter 2006). Even though we acquired and collected quite extensive sets
of photometric and spectroscopic observations, the χ2 of the best fit is not yet statistically significant
and we were forced to use a more complicated approach: we computed stellar evolution models (Paxton
et al. 2011) of both components to reject at least some of the statistically equivalent fits. For example,
we can constrain the mass ratio q ≡ M1/M2 to be close to 1.00± 0.01, because the luminosities of both
components would be otherwise too different. Of course, we have to warn that the parameters derived
this way cannot be used as independent checks of the stellar evolution models in question.

While the multiplicity of A-type stars is not unusual as it reaches (69 ± 7) % (De Rosa et al. 2014),
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this particular binary is composed of two A stars which have both evolved away from the main sequence.
It is also worth to mention that A stars might be sometimes either chemically peculiar (denoted Am;
Michaud 1970), magnetic (Ap; Przybylski 1966, Borra and Landstreet 1980), or even rapidly oscillating
(roAp; Kurtz 1982, Schöller et al. 2012). However, we were not able to recognise any of these features in
the case of V2368 Oph.

3.3 Large distance of ε Aurigae inferred from interstellar absorption and
reddening

The eclipsing binary ε Aurigae is probably the most famous one, known for its record-breaking orbital
period of 27.1 years and an exceedingly long eclipse (2 yr) which has to be then caused by an opaque disk
rather than by a normal star. This was indeed spectacularly confirmed by interferometric imaging during
its last eclipse by Kloppenborg et al. (2010).

In spite of being studied for a long time (Vogel 1903), there is still an annoying uncertainty whether
the F0Iab primary is a more distant supergiant star (i.e. a high-mass model) or a closer post-AGB star
(a low-mass model). Unfortunately, the uncertainty of the parallax (van Leeuwen 2007) does not allow to
distinguish between them, so we tried to use an indirect approach, as described in Guinan et al. (2012).

We first constructed a local distance calibration based on diffuse interstellar bands (DIBs) observed in
spectra of several surrounding stars, located within 1◦ of ε Aur, namely HD 31617, HD 31894, HD 32328,
HD 277197, and BD+43◦1168. Of course, we had to assume that the interstellar medium is smooth enough
in the lateral direction and we verified this in COBE/DIRBE reddening maps (Schlegel et al. 1998). Using
either parallaxes of nearby stars or spectroscopic distances, we were able to find a well-defined relation
between the distance d (in kpc) and the equivalent width EW of the 6613 Å DIB:

d(EW ) = (1.474± 0.028)× 104EW . (27)

The resulting distance of ε Aur was d = (1.5 ± 0.5) kpc, strongly supporting the high-mass model, for
which the evolution is shown in Figure 16. The uncertainty of d is dominated by the scatter of EW for
ε Aur. We are going to use a similar approach also for other distant supergiant stars which have a long
observational record and, at the same time, they will not be observed by the GAIA spacecraft due to
magnitude limitations (Liu et al. 2012). See an example of a reddening map for V1765 Cygni in Figure 17.

Our calibration is used and discussed in the work of Strassmeier et al. (2013). They were able to
measure additional neighbouring star BD+43◦1166C (only 28′′ from ε Aur) and claim it is a close (7 pc)
white dwarf, since they were unable to find any similar spectrum in the ESO UVES database. Moreover,
they can fit its spectrum by a synthetic white-dwarf spectrum. Finally, they speculate the observed DIB
at 6613 Å is actually a result of a (hypothetical) debree disk.

However, we find these conclusions questionable. First, a comparison with an extensive database of
synthetic spectra shows that it is equally possible to find a reasonable fit using an ordinary A star with
a main-sequence log g ' 4.0 (P. Harmanec, personal communication). Secondly, it is not likely that the
debree disk (which is likely hotter, denser, differentially rotating, having non-zero radial velocity etc.)
would cause a spectral line similar to that of diffuse interstellar medium.

Muthumariappan et al. (2014), on the other hand, favour a low-mass model. Their arguments are
mostly based on observations EWs, RVs and a simplified geometrical model of the optically-thin disk
which is eclipsing the F0Ia primary. Moreover, there is a slight overabundance of s-process elements
(Y, Zr, Ba) in the photosphere of the F0Ia primary (Sadakane et al. 2010) which would indicate a 3rd

dredge-up and a highly evolved post-AGB star.
Again, there seem to be several points worth of a discussion. The authors do no perform any disentan-

gling of (possibly-blended) spectral lines; they only use equivalent width (EW) and radial velocity (RV)
measurements, no profile details. Secondly, their model EWs clearly do not agree with observations (cf.
their Fig. 11; even though there are no uncertainties declared). We thus consider their argument based on
the corresponding RVs to be weak. Third, the above-mentioned overabundances do not seem significant.
Indeed, the main conclusion of Sadakane et al. (2010) is just the opposite, i.e. the photosperic abundances
of ε Aur are actually very similar to supergiants HD 81471 or α Car. Consequently, this favours (our
preffered) high-mass model.

25



lo
g

 L
/L

S
u

n

log [Teff]K

primary (M1 = 18-30 MS, Z = 0.04)

primary (M1 =  7.0 MS, Z = 0.04)

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 3.4 3.6 3.8 4 4.2 4.4 4.6

 T1 

 L1  

lo
g

 L
/L

S
u

n

log [Teff]K

primary (M1 = 30-70 MS, Z = 0.04)

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 3.4 3.6 3.8 4 4.2 4.4 4.6

 T1 

 L1  

Figure 16: Evolutionary tracks computed for ε Aur in the HR diagram, computed with the MesaStar module
(Paxton et al. 2011). Left: the evolution from the zero-age main sequence. The thin black lines correspond to
the observed effective temperatures, radii and luminosities of ε Aur. The range of masses is 18 to 30M�, i.e.
corresponding to a high-mass supergiant. We also plot the evolutionary track for a lower-mass star (mini = 7M�)
for comparison as a dotted line. It never reaches the observed luminosity, even in the post-AGB phase. The post-
AGB evolution track (not shown in the plot) is nearly horizontal (at nearly a constant logL/L� ' 4.4) as the
star moves to the left in the diagram. Right: the pre-main-sequence evolution of ε Aur. To match the observed
luminosity and temperature, the mass would have to be in the range 30 to 70M�. Moreover, the evolution would
be too fast in this particular case, which is not supported by observations.
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Figure 17: Reddening E(B − V ) as a function of galactic coordinates in the vicinity of V1765 Cygni, which
is another suitable target for an indirect distance determination. The values were computed from IR emission
measured by COBE/DIRBE for extragalactic sources (Schlegel et al. 1998). As calibration stars, one can choose
for example 17 Cyg, SY Cyg, HD 225985, and V1004 Cyg. The values of E(B − V ) range from 0.37 to 1.06 for
the positions of the calibration stars (note that these are not E(B − V ) for the stars themselves).
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4 Textbooks

4.1 Physics of the Solar System

The book Brož & Šolc (2013) is our attempt to introduce the fundamentals of general astronomy (in
Chapter 1), basic properties of the Sun and planets (Chapter 2), and then physics of small Solar System
bodies (Chapter 3). While the first two parts are written more or less on a undergraduate level, the third
one is a bit more elaborate as it is directly related to our ‘beloved’ research topics (cf. Sections 2.1 to 2.9).
Given the fact that this is a living and active field of research, the relatively new and surprising results
we present are not always well-known in a broader community.

Instead of further explaining the actual content, we beg to reprint a complete table of contents here
(translated to English, as the textbook was written in Czech).

Figure 18: The cover page of the textbook ‘Fyzika sluneční soustavy’ (Physics of the Solar System).

1 Classical astronomy, celestial mechanics

1.1 Time measurements

1.1.1 Sundials
1.1.2 True local solar time versus Central-European zone time
1.1.3 More exact time definitions
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1.2 Coordinate systems

1.2.1 Space coordinates
1.2.2 Representations of coordinates
1.2.3 Origins
1.2.4 Basic directions

1.3 Coordinate transformations

1.3.1 Transformations with spherical triangles
1.3.2 Transformations with rotation matrices

1.4 Equations of motion, numerical solution

1.4.1 Initial conditions
1.4.2 Euler method
1.4.3 Leap-frog method
1.4.4 Runge-Kutta method of the 4th order
1.4.5 Symplectic integrators
1.4.6 Precision versus accuracy
1.4.7 Propagation of uncertainties
1.4.8 Relativistic equation of motion

1.5 Two-body problem, analytical solution

1.5.1 Newton and Kepler laws
1.5.2 Equations of motion for two gravitating bodies
1.5.3 Motion of the centre of mass (first 6 integrals)
1.5.4 Equation of the relative motion (3 integrals of angular momentum)
1.5.5 Elimination of time and derivation of the trajectory shape
1.5.6 Solution - equation of conic section
1.5.7 Third Kepler law
1.5.8 Speed along the trajectory (1 integral of energy)
1.5.9 Kepler equation
1.5.10 Selected application of Kepler laws
1.5.11 Ephemeris computation for an asteroid

1.6 Three-body problem

1.6.1 Rotating frame. Coriolis and centrifugal acceleration
1.6.2 Jacobi integral
1.6.3 Lagrange libration points
1.6.4 Tisserand parameter
1.6.5 Jupiter-family comets

1.7 Gravitation and resonances

1.7.1 N-body problem and deterministic chaos
1.7.2 Stable and unstable configuration in a resonance
1.7.3 Lagrange equations
1.7.4 Perturbation function
1.7.5 Perturbation function for Sun-Jupiter-asteroid system
1.7.6 Sun-Jupiter-asteroid in a mean-motion resonance
1.7.7 Sun-Jupiter-Saturn
1.7.8 Sun-Jupiter-Saturn-asteroid and secular resonances
1.7.9 Gaps and borders in the main asteroid belt

1.8 Precession and nutation

1.8.1 Precession of a heavy gyroscope
1.8.2 Lunisolar precession of the Earth
1.8.3 Homogeneous ellipsoid
1.8.4 Nutation
1.8.5 Polar wobble
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1.9 Theory of relativity

1.9.1 Galilei and Lorentz transformations
1.9.2 Time dilatation and Doppler effect
1.9.3 Length contraction and relativity of simultaneous events
1.9.4 Relativistic dynamics
1.9.5 Minkowski spacetime
1.9.6 Inertial and gravitational mass
1.9.7 Einstein field equations
1.9.8 Schwarzschild solution
1.9.9 World lines
1.9.10 Bending of light, precession of perihelion and redshift
1.9.11 Kerr solution and Lens-Thirring effect

1.10 Non-gravitational accelerations

1.10.1 Rocket effect on comets
1.10.2 Poynting-Robertson effect on dust particles
1.10.3 LAGEOS satellite

1.11 Yarkovsky/YORP effect

1.11.1 First estimate of temperature on the asteroid surface
1.11.2 1-dimensional linear theory of Yarkovsky/YORP effect
1.11.3 Yarkovsky effect on 3-dimensional objects
1.11.4 YORP effect on objects with irregular shape

1.12 Photometry, signal and noise

1.12.1 Photoelectric effect and CCD technology
1.12.2 Offset, dark and flat
1.12.3 Signal and noise
1.12.4 Photometry or ”from star to ADU”
1.12.5 Field of view and size of pixels
1.12.6 Apparent and absolute magnitude
1.12.7 Standard photometric system

1.13 Scattering of radiation

1.13.1 Definitions of radiometric quantities
1.13.2 Two-directional distribution function of reflection
1.13.3 Radiant intensity of a sphere
1.13.4 Albedo
1.13.5 Phase function, integrals and albedos for different reflection functions
1.13.6 Apparent and absolute magnitude of an asteroid
1.13.7 HG system
1.13.8 Polarimetry

2 The Sun and planets

2.1 Standard solar model

2.1.1 Atmosphere
2.1.2 Helioseismology and differential rotation
2.1.3 Magnetic activity and solar dynamo
2.1.4 Internal structure
2.1.5 Stellar evolution
2.1.6 Solar analogs

2.2 Basic phenomena on planets

2.2.1 Atmospheres
2.2.2 Magnetospheres
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2.2.3 Internal structure

2.3 Extrasolar planets

2.3.1 Basic characteristics
2.3.2 New types of planets
2.3.3 Multiple systems

3 Small bodies in the Solar System

3.1 Protoplanetary disk

3.1.1 Observations of Giant Molecular Clouds and proplyds
3.1.2 Gravitational collapse and Jeans criterion
3.1.3 Isotopic composition and radiometric age of the disk
3.1.4 Structure of the protoplanetary disk

3.2 Dust accretion

3.2.1 Condensation of gas
3.2.2 Collisional growth of particles
3.2.3 Settlement towards the mid-plane of the disk
3.2.4 Spiralling due to gas drag
3.2.5 Turbulence

3.3 Planetesimals and embryos

3.3.1 Collisional growth of planetesimals up to planetary embryos
3.3.2 Gaseous and ice giant - gravitational collapse
3.3.3 Disappearance of the gas
3.3.4 Terrestrial planets - collisions of embryos
3.3.5 Differentiation

3.4 Migration of planets

3.4.1 Types of migration
3.4.2 Migration in the gas disk
3.4.3 Migration in the planetesimal disk and close encounters
3.4.4 Effects on primordial populations of small bodies

3.5 Moons and tides

3.5.1 Gravitational tidal force
3.5.2 Earth-Moon
3.5.3 Moon-Earth
3.5.4 Earth-Sun
3.5.5 Neptune-Triton
3.5.6 Mars-Phobos
3.5.7 Pluto-Charon, binary asteroids
3.5.8 Mercury-Sun, Venus-Sun
3.5.9 Jupiter, Io and Europa

3.6 Rings

3.6.1 Roche limit
3.6.2 Collisions in the ring
3.6.3 Gossamer rings of Jupiter
3.6.4 Main rings of Saturn
3.6.5 Uranus and Neptune rings

3.7 Asteroids

3.7.1 Nomenclature
3.7.2 Orbits
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3.7.3 Light curves
3.7.4 Spectra and colours
3.7.5 Internal structure
3.7.6 Near-Earth objects
3.7.7 Binary asteroids

3.8 Asteroid families

3.8.1 Collision probability
3.8.2 Hierarchical clustering method
3.8.3 Size-frequency distribution
3.8.4 Velocity field after disruption
3.8.5 Gauss equations and changes of elements
3.8.6 Kepler differential rotation
3.8.7 Differential precession of nodes and pericentres
3.8.8 Yarkovsky effect and chaotic diffusion
3.8.9 The role of the YORP effect
3.8.10 Families in resonances

3.9 Trans-Neptunian bodies

3.9.1 Orbital structures
3.9.2 Physical characteristics

3.10 Comets

3.10.1 Nomenclature
3.10.2 Activity
3.10.3 Gas
3.10.4 Dust
3.10.5 Nucleus
3.10.6 Physical evolution of comets
3.10.7 Magnetosphere
3.10.8 Orbital classification of comets
3.10.9 Oort cloud and long-period comets

3.11 Dust

3.11.1 Zodiacal light and other observations of the dust
3.11.2 Asteroidal dust bands
3.11.3 Cometary dust trails

3.12 Fireballs and meteors

3.12.1 Atmospheric trajectory of the fireball
3.12.2 Deceleration and ablation
3.12.3 Meteor showers
3.12.4 Radar observations
3.12.5 Meteor spectra

3.13 Meteorites

3.13.1 Known falls and fields
3.13.2 Classification of meteorites
3.13.3 Isotopic ratios
3.13.4 Radiometric methods
3.13.5 Meteorites-asteroids associations
3.13.6 Transport of meteorites to the Earth

3.14 Impacts and craters

3.14.1 Morphology of Ries and Steinheim craters
3.14.2 Processes during an impact
3.14.3 Moldavites and other tectites
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3.14.4 Rankine-Hugoniot equations
3.14.5 Age determination of surfaces using cratering
3.14.6 A relation to mass extinctions

3.15 Volcanism

3.15.1 Io
3.15.2 Triton
3.15.3 Europa
3.15.4 Enceladus
3.15.5 Differentiated asteroids
3.15.6 A comparison to planets
3.15.7 Classifications of eruptions

4.2 Structure and evolution of stars

In the earlier textbook Harmanec & Brož (2011), we focus on stellar interiors, i.e. the most important
part of astrophysics, probably. Ideally, students shall first clearly understand equations of stellar structure
and their direct implications (in Chapters 3 to 10), and finally realize the limits and go beyond them (in
Chapters 11 to 16). We hope that every reader can appreciate astrophysics as a science in which theory
tries to be ‘on par’ with current observations, acquired by wonderful instruments, by the way.

Similarly as above, we reprint its contents translated to English.

1 Introduction

1.1 Energetic estimates
1.1 Simplifications used for the construction of spherical models
1.2 Model of our Sun

2 Radiation and spectrum

2.1 Electromagnetic radiation

2.1.1 Intensity
2.1.2 Flux
2.1.3 Density of radiation energy
2.1.4 Radiation pressure
2.1.5 Opacity coefficient and optical depth
2.1.6 Mechanical force on a gas layer
2.1.7 Emission coefficient
2.1.8 Radiation transfer equation
2.1.9 Thermodynamic equilibrium
2.1.10 Continuous radiation of a black body
2.1.11 Saha ionisation equation

2.2 Spectra of stars

2.2.1 Transitions in atoms, continuous and discrete spectra
2.2.2 Broadening of spectral lines
2.2.3 Spectral classification

3 State equation

3.1 Mean molecular weight
3.2 Ideal gas
3.3 Radiation pressure
3.4 Electron degeneracy
3.5 Partial ionisation in subsurface layers

4 Basic equations of stellar structure
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Figure 19: The cover page of the textbook ‘Stavba a vývoj hvězd’ (Structure and evolution of stars).

4.1 Equation of mass conservation
4.2 Equation of motion and equation of hydrostatic equilibrium
4.3 Equation of thermal equilibrium

4.3.1 Proton-proton chain
4.3.2 CNO cycle
4.3.3 Transformation of helium to carbon and other reactions
4.3.4 Thermal equilibrium and changes of entropy

4.4 Equation of energy transfer

4.4.1 Equation for radiation energy transfer
4.4.2 Equation for convective energy transfer

5 Mathematic structure of equation of stellar interior

5.1 Stationary models
5.2 Evolutionary model
5.3 Dynamic model

6 Initial and boundary conditions
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6.1 Initial conditions
6.2 Boundary conditions in the centre
6.3 Boundary conditions at the surface

6.3.1 Photosphere
6.3.2 Subphotospheric layers

7 Henyey method for integration of interior parts of a star

7.1 Method of complete linearisation
7.2 Limits of discretization

8 Evolution of a solitary star

8.1 Illustrative example: evolution of a star with 4M�
8.2 Differences of stellar evolution dependent on stellar mass

9 Comparison of theoretical predictions of stellar evolution and observations

9.1 How to acquire observational data?
9.2 Explanation of major features of Hertzsprung-Russell diagram
9.3 Stellar evolution in star clusters
9.4 Stellar evolution in double stars
9.5 Changes of chemical composition observed in spectra
9.6 Test of internal structure with help of apsidal motion

9.6.1 Apsidal motion in classical mechanics
9.6.2 Relativistic apsidal motion
9.6.3 Total apsidal motion

9.7 Stellar evolution in course of human history

10 Simple analytical models and estimates

10.1 Polytropic process
10.2 Lane-Emden differential equation
10.3 Polytropic models of stars

11 Stellar wind and mass loss from stars

11.1 Observational facts
11.2 Parker theory for cold stars
11.3 CAK theory of stellar wind driven by radiation
11.4 Influence of stellar wind on evolution of stars

12 Influence of rotation

12.1 Roche model and simple estimates
12.2 Models of stellar evolution with rotation
12.3 Selected results for evolution of rotating stars

13 Evolution of double stars

13.1 Roche model and simple estimates
13.2 Calculation of stellar evolution in the phase of mass exchange
13.3 Selected results of double stars modelling
13.4 Models of double stars evolution versus observations

14 Pulsations of stars

14.1 Radial pulsations of spherical stars

14.1.1 Condition for onset of pulsations
14.1.2 Opacity mechanism of pulsations
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14.1.3 A crude estimate of period of radial pulsations
14.1.4 Relations period - luminosity - colour

14.2 Kinematics of non-radial pulsations

14.2.1 Sectoral pulsations of rotating stars

14.3 Hydrodynamics for simple waves

14.3.1 Acoustic waves in homogeneous medium (p-modes)
14.3.2 Internal gravitation waves (g-modes)
14.3.3 Surface gravitation waves (f-modes)

15 Gravitational collapse of protostars

15.1 Cooling processes
15.2 Evolution before the main sequence
15.3 Position of the Hayashi line
15.4 Minimum Jeans mass
15.5 Eddington limit and maximum mass

16 Explosive phase of stellar evolution

16.1 Core-collapse supernovae

16.1.1 Mechanism of neutrino bomb
16.1.2 Gamma-ray bursts (GRB)
16.1.3 Nucleosynthesis by r-process
16.1.4 Afterglow and supernova remnants

16.2 Supernovae originating in an explosion of a white dwarf

16.2.1 Laminar velocity of deflagration
16.2.2 Chapman-Jouguet velocity of detonation
16.2.3 Rayleigh-Taylor instability

17 Types of observed stars and their evolutionary stages

17.1 Hot stars of spectral type O and Wolf-Rayet stars
17.2 Stars of spectral type B

17.2.1 Chemically peculiar Bp stars
17.2.2 Pulsating beta Cep stars
17.2.3 Slowly-pulsating B stars (SPB)
17.2.4 Be stars
17.2.5 Luminous blue variables (LBV)

17.3 Stars of spectral types A to F

17.3.1 Chemically peculiar Am stars
17.3.2 Magnetic Ap stars
17.3.3 Pulsating delta Scuti stars
17.3.4 SX Phe stars
17.3.5 gamma Dor stars
17.3.6 Lithium anf beryllium in F and G stars

17.4 Cold G, K and M stars

17.4.1 Chromospherically active stars: UV Cet, BY Dra, etc.
17.4.2 Pulsating stars: Cepheids, Miras, R CrB and AGB stars

17.5 Stars in early evolutionary stages

17.5.1 T Tauri stars
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17.5.2 FU Ori stars

17.6 Stars in late evolutionary stages

17.6.1 White dwarfs and ZZ Cet stars
17.6.2 Novae, cataclysmic variables and polars
17.6.3 Supernovae
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5 Conclusions and future work

Conclusions. Everybody knows the cliché: the more we know, the more questions we have. It is absolu-
tely true. Usually, a research results in an uncomfortable feeling that we actually know less than before,
regardless of ever-growing complexity of our models. Indeed, we went from purely gravitational inter-
actions → an addition of non-gravitational forces → non-gravitational torques → analytical planetary
migration → N -body interactions with planetesimals → Monte-Carlo collisional models → a distinction
of monolith and rubble-pile structure → bombardment during ongoing migration, etc. Of course, this
means additional initial conditions, additional boundary conditions, more observational data to fit, more
uncertainties to account for; and one may only ‘pray’ for their normal distribution which is often not the
case (cf. Figure 20).

Nevertheless, let us conclude that we were able to address (and answer) the following general questions
in the framework if this thesis:

– Is the Yarkovsky effect important in first-order resonances? (Yes)
– Can we explain the observed structure of the Hilda family? (Yes)
– Are there many families in the Trojan region? (No)
– Do family halos originate from the planetary migration? (No)
– Was the main asteroid belt affected by the late heavy bombardment? (Yes)
– Have the majority of asteroids a structure of a rubble-pile with macroporosity? (No)
– Is the overall distribution of polar latitudes caused by the YORP effect? (Yes)
– Do asteroid families exhibit the same distribution? (Yes)
– Is it possible to explain all observational data for V505 Sagittarii? (Yes)
– Can we constrain the masses of V2368 Ophiuchi using stellar evolution models? (Yes)
– Is ε Aurigae a post-asymptotic-giant-branch star? (No)

The list of unanswered questions is not appended here, as it would surely be exceedingly long. . .

Future work. Anyway, we shall stop speaking about our old work and focus on the current research.
Together with my students, we are about to finish three papers on the following ‘hot’ topics: (i) a solu-
tion of the 3-dimensional heat diffusion equation using a finite element method, with an application to
boulders on (25143) Itokawa (Ševeček et al., submitted); (ii) the origin of the stable population in the 2:1
resonance with Jupiter, which may be captured during planetary migration or even be primordial (with
Ondřej Chrenko); and (iii) smooth-particle hydrodynamic models of particular asteroidal collisions and
gravitational reaccumulation (with Jakub Rozehnal; Figure 21).

There are actually two more papers, as I am a co-author of chapters in the Asteroids IV monograph,
namely on asteroid families (Nesvorný et al., submitted) and collisional models (Bottke et al., submitted).

From 2013 till 2014, we also cooperate with the ProjectSoft company on a development of a robo-
tic observatory (i.e. a project supported by the Technology Agency of the Czech Republic, grant no.
TA 03011171). We were mostly responsible for a high-level control software, called Aitel (Astronomical
Institute TELescope control program), Aiview and Aiplan to facilitate fully-autonomous operations. The
observatory is ready for testing (see Figure 22) and as a test application, we will perform photometric
observations of asteroids suitable for lightcurve inversion and determination of their poles and shapes.

By the way, given the high angular speed and acceleration, which the hardware is capable of, this
telescope may be used to observe even fireballs during their flight through the Earth atmosphere! This is
one of promising future applications we think about.

Finally, given the vast unexplored areas of knowledge, we plan to prepare a 2nd part of the Physics of
the Solar System on advanced modelling which would include e.g.: general hydrodynamics of protopla-
netary disks, 3-dimensional heat diffusion using FDM, FEM or FVM methods, Monte-Carlo models of
collisional evolution, smooth-particle hydrodynamic models of asteroid breakups, and as an add-on even
more ‘industrial‘ applications like a computation of a flexure of a telescope mount, or fully asynchronous
object-oriented programming in Python to control (real) hardware.

A definitive conclusion? Life’s is too short. . .
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Figure 20: A normal distribution compared to a ‘paranormal’ one. A sketch we sometimes use to demonstrate
the importance of thinking about uncertainties of the observational data.
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Figure 21: A smooth-particle hydrodynamic simulation of a collision between a D = 100 km target and a
D = 30 km projectile, with the impact velocity vimp = 15 km/s and the angle ϕimp = 30◦. The plot shows
(x, y) positions of about 1.56 · 105 SPH particles; the colour corresponds to a logarithm of the specific internal
energy u (in erg g−1 units). The integration was controlled by the Courant number C = 1.0, the typical time
step thus was ∆t ' 10−5 s and time span tstop = 2.05 s. We assumed Tillotson equation of state (Tillotson 1962)
and basalt material properties (Benz and Asphaug 1999): zero-pressure density ρ0 = 2.7 g cm−3, bulk modulus
A = 2.67 · 1011 erg cm−3, non-linear compressive term B = 2.67 · 1011 erg cm−3, Tillotson parameters E0 =
4.87 ·1012 erg g−1, a = 0.5, b = 1.5, α = 5.0, and β = 5.0, incipient vaporization Eiv = 4.72 ·1010 erg g−1, complete
vaporization Ecv = 1.82 ·1011 erg g−1, shear modulus µ = 2.27 ·1011 erg cm−3, yielding Y = 3.5 ·1010 erg g−1, melt
energy Emelt = 3.4 · 1010 erg g−1, tensile failure using Weibull flaws, with fracture parameters k = 4.0 · 1029 cm−3,
and m = 9.0. Computed with the SPH5 code (Benz and Asphaug 1994).
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Figure 22: A poster about the ProjectSoft robotic observatory, presented at the AAS DPS 2014 conference.
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A Reprints of papers

We selected the following papers for this habilitation thesis:

1. Brož et al. (2013) on the late heavy bombardment and the Nice model;
2. Brož and Morbidelli (2013) on the dynamics of the Eos family halo;
3. Brož et al. (2011) on the Hilda family and planetary migration;
4. Brož and Rozehnal (2011) on non-existence of Trojan families;
5. Brož and Vokrouhlický (2008) on the Yarkovsky drift in eccentricity in 1st-order resonances;
6. Cibulková, Brož and Benavidez (2014) on the collisional model of the main asteroid belt;
7. Hanuš et al. (2013) on the pole-latitude distribution in asteroid families;
8. Hanuš et al. (2011) and
9. Hanuš et al. (2013) on the pole-latitude distribution of main-belt asteroids, namely the part on the

YORP effect model;
10. Brož et al. (2010) on the V505 Sgr multiple stellar system;
11. Harmanec et al. (2011) on V2368 Oph spectroscopic binary;
12. Guinan et al. (2012) on the distance determination to ε Aur.

We do not reprint older papers which were already included in the Ph. D. thesis (Brož et al. 2006):

13. Brož et al. (2005) on the unstable population in the 2:1 resonance with Jupiter,
14. Vokrouhlický et al. (2006) on the Eos family,
15. Vokrouhlický et al. (2006) on the Agnia family,
16. Vokrouhlický et al. (2006) on peculiar orbit and spin axis of (2953) Vysheslavia.

We have to also mention co-authored papers with a relatively minor contribution (less than or equal to
25 %). Again, we do not reprint them here:

17. Vokrouhlický and Brož (1999) on the two-layer model of the seasonal Yarkovsky effect;
18. Bottke et al. (2001) on asteroid families affected by the Yarkovsky effect;
19. Vokrouhlický et al. (2001) on the Yarkovsky drift of (2953) Vysheslavia;
20. Nesvorný et al. (2002) on the dynamical evolution of the Flora family;
21. Bottke et al. (2003), a review of the Yarkovsky effect and the dynamics of meteoroids and asteroids;
22. Vokrouhlický et al. (2006) on the YORP effect and chronology of asteroid families.

Finally, there are three more papers, which are under review at this time:

23. Ševeček et al. (submitted) on a solution of the 3-dimensional heat diffusion equation using the finite
elements method;

24. Nesvorný et al. (submitted), a review on asteroid families for the Asteroids IV monography;
25. Bottke et al. (submitted), a similar review on collisional models.
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ABSTRACT

In the Nice model, the late heavy bombardment (LHB) is related to an orbital instability of giant planets which causes a fast dynamical
dispersion of a trans-Neptunian cometary disk. We study effects produced by these hypothetical cometary projectiles on main belt
asteroids. In particular, we want to check whether the observed collisional families provide a lower or an upper limit for the cometary
flux during the LHB. We present an updated list of observed asteroid families as identified in the space of synthetic proper elements by
the hierarchical clustering method, colour data, albedo data and dynamical considerations and we estimate their physical parameters.
We selected 12 families which may be related to the LHB according to their dynamical ages. We then used collisional models
and N-body orbital simulations to gain insight into the long-term dynamical evolution of synthetic LHB families over 4 Gyr. We
account for the mutual collisions between comets, main belt asteroids, and family members, the physical disruptions of comets,
the Yarkovsky/YORP drift in semimajor axis, chaotic diffusion in eccentricity/inclination, or possible perturbations by the giant-
planet migration. Assuming a “standard” size-frequency distribution of primordial comets, we predict the number of families with
parent-body sizes DPB ≥ 200 km – created during the LHB and subsequent ≃4 Gyr of collisional evolution – which seems consistent
with observations. However, more than 100 asteroid families with DPB ≥ 100 km should be created at the same time which are not
observed. This discrepancy can be nevertheless explained by the following processes: i) asteroid families are efficiently destroyed by
comminution (via collisional cascade), ii) disruptions of comets below some critical perihelion distance (q <∼ 1.5 AU) are common.
Given the freedom in the cometary-disruption law, we cannot provide stringent limits on the cometary flux, but we can conclude that
the observed distribution of asteroid families does not contradict with a cometary LHB.

Key words. celestial mechanics – minor planets, asteroids: general – comets: general – methods: numerical

1. Introduction

The late heavy bombardment (LHB) is an important period in the
history of the solar system. It is often defined as the process that
made the huge but relatively young impact basins (a 300 km or
larger diameter crater) on the Moon like Imbrium and Orientale.
The sources and extent of the LHB, however, has been under-
going recent revisions. In the past, there were two end-member
schools of thought describing the LHB. The first school argued
that nearly all lunar basins, including the young ones, were made
by impacting planetesimals left over from terrestrial planet for-
mation (Neukum et al. 2001; Hartmann et al. 2000, 2007; see
Chapman et al. 2007, for a review). The second school argued
that most lunar basins were made during a spike of impacts that
took place near 3.9 Ga (e.g., Tera et al. 1974; Ryder et al. 2000).

Recent studies, however, suggest that a compromise scenario
may be the best solution: the oldest basins were mainly made by
leftover planetesimals, while the last 12–15 or so lunar basins
were created by asteroids driven out of the primordial main belt
by the effects of late giant-planet migration (Tsiganis et al. 2005;
Gomes et al. 2005; Minton & Malhotra 2009; Morbidelli et al.
2010; Marchi et al. 2012; Bottke et al. 2012). This would mean
the LHB is limited in extent and does not encompass all lunar

⋆ Table 1 is available in electronic form at http://www.aanda.org

basins. If this view is correct, we can use studies of lunar and
asteroid samples heated by impact events, together with dynam-
ical modelling work, to suggest that the basin-forming portion
of the LHB lasted from approximately 4.1–4.2 to 3.7–3.8 billion
years ago on the Moon (Bogard 1995, 2011; Swindle et al. 2009;
Bottke et al. 2012; Norman & Nemchin 2012).

The so-called “Nice model” provides a coherent explanation
of the origin of the LHB as an impact spike or rather a “saw-
tooth” (Morbidelli et al. 2012). According to this model, the
bombardment was triggered by a late dynamical orbital insta-
bility of the giant planets, in turn driven by the gravitational in-
teractions between said planets and a massive trans-Neptunian
disk of planetesimals (see Morbidelli 2010, for a review). In this
scenario, three projectile populations contributed to the LHB:
the comets from the original trans-Neptunian disk (Gomes et al.
2005), the asteroids from the main belt (Morbidelli et al. 2010)
and those from a putative extension of the main belt towards
Mars, inwards of its current inner edge (Bottke et al. 2012). The
last could have been enough of a source for the LHB, as recorded
in the lunar crater record (Bottke et al. 2012), while the asteroids
from the current main belt boundaries would have only been a
minor contributor (Morbidelli et al. 2010).

The Nice model, however, predicts a very intense cometary
bombardment of which there seems to be no obvious traces on

Article published by EDP Sciences A117, page 1 of 16

44



A&A 551, A117 (2013)

the Moon. In fact, given the expected total mass in the origi-
nal trans-Neptunian disk (Gomes et al. 2005) and the size distri-
bution of objects in this disk (Morbidelli et al. 2009), the Nice
model predicts that about 5 × 104 km-size comets should have
hit the Moon during the LHB. This would have formed 20 km
craters with a surface density of 1.7 × 10−3 craters per km2. But
the highest crater densities of 20 km craters on the lunar high-
lands is less than 2 × 10−4 (Strom et al. 2005). This discrepancy
might be explained by a gross overestimate of the number of
small bodies in the original trans-Neptunian disk in Morbidelli
et al. (2009). However, all impact clast analyses of samples asso-
ciated to major LHB basins (Kring & Cohen 2002; Tagle 2005)
show that also the major projectiles were not carbonaceous chon-
drites or similar primitive, comet-like objects.

The lack of evidence of a cometary bombardment of the
Moon can be considered as a fatal flaw in the Nice model.
Curiously, however, in the outer solar system we see evidence
of the cometary flux predicted by the Nice model. Such a flux is
consistent with the number of impact basins on Iapetus (Charnoz
et al. 2009), with the number and the size distribution of the
irregular satellites of the giant planets (Nesvorný et al. 2007;
Bottke et al. 2010) and of the Trojans of Jupiter (Morbidelli et al.
2005), as well as with the capture of D-type asteroids in the outer
asteroid belt (Levison et al. 2009). Moreover, the Nice model
cometary flux is required to explain the origin of the collisional
break-up of the asteroid (153) Hilda in the 3/2 resonance with
Jupiter (located at ≃4 AU, i.e. beyond the nominal outer border
of the asteroid belt at ≃3.2 AU; Brož et al. 2011).

Missing signs of an intense cometary bombardment on the
Moon and the evidence for a large cometary flux in the outer
solar system suggest that the Nice model may be correct in its
basic features, but most comets disintegrated as they penetrated
deep into the inner solar system.

To support or reject this possibility, this paper focusses on the
main asteroid belt, looking for constraints on the flux of comets
through this region at the time of the LHB. In particular we focus
on old asteroid families, produced by the collisional break-up
of large asteroids, which may date back at the LHB time. We
provide a census of these families in Sect. 2.

In Sect. 3, we construct a collisional model of the main
belt population. We show that, on average, this population alone
could not have produced the observed number of families with
DPB = 200–400 km. Instead, the required number of families
with large parent bodies is systematically produced if the aster-
oid belt was crossed by a large number of comets during the
LHB, as expected in the Nice model (see Sect. 4). However, for
any reasonable size distribution of the cometary population, the
same cometary flux that would produce the correct number of
families with DPB = 200–400 km would produce too many fam-
ilies with DPB ≃ 100 km relative to what is observed. Therefore,
in the subsequent sections we look for mechanisms that might
prevent detection of most of these families.

More specifically, in Sect. 5 we discuss the possibility that
families with DPB ≃ 100 km are so numerous that they cannot
be identified because they overlap with each other. In Sect. 6
we investigate their possible dispersal below detectability due to
the Yarkovsky effect and chaotic diffusion. In Sect. 7 we dis-
cuss the role of the physical lifetime of comets. In Sect. 8 we
analyse the dispersal of families due to the changes in the or-
bits of the giant planets expected in the Nice model. In Sect. 9
we consider the subsequent collisional comminution of the fam-
ilies. Of all investigated processes, the last one seems to be the
most promising for reducing the number of visible families with

DPB ≃ 100 km while not affecting the detectability of old fami-
lies with DPB = 200–400 km.

Finally, in Sect. 10 we analyse a curious portion of the main
belt, located in a narrow semi-major axis zone bounded by the
5:2 and 7:3 resonances with Jupiter. This zone is severely de-
ficient in small asteroids compared to the other zones of the
main belt. For the reasons explained in the section, we think that
this zone best preserves the initial asteroid belt population, and
therefore we call it the “pristine zone”. We checked the num-
ber of families in the pristine zone, their sizes, and ages and we
found that they are consistent with the number expected in our
model invoking a cometary bombardment at the LHB time and a
subsequent collisional comminution and dispersion of the family
members. The conclusions follow in Sect. 11.

2. A list of known families

Although several lists of families exist in the literature (Zappalá
et al. 1995; Nesvorný et al. 2005; Parker et al. 2008; Nesvorný
2010), we are going to identify the families once again. The rea-
son is that we seek an upper limit for the number of old families
that may be significantly dispersed and depleted, while the pre-
vious works often focussed on well-defined families. Moreover,
we need to calculate several physical parameters of the families
(such as the parent-body size, slopes of the size-frequency dis-
tribution (SFD), a dynamical age estimate if not available in the
literature) which are crucial for further modelling. Last but not
least, we use more precise synthetic proper elements from the
AstDyS database (Knežević & Milani 2003, version Aug. 2010)
instead of semi-analytic ones.

We employed a hierarchical clustering method (HCM,
Zappalá et al. 1995) for the initial identification of families in
the proper element space (ap, ep, sin Ip), but then we had to per-
form a lot of manual operations, because i) we had to select a
reasonable cut-off velocity vcutoff , usually such that the number
of members N(vcutoff) increases relatively slowly with increas-
ing vcutoff. ii) The resulting family should also have a “reason-
able” shape in the space of proper elements, which should some-
how correspond to the local dynamical features1. iii) We checked
taxonomic types (colour indices from the Sloan DSS MOC cat-
alogue version 4, Parker et al. 2008), which should be consistent
among family members. We can recognise interlopers or over-
lapping families this way. iv) Finally, the SFD should exhibit
one or two well-defined slopes, otherwise the cluster is consid-
ered uncertain.

Our results are summarised in online Table 1 and the posi-
tions of families within the main belt are plotted in Fig. 1. Our
list is “optimistic”, so that even not very prominent families are
included here2.

There are, however, several potential problems we are
aware of:

1. There may be inconsistencies among different lists of fam-
ilies. For example, sometimes a clump may be regarded as
a single family or as two separate families. This may be the
case of: Padua and Lydia, Rafita and Cameron.

2. To identify families we used synthetic proper elements,
which are more precise than the semi-analytic ones.

1 For example, the Eos family has a complicated but still reasonable
shape, since it is determined by several intersecting high-order mean-
motion or secular resonances, see Vokrouhlický et al. (2006).
2 On the other hand, we do not include all of the small and less-certain
clumps in a high-inclination region as listed by Novaković et al. (2011).
We do not focus on small or high-I families in this paper.
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families background

Fig. 1. Asteroids from the synthetic AstDyS catalogue plotted in the proper semimajor axis ap vs. proper eccentricity ep (top panels) and ap vs.
proper inclination sin Ip planes (bottom panels). We show the identified asteroid families (left panels) with the positions of the largest members
indicated by red symbols, and also remaining background objects (right panels). The labels correspond to designations of the asteroid families that
we focus on in this paper. There are still some structures consisting of small objects in the background population, visible only in the inclinations
(bottom right panel). These “halos” may arise for two reasons: i) a family has no sharp boundary and its transition to the background is smooth,
or ii) there are bodies escaping from the families due to long-term dynamical evolution. Nevertheless, we checked that these halo objects do not
significantly affect our estimates of parent-body sizes.

Sometimes the families look more regular (e.g., Teutonia)
or more tightly clustered (Beagle) when we use the syn-
thetic elements. This very choice may, however, affect re-
sults substantially! A clear example is the Teutonia family,
which also contains the big asteroid (5) Astraea if the syn-
thetic proper elements are used, but not if the semi-analytic
proper elements are used. This is due to the large differences
between the semi-analytic and synthetic proper elements of
(5) Astraea. Consequently, the physical properties of the two
families differ considerably. We believe that the family de-
fined from the synthetic elements is more reliable.

3. Durda et al. (2007) often claim a larger size for the parent
body (e.g., Themis, Meliboea, Maria, Eos, Gefion), because
they try to match the SFD of larger bodies and the results of
SPH experiments. This way they also account for small bod-
ies that existed at the time of the disruption, but which do not
exist today since they were lost due to collisional grinding
and the Yarkovsky effect. We prefer to use DDurda instead of
the value DPB estimated from the currently observed SFD.
The geometric method of Tanga et al. (1999), which uses
the sum of the diameters of the first and third largest family

members as a first guess of the parent-body size, is essen-
tially similar to our approach3.

2.1. A definition of the production function

To compare observed families to simulations, we define a “pro-
duction function” as the cumulative number N(>D) of families
with parent-body size DPB larger than a given D. The observed
production function is shown in Fig. 2, and it is worth noting that
it is very shallow. The number of families with DPB ≃ 100 km is
comparable to the number of families in the DPB = 200–400 km
range.

It is important to note that the observed production func-
tion is likely to be affected by biases (the family sample
may not be complete, especially below DPB <∼ 100 km) and
also by long-term collisional/dynamical evolution which may

3 A complete list of all families’ members is available at our web site
http://sirrah.troja.mff.cuni.cz/~mira/mp/fams/, including
supporting figures.
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Fig. 2. A production function (i.e. the cumulative number N(>D) of
families with parent-body size DPB larger than D) for all observed fami-
lies (black) and families corresponding to catastrophic disruptions (red),
i.e. with largest remnant/parent body mass ratio lower than 0.5. We also
plot a theoretical slope according to Eq. (1), assuming qtarget = −3.2 and
qproject = −1.2, which correspond to the slopes of the main belt popula-
tion in the range D = 100–200 km and D = 15–60 km, respectively.

prevent a detection of old comminutioned/dispersed families to-
day (Marzari et al. 1999).

From the theoretical point of view, the slope q of the produc-
tion function N(>D) ∝ Dq should correspond to the cumulative
slopes of the SFDs of the target and projectile populations. It is
easy to show4 that the relation is

q = 2 + qtarget +
5
3

qproject. (1)

Of course, real populations may have complicated SFDs, with
different slopes in different ranges. Nevertheless, any popula-
tions that have a steep SFD (e.g. qtarget = qproject = −2.5) would
inevitably produce a steep production function (q � −4.7).

In the following analysis, we drop cratering events and
discuss catastrophic disruptions only, i.e. families which have
largest remnant/parent body mass ratio less than 0.5. The rea-
son is that the same criterion LR/PB < 0.5 is used in colli-
sional models. Moreover, cratering events were not yet systemat-
ically explored by SPH simulations due to insufficient resolution
(Durda et al. 2007).

2.2. Methods for family age determination

If there is no previous estimate of the age of a family, we
used one of the following three dynamical methods to deter-
mine it: i) a simple (ap,H) analysis as in Nesvorný et al.
(2005); ii) a C-parameter distribution fitting as introduced by
Vokrouhlický et al. (2006); iii) a full N-body simulation de-
scribed e.g. in Brož et al. (2011).

In the first approach, we assume zero initial velocities,
and the current extent of the family is explained by the size-
dependent Yarkovsky semimajor axis drift. This way we can ob-
tain only an upper limit for the dynamical age, of course. We
show an example for the Eos family in Fig. 3. The extent of the
family in the proper semimajor axis vs the absolute magnitude
(ap,H) plane can be described by the parametric relation

0.2H = log10

|ap − ac|
C

, (2)

where ac denotes the centre of the family, and C is the parameter.
Such relation can be naturally expected when the semimajor-axis

4 Assuming that the strength is approximately Q⋆D ∝ D2 in the gravity
regime, the necessary projectile size d ∝ (Q⋆

D
)1/3D (Bottke et al. 2005),

and the number of disruptions n ∝ D2Dqtarget dqproject .
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Fig. 3. An example of the Eos asteroid family, shown on the proper
semimajor axis ap vs. absolute magnitude H plot. We also plot curves
defined by Eq. (2) and parameters ac = 3.019 AU, C = 1.5 to 2.0 ×
10−4 AU, which is related to the upper limit of the dynamical age of the
family.

Table 2. Nominal thermal parameters for S and C/X taxonomic types
of asteroids.

Type ρbulk ρsurf K Cth ABond ǫ
(kg/m3) (kg/m3) (W/m/K) (J/kg/K)

S 2500 1500 0.001 680 0.1 0.9
C/X 1300 1300 0.01 680 0.02 0.9

Notes. ρbulk denotes the bulk density, ρsurf the surface density, K the
thermal conductivity, Cth the specific thermal capacity, ABond the Bond
albedo and ǫ the infrared emissivity.

drift rate is inversely proportional to the size, da/dt ∝ 1/D, and
the size is related to the absolute magnitude via the Pogson equa-
tion H = −2.5 log10(pV D2/D2

0), where D0 denotes the reference
diameter and pV the geometric albedo (see Vokrouhlický et al.
2006 for a detailed discussion). The limiting value, for which
all Eos family members (except interlopers) are above the cor-
responding curve, is C = 1.5 to 2.0 × 10−4 AU. Assuming rea-
sonable thermal parameters (summarised in Table 2), we calcu-
late the expected Yarkovsky drift rates da/dt (using the theory
from Brož 2006) and consequently can determine the age to be
t < 1.5 to 2.0 Gyr.

The second method uses a histogram N(C,C + ∆C) of the
number of asteroids with respect to the C parameter defined
above, which is fitted by a dynamical model of the initial ve-
locity field and the Yarkovsky/YORP evolution. This enables us
to determine the lower limit for the age too (so the resulting age
estimate is t = 1.3+0.15

−0.2 Gyr for the Eos family).
In the third case, we start an N-body simulation using a

modified SWIFT integrator (Levison & Duncan 1994), with the
Yarkovsky/YORP acceleration included, and evolve a synthetic
family up to 4 Gyr. We try to match the shape of the observed
family in all three proper orbital elements (ap, ep, sin Ip). In prin-
ciple, this method may provide a somewhat independent esti-
mate of the age. For example, there is a “halo” of asteroids in the
surroundings of the nominal Eos family, which are of the same
taxonomic type K, and we may fit the ratio Nhalo/Ncore of the
number of objects in the “halo” and in the family “core” (Brož
et al., in prep.).

The major source of uncertainty in all methods are unknown
bulk densities of asteroids (although we use the most likely
values for the S or C/X taxonomic classes, Carry 2012). The
age scales approximately as t ∝ ρbulk. Nevertheless, we are
still able to distinguish families that are young from those that
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Fig. 4. The relation between dynamical ages of families and the sizes of
their parent bodies. Red labels correspond to catastrophic disruptions,
while cratering events are labelled in black. Some of the families are
denoted by the designation of the largest member. The uncertainties of
both parameters are listed in Table 1 (we do not include overlapping
error bars here for clarity).

are old, because the allowed ranges of densities for S-types
(2 to 3 g/cm3) and C/X-types (1 to 2 g/cm3) are limited (Carry
2012) and so are the allowed ages of families.

2.3. Which families can be of LHB origin?

The ages of the observed families and their parent-body sizes are
shown in Fig. 4. Because the ages are generally very uncertain,
we consider that any family whose nominal age is older than
2 Gyr is potentially a family formed ∼4 Gyr ago, i.e. at the LHB
time. If we compare the number of “young” (<2 Gyr) and old
families (>2 Gyr) with DPB = 200–400 km, we cannot see a sig-
nificant over-abundance of old family formation events. On the
other hand, we almost do not find any small old families.

Only 12 families from the whole list may be possibly
dated back to the LHB, because their dynamical ages ap-
proach ∼3.8 Gyr (including the relatively large uncertainties; see
Table 3, which is an excerpt from Table 1).

If we drop cratering events and the families of Camilla
and Hermione, which do not exist any more today (their exis-
tence was inferred from the satellite systems, Vokrouhlický et al.
2010), we end up with only five families created by catastrophic
disruptions that may potentially date from the LHB time (i.e.
their nominal age is more than 2 Gy). As we shall see in Sect. 4,
this is an unexpectedly low number.

Moreover, it is really intriguing that most “possibly-LHB”
families are larger than DPB ≃ 200 km. It seems that old fam-
ilies with DPB ≃ 100 km are missing in the observed sample.
This is an important aspect that we have to explain, because it
contradicts our expectation of a steep production function.

3. Collisions in the main belt alone

Before we proceed to scenarios involving the LHB, we try to
explain the observed families with ages spanning 0–4 Gyr as a
result of collisions only among main belt bodies. To this pur-
pose, we used the collisional code called Boulder (Morbidelli
et al. 2009) with the following setup: the intrinsic probabil-
ities Pi = 3.1 × 10−18 km−2 yr−1, and the mutual velocities
Vimp = 5.28 km s−1 for the MB vs. MB collisions (both were
taken from the work of Dahlgren 1998). The assumption of a
single Vimp value is a simplification, but about 90% collisions
have mutual velocities between 2 and 8 km s−1 (Dahlgren 1998),
which assures a similar collisional regime.

Table 3. Old families with ages possibly approaching the LHB.

Designation DPB DDurda Note
(km) (km)

24 Themis 209c 380–430!
10 Hygiea 410 442 cratering
15 Eunomia 259 292 cratering
702 Alauda 218c 290–330! high-I
87 Sylvia 261 272 cratering
137 Meliboea 174c 240–290!
375 Ursula 198 240–280 cratering
107 Camilla >226 – non-existent
121 Hermione >209 – non-existent
158 Koronis 122c 170–180
709 Fringilla 99c 130–140 cratering
170 Maria 100c 120–130

Notes. They are sorted according to the parent body size, where DDurda

determined by the Durda et al. (2007) method is preferred to the es-
timate DPB inferred from the observed SFD. An additional “c” letter
indicates that we extrapolated the SFD down to D = 0 km to account
for small (unobserved) asteroids, an exclamation mark denotes a signif-
icant mismatch between DPB and DDurda.

The scaling law is described by the polynomial relation
(r denotes radius in cm)

Q⋆D(r) =
1

qfact

(
Q0ra + Bρrb

)
(3)

with the parameters corresponding to basaltic material at
5 km s−1 (Benz & Asphaug 1999, Table 4):

Table 4. Parameters of the scaling law (Eq. (3)) corresponding to
basaltic material at 5 km s−1, according to Benz & Asphaug (1999).

ρ Q0 a B b qfact

(g/cm3) (erg/g) (erg/g)

3.0 7 × 107 −0.45 2.1 1.19 1.0

Even though not all asteroids are basaltic, we use the scaling
law above as a mean one for the main belt population. Below, we
discuss also the case of significantly lower strengths (i.e. higher
qfact values).

We selected the time span of the simulation 4 Gyr (not
4.5 Gyr) since we are interested in this last evolutionary phase
of the main belt, when its population and collisional activity is
nearly same as today (Bottke et al. 2005). The outcome of a sin-
gle simulation also depends on the “seed” value of the random-
number generator that is used in the Boulder code to decide
whether a collision with a fractional probability actually occurs
or not in a given time step. We thus have to run multiple simula-
tions (usually 100) to obtain information on this stochasticity of
the collisional evolution process.

The initial SFD of the main belt population conditions was
approximated by a three-segment power law (see also thin grey
line in Fig. 5, 1st row) with differential slopes qa = −4.3 (for
D > D1), qb = −2.2, qc = −3.5 (for D < D2) where the size
ranges were delimited by D1 = 80 km and D2 = 16 km. We also
added a few big bodies to reflect the observed shape of the SFD
at large sizes (D > 400 km). The normalisation was Nnorm(D >
D1) = 350 bodies in this case.

We used the observed SFD of the main belt as the first con-
straint for our collisional model. We verified that the outcome
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Fig. 5. Results of three different collisional models: main belt alone which is discussed in Sect. 3 (left column), main belt and comets from Sect. 4
(middle column), main belt and disrupting comets from Sect. 7 (right column). 1st row: the initial and evolved SFDs of the main belt populations
for 100 Boulder simulations; 2nd row: the resulting family production functions (in order to distinguish 100 lines we plot them using different
colours ranging from black to yellow) and their comparison to the observations; 3rd row: the production function affected by comminution for
a selected simulation; and 4th row: the distribution of synthetic families with DPB ≥ 50 km in the (age, DPB) plot for a selected simulation,
without comminution. The positions of synthetic families in the 4th-row figures may differ significantly for a different Boulder simulation due to
stochasticity and low-number statistics. Moreover, in the middle and right columns, many families were created during the LHB, so there are many
overlapping crosses close to 4 Gyr.

our model after 4 Gyr is not sensitive to the value of qc. Namely,
a change of qc by as much as ±1 does not affect the final SFD in
any significant way. On the other hand, the values of the remain-
ing parameters (qa, qb, D1, D2, Nnorm) are enforced by the ob-
served SFD. To obtain a reasonable fit, they cannot differ much
(by more than 5–10%) from the values presented above.

We do not use only a single number to describe the number
of observed families (e.g. N = 20 for DPB ≥ 100 km), but we dis-
cuss a complete production function instead. The results in terms
of the production function are shown in Fig. 5 (left column, 2nd
row). On average, the synthetic production function is steeper
and below the observed one, even though there is approximately
a 5% chance that a single realization of the computer model will
resemble the observations quite well. This also holds for the dis-
tribution of DPB = 200–400 km families in the course of time
(age).

In this case, the synthetic production function of DPB >∼
100 km families is not significantly affected by comminution.
According to Bottke et al. (2005), most of D > 10 km fragments
survive intact and a DPB >∼ 100 km family should be recognis-
able today. This is also confirmed by calculations with Boulder
(see Fig. 5, left column, 3rd row).

To improve the match between the synthetic and the ob-
served production function, we can do the following: i) mod-
ify the scaling law, or ii) account for a dynamical decay of the
MB population. Using a substantially lower strength (qfact = 5
in Eq. (3), which is not likely, though) one can obtain a synthetic
production function which is on average consistent with the ob-
servations in the DPB = 200–400 km range.

Regarding the dynamical decay, Minton & Malhotra (2010)
suggest that initially the MB was three times more populous than
today while the decay timescale was very short: after 100 Myr
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Fig. 6. Temporal evolution of the intrinsic collisional probability Pi

(bottom) and mean collisional velocity Vimp (top) computed for colli-
sions between cometary-disk bodies and the main belt asteroids. The
time t = 0 is arbitrary here; the sudden increase in Pi values corre-
sponds to the beginning of the LHB.

of evolution the number of bodies is almost at the current level.
In this brief period of time, about 50% more families will be
created, but all of them will be old, of course. For the remain-
ing ∼3.9 Gyr, the above model (without any dynamical decay) is
valid.

To conclude, it is possible – though not very likely – that
the observed families were produced by the collisional activity
in the main belt alone. A dynamical decay of the MB population
would create more families that are old, but technically speaking,
this cannot be distinguished from the LHB scenario, which is
discussed next.

4. Collisions between a “classical” cometary disk

and the main belt

In this section, we construct a collisional model and estimate an
expected number of families created during the LHB due to col-
lisions between cometary-disk bodies and main belt asteroids.
We start with a simple stationary model and we confirm the re-
sults using a more sophisticated Boulder code (Morbidelli et al.
2009).

Using the data from Vokrouhlický et al. (2008) for a “clas-
sical” cometary disk, we can estimate the intrinsic collisional
probability and the collisional velocity between comets and
asteroids. A typical time-dependent evolution of Pi and Vimp
is shown in Fig. 6. The probabilities increase at first, as the
trans-Neptunian cometary disk starts to decay, reaching up to
6 × 10−21 km−2 yr−1, and after 100 Myr they decrease to zero.
These results do not differ significantly from run to run.

4.1. Simple stationary model

In a stationary collisional model, we choose an SFD for the
cometary disk, we assume a current population of the main belt;
estimate the projectile size needed to disrupt a given target ac-
cording to (Bottke et al. 2005)

ddisrupt =
(
2Q⋆D/V

2
imp

)1/3
Dtarget, (4)

where Q⋆
D

denotes the specific energy for disruption and disper-
sion of the target (Benz & Asphaug 1999); and finally calculate
the number of events during the LHB as

nevents =
D2

target

4
ntarget

∫
Pi(t) nproject(t) dt, (5)

where ntarget and nproject are the number of targets (i.e. main belt
asteroids) and the number of projectiles (comets), respectively.
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Fig. 7. Cumulative SFDs of the cometary disk tested in this work. All
the parameters of our nominal choice are given in the top label; the other
labels just report the parameters that changed relative to our nominal
choice.

The actual number of bodies (27 000) in the dynamical simula-
tion of Vokrouhlický et al. (2008) changes in the course of time,
and it was scaled such that it was initially equal to the number of
projectiles N(>ddisrupt) inferred from the SFD of the disk. This
is clearly a lower limit for the number of families created, since
the main belt was definitely more populous in the past.

The average impact velocity is Vimp ≃ 10 km s−1, so we need
the projectile sizes to disrupt given target sizes listed in Table 5.

Table 5. Projectile sizes ddisrupt needed to disrupt targets with
sizes Dtarget, as computed from Eq. (4).

Dtarget Ntargets Q⋆
D

ddisrupt for
ρtarget

ρproject
= 3 to 6

(km) in the MB (J/kg) (km)

100 ∼192 1 × 105 12.6 to 23
200 ∼23 4 × 105 40.0 to 73

Notes. Ntargets denotes the number of targets in the main belt, Q⋆
D

the
specific energy needed for disruption, and ρtarget/ρproject the ratio of the
respective bulk densities.

We tried to use various SFDs for the cometary disk (i.e., with
various differential slopes q1 for D > D0 and q2 for D < D0, the
elbow diameter D0 and total mass Mdisk), including rather ex-
treme cases (see Fig. 7). The resulting numbers of LHB families
are summarised in Table 6. Usually, we obtain several families
with DPB ≃ 200 km and about 100 families with DPB ≃ 100 km.
This result is robust with respect to the slope q2, because even
very shallow SFDs should produce a lot of these families5. The
only way to decrease the number of families significantly is to
assume the elbow at a larger diameter D0 ≃ 150 km.

5 The extreme case with q2 = 0 is not likely at all, e.g. because of
the continuous SFD of basins on Iapetus and Rhea, which only ex-
hibits a mild depletion of D ≃ 100 km size craters; see Kirchoff &
Schenk (2010). On the other hand, Sheppard & Trujillo (2010) report
an extremely shallow cumulative SFD of Neptune Trojans that is akin
to low q2.
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Table 6. Results of a stationary collisional model between the cometary disk and the main belt.

q1 q2 D0 Mdisk nevents Notes
(km) (M⊕) for DPB ≥ 100 km DPB ≥ 200 km Vesta craterings

5.0 3.0 100 45 115–55 4.9–2.1 2.0 nominal case
5.0 2.0 100 45 35–23 4.0–2.2 1.1 shallow SFD
5.0 3.5 100 45 174–70 4.3–1.6 1.8 steep SFD
5.0 1.1 100 45 14–12 3.1–2.1 1.1 extremely shallow SFD
4.5 3.0 100 45 77–37 3.3–1.5 1.3 lower q1

5.0 3.0 50 45 225–104 7.2–1.7 3.2 smaller turn-off
5.0 3.0 100 25 64–40 2.7–1.5 1.1 lower Mdisk

5.0 3.0 100 17 34 1.2 1.9 ρcomets = 500 kg/m3

5.0 3.0 150 45 77–23 3.4–0.95 0.74 larger turn-off
5.0 0.0 100 10 1.5–1.4 0.5–0.4 0.16 worst case (zero q2 and low Mdisk)

Notes. The parameters characterise the SFD of the disk: q1, q2 are differential slopes for the diameters larger/smaller than the elbow diameter D0,
Mdisk denotes the total mass of the disk, and nevents is the resulting number of families created during the LHB for a given parent body size DPB.
The ranges of nevents are due to variable density ratios ρtarget/ρproject = 1 to 3/1.

Table 7. Parameters of the scaling law (Eq. (3)) corresponding to
basaltic material at 5 km s−1 (first row), and to water ice (second row),
according to Benz & Asphaug (1999).

ρ Q0 a B b qfact

(g/cm3) (erg/g) (erg/g)

Asteroids 3.0 7 × 107 −0.45 2.1 1.19 1.0
Comets 1.0 1.6 × 107 −0.39 1.2 1.26 3.0

It is thus no problem to explain the existence of approxi-
mately five large families with DPB = 200–400 km, which are
indeed observed, since they can be readily produced during the
LHB. On the other hand, the high number of DPB ≃ 100 km
families clearly contradicts the observations, since we observe
almost no LHB families of this size.

4.2. Constraints from (4) Vesta

The asteroid (4) Vesta presents a significant constraint for col-
lisional models, being a differentiated body with a preserved
basaltic crust (Keil 2002) and a 500 km large basin on its surface
(a feature indicated by the photometric analysis of Cellino et al.
1987), which is significantly younger than 4 Gyr (Marchi et al.
2012). It is highly unlikely that Vesta experienced a catastrophic
disruption in the past, and even large cratering events were lim-
ited. We thus have to check the number of collisions between
one D = 530 km target and D ≃ 35 km projectiles, which are
capable of producing the basin and the Vesta family (Thomas
et al. 1997). According to Table 6, the predicted number of such
events does not exceed ∼2, so given the stochasticity of the re-
sults there is a significant chance that Vesta indeed experienced
zero such impacts during the LHB.

4.3. Simulations with the Boulder code

To confirm results of the simple stationary model, we also per-
formed simulations with the Boulder code. We modified the code
to include a time-dependent collisional probability Pi(t) and im-
pact velocity Vimp(t) of the cometary-disk population.

We started a simulation with a setup for the cometary disk
resembling the nominal case from Table 6. The scaling law is
described by Eq. (3) with the parameters given in Table 7, suit-
able for asteroids (basalt) and comets (water ice).

The intrinsic probabilities Pi = 3.1 × 10−18 km−2 yr−1 and
velocities Vimp = 5.28 km s−1 for the MB vs MB collisions were
again taken from the work of Dahlgren (1998). We do not ac-
count for comet-comet collisions since their evolution is dom-
inated by the dynamical decay. The initial SFD of the main
belt was similar to the one in Sect. 3, qa = −4.2, qb = −2.2,
qc = −3.5, D1 = 80 km, D2 = 14 km, and only the normalisation
was increased up to Nnorm(D > D1) = 560 in this case.

The resulting SFDs of 100 independent simulations with dif-
ferent random seeds are shown in Fig. 5 (middle column). The
number of LHB families (approximately 10 with DPB ≃ 200 km
and 200 with DPB ≃ 100 km) is even larger compared to the sta-
tionary model, as expected, because we had to start with a larger
main belt to get a good fit of the currently observed MB after
4 Gyr of collisional evolution.

To conclude, the stationary model and the Boulder code give
results that are compatible with each other, but that clearly con-
tradict the observed production function of families. In particu-
lar, they predict far too many families with D = 100 km parent
bodies. At first sight, this may be interpreted as proof that there
was no cometary LHB on the asteroids. Before jumping to this
conclusion, however, one has to investigate whether there are bi-
ases against identifying of DPB = 100 km families. In Sects. 5–9
we discuss several mechanisms that all contribute, at some level,
to reducing the number of observable DPB = 100 km families
over time. They are addressed in order of relevance, from the
least to the most effective.

5. Families overlap

Because the number of expected DPB ≥ 100 km LHB families
is very high (of the order of 100) we now want to verify if these
families can overlap in such a way that they cannot be distin-
guished from each other and from the background. We thus took
192 main belt bodies with D ≥ 100 km and selected randomly
100 of them that will break apart. For each one we created an ar-
tificial family with 102 members, assume a size-dependent ejec-
tion velocity V ∝ 1/D (with V = 50 m/s for D = 5 km) and
the size distribution resembling that of the Koronis family. The
choice of the true anomaly and the argument of perihelion at the
instant of the break-up event was random. We then calculated
proper elements (ap, ep, sin Ip) for all bodies. This type of anal-
ysis is in some respects similar to the work of Bendjoya et al.
(1993).
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Fig. 8. Proper semimajor axis ap vs. proper eccentricity ep for 100 syn-
thetic families created in the main belt. It is the initial state, shortly after
disruption events. We assume the SFD of bodies in each synthetic fam-
ily similar to that of the Koronis family (down to D ≃ 2 km). Break-ups
with the true anomaly f ≃ 0 to 30◦ and 150◦ to 180◦ are more easily
visible on this plot, even though the choice of both f and the argument
of perihelion ̟ was random for all families.

According to the resulting Fig. 8 the answer to the question
is simple: the families do not overlap sufficiently, and they can-
not be hidden that way. Moreover, if we take only bigger bod-
ies (D > 10 km), these would be clustered even more tightly.
The same is true for proper inclinations, which are usually more
clustered than eccentricities, so families could be more easily
recognised.

6. Dispersion of families by the Yarkovsky drift

In this section, we model long-term evolution of synthetic fami-
lies driven by the Yarkovsky effect and chaotic diffusion. For one
synthetic family located in the outer belt, we have performed a
full N-body integration with the SWIFT package (Levison &
Duncan 1994), which includes also an implementation of the
Yarkovsky/YORP effect (Brož 2006) and second-order integra-
tor by Laskar & Robutel (2001). We included 4 giant planets in
this simulation. To speed-up the integration, we used ten times
smaller sizes of the test particles and thus a ten times shorter
time span (400 Myr instead of 4 Gyr). The selected time step is
∆t = 91 d. We computed proper elements, namely their differ-
ences ∆ap,∆ep,∆ sin Ip between the initial and final positions.

Then we used a simple Monte-Carlo approach for the
whole set of 100 synthetic families – we assigned a suitable
drift ∆ap(D) in semimajor axis, and also drifts in eccentric-
ity ∆ep and inclination ∆ sin Ip to each member of 100 families,
respecting asteroid sizes, of course. This way we account for the
Yarkovsky semimajor axis drift and also for interactions with
mean-motion and secular resonances. This Monte-Carlo method
tends to smear all structures, so we can regard our results as the
upper limits for dispersion of families.

While the eccentricities of small asteroids (down to D ≃
2 km) seem to be dispersed enough to hide the families, there are
still some persistent structures in inclinations, which would be
observable today. Moreover, large asteroids (D ≥ 10 km) seem
to be clustered even after 4 Gyr, so that more than 50% of fami-
lies can be easily recognised against the background (see Fig. 9).
We thus can conclude that it is not possible to disperse the fami-
lies by the Yarkovsky effect alone.
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Fig. 9. Proper semimajor axis ap vs. proper inclination sin Ip for
100 synthetic asteroid families (black dots), evolved over 4 Gyr using
a Monte-Carlo model. The assumed SFDs correspond to the Koronis
family, but we show only D > 10 km bodies here. We also include
D > 10 km background asteroids (grey dots) for comparison.

7. Reduced physical lifetime of comets

in the MB crossing zone

To illustrate the effects that the physical disruption of comets
(due to volatile pressure build-up, amorphous/crystalline phase
transitions, spin-up by jets, etc.) can have on the collisional
evolution of the asteroid belt, we adopted here a simplistic as-
sumption. We considered that no comet disrupt beyond 1.5 AU,
whereas all comets disrupt the first time that they penetrate in-
side 1.5 AU. Both conditions are clearly not true in reality: some
comets are observed to blow up beyond 1.5 AU, and others are
seen to survive on an Earth-crossing orbit. Thus we adopted our
disruption law just as an example of a drastic reduction of the
number of comets with small perihelion distance, as required to
explain the absence of evidence for a cometary bombardment on
the Moon.

We then removed all those objects from output of comet evo-
lution during the LHB that had a passage within 1.5 AU from
the Sun, from the time of their first passage below this thresh-
old. We then recomputed the mean intrinsic collision probabil-
ity of a comet with the asteroid belt. The result is a factor ∼3
smaller than when no physical disruption of comets is taken into
account as in Fig. 6. The mean impact velocity with asteroids
also decreases, from 12 km s−1 to 8 km s−1.

The resulting number of asteroid disruption events is thus
decreased by a factor ∼4.5, which can be also seen in the pro-
duction function shown in Fig. 5 (right column). The production
of families with DPB = 200–400 km is consistent with observa-
tions, while the number of DPB ≃ 100 km families is reduced to
30–70, but is still too high, by a factor 2–3. More importantly,
the slope of the production function remains steeper than that
of the observed function. Thus, our conclusion is that physical
disruptions of comets alone cannot explain the observation, but
may be an important factor to keep in mind for reconciling the
model with the data.

8. Perturbation of families by migrating planets

(a jumping-Jupiter scenario)

In principle, families created during the LHB may be perturbed
by still-migrating planets. It is an open question what the ex-
act orbital evolution of planets was at that time. Nevertheless, a
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Fig. 10. Proper semimajor axis vs. proper inclination for four synthetic families (distinguished by symbols) as perturbed by giant-planet migration.
Left panel: the case when families were evolved over the “jump” due to the encounter between Jupiter and Neptune. Right panel: the families
created just after the jump and perturbed only by later phases of migration.

plausible scenario called a “jumping Jupiter” was presented by
Morbidelli et al. (2010). It explains major features of the main
belt (namely the paucity of high-inclination asteroids above the
ν6 secular resonance), and is consistent with amplitudes of the
secular frequencies of both giant and terrestrial planets and also
with other features of the solar system. In this work, we thus
investigated this particular migration scenario.

We used the data from Morbidelli et al. (2010) for the orbital
evolution of giant planets. We then employed a modified SWIFT
integrator, which read orbital elements for planets from an in-
put file and calculated only the evolution of test particles. Four
synthetic families located in the inner/middle/outer belt were in-
tegrated. We started the evolution of planets at various times,
ranging from t0 to (t0 + 4 Myr) and stopped the integration at
(t0 + 4 My), in order to test the perturbation on families created
in different phases of migration. Finally, we calculated proper
elements of asteroids when the planets do not migrate anymore.
(We also had to move planets smoothly to their exact current
orbital positions.)

The results are shown in Fig. 10. While the proper eccentric-
ities seem to be sufficiently perturbed and families are dispersed
even when created at late phases of migration, the proper in-
clinations are not very dispersed, except for families in the outer
asteroid belt that formed at the very beginning of the giant planet
instability (which may be unlikely, as there must be a delay be-
tween the onset of planet instability and the beginning of the
cometary flux through the asteroid belt). In most cases, the LHB
families could still be identified as clumps in semi-major axis vs
inclination space. We do not see any of such (ap, sin Ip)-clumps,
dispersed in eccentricity, in the asteroid belt6.

The conclusion is clear: it is not possible to destroy low-e and
low-I families by perturbations arising from giant-planet migra-
tion, at least in the case of the “jumping-Jupiter” scenario7.

9. Collisional comminution of asteroid families

We have already mentioned that the comminution is not suffi-
cient to destroy a DPB = 100 km family in the current environ-
ment of the main belt (Bottke et al. 2005).

6 High-inclination families would be dispersed much more owing to
the Kozai mechanism, because eccentricities that are sufficiently per-
turbed exhibit oscillations coupled with inclinations.
7 The currently non-existent families around (107) Camilla and
(121) Hermione – inferred from the existence of their satellites – cannot
be destroyed in the jumping-Jupiter scenario, unless the families were
actually pre-LHB and had experienced the jump.

However, the situation in case of the LHB scenario is differ-
ent. Both the large population of comets and the several-times
larger main belt, which has to withstand the cometary bombard-
ment, contribute to the enhanced comminution of the LHB fam-
ilies. To estimate the amount of comminution, we performed
the following calculations: i) for a selected collisional simula-
tion, whose production function is close to the average one, we
recorded the SFDs of all synthetic families created in the course
of time; ii) for each synthetic family, we restarted the simula-
tion from the time t0 when the family was crated until 4 Gyr and
saved the final SFD, i.e. after the comminution. The results are
shown in Fig. 11.

It is now important to discuss criteria, which enable us to
decide if the comminutioned synthetic family would indeed be
observable or not. We use the following set of conditions: DPB ≥
50 km, DLF ≥ 10 km (largest fragment is the first or the second
largest body, where the SFD becomes steep), LR/PB < 0.5 (i.e. a
catastrophic disruption). Furthermore, we define Nmembers as the
number of the remaining family members larger than observa-
tional limit Dlimit ≃ 2 km and use a condition Nmembers ≥ 10. The
latter number depends on the position of the family within the
main belt, though. In the favourable “almost-empty” zone (be-
tween ap = 2.825 and 2.955 AU), Nmembers ≥ 10 may be valid,
but in a populated part of the MB one would need Nmembers � 100
to detect the family. The size distributions of synthetic families
selected this way resemble the observed SFDs of the main belt
families.

According to Fig. 5 (3rd row), where we can see the
production functions after comminution for increasing values
of Nmembers, families with DPB = 200–400 km remain more
prominent than DPB ≃ 100 km families simply because they
contain much more members with D > 10 km that survive in-
tact. Our conclusion is thus that comminution may explain the
paucity of the observed DPB ≃ 100 km families.

10. “Pristine zone” between the 5:2

and 7:3 resonances

We now focus on the zone between the 5:2 and 7:3 mean-motion
resonances, with ap = 2.825 to 2.955 AU, which is not as pop-
ulated as the surrounding regions of the main belt (see Fig. 1).
This is a unique situation, because both bounding resonances are
strong enough to prevent any asteroids from outside to enter this
zone owing the Yarkovsky semimajor axis drift. Any family for-
mation event in the surroundings has only a minor influence on
this narrow region. It thus can be called “pristine zone” because
it may resemble the belt prior to creation of big asteroid families.
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Fig. 11. Left panel: SFDs of the observed asteroid families. Middle panel: SFDs of 378 distinct synthetic families created during one of the
collisional simulations of the MB and comets. Initially, all synthetic SFDs are very steep, in agreement with SPH simulations (Durda et al. 2007).
We plot only the SFDs that fulfil the following criteria: DPB ≥ 50 km, DLF ≥ 10 km, LR/PB < 0.5 (i.e. catastrophic disruptions). Right panel:
the evolved SFDs after comminution. Only a minority of families are observable now, since the number of remaining members larger than the
observational limit Dlimit ≃ 2 km is often much smaller than 100. The SFD that we use for the simulation in Sect. 10 is denoted by red.
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Fig. 12. “Pristine zone” of the main belt (ap = 2.825 to 2.955 AU) displayed on the proper eccentricity ep vs. proper inclination sin Ip plot. Left
panel: the sizes of symbols correspond to the sizes of asteroids, the families are denoted by designations. Right panel: a subset of bodies for which
SDSS data are available; the colours of symbols correspond to the SDSS colour indices a∗ and i − z (Parker et al. 2008).

We identified nine previously unknown small families that
are visible on the (ep, sin Ip) plot (see Fig. 12). They are
confirmed by the SDSS colours and WISE albedos, too.
Nevertheless, there is only one big and old family in this zone
(DPB ≥ 100 km), i.e. Koronis.

That at most one LHB family (Koronis) is observed in the
“pristine zone” can give us a simple probabilistic estimate for
the maximum number of disruptions during the LHB. We take
the 192 existing main belt bodies which have D ≥ 100 km and
select randomly 100 of them that will break apart. We repeat this
selection 1000 times and always count the number of families in
the pristine zone. The resulting histogram is shown in Fig. 13. As
we can see, there is very low (<0.001) probability that the num-
ber of families in the pristine zone is zero or one. On average we
get eight families there, i.e. about half of the 16 asteroids with
D ≥ 100 km present in this zone. It seems that either the number
of disruptions should be substantially lower than 100 or we ex-
pect to find at least some “remnants” of the LHB families here.

It is interesting that the SFD of an old comminutioned fam-
ily is very flat in the range D = 1 to 10 km (see Fig. 11) – simi-
lar to those of some of the “less certain” observed families! We
may speculate that the families like (918) Itha, (5567) Durisen,

 0

 50

 100

 150

 200

 250

 0  2  4  6  8  10  12  14  16

N

Nfamilies between a = 2.825 - 2.955 AU

Fig. 13. Histogram for the expected number of LHB families located in
the “pristine zone” of the main belt.

(12573) 1999 NJ53, or (15454) 1998 YB3 (all from the pristine
zone) are actually remnants of larger and older families, even
though they are denoted as young. It may be that the age esti-
mate based on the (ap,H) analysis is incorrect since small bodies
were destroyed by comminution and spread by the Yarkovsky ef-
fect too far away from the largest remnant, so they can no longer
be identified with the family.
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Fig. 14. Proper eccentricity vs. proper inclination of one synthetic
old/comminutioned family evolved dynamically over 4 Gyr. Only a few
family members (N ≃ 101) remained from the original number of
N(D ≥ 2 km) ≃ 102. The scales are the same as in Fig. 12, so we
can compare it easily to the “pristine zone”.

Finally, we have to ask an important question: what does
an old/comminutioned family with DPB ≃ 100 km look like in
proper-element space? To this aim, we created a synthetic fam-
ily in the “pristine zone”, and assumed the family has Nmembers ≃
100 larger than Dlimit ≃ 2 km and that the SFD is already flat in
the D = 1 to 10 km range. We evolved the asteroids up to 4 Gyr
due to the Yarkovsky effect and gravitational perturbations, us-
ing the N-body integrator as in Sect. 6. Most of the D ≃ 2 km
bodies were lost in the course of the dynamical evolution, of
course. The resulting family is shown in Fig. 14. We can also
imagine that this family is placed in the pristine zone among
other observed families, to get a feeling of whether it is easily
observed or not (refer to Fig. 12).

It is clear that such family is hardly observable even in the
almost empty zone of the main belt! Our conclusion is that
the comminution (as given by the Boulder code) can explain
the paucity of DPB ≃ 100 km LHB families, since we can hardly
distinguish old families from the background.

11. Conclusions

In this paper we investigated the cometary bombardment of the
asteroid belt at the time of the LHB, in the framework of the Nice
model. There is much evidence of a high cometary flux through
the giant planet region, but no strong evidence of a cometary
bombardment on the Moon. This suggests that many comets
broke up on their way to the inner solar system. By investigat-
ing the collisional evolution of the asteroid belt and comparing
the results to the collection of actual collisional families, our aim
was to constrain whether the asteroid belt experienced an intense
cometary bombardment at the time of the LHB and, if possible,
constrain the intensity of this bombardment.

Observations suggest that the number of collisional families
is a very shallow function of parent-body size (that we call in
this paper the “production function”). We show that the colli-
sional activity of the asteroid belt as a closed system, i.e. without
any external cometary bombardment, in general does not pro-
duce such a shallow production function. Moreover, the number
of families with parent bodies larger than 200 km in diameter
is in general too small compared to the observations. However,
there is a lot of stochasticity in the collisional evolution of the

asteroid belt, and about 5% of our simulations actually fit the
observational constraints (shallowness of the production func-
tion and number of large families) quite well. Thus, in principle,
there is no need for a bombardment due to external agents (i.e.
the comets) to explain the asteroid family collection, provided
that the real collisional evolution of the main belt was a “lucky”
one and not the “average” one.

If one accounts for the bombardment provided by the comets
crossing the main belt at the LHB time, predicted by the Nice
model, one can easily justify the number of observed families
with parent bodies larger than 200 km. However, the resulting
production function is steep, and the number of families pro-
duced by parent bodies of 100 km is almost an order of magni-
tude too large.

We have investigated several processes that may decimate
the number of families identifiable today with 100 km parent
bodies, without considerably affecting the survival of families
formed from larger parent bodies. Of all these processes, the col-
lisional comminution of the families and their dispersal by the
Yarkovsky effect are the most effective ones. Provided that the
physical disruption of comets due to activity reduced the effec-
tive cometary flux through the belt by a factor of ≈5, the result-
ing distribution of families (and consequently the Nice model) is
consistent with observations.

To better quantify the effects of various cometary-disruption
laws, we computed the numbers of asteroid families for differ-
ent critical perihelion distances qcrit and for different disruption
probabilities pcrit of comets during a given time step (∆t = 500 yr
in our case). The results are summarised in Fig. 15. Provided that
comets are disrupted frequently enough, namely the critical peri-
helion distance has to be at least qcrit � 1 AU, while the probabil-
ity of disruption is pcrit = 1, the number of DPB ≥ 100 km fami-
lies drops by the aforementioned factor of ≈5. Alternatively, qcrit
may be larger, but then comets have to survive multiple perihe-
lion passages (i.e. pcrit have to be lower than 1). It would be very
useful to test these conditions by independent models of the evo-
lution and physical disruptions of comets. Such additional con-
straints on cometary-disruption laws would then enable study of
the original SFD of the cometary disk in more detail.

We can also think of two “alternative” explanations: i) phys-
ical lifetime of comets was strongly size-dependent so that
smaller bodies break up easily compared to bigger ones; ii) high-
velocity collisions between hard targets (asteroids) and very
weak projectiles (comets) may result in different outcomes than
in low-velocity regimes explored so far. Our work thus may also
serve as a motivation for further SPH simulations.

We finally emphasize that any collisional/dynamical mod-
els of the main asteroid belt would benefit from the following
advances:

i) determination of reliable masses of asteroids of various
classes. This may be at least partly achieved by the Gaia
mission in the near future. Using up-to-date sizes and shape
models (volumes) of asteroids one can then derive their den-
sities, which are directly related to ages of asteroid families.

ii) Development of methods for identifying asteroid fami-
lies and possibly targeted observations of larger asteroids
addressing their membership, which is sometimes critical for
constructing SFDs and for estimating parent-body sizes.

iii) An extension of the SHP simulations for both smaller and
larger targets, to assure that the scaling we use now is
valid. Studies and laboratory measurements of equations of
states for different materials (e.g. cometary-like, porous) are
closely related to this issue.
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Fig. 15. Numbers of collisional families for different critical perihelion
distances qcrit at which comets break up and disruption probabilities pcrit

during one time step (∆t = 500 yr). In the top panel, we vary qcrit while
keeping pcrit = 1 constant. In the bottom panel, qcrit = 1.5 AU is con-
stant and we vary pcrit. We always show the number of catastrophic
disruptions with parent-body sizes DPB ≥ 100 km (red line) and 200 km
(black line). The error bars indicate typical (1-σ) spreads of Boulder
simulations with different random seeds. The observed numbers of cor-
responding families are indicated by thin dotted lines.

The topics outlined above seem to be the most urgent develop-
ments to be pursued in the future.
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Table 1. A list of asteroid families and their physical parameters.

Designation vcutoff N pV Tax. DPB DDurda LR/PB vesc q1 q2 Age Notes, references
m/s km km m/s Gyr

3 Juno 50 449 0.250 S 233 ? 0.999 139 −4.9 −3.2 <0.7 cratering, Nesvorný et al. (2005)
4 Vesta 60 11 169 0.351w V 530 425! 0.995 314 −4.5 −2.9 1.0 ± 0.25 cratering, Marchi et al. (2012)
8 Flora 60 5284 0.304w S 150c 160 0.81–0.68 88 −3.4 −2.9 1.0 ± 0.5 cut by ν6 resonance, LL chondrites

10 Hygiea 70 3122 0.055 C,B 410 442 0.976–0.78 243 −4.2 −3.2 2.0 ± 1.0 LHB? cratering
15 Eunomia 50 2867 0.187 S 259 292 0.958–0.66 153 −5.6 −2.3 2.5 ± 0.5 LHB? Michel et al. (2002)
20 Massalia 40 2980 0.215 S 146 144 0.995 86 −5.0 −3.0 0.3 ± 0.1
24 Themis 70 3581 0.066 C 268c 380–430! 0.43–0.09 158 −2.7 −2.4 2.5 ± 1.0 LHB?
44 Nysa (Polana) 60 9957 0.278w S 81c ? 0.65 48 −6.9 −2.6(0.5) <1.5 overlaps with the Polana family
46 Hestia 65 95 0.053 S 124 153 0.992–0.53 74 −3.3 −2.0 <0.2 cratering, close to J3/1 resonance
87 Sylvia 110 71 0.045 C/X 261 272 0.994–0.88 154 −5.2 −2.4 1.0–3.8 LHB? cratering, Vokrouhlický et al. (2010)

128 Nemesis 60 654 0.052 C 189 197 0.987–0.87 112 −3.4 −3.3 0.2 ± 0.1
137 Meliboea 95 199 0.054 C 174c 240–290! 0.59–0.20 102 −1.9 −1.8 <3.0 old?
142 Polana (Nysa) 60 3443 0.055w C 75 ? 0.42 45 −7.0 −3.6 <1.5 overlaps with Nysa
145 Adeona 50 1161 0.065 C 171c 185 0.69–0.54 101 −5.2 −2.8 0.7 ± 0.5 cut by J5/2 resonance
158 Koronis 50 4225 0.147 S 122c 170-180 0.024–0.009 68 −3.6(0.3) −2.3 2.5 ± 1.0 LHB?
163 Erigone 60 1059 0.056 C/X 79 114 0.79–0.26 46 ? −3.6 0.3 ± 0.2
170 Maria 80 3094 0.249w S 107c 120-130 0.070–0.048 63 −2.5(0.3) −2.8 3.0 ± 1.0 LHB?
221 Eos 50 5976 0.130 K 208c 381! 0.13–0.020 123 −3.5 −2.1 1.3 ± 0.2
283 Emma 75 345 0.050 – 152 185 0.92–0.51 90 ? −3.2 <1.0 satellite
293 Brasilia 60 282 0.175w C/X 34 ? 0.020 20 −1.4(0.5) −3.7 0.05 ± 0.04 (293) is interloper
363 Padua (Lydia) 50 596 0.097 C/X 76 106 0.045–0.017 45 −1.8 −3.0 0.3 ± 0.2
396 Aeolia 20 124 0.171 C/X 35 39 0.966–0.70 20 ? −4.3 <0.1 cratering
410 Chloris 90 259 0.057 C 126c 154 0.952–0.52 74 ? −2.1 0.7 ± 0.4
490 Veritas – – – C,P,D – 100–177 – – – – 0.0083 ± 0.0005 (490) is likely interloper (Michel et al. 2011)
569 Misa 70 543 0.031 C 88c 117 0.58–0.25 52 −3.9 −2.3 0.5 ± 0.2
606 Brangane 30 81 0.102 S 37 46 0.92–0.48 22 ? −3.8 0.05 ± 0.04
668 Dora 50 837 0.054 C 85 165! 0.031–0.004 50 −4.2 −1.9 0.5 ± 0.2
808 Merxia 50 549 0.227 S 37 121! 0.66–0.018 22 −2.7 −3.4 0.3 ± 0.2
832 Karin – – – S – 40 – – – – 0.0058 ± 0.0002
845 Naema 30 173 0.081 C 77c 81 0.35–0.30 46 −5.2 −2.9 0.1 ± 0.05
847 Agnia 40 1077 0.177 S 39 61 0.38–0.10 23 −2.8 −3.1 0.2 ± 0.1

1128 Astrid 50 265 0.079 C 43c ? 0.52 25 −1.7 −2.6 0.1 ± 0.05
1272 Gefion 60 19 477 0.20 S 74c 100–150! 0.001–0.004 60 −4.3 −2.5 0.48 ± 0.05 Nesvorný et al. (2009), L chondrites
1400 Tirela 80 1001 0.070 S 86 – 0.12 86 −4.2 −3.4 <1.0
1658 Innes 70 621 0.246w S 27 ? 0.14 16 −4.9 −3.5 <0.7 (1644) Rafita is interloper
1726 Hoffmeister 40 822 0.035 C 93c 134 0.022–0.007 55 −4.5 −2.7 0.3 ± 0.2
3556 Lixiaohua 60 439 0.044w C/X 62 220! 0.029–0.001 35 −6.1 −3.3 0.15 ± 0.05 Novaković et al. (2010)
3815 Konig 60 177 0.044 C 33 ? 0.32 20 ? −3.0 <0.1 (1639) Bower is interloper
4652 Iannini – – – S – – – – – – 0.005 ± 0.005

Notes. There are the following columns: vcutoff is the selected cut–off velocity for the hierarchical clustering, N the corresponding number of family members, pV the adopted value of the geometric
albedo for family members which do not have measured diameters (from Tedesco et al. 2002 or Masiero et al. 2011, a letter “w” indicates it was necessary to use the WISE data to obtain median/mean
albedo), taxonomic classification (according to the Sloan DSS MOC 4 colours, Parker et al. 2008), DPB parent body size, an additional “c” letter indicates that we prolonged the SFD slope down
to zero D (a typical uncertainty is 10%), DDurda PB size inferred from SPH simulations (Durda et al. 2007), an exclamation mark denotes a significant mismatch with DPB, LR/PB the ratio of the
volumes of the largest remnant to the parent body (an uncertainty corresponds to the last figure, a range is given if both DPB and DDurda are known), vesc the escape velocity, q1 the slope of the SFD
for larger D, q2 the slope for smaller D (a typical uncertainty of the slopes is 0.2, if not indicated otherwise), dynamical age including its uncertainty.
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Table 1. continued.

Designation vcutoff N pV Tax. DPB DDurda LR/PB vesc q1 q2 Age Notes, references
m/s km km m/s Gyr

9506 Telramund 40 146 0.217w S 22 – 0.05 13 −3.9 −3.7 <0.5
18 405 1993 FY12 50 44 0.171w C/X 15 – 0.23 15 −2.4 −2.4 <0.2 cut by J5/2 resonance

158 Koronis(2) – – – S 35 – – – – – 0.015 ± 0.005 cratering, Molnar & Haegert (2009)
298 Baptistina 50 1249 0.160w C/X 35c – 0.17 21 −3.6 −2.4 <0.3 overlaps with the Flora family
434 Hungaria 200 4598 0.35 E 25 – 0.15 15 −5.9 −3.1 0.5 ± 0.2 Warner et al. (2010)
627 Charis 80 235 0.081 S >60 – 0.53 35 ? −3.4 <1.0
778 Theobalda 85 154 0.060 C 97c – 0.29 57 ? −2.9 0.007 ± 0.002 cratering, Novaković (2010)

302 Clarissa 30 75 0.054 C 39 – 0.96 23 ? −3.1 <0.1 cratering, Nesvorný (2010)
656 Beagle 24 63 0.089 C 64 – 0.56 38 −1.3 −1.4 <0.2
752 Sulamitis 60 191 0.042 C 65 – 0.83 39 −6.5 −2.3 <0.4

1189 Terentia 50 18 0.070 C 56 – 0.990 33 ? −2.6? <0.2 cratering
1892 Lucienne 100 57 0.223w S 14 – 0.71 8 ? −4.4 <0.3
7353 Kazvia 50 23 0.206w S 16 – 0.57 8 ? −1.8 <0.1

10 811 Lau 100 15 0.273w S 11 – 0.77 5 ? −2.8 <0.1
18 466 1995 SU37 40 71 0.241w S 14 – 0.045 7 ? −5.0 <0.3

1270 Datura – – – S – – – – – – 0.00045–0.00060 identified in osculating-element space,
14 627 Emilkowalski – – – C/X – – – – – – 0.00019–0.00025 Nesvorný & Vokrouhlický (2006)
16 598 1992 YC2 – – – S – – – – – – 0.00005–0.00025
21 509 Lucascavin – – – S – – – – – – 0.0003–0.0008

2384 Schulhof – – – S – – – – – – 0.0007–0.0009 Vokrouhlický & Nesvorný (2011)

27 Euterpe 70 268 0.260w S 118c – 0.998 70 −2.9 −2.2 <1.0 cratering, Parker et al. (2008)
375 Ursula 80 777 0.057w C 203c 240–280 0.71–0.43 120 −4.1 −2.3 <3.5 old?

1044 Teutonia 50 1950 0.343 S 27–120 – 0.17–0.98 16–71 −3.5 −3.9 <0.5 depends on (5) Astraea membership
1296 Andree 60 401 0.290w S 17–74 – 0.010–0.95 10–43 ? −2.9(0.5) <1.0 depends on (79) Eurynome membership
2007 McCuskey 34 236 0.06 C 29 – 0.41 17 ? −5.6 <0.5 overlaps with Nysa/Polana
2085 Henan 54 946 0.200w S 27 – 0.13 16 −4.2 −3.2 <1.0
2262 Mitidika 83 410 0.064w C 49-79c – 0.037–0.81 26–46 −4.5 −2.2 <1.0 depends on (785) Zwetana membership,

(2262) is interloper, overlaps with Juno

2 Pallas 200 64 0.163 B 498c – 0.9996 295 ? −2.2 <0.5 high-I, Carruba (2010)
25 Phocaea 160 1370 0.22 S 92 – 0.54 55 −3.1 −2.4 <2.2 old? high-I/e, cut by ν6 resonance, Carruba

(2009)
148 Gallia 150 57 0.169 S 98 – 0.058 58 ? −3.6 <0.45 high-I
480 Hansa 150 651 0.256 S 60 – 0.83 35 −4.9 −3.2 <1.6 high-I
686 Gersuind 130 178 0.146 S 52c – 0.48 40 ? −2.7 <0.8 high-I, Gil-Hutton (2006)
945 Barcelona 110 129 0.248 S 28 – 0.77 16 ? −3.5 <0.35 high-I, Foglia & Masi (2004)

1222 Tina 110 37 0.338 S 21 – 0.94 12 ? −4.1 <0.15 high-I
4203 Brucato – – – – – – – – – – <1.3 in frequency space

31 Euphrosyne 100 851 0.056 C 259 – 0.97 153 −4.9 −3.9 <1.5 cratering, high-I, Foglia & Massi (2004)
702 Alauda 120 791 0.070 B 218c 290-330! 0.025 129 −3.9 −2.4 <3.5 old? high-I, cut by J2/1 resonance, satellite

(Margot & Rojo 2007)

107 Camilla ? ? 0.054 – >226 ? ? ? ? ? 3.8? LHB? Cybele region, non-existent today,
121 Hermione ? ? 0.058 – >209 ? ? ? ? ? 3.8? LHB? Vokrouhlický et al. (2010)
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Table 1. continued.

Designation vcutoff N pV Tax. DPB DDurda LR/PB vesc q1 q2 Age Notes, references
m/s km km m/s Gyr

1303 Luthera 100 142 0.043 X 92 – 0.81 54 −3.9 −2.7 <0.5 above (375) Ursula
1547 Nele 20 57 0.311w X 19 – 0.85 11 ? −2.8(0.3) <0.04 close to (3) Juno
2732 Witt 60 985 0.260w S 25 – 0.082 15 −4.0(0.3) −3.8 <1.0 only part with sin I > 0.099, above (363)

Padua

81 Terpsichore 120 70 0.052 C 119 – 0.993 71 ? −4.4 <0.5 cratering, less-certain families in the “pris-
tine zone”

709 Fringilla 140 60 0.047 X 99c 130-140 0.93–0.41 59 −6.2 −1.7 <2.5 old?
918 Itha 140 63 0.23 S 38 – 0.16 22 −2.7 −1.5 <1.5 shallow SFD

5567 Durisen 100 18 0.044w X 42 – 0.89 25 ? −1.7 <0.5 shallow SFD
5614 Yakovlev 100 34 0.05 C 22 – 0.28 13 ? −3.2 <0.2

12 573 1999 NJ53 40 13 0.190w C 15 – 0.13 9 ? −2.0(0.5) <0.6 incomplete SFD
15 454 1998 YB3 50 14 0.054w C 21 – 0.41 13 ? −1.6(0.3) <0.5 shallow SFD
15 477 1999 CG1 110 144 0.098w S 25 – 0.065 14 ? −4.6(0.5) <1.5
36 256 1999 XT17 60 30 0.210w S 17 – 0.037 10 ? −1.4(0.5) <0.3 shallow SFD
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M. Brož a,⇑, A. Morbidelli b

a Institute of Astronomy, Charles University, Prague, V Holešovičkách 2, 18000 Prague 8, Czech Republic
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a b s t r a c t

We study K-type asteroids in the broad surroundings of the Eos family because they seem to be inti-
mately related, according to their colours measured by the Sloan Digital Sky Survey. Such ‘halos’ of aster-
oid families have been rarely used as constraints for dynamical studies to date. We explain its origin as
bodies escaping from the family ‘core’ due to the Yarkovsky semimajor-axis drift and interactions with
gravitational resonances, mostly with the 9/4 mean-motion resonance with Jupiter at 3.03 AU. Our N-
body dynamical model allows us to independently estimate the age of the family 1.5–1.9 Gyr. This is
approximately in agreement with the previous age estimate by Vokrouhlický et al. (2006) based on a sim-
plified model (which accounts only for changes of semimajor axis). We can also constrain the geometry of
the disruption event which had to occur at the true anomaly f ’ 120–180�.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Eos family is one of the best-studied families in the main
asteroid belt. Although we do not attempt to repeat a thorough re-
view presented in our previous paper Vokrouhlický et al. (2006),
we recall that the basic structure of the family is the following: (i)
there is a sharp inner boundary coinciding with the 7/3 mean-mo-
tion resonance with Jupiter at approximately 2.96 AU; (ii) the 9/4
mean-motion resonance with Jupiter divides the family at 3.03 AU
and asteroids with larger sizes are less numerous at larger semima-
jor axes; (iii) there is an extension of the family along the z1 -
� g � g6 + s � s6 secular resonance towards lower values of proper
semimajor axis ap, eccentricity ep and inclination sin Ip. All these fact
seem to be determined by the interaction between the orbits drifting
due to the Yarkovsky effect in semimajor axis and the gravitational
resonances which may affect eccentricities and inclinations.

In this work, we focus on a ‘halo’ of asteroids around the nom-
inal Eos family which is clearly visible in the Sloan Digital Sky Sur-
vey, Moving Object Catalogue version 4 (SDSS, Parker et al., 2008).
As we shall see below, both the ‘halo’ and the family have the same
SDSS colours and are thus most likely related to each other. Luckily,
the Eos family seems to be spectrally distinct in this part of the
main belt (several Eos family members were classified as K-types
by DeMeo et al. (2009)) and it falls in between S-complex and C/
X-complex asteroids in terms of the SDSS colour indices. Detailed
spectroscopic observations were also performed by Zappalà et al.
(2000) which confirmed that asteroids are escaping from the Eos
family due to the interaction with the J9/4 resonance.

Our main motivation is to understand the origin of the whole
halo and to explain its unusually large spread in eccentricity and
inclination which is hard to reconcile with any reasonable initial
velocity field. Essentially, this is a substantial extension of work
of Vokrouhlický et al. (2006), but here we are interested in bodies
which escaped from the nominal family.

We were also curious if such halos may be somehow related to
the giant-planet migration which would have caused significant
gravitational perturbations of all small-body populations (Morbid-
elli et al., 2005). Of course, in such a case the process is size-inde-
pendent and moreover the age of the corresponding family would
have to approach 3.9 Gyr in order to match the Nice model of
giant-planet migration.

In Section 2, we define the Eos halo and core populations. Sec-
tion 3 is devoted to a description of our dynamical model and to
a comparison with the SDSS observations. We discuss conse-
quences of our results in Section 4.

2. A discernment of the family core and halo

In this section, we proceed as follows: (i) we use a hierarchical
clustering method to extract the nominal Eos family; (ii) we look at
the members of the family with SDSS colours and we define a col-
our range; (iii) we select all asteroids with Eos-like colours from
the SDSS catalogue; finally, (iv) we define a halo and core using
simple ‘boxes’ in the proper-element space.

2.1. Colours of Eos-like asteroids

We want to select asteroids similar to the Eos family, but first
we have to choose a criterion to do so. We thus identify the
nominal Eos family using a hierarchical clustering method (HCM,
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Zappalà et al., 1995) with a suitably low cut-off velocity
vcutoff = 50 m/s (which leads to a similar extent of the family as in
Vokrouhlický et al. (2006)), and extract colour data from the SDSS
catalogue (see Fig. 1). The majority of Eos-family asteroids have
colour indices in the following intervals:

a� 2 ð0:0;0:1Þmag; ð1Þ
i� z 2 ð�0:03;0:08Þmag; ð2Þ

which then serves as a criterion for the selection of Eos-like aster-
oids in the broad surroundings of the nominal family.

We also used an independent method for the selection of Eos-
like asteroids employing a 1-dimensional colour index (which

was used in Parker et al. (2008) to construct their colour palette)
and we verified that our results are not sensitive to this procedure.

2.2. Boundaries in the proper element space

Next, we have to distinguish the family ‘core’ and ‘halo’ popula-
tions on the basis of proper orbital elements (ap,ep, sin Ip) which
will be consistently used for both the SDSS observations and our
dynamical models. We also need to define ‘background’ population
which enables to estimate how many asteroids might have Eos-like
colours by chance. We decided to use a simple box criterion (see
Figs. 2, 3 and Table 1), while the range of proper semimajor axis
is always the same, ap 2 (2.95,3.16) AU.
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Fig. 1. Colour indices i � z and a⁄ (defined in Parker et al. (2008)) of all asteroids
from the Sloan Digital Sky Survey, Moving Object Catalogue version 4 and the
corresponding colour palette (top panel) which is used in the following figures to
distinguish colours of asteroids. We also plot the Eos family members observed by
the SDSS (bottom panel) with small photometric uncertainties (less than 0.03 mag).
The inferred range of colour indices (denoted by the dashed yellow rectangle) is
then used as a criterion for the selection of the Eos-like asteroids in the broad
surroundings of the nominal family. The rectangle does not encompass the outliers.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 2. The proper eccentricity ep vs proper inclination sin Ip plot for asteroids
included in the SDSS MOC 4 catalogue. The proper semimajor axis is confined to the
interval 2.95–3.16 AU, i.e. the Eos family zone. Colour coding corresponds to the
SDSS colour indices according to Fig. 1. The top panel includes all asteroids
(regardless of their colours). The bottom panel shows only a subset of ‘Eos-like’
asteroids with colours similar to those of the Eos members (see Fig. 1, bottom).
Moreover, we denote a box used for the definition of the family ‘core’ (dashed
yellow line) a larger box for the ‘halo’ (dotted green line) and two boxes considered
as ‘background’ (thin black line). For comparison, we also plot positions of the
nominal Eos family members (black dots), identified for the velocity vcutoff = 50 m/s.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Our results do not depend strongly on the selection criterion.
For example, we tested a stringent definition: core was identified
by the HCM at vcutoff = 50 m/s and all remaining bodies in the sur-
roundings belong to the halo. This approach makes the core as
small as possible and the halo correspondingly larger but our re-
sults below (based on halo/core ratios) would be essentially the
same. According to our tests, not even a different definition of
the background/halo boundary changes our results.

We are now ready to construct size–frequency distributions of
individual populations. In order to convert absolute magnitudes
H to diameters D we computed the median geometric albedo
pV = 0.16 from the WISE data (Masiero et al., 2011) for the nominal

Eos family members. The size–frequency distribution (Fig. 4) of the
halo has a cumulative slope N(>D) / Dc equal to c = �3.9 ± 0.2 in
the size range D = 6–15 km and is significantly steeper than that
of the core (c = �2.2 ± 0.1). Even this difference of slopes
(1.7 ± 0.2) indicates that if there a process transporting asteroids
from the core to the halo it must be indeed size-dependent.

A frequency analysis similar as in Carruba and Michtchenko
(2007) or Carruba (2009) shows that there is approximately 5%
of likely z1 resonators (with the frequency g � g6 + s � s6 < 0.300/
yr) in the halo region. However, the concentration of objects inside
and outside the resonance is roughly the same, so that this secular
resonance does not seem to be the most important transport
mechanism.

3. Yarkovsky-driven origin of the halo

Motivated by the differences of the observed SFD’s, we now
want to test a hypothesis that the Eos family halo (or at least a part
of it) was created by the Yarkovsky semimajor-axis drift, which
pushes objects from the core into neighbouring mean-motion res-
onances and consequently to the halo region.

3.1. Initial conditions

We prepared an N-body simulation of the long-term evolution
of the Eos core and halo with the following initial conditions: we
included the Sun and the four giant planets on current orbits. We
applied a standard barycentric correction to both massive objects
and test particles to prevent a substantial shift of secular frequen-
cies (Milani and Knezevic, 1992). The total number of test particles
was 6545, with sizes ranging from D = 104 to 1.5 km and the distri-
bution resembling the observed SFD of the Eos family.

Material properties were as follows: the bulk density
q = 2500 kg/m3, the surface density qs = 1500 kg/m3, the thermal
conductivity K = 0.001 W/m/K, the specific thermal capacity
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this figure legend, the reader is referred to the web version of this article.)

Table 1
The definitions of the core, halo and background populations in terms of intervals of
proper eccentricity ep and proper inclination sin Ip. The range of proper semimajor
axis ap 2 (2.95,3.16) AU is the same in all cases.

Population ep sin Ip Note

Core 0.04–0.10 0.15–0.20
Halo 0.00–0.15 0.12–0.24 and not in the core
Background 0.00–0.15 0.06–0.12 together with. . .

0.00–0.15 0.24–0.30
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Fig. 4. The cumulative size–frequency distributions N(>D) of the Eos core and halo.
We show power-law fits and corresponding slopes c which clearly indicate that the
halo population is significantly steeper than the core population. For comparison,
we also plot the SFD of the nominal Eos family (as inferred from the WISE data,
Masiero et al., 2011). The SFD’s of the core and halo are biased because they include
only asteroids observed by the SDSS. Consequently, the core seems to be much less
populated than the nominal Eos family, even though these SFD’s should be very
similar. Nevertheless, the slopes and the halo/core ratios which we use in our
analysis is not much affected by this bias.
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C = 680 J/kg/K, the Bond albedo A = 0.1, the infrared emissivity
� = 0.9, i.e. all typical values for regolith covered basaltic asteroids.

Initial rotation periods were distributed uniformly on the inter-
val 2–10 h and we used random (isotropic) orientations of the spin
axes. The YORP model of the spin evolution was described in detail
in Brož et al. (2011), while the efficiency parameter was cYORP = 0.33
(i.e. a likely value according to Hanuš et al. (2011)). YORP angular
momenta affecting the spin rate and the obliquity were taken from
Čapek and Vokrouhlický (2004). We also included spin axis reorien-
tations caused by collisions1 with a time scale estimated by Farinella
et al. (1998): sreor ¼ Bðx=x0Þb1 ðD=D0Þb2 , where B = 84.5 kyr, b1 = 5/6,
b2 = 4/3, D0 = 2 m and x0 corresponds to period P = 5 h.

The initial velocity field was size-dependent, v / v0D0/D, with
v0 = 93 m/s and D0 = 5 km (i.e. the best-fit values from Vokrouh-
lický et al. (2006)). In principle, this type of size–velocity relation
was initially suggested by Cellino et al. (1999), but here, we at-
tempt to interpret the structure of the family as a complex inter-
play between the velocity field and the Yarkovsky drift which is

also inversely proportional to size. We assumed isotropic orienta-
tions of the velocity vectors. The geometry of collisional disruption
was determined by the true anomaly f = 150�, and the argument of
perihelion x = 30�. We discuss different geometries in Section 4.

We use a modified version of the SWIFT package (Levison and
Duncan, 1994) for numerical integrations, with a second-order
symplectic scheme (Laskar and Robutel, 2001), digital filters
employing frequency-modified Fourier transform (Šidlichovský
and Nesvorný, 1996) and an implementation of the Yarkovsky ef-
fect (Brož, 2006). The integration time step was Dt = 91 days, the
output time step after all filtering procedures 10 Myr and the total
integration time span reached 4 Gyr.

3.2. Results of the N-body simulation

Initially, almost all asteroids are located in the core (see Fig. 5).
Only a few outliers may have velocities large enough to belong to
the halo. Within a few million years the halo/core ratio quickly
increases due to objects located inside the 9/4 resonance
and injected to the halo by these size-independent gravitational
perturbations. Further increase is caused by the Yarkovsky/YORP
semimajor axis drift which pushes additional orbits into the J9/4
and also other resonances.
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Fig. 5. Left panels: the proper semimajor axis ap vs proper eccentricity ep plots showing a dynamical evolution of our synthetic family. We can distinguish the core (black
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1 We do not take into account collisional disruptions because we model only that
subset of asteroids which survived subsequent collisional grinding (and compare it to
the currently observed asteroids). Of course, if we would like to discuss e.g. the size of
the parent body, it would be necessary to model disruptive collisions too.

M. Brož, A. Morbidelli / Icarus 223 (2013) 844–849 847

63



We checked the orbital elements of bodies at the moment when
they enter the halo region (Fig. 6) and we computed the statistics
of dynamical routes that had injected bodies in the halo: J9/4
57%, J11/5 (together with a three-body resonance 3J–2S–1 with
Jupiter and Saturn) 10%, J7/3 6%, and z1 secular resonance 23%.
The remaining few percent of bodies may enter the halo by differ-
ent dynamical routes.2 However, if we account for the fact that
bodies captured by the z1 resonance usually encounter also the J9/
4 resonance that scatters them further away into the halo, we obtain
a modified statistics: J9/4 70%, J11/5 12%, J7/3 5%, and z1 10% that
better reflects the importance of different mechanisms.

A saturation of the halo occurs after approximately 1 Gyr, be-
cause the halo population is affected by the Yarkovsky/YORP drift
too, so that the injection rate roughly matches the removal rate.
Nevertheless, the halo/core ratio steadily increases, which is
caused by the ongoing decay of the core population.

In order to compare our model and the SDSS observations we
compute the ratio R ¼ dNhalo=dNcore between the number of ob-
jects in the halo and in the core for a given differential size bin. This
can be computed straightforwardly from our simulation data. In
case of the SDSS observations, however, we think that there is a
real background of asteroids with Eos-like colours (may be due to
observational uncertainties or a natural spread of colours; see
Fig. 2). Obviously, such background overlaps with the core and
the halo, so we need to subtract this contamination

Robs �
dNhalo � 0:833dNbackground

dNcore � 0:167dNbackground
: ð3Þ

The numerical coefficients then reflect different ‘volumes’ of the
halo, core and background in the space of proper elements (ap,ep, -
sin Ip), as defined in Table 1.

As we can see in Fig. 7, a reasonable match to the observed halo/
core ratios can be obtained for ages 1.5 Gyr (for smaller bodies) to
2.2 Gyr (for larger bodies). To better quantify the difference
between the model and the observations we construct a suitable
metric

v2ðtÞ �
X9

i¼2

ðRiðtÞ � RobsiÞ2

r2
i ðtÞ þ r2

obsi

; ð4Þ

where the summation is over the respective size bins (Di,Di + dD),
Di � i � 1 km and dD = 1 km. The uncertainties of the numbers of ob-

jects are of the order rhalo ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dNhalo

p
; rcore ’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dNcore

p
, and ri re-

flects their propagation during the calculation of the ratio in Eq.
(3) in a standard way

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrhalo=dNhaloÞ2 þ ðrcore=dNcoreÞ2

q
dNhalo=dNcore

and similarly for robsi. The v2(t) dependence is shown in Fig. 7 and
the best-fit is obtained again for the ages t ’ 1.5–2.2 Gyr.

The ratios R are directly related to the size–frequency distribu-
tions and consequently we are indeed able to match the observed
SFD’s of halo and core, including their slopes and absolute numbers
(Fig. 5, right column).

These results are not very sensitive to the initial velocity field,
because most asteroids fall within the family core; velocities
would be unreasonably large to have a substantial halo population
initially.

4. Conclusions

Yarkovsky-driven origin seems to be a natural explanation of
the halo population. A lucky coincidence that the disruption of
the Eos-family parent body occurred close to the moderately
strong 9/4 mean motion resonance with Jupiter established a
mechanism, in which orbits drifting in semimajor axis due to the
Yarkovsky effect are mostly perturbed by this resonance and scat-
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2 Other secular resonances intersecting this region, s � s6 � 2g5 + 2g6 or
g + 2g5 � 3g6, do not seem to be important with respect to the transport from the
core to the halo.
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tered around in eccentricity and inclination. The total spread of the
simulated halo (up to 0.2 in eccentricity, Fig. 5), which matches the
SDSS observations (Fig. 2), also supports our conclusion.

As an important by-product, the process enabled us to indepen-
dently constrain the age of the family. Moreover, if we analyse
the evolution in the proper semimajor axis vs the absolute
magnitude (ap,H) plane and create a histogram of the quantity
C � (a � 3.019 AU)/10H (i.e. a similar approach as in Vokrouhlický
et al. (2006), but now using a full N-body model and the SDSS obser-
vations for both the core and halo), we can compute an independent
v2(t) evolution (refer to Fig. 7, red line). Since both methods – the
halo/core ratios R and the C-histogram – seem to be reasonable,
we can infer the most probable age as an overlap of intervals of
low v2(t) and this way further decrease its uncertainty, so that
t ’ 1.5–1.9 Gyr.

It is also interesting that the true anomaly at the time of disrup-
tion has to be f ’ 120–180�. We performed tests with lower values
of f and in these cases the synthetic family has initially a different
orientation in the (ap,ep) plane: the objects are spread from small
ap and ep to large ap and ep (cf. Fig. 5). Way too many objects thus
initially fall into the z1 secular resonance and because such cap-
tured orbits cannot drift to small ap and large ep it is then impossi-
ble to explain the observed structure of the family and
consequently f [ 120� is excluded.

Finally, let us emphasise that given the differences between the
size–frequency distribution of the halo that of the core, we can ex-
clude a possibility that the Eos halo was created by a purely grav-
itational process (like the perturbations arising from giant-planet
migration).
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ABSTRACT
We study the orbital and physical properties of Trojan asteroids of Jupiter. We try to discern
all the families previously discussed in the literature, but we conclude that there is only one
significant family among the Trojans, namely the cluster around the asteroid (3548) Eurybates.
This is the only cluster that has all of the following characteristics: (i) it is clearly concentrated
in the proper-element space; (ii) the size–frequency distribution is different from that of
background asteroids; (iii) we have a reasonable collisional/dynamical model of the family.
Henceforth, we can consider it as a real collisional family.

We also report the discovery of a possible family around the asteroid (4709) Ennomos,
composed mostly of small asteroids. The asteroid (4709) Ennomos is known to have a very
high albedo pV � 0.15, which may be related to the hypothetical cratering event that exposed
ice. The relation between the collisional family and the exposed surface of the parent body
offers a unique means to study the physics of cratering events. However, more data are needed
to confirm the existence of this family and its relationship with Ennomos.

Key words: methods: numerical – celestial mechanics – minor planets, asteroids: general.

1 IN T RO D U C T I O N

Trojans of Jupiter, which reside in the neighbourhood of L4 and
L5 Lagrangian points, serve as an important test of the planetary
migration theory (Morbidelli et al. 2005). Their inclination distri-
bution, namely the large spread of I, can be explained as a re-
sult of chaotic capture during a brief period when Jupiter and Sat-
urn encountered a 1:2 mean-motion resonance. Moreover, the Late
Heavy Bombardment provides the timing of this resonant encounter
� 3.8 Gyr ago (Gomes et al. 2005). It is thus important to understand
the population of Trojans accurately.

There are several unresolved problems regarding Trojans, how-
ever; for example the number of families, which is a stringent con-
straint for collisional models. Roig, Ribeiro & Gil-Hutton (2008)
studied as many as 10 suggested families, using relatively sparse
SLOAN data and spectra. They noted that most families seem to
be heterogeneous from the spectroscopic point of view, with one
exception – the C-type Eurybates family. As we argue in this pa-
per, the number of families (with parent-body size D � 100 km) is
indeed as low as one.

Another strange fact is the ratio of L4 and L5 Trojans. Szabó
et al. (2007) used SLOAN colour data to reach fainter than orbital
catalogues and estimated the ratio to N(L4)/N(L5) = 1.6 ± 0.1.
There is no clear explanation for this, since the chaotic capture
as a gravitational interaction should be independent of the size

�E-mail: mira@sirrah.troja.mff.cuni.cz

or L4/L5 membership. Any hypothesis involving collisions would
require a relatively recent disruption of a huge parent body, which
is highly unlikely (O’Brien & Morbidelli 2008, D. O’Brien, private
communication). This is again related to the actual observed number
of Trojan families.

Brož & Vokrouhlický (2008) studied another resonant popula-
tion, the so-called Hilda group in the 3/2 mean-motion resonance
with Jupiter, and reported only two families: Hilda and Schubart,
with approximately 200- and 100-km parent bodies. This number
might be in accord with low collisional probabilities, assuming that
the Hilda family is very old and experienced the Late Heavy Bom-
bardment (Brož et al. 2011).

Levison et al. (2009) compared the observed distribution of
D-type asteroids and the model of their delivery from transnep-
tunian region. They found a good match assuming that the D-types
(presumably of cometary origin) are easy-to-disrupt objects (with
the strength more than five times lower than that of solid ice). Note
that Trojan asteroids are a mixture of C- and D-type objects and
we have to discriminate between them with respect to collisional
behaviour.

All of the works mentioned above are a good motivation for
us to focus on asteroid families in the Trojan population. The pa-
per is organized as follows. First, we describe our data sources
and methods in Section 2. A detailed study of orbital and phys-
ical properties of families (and other ‘false’ groupings) is pre-
sented in Section 3. Section 4 is devoted to the modelling of long-
term dynamical evolution. Finally, there are concluding remarks in
Section 5.
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2 ME T H O D S

2.1 Resonant elements

We use the symplectic SWIFT integrator (Levison & Duncan 1994)
for orbital calculations. Our modifications include a second-order
scheme of Laskar & Robutel (2001) and online digital filters, which
enable us to compute suitable resonant proper elements: libration
amplitude d of the a − a′ oscillations, where a is the osculating
semimajor axis of an asteroid and a′ is that of Jupiter, eccentricity
e and inclination sin I. (In figures, we usually plot a mean value
ā of semimajor axis plus the libration amplitude d.) We employ
their definition from Milani (1993). The source of initial osculating
elements is the AstOrb catalogue, version JD = 245 5500.5 (2010
October 31).

There are actually two independent filters running in parallel: in
the first one, we sample osculating elements every 1 yr, compute
the mean elements using the filter sequence B, B with decimation
factors 3, 3 (refer to Quinn, Tremaine & Duncan 1991) and store
this data in a buffer spanning 1 kyr. We then estimate the libration
frequency f by a linear fit of φ(t) = λ − λ′ − χ , where λ, λ′ are the
mean longitudes of an asteroid and Jupiter and χ = ±60◦ for L4 or
L5, respectively. The revolution of angle φ(t) must not be confined
to the interval [0, 360◦), of course. The amplitude of d is computed
for the already known f by a discrete Fourier transform. Finally,
an offline running-average filter with a window of 1 Myr is used to
smooth the data.1

In the second filter, we compute proper eccentricity e and proper
inclination sin I by sampling osculating elements (1-yr step), com-
puting the mean elements using a filter sequence A, A, B and the
decimation factors 10, 10, 3, and then we apply a frequency mod-
ified Fourier transform (Šidlichovský & Nesvorný 1996), which
gives us the relevant proper amplitudes.

The values of the resonant elements agree very well with those
listed in the AstDyS catalogue by Knežević & Milani (2003; see
Fig. 1). There are only few outliers, probably due to a different time-
span of integration. We computed the proper elements for 2647 L4

and 1496 L5 Trojan asteroids.2 This sample is roughly twice larger
than the one previously analysed. The ratio of populations valid for
H � 15 mag asteroids is thus N(L4)/N(L5) � 1.8.

The overall distribution of Trojans in the (d, e, sin I) space is
shown in Fig. 2. Note that there is only one cluster visible immedi-
ately in the bottom-left panel – around (3548) Eurybates. The reason
is its tight confinement in inclinations (sin I = 0.125–0.135).

2.2 Hierarchical clustering

In order to detect clusters in the resonant element space we use a
hierarchical clustering method (Zappalá et al. 1994) with a standard
metric d1, with δa substituted by d. We run the HCM code many times
with various starting bodies and different cut-off velocities vcut-off

and determine the number of bodies N in the given cluster. We find
the N (vcut-off) dependence to be a very useful diagnostic tool. We
can see these dependences for L4 and L5 Trojans in Fig. 3.

1 Equivalently, we may compute the amplitude D of mean longitudes λ −
λ′. Anyway, there is a linear relation between d and D.
2 The data are available in an electronic form on our web site
http://sirrah.troja.mff.cuni.cz/∼mira/mp/. We use also one-apparition orbits
for the purposes of physical studies. Of course, orbital studies require more
precise multi-apparition data.

Figure 1. Comparison of the resonant eccentricity calculated by our code
with that of Knežević & Milani (AstDyS catalogue). There is a line x = y to
aid a comparison.

It is easy to recognize if a cluster has a concentration towards the
centre – even at a low vcut-off it must have more than one member
(N � 1). It is also instructive to compare clusters with a ran-
dom background (thin lines), which we generated artificially by a
random-number generator in the same volume of the (d, e, I) space.
Insignificant (random) clusters usually exhibit an abrupt increase in
N at a high cut-off velocity.

As starting bodies we selected those listed in Roig et al. (2008).
Only three clusters, namely the Eurybates, Aneas and 1988 RG10,
seem to be somewhat concentrated i.e. denser than the background.
The Hektor cluster is also concentrated but it contains only a rela-
tively small number of members (20–70) before it merges with the
background. In other words, smaller asteroids do not seem to be
concentrated around (624) Hektor. The remaining clusters are more
or less comparable to the background.

Nevertheless, we report the detection of a previously unknown
cluster around (4709) Ennomos in L5. It is relatively compact, since
the minimum cut-off velocity is only 70 m s−1. The cluster contains
mostly small bodies which were discovered only recently.

Finally, let us point out a very tight cluster around (9799) 1996 RJ,
associated already at vcut-off = 20 m s−1. It is located at high incli-
nations and contains nine bodies, three of them having short arcs.
The cluster seems to be peculiar in the osculating element space too
since it exhibits a non-random distribution of nodes and perihelia
(see Table 1). This is similar to very young families such as the
Datura (Nesvorný, Vokrouhlický & Bottke 2006), and it makes the
1996 RJ cluster a particularly interesting case with respect to colli-
sional dynamics. Because one has to use slightly different methods
for studies of such young families, we postpone its detailed analysis
to the next paper.

Let us compare Trojan clusters to the well-known asteroid fam-
ilies in the outer Main Belt (Fig. 4). Most families (e.g. Themis,
Koronis, Eos) exhibit a steady increase of N until they merge with
another family or the entire outer Main Belt. Eurybates, Aneas and
1988 RG10 are the only Trojan clusters which behave in a similar
fashion. The Veritas family (dynamically young, Nesvorný et al.
2003) exhibits a different behaviour – for a large interval of vcut-off

the number of members N remains almost the same, which indi-
cates a clear separation from the background population. With re-
spect to the N (vcut-off) dependence, the Ennomos cluster is similar to
Veritas.

C© 2011 The Authors, MNRAS 414, 565–574
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Figure 2. The resonant elements (a ≡ ā + d, sin I ) and (e, sin I) for L4 and L5 Trojans. The crosses indicate relative sizes of bodies, taken either from the
AstOrb catalogue or computed from absolute magnitude H and geometric albedo pV . In this plot, we assumed pV = 0.058 for L4 Trojans and 0.045 for those
in L5 (it corresponds to medians of known pV s). The asteroids (3548) Eurybates in L4 and (4709) Ennomos in L5, around which significant clusters are visible,
are shown in red. Moreover, the asteroid (9799) 1996 RJ in L4, which is surrounded by a small cluster, is denoted by a blue circle. [This cluster is so tight that
its members are located inside the circle on the (e, sin I) plot.]

Figure 3. Left-hand panel: the dependence of the number of family members N on the cut-off velocity vcut-off computed by the hierarchical clustering method.
Only clusters among L4 Trojans are included in this plot. Middle panel: the same N (vcut-off) dependence for L5 Trojans. Right-hand panel: artificial clusters
selected from random distribution of asteroids generated in the same volume of the (d, e, sin I) space.

2.3 Size–frequency distribution

At first, let us assume a single value of albedo for all the family
members. This is a reasonable assumption provided the family is of
collisional origin. We can then calculate sizes from absolute mag-
nitudes and construct size–frequency distributions (SFDs). Fig. 5

shows a comparison of SFDs for the clusters detected by the HCM3

and for the whole population of L4 and L5 Trojans.

3 Of course, we have to select a ‘suitable’ value of the cut-off velocity
for all clusters. Usually, we select that value for which N(vcut−off ) is flat.
Size–frequency distribution is not very sensitive to this selection anyway.
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Table 1. List of nine members of the (9799) 1996 RJ cluster and their proper (a, e, sin I) and osculating
(�osc, � osc) elements and absolute magnitude H. Note that the distribution of nodes and perihelia is
not entirely uniform. Asteroids with short-arc orbits (<60 d) are denoted by the * symbol.

Number Designation a e sin I �osc � osc H/mag

9799 1996 RJ 5.2252 0.0412 0.5269 115.4 259.6 9.9
89938 2002 FR4 5.2324 0.0394 0.5274 70.0 23.1 12.5

226027 2002 EK127 5.2316 0.0399 0.5263 62.8 352.9 12.6
243316 2008 RL32 5.2340 0.0398 0.5268 27.3 358.2 12.8

2005 MG24 5.2275 0.0404 0.5252 172.3 236.5 13.1
2008 OW22 * 5.2276 0.0401 0.5274 53.7 340.9 13.9
2009 RA17 * 5.2258 0.0409 0.5272 257.7 194.5 13.7
2009 RK63 * 5.2305 0.0407 0.5260 56.4 5.6 12.8
2009 SR30 5.2362 0.0409 0.5258 103.6 22.0 13.3

Figure 4. The N (vcut-off) dependence for seven outer main-belt families.
If we would consider only a subset of asteroids brighter than H = 15 mag,
which is an approximate observational limit for Trojans, the N (vcut-off)
dependencies would be qualitatively the same, only slightly shifted to larger
cut-off velocities.

A slope γ of the cumulative distribution N(>D) ∝ Dγ is an
indicative parameter. For L4 and L5 Trojans, it equals −2.0 ± 0.1
and −1.9 ± 0.1 in the intermediate size range of 15–60 km. (These
numbers match the findings of the study of Yoshida & Nakamura
2008.) The slope is steeper at large sizes. The uncertainties are
mainly due to a freedom in the selection of the size range, and
the difference between L4 and L5 SFDs does not seem significant.
The clusters have typically similar slope as background (within 0.1
uncertainty), though sometimes the results are inconclusive due to
the small number of members. On the other hand, the slope −2.5 ±
0.1 for the Eurybates family is significantly steeper than the mean
slope of the whole Trojan population.4 There are two more groups
that exhibit a relatively steep slope, namely Laertes in L4 (γ =
−3.1) and 1988 RG10 in L5 (γ = −2.6).

We should be aware, however, that even the background exhibits
a trend with respect to inclinations (see Fig. 6). Slope γ typically
decreases with inclination sin I, which is especially prominent in
case of the L4 cloud. We have to admit that if we compare the
Eurybates family to its surroundings only (sin I = 0.1 to 0.15), the
difference in slopes is not so prominent. An interesting feature of the
L5 cloud is a dip in the interval sin I = 0.05 to 0.1. This corresponds
to the approximate location of the 1988 RG10 group.

The γ (sin I) dependence among the Trojans is not unique. For
example, low-inclination bodies in the J3/2 resonance also have the
SFD steeper than background (γ = −2.5 ± 0.1 versus −1.7 ±

4 Though the number of the Eurybates members (105) is so small that it
almost does not affect the mean slope of the whole L4 population.

0.1), without any clear family and a few big interlopers. Maybe,
this feature reflects different source reservoirs of low- and high-
inclination bodies among Trojans and J3/2?5 It may also be in
concert with the colour–inclination dependence reported by Szabó
et al. (2007).

We also test albedo distributions dependent on size, since the
measurements by Fernández, Jewitt & Ziffer (2009) suggested that
small Trojans are significantly brighter and thus smaller. Large
asteroids have pV = 0.044 ± 0.008 while small pV = 0.12 ± 0.06.
This is a significant change of the SFD, which occurs around the
size D � 30 km. The SFD thus becomes shallower below this size
e.g. for Eurybates we would have γ = −1.6 and for L4 Trojans
γ = −1.5, so the SFDs become comparable with respect to the
slope. Though, as we have stated above, for a real collisional family
we expect the albedo distribution to be rather homogeneous and
independent of size.

2.4 Colour and spectral data

We used the Sloan Digital Sky Survey Moving Object catalogue
version 4 (SDSS-MOC4) to check that the families are spectrally
homogeneous, similar to what we expect. Due to a larger uncertainty
in the u colour in SDSS-MOC4, we used the colour indices a∗ and
i − z, where a∗ = 0.89(g − r) + 0.45(r − i) − 0.57 (defined by
Parker et al. 2008).

The result is shown in Fig. 7. It is clearly visible that the distri-
bution of the Eurybates family in the space of (a∗, i − z) colours
is different from the Trojan background. On the contrary, the 1988
RG10 group covers essentially the same area as the background. The
Aneas is only slightly shifted towards larger a∗ and i − z with respect
to the background. There is a lack of data for the Ennomos group –
three bodies are not sufficient to compare the colour distributions.

Alternatively, we may use principal component analysis of the
SDSS colour indices. We use only data with uncertainties smaller
than 0.2 mag, which resulted in 70 887 records. We calculated eigen-
values (λ1,2,3,4 = 0.173, 0.0532, 0.0249, 0.0095), corresponding
eigenvectors and constructed the following three principal compo-
nents (Trojanová 2010):

PC1 = 0.235 (u − g) + 0.416 (g − r) + 0.598 (g − i)

+ 0.643 (g − z),
(1)

5 Both the Trojan and J3/2 regions are dynamically unstable during Jupiter–
Saturn 1:2 mean-motion resonance, so we expect that the same bodies
entering Trojan region may also enter J3/2.
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Figure 5. Left-hand panel: size–frequency distributions of L4 Trojans and the following clusters (the selected cut-off velocities are given in the parentheses):
Eurybates (vcut-off = 50 m s−1), Laertes (94), Hektor (160), Teucer (175), Sinon (163), 1986 WD (120). Right-hand panel: SFDs of L5 Trojans and the following
clusters: 1988 RG10 (at vcut-off = 130 m s−1), Aneas (150), Asios (155), Panthoos (130), Polydoros (130).

Figure 6. Slopes γ of the size–frequency distributions N(>D) for L4

and L5 Trojans and their dependence on the inclination sin I. The range
of diameters for which the SFDs were fitted is Dmin = 12 km, Dmax =
30 km. Thin lines were calculated for different ranges, which were varied as
Dmin ∈ (10, 15) km, Dmax ∈ (20, 40) km. Their spread indicates the uncer-
tainty of γ in a given interval of sin I. The populations are observationally
complete down to D � 10 km, because the characteristic change of slope due
to the incompleteness occurs at smaller sizes (see also Yoshida & Nakamura
2008).

PC2 = 0.968 (u − g) − 0.173 (g − r) − 0.147 (g − i)

− 0.106 (g − z),
(2)

PC3 = 0.078 (u − g) + 0.601 (g − r) + 0.330 (g − i)

− 0.724 (g − z),
(3)

which have a clear physical interpretation: PC1 corresponds to an
overall slope, PC2 is a variability in the u band and PC3 a depth
of the 1-µm absorption band. The Eurybates family is different

Figure 7. Left-hand panel: the (a∗, i − z) colours for the L4 Trojans (grey
dots) and the Eurybates family (black dots with error bars). The distributions
differ significantly in this case. Right-hand panel: a similar comparison for
the L5 Trojans and the 1988 RG10 group, which seem to be indistinguishable.

from Trojans in all the three principal components (mean PC1 of
the Eurybates members is smaller, PC2 and PC3 larger). The Aneas
group has the same distribution of PC2 and PC3 as Trojans and the
1988 RG10 group is similar to Trojans even in all three components.

Hence, we confirm that the Eurybates family seems distinct in
colour even in the fourth version of the SDSS-MOC. This fact
is consistent with the work of Roig et al. (2008), who used the
third version of the same catalogue and classified Eurybates family
members as C-type asteroids.

Finally, note that De Luise et al. (2010) pointed out an absence
of ice spectral features at 1.5 and 2.0 µm on several Eurybates
members and Yang & Jewitt (2007) concluded the same for (4709)
Ennomos. This puzzling fact may indicate that pure ice covers at
most 10 per cent of the Ennomos surface.

2.5 Impact disruption model

We use a simple model of an isotropic disruption from Farinella,
Froeschlé & Gonczi (1994). The distribution of velocities ‘at infin-
ity’ follows the function

dN (v) = Cv(v2 + v2
esc)

−(α+1)/2, (4)
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Figure 8. A comparison between the observed Eurybates family (open circles) and synthetic families (crosses) just after the impact disruption computed for
several values of f imp = 0◦, 45◦, 90◦, 135◦, 180◦ and ωimp = 30◦, RPB = 47 km, ρPB = 1300 kg m−3. Different geometry in f , ω produces a slightly different
cluster; nevertheless, it is always tighter than the observed family. The position of the asteroid (3548) Eurybates is denoted by a square.

with the exponent α being a free parameter, C a normalization
constant and vesc the escape velocity from the parent body, which is
determined by its size RPB and mean density ρPB. The distribution is
cut at a selected maximum allowed velocity vmax to prevent outliers.
We typically use vmax = 300 m s−1. The orientations of velocity
vectors in space are assigned randomly. We assume that the velocity
of fragments is independent on their size.6

There are several more free parameters, which determine the
initial shape of the family in the space of proper elements: initial
osculating eccentricity ei of the parent body, initial inclination ii as
well as true anomaly f imp and argument of perihelion ωimp at the
time of impact disruption.

An example of a synthetic family just after disruption and its
comparison to the observed Eurybates family is shown in Fig. 8.
Usually, there is a significant disagreement between this simple
model of impact disruption and the observations. Synthetic families
usually look like thin ‘filaments’ in the (d, e, sin I) space, which are
curved due to the mapping from osculating elements to resonant
ones. On the other hand, the observed groups among Trojans are
much more spread. However, this only indicates the importance of
the further long-term evolution by chaotic diffusion and possibly
by planetary migration.7

In case of the Ennomos group members, they are distributed
mostly on larger semimajor axes compared to (4709) Ennomos,
though isotropic impact disruptions produce fragments distributed
evenly on larger and smaller a. Is it possibly the indication of an
anisotropic velocity field? Or is it a different parent body of this
cluster?

2.6 Planetary migration

If asteroid families are very old, planetary migration might influ-
ence their current shape. In order to study of late stages of planetary
migration, which is caused by interactions with a planetesimal disc,
we construct the following model. We treat the migration analyti-
cally within a modified version of the numerical symplectic SWIFT-
RMVS3 integrator (Levison & Duncan 1994), which accounts for
gravitational perturbations of the Sun and four giant planets and
includes also an energy-dissipation term, as described in Brož et al.
(2011). The speed of migration is characterized by the exponential

6 If we use a size-dependent relation for velocities similar to Vokrouhlický
et al. (2006), our results do not change much, because the overall shape of
the velocity distribution is quite similar to the size-independent case.
7 Only very young clusters like the Karin family (Nesvorný et al. 2002)
exhibit this kind of a ‘filament’ shape.

time-scale τmig and the required total change of semimajor axis
ai − af . We use an eccentricity damping formula too, which sim-
ulates the effects of dynamical friction and prevents an unrealistic
increase in eccentricities (Morbidelli et al. 2010). The amount of
damping is determined by the parameter edamp.

We try to adjust initial orbital parameters of planets and the
parameters of migration in such a way as to end up at the currently
observed orbits. The integration time-step is �t = 36.525 d and the
time-span is usually equal to 3τmig, when planetary orbits almost
stop migrating.

2.7 Inefficient Yarkovsky/YORP effect

On long time-scales, the Yarkovsky thermal force might cause
significant perturbations of orbits. We use an implementation of
the Yarkovsky thermal effect in the SWIFT N-body integrator
(Vokrouhlický et al. 2006). It includes both the diurnal and the
seasonal variants.

The YORP effect (thermal torques affecting spin states; Vokrouh-
lický et al. 2006) was not taken into account in our simulations. The
reason is that the respective time-scale τYORP is of the order of
100 Myr to 1 Gyr. So, as a ‘zero’ approximation, we neglect the
YORP effect on these ‘short’ time-scales and keep the orientations
of the spin axes fixed.

For Trojan asteroids captured in a zero-order mean-motion res-
onance, the Yarkovsky perturbation only affects the position of
libration centre (Moldovan et al. 2010). Note that the perturbation
acts ‘instantly’ – there is no systematic secular drift in eccentric-
ity nor in other proper elements which is an important difference
from first-order resonances, where an e-drift is expected (Brož &
Vokrouhlický 2008, appendix A). This is another reason that we do
not need a detailed YORP model here.

The thermal parameters we use are reasonable estimates for C/X-
type bodies: ρsurf = ρbulk = 1300 kg m−3 for the surface and bulk
densities, K = 0.01 W m−1 K−1 for the surface thermal conductivity,
C = 680 J kg−1 for the heat capacity, A = 0.02 for the Bond albedo
and εIR = 0.95 for the thermal emissivity.

3 A STEROI D FAMI LI ES A ND I NSI GNI FICANT
G RO U P S

In this section, we briefly discuss the properties of selected clusters:
Eurybates, Ennomos, Aneas and 1988 RG10. We focus on these four
clusters, since they seem most prominent according to our previous
analysis.
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3.1 Eurybates family

The Eurybates family can be detected by the hierarchical cluster-
ing method for cut-off velocities vcut-off = 38 to 78 m s−1, when it
merges with Menelaus (see Fig. 3). Yet, we do not rely just on the
HCM! Another selection criterion we use is a ‘meaningful’ shape of
the family and its changes with respect to vcut-off. A very important
characteristic of the Eurybates family at low values of vcut-off is a
tight confinement of inclinations (sin I within 0.01). It breaks down
at vcut-off � 68 m s−1, so we consider this value as an upper limit.
The Eurybates family is also confined in the semimajor axis, being
approximately twice smaller than other groups.

The diameter of the parent body is DPB
.= 97 km for albedo pV =

0.055 if we sum the volumes of the known bodies. Of course, in
reality it is slightly larger due to observational incompleteness. If
we prolong the slope of the SFD γ = −2.5 down to zero, we obtain
DPB

.= 110 km. The geometric method of Tanga et al. (1999) gives
the upper limit DPB � 130 km.

Spectral slopes of family members are rather homogeneous and
correspond to C/P-types (Roig et al. 2008).

3.2 Ennomos group

The cluster around (4709) Ennomos can be recognized for a wide
interval of cut-off velocities vcut-off ∈ (69, 129) m s−1 when it stays
compact and confined in inclinations (sin I = 0.451 to 0.466). Very
probably, there are several interlopers, because we can count four to
10 asteroids in the surroundings i.e. in the same volume of the (d, e,
sin I) space (see Fig. 9). Since small bodies dominate the Ennomos
group, we suspect that large bodies might actually be interlopers.

A very intriguing feature is a high albedo of (4709) Ennomos
pV � 0.15 measured by Fernández et al. (2003). Apart from other
explanations, the authors speculated that it may result from a recent
impact which covered the surface with pristine ice. If it is true, the
relation between the fresh surface and the collisional family might
be a unique opportunity to study cratering events.

We cannot exclude the possibility that (4709) Ennomos is actually
an interloper and the family is not related to it at all. Nevertheless,
our hypothesis is testable: family members should exhibit a simi-
larity in spectra and albedos. The only information we have to date
are SDSS colours for three members: 98362, 2005 YG204 are prob-
ably C-types and 2005 AR72 is a D-type. In case new data become
available, we would be able to remove interlopers from our sample
and improve our analysis.

The size distribution of the Ennomos group is barely constrained,
since small bodies are at the observational limit. Moreover, re-
moval of interlopers can change the SFD slope completely (from
γ = −1.4 to −3.2 or so). The minimum parent body size is about
DPB � 67 km if all members have a high albedo pV = 0.15.

3.3 Group called Aneas

The Aneas group looks like the middle portion of the L5 cloud with
an approximate background density. It spans the whole range of
semimajor axes, as background asteroids do.

The minimum size of a hypothetical parent body is DPB = 160 to
170 km (for albedo pV = 0.055–0.041). This size is very large and
an impact disruption of such body is less probable (see Section 4.4).
The size–frequency distribution is shallow, with approximately the
same slope as that of the background.

According to Roig et al. (2008) the colours are rather homoge-
neous and correspond to D-types, with �10 per cent of probable
interlopers.

3.4 Group called 1988 RG10

The group around asteroid (11487) 1988 RG10 again looks like a
lower portion of the L5 cloud at low inclinations, with sin I ∈ (0.06,
0.1). The SFD is steeper (γ = −2.6 ± 0.1) than the surroundings in
L5 and the resulting parent body size D � 60 km is relatively small.
The colours seem heterogeneous (Roig et al. 2008) and we can con-
firm this statement based on the new SDSS-MOC version 4 data.

The remaining clusters (Hektor, Teucer, Sinon, 1986 WD,
Laertes, Asios, Polydoros, Panthoos, etc.) may be characterized
as follows: (i) they have a density in (d, e, sin I) space comparable
to that of background (surroundings); (ii) when identified by the
HCM their semimajor axes span the whole range of Trojan region;
(iii) the slopes of their SFDs are comparable to the background; (iv)
they are often inhomogeneous with respect to colours (according to
Roig et al. 2008). These reasons lead us to a conclusion that these
clusters are not necessarily real collisional families.

4 LO N G - T E R M EVO L U T I O N
O F T RO JA N FA M I L I E S

4.1 Evolution due to chaotic diffusion

We try to model long-term evolution of the Eurybates family. At
first, we generate a synthetic family (consisting of 42 bodies) by an

Figure 9. Details of the L5 Trojan population where the Ennomos group is visible. Left-hand panel: the resonant semimajor axis a versus eccentricity e. Only
asteroids occupying the same range of inclinations as the Ennomos group sin I ∈ (0.448, 0.468) are plotted to facilitate a comparison with the density of
surroundings space (background). The sizes of plus signs are proportional to diameters of the asteroids. The probable family members are denoted by small
red circles and the possible interlopers by small grey crosses. Right-hand panel: a versus inclination sin I, with the range of eccentricities e ∈ (0.02, 0.045).
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Figure 10. Orbital evolution of the synthetic family and its comparison with the observed Eurybates family. Left-hand panel: the situation in the (a, e) plane at
500 Myr. Middle panel: the situation after 4 Gyr. Chaotic diffusion disperses the synthetic family in course of time (see shaded tracks of particles). Right-hand
panel: the (a, sin I) plane at the same time. Inclinations evolve only barely.

impact disruption of the parent body with required size. Then we
integrate the synthetic family and compare it at a particular time to
the observed Eurybates family. The time-span of the integration is
4 Gyr.

The main driving mechanism is slow chaotic diffusion (the
Yarkovsky effect is present but inefficient in the Trojan region).
Initially, the spread of inclinations of the synthetic family is consis-
tent with the observed one. On the other hand, the shape in (a, e)
elements is clearly inconsistent.

Since the inclinations evolve only barely, we focus on the evo-
lution in the (a, e) plane (see Fig. 10). The point is the synthetic
family, namely the ‘filament’ structure, has to disperse sufficiently.
After 500 Myr it is still recognizable but after 1 Gyr of evolution it
is not. So we may constrain the age of the Eurybates family from 1
to 4 Gyr.8

A similar analysis for the Ennomos group indicates that the
chaotic diffusion is faster in this region (given the large inclina-
tion) and the most probable age thus seems to be from 1 to 2 Gyr.
Beyond 2 Gyr the inclinations of the synthetic family become too
large compared to the observed Ennomos group, while the eccen-
tricities are still compatible.

We try to model Aneas and 1988 RG10 groups too (see Fig. 11).
In these two cases, there is a strong disagreement between our
model and observations. The observed groups are much larger and
the chaotic diffusion in the respective regions is very slow. Even
after 4 Gyr of orbital evolution, the synthetic family remains too
small.

The only free parameter that may substantially change our results
is the initial velocity distribution. Theoretically, the distribution
might have been strongly anisotropic. However, we cannot choose
initial velocities entirely freely, since their magnitude should be
comparable to the escape velocity from the parent body, which is
fixed by the size DPB and is only weakly dependent on the a priori
unknown density ρPB.

Another solution of this problem is possible if we assume that
families are very old and that they experienced perturbations due to
planetary migration.

8 We verified these estimates by a two-dimensional Kolmogorov–Smirnov
test of the (a, e) distributions: initially the KS distance is DKS = 0.30 and the
probability pKS(>D) = 0.02, which means the distribution are incompatible.
At t = 1 Gyr, the values are DKS = 0.20 and pKS( > D) = 0.32, which indicate
a reasonable match.

Figure 11. Evolution of the synthetic family over 4 Gyr versus the observed
Aneas group. Chaotic diffusion is slow and it seems impossible to match
the large spread of the observed group even after 4 Gyr.

4.2 Stability during planetary migration

The major perturbation acting on Trojans are secondary resonances
between the libration period PJ1/1 of the asteroid in the J1/1 mean-
motion resonance with Jupiter and the period P1J−2S of the critical
argument of Jupiter–Saturn 1:2 resonance (Morbidelli et al. 2005):

PJ1/1 = nP1J−2S, (5)

where n is a small integer number. Typical libration periods are
PJ1/1 � 150 yr, and P1J−2S changes as planets migrate (it decreases
because Jupiter and Saturn recede from their mutual 1:2 reso-
nance).9

All synthetic families are strongly unstable when P1J−2S � 150 yr
and even during the later stages of migration with P1J−2S � 75 yr
the eccentricities of family members are perturbed too much to
match the observed families such as Eurybates or Ennomos (see
Fig. 12). There are practically no plausible migration scenarios
– regardless of time-scale τmig – that would produce a sufficiently
compact group, unless Jupiter and Saturn are almost on their current
orbits. We tested τmig = 0.3, 3, 30 Myr and even for �aJ ≡ aJf −
aJi as small as −0.08 au and �aS = +0.25 au the perturbation was

9 Another source of instability might be a secondary resonance with P2J−5S

(the so-called Great Inequality period) though it is weaker than P1J−2S. We
find no asteroids perturbed by secondary resonances connected with P3J−7S

or P4J−9S which are present ‘en route’. Neither Uranus nor Neptune plays
an important role.
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Figure 12. Evolution of a synthetic family during the late phases of plane-
tary migration (τmig = 30 Myr in this case). Top panel: the state at 0 Myr,
middle: 100 Myr; bottom panel: the respective orbital evolution of Jupiter
and Saturn. The family is almost destroyed and it is definitely incompatible
with the observed Eurybates family.

too strong. The reason is that one has to avoid n = 2 secondary
resonance to preserve the low spread of a synthetic family.

Let us conclude that if any of Trojan families was created during
planetary migration and if the migration was smooth (exponential),
then the family cannot be visible today. However, we cannot ex-
clude the possibility that the final stages of migration were entirely
different e.g. similar to the ‘jumping-Jupiter’ scenario (Morbidelli
et al. 2010).

4.3 Families lost by the ejection of fragment outside
the resonance

We have studied the possibility that some families cannot be iden-
tified because the breakup occurred on the outskirts of the stable
libration zone and some fragments were ejected outside the J1/1
resonance. We thus chose 30 largest asteroids near the edge of the
L4 libration zone and we simulated the breakups of these asteroids
which create families with 30 fragments each. We assumed the di-
ameter of all parent bodies to be DPB = 100 km and their density
ρPB = 1.3 g cm−3. The breakups always occurred at the same geom-
etry f imp = 0◦, ωimp = 30◦. After the breakup, we calculated proper
elements of the family members and plotted their distribution (see
Fig. 13). We found that all the 30 synthetic families could be eas-
ily identified. In most cases, more than 95 per cent of the family
members remained within the stable libration zone. We can thus
conclude that the ejection of fragments outside the libration zone
does not affect the number of observed families among the Trojans.

4.4 Collisional rates

We can estimate collisional activity by means of a simple stationary
model. Trojan–Trojan collisions play a major role here, because
Trojans are detached from the Main Belt. In case of Eurybates,
the target (parent body) diameter Dtarget = 110 km, the mean impact
velocity V imp = 4.7 km s−1 (Dell’Oro et al. 1998), the strength Q�

D =

Figure 13. Proper eccentricities and inclinations of 30 synthetic families
(black dots), which originated near the border of stable libration zone,
compared to the observed L4 Trojans (grey dots).

105 J kg−1 (Benz & Asphaug 1999) and thus the necessary impactor
size (Bottke et al. 2005)

ddisrupt =
(
2Q�

D/V 2
imp

)1/3
Dtarget � 23 km. (6)

The number of ≥23 km projectiles among the L4 Trojans is nproject =
371 and we have ntarget = 8 available targets. The intrinsic collision
probability for Trojan–Trojan collisions Pi = 7.8 × 10−18 km−2 yr−1

(Dell’Oro et al. 1998) and the corresponding frequency of disrup-
tions is

fdisrupt = Pi

D2
target

4
nprojectntarget � 7 × 10−11 yr−1. (7)

Over the age of the Solar system TSS � 4 Gyr (after the LHB), we
have a very small number of such events nevents = TSSf disrupt � 0.28.
This number seems to be in concert with only one D ≥ 100 km
family currently observed among the Trojans.10 In a less likely
case, the material of the Eurybates parent body was very weak and
its strength may be at most 1 order of magnitude lower, Q�

D �
104 J kg−1 (see Leinhardt & Stewart 2009, Bottke et al. 2010). We
then obtain ddisrupt � 10 km and nevents � 1.0, so the conclusion about
the low number of expected Trojan families remains essentially the
same.

The parent body of Aneas group is 1.5 larger and consequently
the resulting number of events is more than 1 order of magnitude
lower. On the other hand, clusters with smaller parent bodies (DPB 

100 km) or those that are significantly weaker (Q�

D 
 105 J kg−1)
might be more frequent.

During the Late Heavy Bombardment epoch we may assume
a substantial increase of collisional activity (Levison et al. 2009).
Hypothetical old families were, however, probably ‘erased’ due
to the late phases of planetary migration (see Section 4.2) unless
the migration time-scale for Jupiter and Saturn was significantly
shorter than the time-scale of the impactor flux from transneptunian
region which is mainly controlled by the migration of Uranus and
Neptune.

10 A similar stationary estimate valid for the Main Asteroid Belt gives the
number of events 12 while the number of observed families with DPB �
100 km is about 20 (Durda et al. 2007). These two numbers are comparable
at least to order-of-magnitude.
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5 C O N C L U S I O N S

The increasing number of Trojan asteroids with available proper
elements enables us to get new insights into this important popu-
lation. Essentially, the new faint/small asteroids filled the ‘gaps’ in
the proper-element space between previously known clusters, and
today it seems most clusters are rather comparable to background.
One should be aware of the fact that the number of families among
the Trojans may be small and one should not take the number of
�10 families as a rule.

Only the C-type Eurybates family fulfils all the criteria to be con-
sidered a collisional family. This is probably also true for the newly
discovered Ennomos group. Moreover, there might be a potentially
interesting relation between the high-albedo surface of (4709) En-
nomos and the collisional family though we do not have enough
data yet to prove it independently (by colours, spectra or albedos).

Note that there may exist clusters among Trojans which are not of
collisional origin. They may be caused by (i) differences in chaotic
diffusion rates, (ii) a-/e-/I-dependent efficiency of original capture
mechanism; or (iii) it may somehow reflect the orbital distribution
in the source regions.

We cannot exclude the hypothetical existence of old families
which were totally dispersed by dynamical processes e.g. by per-
turbations due to planetary migration which is especially efficient
in the Trojan region.

Finally, note that there seem to be no D-type families anywhere
in the Solar system – neither in the Trojan region, nor in the J3/2
(Brož et al. 2011) and Cybele regions (Vokrouhlický et al. 2010).
Is it that the D-type parent bodies are too weak and the target is
completely pulverized by a collision? This might have important
implications for collisional models of icy bodies.
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Tsiganis K., 2009, Nat, 460, 364
Milani A., 1993, Celest. Mech. Dynamical Astron, 57, 59
Moldovan R., Matthews J. M., Gladman B., Bottke W. F., Vokrouhlický D.,
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Szabó Gy. M., Ivezić Ž, Jurić M., Lupton R., 2007, MNRAS, 377, 1393
Tanga P., Cellino A., Michel P., Zappalà V., Paolicchi P., Dell’Oro A., 1999,
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ABSTRACT
We model the long-term evolution of the Hilda collisional family located in the 3/2
mean-motion resonance with Jupiter. Its eccentricity distribution evolves mostly due to the
Yarkovsky/YORP effect and assuming that (i) impact disruption was isotropic and (ii) albedo
distribution of small asteroids is the same as for large ones, we can estimate the age of the
Hilda family to be 4+0

−1 Gyr. We also calculate collisional activity in the J3/2 region. Our re-
sults indicate that current collisional rates are very low for a 200-km parent body such that the
number of expected events over gigayears is much smaller than 1.

The large age and the low probability of the collisional disruption lead us to the conclusion
that the Hilda family might have been created during the late heavy bombardment (LHB)
when the collisions were much more frequent. The Hilda family may thus serve as a test of
orbital behaviour of planets during the LHB. We have tested the influence of the giant-planet
migration on the distribution of the family members. The scenarios that are consistent with the
observed Hilda family are those with fast migration time-scales �0.3–3 Myr, because longer
time-scales produce a family that is depleted and too much spread in eccentricity. Moreover,
there is an indication that Jupiter and Saturn were no longer in a compact configuration (with
period ratio PS/PJ > 2.09) at the time when the Hilda family was created.

Key words: methods: numerical – celestial mechanics – minor planets, asteroids: general.

1 IN T RO D U C T I O N

There are many independent lines of evidence that the orbits of
planets of the Solar system were not the same all the time, but
that they have changed substantially over billions of years. The
major arguments are based on the observed orbital distribution of
Kuiper belt objects (Malhotra 1995; Levison et al. 2008) or small
but non-negligible eccentricities and inclinations of the giant plan-
ets (Tsiganis et al. 2005). Observations of Jupiter’s Trojans (Mor-
bidelli et al. 2005), main-belt asteroids (Minton & Malhotra 2009;
Morbidelli et al. 2010), the amplitudes of secular oscillations of
the planetary orbits (Brasser et al. 2009; Morbidelli et al. 2009),
or the existence of irregular moons (Nesvorný, Vokrouhlický &
Morbidelli 2007) provide important constraints for planetary mi-
gration scenarios.

Asteroids are a fundamental source of information about the
evolution of the planetary system. Some of the resonant groups, i.e.
those which are located in the major mean-motion resonances with
Jupiter, might also have been influenced by planetary migration,
because their current distribution does not match the map of the
currently stable regions. For instance, there are two stable islands

�E-mail: mira@sirrah.troja.mff.cuni.cz

denoted by A and B in the J2/1 resonance and only the B island is
populated (Nesvorný & Ferraz-Mello 1997).

In this work we focus on the Hilda asteroid family in the 3/2
resonance with Jupiter. We exploit our ability to model long-term
evolution of asteroid families, which is usually dominated by the
Yarkovsky effect on the orbital elements (Bottke et al. 2001), of-
ten coupled to the YORP effect on the spin rate and obliquity
(Vokrouhlický et al. 2006b). Chaotic diffusion in eccentricity and
sometimes interactions with weak mean-motion or secular reso-
nances (Vokrouhlický et al. 2006a) also play important roles. In
case of asteroids inside strong mean-motion resonances, one has
to account for the ‘resonant’ Yarkovsky effect, which causes a sys-
tematic drift in eccentricity (Brož & Vokrouhlický 2008). This is
different from usual non-resonant orbits where the Yarkovsky effect
causes a drift in semimajor axis.

The Hilda collisional family – a part of the so-called Hilda group
in the 3/2 mean motion resonance with Jupiter – was already briefly
discussed by Brož & Vokrouhlický (2008). However, the modelling
presented in that paper was not very successful, since the resulting
age of the family seemed to be too large (exceeding 4 Gyr). This
was an important motivation for our current work. We think that
we missed an important mechanism in our previous model, namely
perturbations arising from the migration of the giant planets and
also an appropriate treatment of the YORP effect. Indeed, the age
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�4 Gyr suggests that the planetary migration might have played a
direct role during the early evolution of the Hilda family. In this
paper we thoroughly test this hypothesis.

The paper is organized as follows. First we study the observed
properties of the J3/2 resonance population in Section 2. Our dynam-
ical model of the Hilda family (without migration first) is described
in Section 3. Then we estimate the collisional activity in the J3/2 re-
gion in Section 4. The results of our simulations of the giant-planet
migration are presented in Section 5. Finally, Section 6 is devoted
to conclusions.

2 C U R R E N T A S T E RO I D PO P U L AT I O N
I N T H E J 3 / 2 R E S O NA N C E

Asteroids located in the 3/2 mean motion resonance with Jupiter
have osculating semimajor axes around (3.96 ± 0.04) au, i.e. beyond
the main asteroid belt. Contrary to the Kirkwood gaps (associated
with J3/1, J7/3 or J2/1 resonances), this resonance is populated
by asteroids while its neighbourhood is almost empty. The Hilda
collisional family we are going to discuss in detail is a small part of
the whole J3/2 resonant population.

Our identification procedure of the J3/2 resonant population was
described in the previous paper, Brož & Vokrouhlický (2008). Using
the AstOrb catalogue of orbits (version JD = 245 5500.5, 2010
October 31) we identified 1787 numbered and multi-opposition
bodies with the librating critical argument

σ = p + q

q
λ′ − p

q
λ − � , (1)

where p = 2, q = 1, λ′ is the mean longitude of Jupiter, λ the mean
longitude of the asteroid and � the longitude of perihelion of the
asteroid.

In order to study the detailed distribution of the bodies librating
inside the resonance, we have to use pseudo-proper resonant ele-
ments defined as approximate surfaces of sections (Roig, Nesvorný
& Ferraz-Mello 2002), i.e. the intersection of the trajectory with a
plane defined by

|σ | < 5◦ ,
�σ

�t
> 0 , |� − � ′| < 5◦ . (2)

These conditions correspond to the maximum of the semimajor
axis a over several oscillations and the minimum of the eccentric-
ity e or the inclination I. We need to apply a digital filter to σ (t)
prior to using equation (2), namely filter A from Quinn, Tremaine
& Duncan (1991), by sampling 1 yr and with a decimation factor
of 10, to suppress fast �80 yr oscillations, which would otherwise
disturb slower �280 yr oscillations associated with resonant libra-
tions. Finally, we apply an averaging of the sections a, e, I over
1-Myr running window and these averages are the pseudo-proper
elements ap, ep, Ip. The accuracy of the pseudo-proper elements is
of the order of 10−4 au for ap and 10−4 for ep or sin Ip, which is
much smaller than those of the structures we are interested in.

The overall dynamical structure of the J3/2 resonance is deter-
mined by secular resonances ν5, ν6 at high eccentricities ep � 0.3
and secondary resonances at lower values of ep � 0.13 (according to
Morbidelli & Moons 1993; Nesvorný & Ferraz-Mello 1997; Ferraz-
Mello et al. 1998; Roig & Ferraz-Mello 1999). They destabilize the
orbits at the borders of a stable island. The orbits inside the island
exhibit very low chaotic diffusion rates, so bodies can remain there
for 4 Gyr (without non-gravitational perturbation).

Next we apply a hierarchical clustering method (Zappalà et al.
1994) to detect significant clusters. We use a standard metric in the

Figure 1. The number N of the Hilda family members versus the selected
cut-off velocity vcut-off .

pseudo-proper element space (ap, ep, sin Ip):

δv = na

√
5

4

(
δap

ap

)2

+ 2
(
δe2

p

)
+ 2(δ sin Ip)2 . (3)

In the following, we do not discuss the known Schubart family,
which was sufficiently analysed elsewhere (Brož & Vokrouhlický
2008), but we focus on the family associated with (153) Hilda.
A suitable cut-off velocity for the Hilda family seems to be
vcut-off = 140 m s−1, because the number of members does not
change substantially around this value (see Fig. 1). The number of
members at this cut-off is 400.

The resulting plots (ap, H), (ep, H) and (Ip, H) of the Hilda
family show very interesting features (see Fig. 2). The distribution
of semimajor axis and inclination seems rather uniform and almost
independent of absolute magnitude H, but the eccentricities of small
asteroids (i.e. with high H) are clearly concentrated at the outskirts
of the family and depleted in the centre.

In order to explain the distribution of asteroids in the (ep, H) plane
we have to recall that asteroids orbiting about the Sun are affected
by non-gravitational forces, mostly by the Yarkovsky/YORP effect,
i.e. the recoil force/torque due to anisotropic emission of thermal
radiation. We consider the concentrations in the (ep, H) plane to
be a strong indication of the ongoing Yarkovsky/YORP evolution,
because they are very similar to those observed among the several
main-belt families in the (ap, H) plane and successfully modelled by
Vokrouhlický et al. (2006b). The difference between these two cases
stems from the fact that the main-belt families are non-resonant
and the Yarkovsky/YORP effect thus increases or decreases the
semimajor axis (depending on the actual obliquity of the spin axis),
while in our resonant case, the same perturbation results instead in a
systematic increase or decrease of eccentricity. A detailed modelling
of the e-distribution is postponed to Section 3.5.

The central part of the (ep, H) distribution, from e = 0.17–
0.23, seems rather extended. The large asteroids (H < 12.5 mag)
are spread over this interval of eccentricities even though their
Yarkovsky drift rates must have been small. Only 2–4 of them are
likely to be interlopers, because there is a very small number of
background asteroids in the surroundings of the family (see Fig. 3).
We think this shape might actually be the result of the initial-size-
independent perturbation that the family distribution received by
the migration of the giant planets (which we discuss in Section 5.1).

Regarding the (ap, H) distribution, the largest asteroid (153) Hilda
is offset with respect to the centre, but this is a natural outcome of
the definition of the pseudo-proper elements – fragments that fall
to the left of the libration centre are mapped to the right, which
creates the offset.

The geometric albedos for Hilda family objects are poorly known.
There are only six measured values for the family members: 0.064,
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Figure 2. The Hilda family displayed in resonant semimajor axis ap (left), eccentricity ep (middle) and inclination sin Ip (right) versus absolute magnitude
H. The libration centre is located at a � 3.96 au and all the bodies are displayed to the right of it. The ‘ears’ in (ep, H), i.e. both the concentration of small
asteroids on the outskirts of the family and their depletion at the centre are very prominent here. The thin vertical lines denote the central part of the (ep, H)
distribution discussed in the text. The family has 400 members at vcut-off = 140 m s−1.

Figure 3. The J3/2 region displayed in (ap, Ip) plot. A very prominent
Schubart cluster (studied by Brož & Vokrouhlický 2008) is visible around
sin Ip

.=0.05. The close surroundings of the Hilda family, where only a low
number of bodies is present, are highlighted by grey rectangles.

0.046, 0.038, 0.089, 0.044, 0.051 (Davis & Neese 2002). Given the
small number of values and the possibility of selection effects, we
prefer to assume that the family members have a mean value pV =
0.044, which corresponds to the whole J3/2 population. The size of
the parent body can be then estimated to be DPB = (200 ± 20) km.
We employ two independent methods to determine the diameter
DPB: (i) we sum the volumes of the observed bodies larger than an
assumed completeness limit Dcomplete = 10 km and then we prolong
the slope of the size–frequency distribution down to D = 0 to
account for unobservable bodies (see Brož & Vokrouhlický 2008),
which results in DPB � 185 km; (ii) we also use a geometric method
developed by Tanga et al. (1998) which gives DPB � 210 km. A test
with different albedo values will be described in Section 3.6.

The size–frequency distribution N(>D) versus D of the Hilda
family is steeper than that of background J3/2 population, but shal-
lower than for usual main-belt families (Fig. 4). Interestingly, the
slope γ = −2.4 ± 0.1 of the distribution N(>D) = CDγ is close to
a collisional equilibrium calculated by Dohnanyi (1969).

Colour data extracted from the Sloan Digital Sky Survey Moving
Object Catalogue version 4 (Parker et al. 2008) confirm that the
Hilda family belongs to the taxonomic type C, because most of
the spectral slopes are small. Recall that the whole J3/2 population
exhibits a bimodal distribution of slopes, i.e. it contains a mixture
of C- and D-type asteroids.

Figure 4. Cumulative size distributions of the J3/2 population and the Hilda
family. The polynomial fits of the form N(>D) = CDγ are plotted as thin
lines, together with the respective values of the γ exponent. Several main-
belt families are plotted for comparison: Eos (with slope γ = −2.8), Euno-
mia (−5.0), Hygiea (−3.8), Koronis (−2.8), Themis (−2.9), Tirela (−3.3),
Veritas (−3.4) and Vesta (−5.4).

3 TH E H I L DA FA M I LY MO D E L W I T H
R A D I AT I O N FO R C E S

To understand the long-term evolution of the Hilda family, we
construct a detailed numerical model, extending efforts in Brož
& Vokrouhlický (2008), which includes the following processes:
(i) impact disruption, (ii) the Yarkovsky effect, (iii) the YORP ef-
fect, (iv) collisions and spin-axis reorientations. We describe the
individual parts of the model in the following subsections.

3.1 Impact disruption

To obtain initial conditions for the family just after the breakup
event, we need a model for the ejection velocities of the fragments.
We use a very simple model of an isotropic ejection from the work of
Farinella, Froeschlé & Gonczi (1994). The distribution of velocities
‘at infinity’ follows the function

dN (v)dv = Cv(v2 + v2
esc)

−(α+1)/2dv , (4)

with the exponent α being a free parameter, C a normalization
constant and vesc the escape velocity from the parent body, which

C© 2011 The Authors, MNRAS 414, 2716–2727
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

78



Hilda collisional family 2719

is determined by its size DPB and mean density ρPB as vesc =√
(2/3)πGρPB DPB . The distribution is usually cut at a selected

maximum allowed velocity vmax to prevent outliers. The actual
values of all these parameters are given in Section 3.5. Typically,
the overall distribution of velocities has a peak close to the escape
velocity, which is approximately 100 m s−1 for a 200-km parent
body. The initial velocities |v| of individual bodies are generated
by a straightforward Monte Carlo code and the orientations of the
velocity vectors v in space are assigned randomly.

Here, we assume the velocity of fragments is independent of their
size, which seems reasonable with respect to the observed uniform
distribution of the Hilda family in the (ap, H) and (Ip, H) planes
(Fig. 2). We also perform tests with non-isotropic distributions in
Section 3.7.

We must also select initial osculating eccentricity ei of the parent
body, initial inclination ii, as well as true anomaly f imp and argument
of perihelion ωimp at the time of impact disruption. All of these pa-
rameters determine the initial shape of the synthetic ‘Hilda’ family
just after the disruption of the parent body. Initial semimajor axis ai

is not totally free, instead it is calculated from the initial semimajor
axis of Jupiter aJi and the Kepler’s law, since the parent body has to
be confined to the J3/2 resonance.

3.2 Yarkovsky effect in a resonance

The long-term evolution of asteroid orbits is mainly driven by the
Yarkovsky thermal effect. The implementation of the Yarkovsky ef-
fect in the SWIFT integrator was described in detail in Brož (2006).
Only minor modifications of the code were necessary to incorpo-
rate spin rate evolution, which is driven by the YORP effect (see
Section 3.3).

The thermal parameter we use are reasonable estimates for C/X-
type bodies: ρsurf = ρbulk = 1300 kg m−3 for the surface and bulk
densities, K = 0.01 W m−1 K−1 for the surface thermal conductivity,
C = 680 J kg−1 for the heat capacity, A = 0.02 for the Bond albedo
and εIR = 0.95 for the thermal emissivity parameter.

We can use a standard algorithm for the calculation of the
Yarkovsky acceleration which results in a semimajor-axis drift in
case of non-resonant bodies. The drift in eccentricity in case of
resonant bodies arises ‘automatically’ due to the gravitational part
of the integrator. In Fig. 5 we can see a comparison between the
expected drift �a in semimajor axis and the resulting drift �e in
eccentricity, computed for the Hilda family (see the explanation in
appendix A of Brož & Vokrouhlický 2008). The data can be approx-

Figure 5. An almost linear relation between the expected drift �a in semi-
major axis and the simulated drift �e in eccentricity, computed for 360
members of the Hilda family located inside the J3/2 resonance.

imated by a linear relationship, where the departures from linearity
are caused mainly by interactions of drifting orbits with embedded
weak secular or secondary resonances.

Note that according to a standard solar model the young Sun was
faint (Güdel 2007), i.e. its luminosity 4 Gyr ago was 75 per cent
of the current L�. We can then expect a lower insolation and conse-
quently weaker thermal effects acting on asteroids. Since we assume
a constant value of L� in our code, the age estimated for the Hilda
family (in Section 3.5) can be 12.5 per cent larger.

3.3 YORP effect

The magnitude of the Yarkovsky drift sensitively depends on the
orientation of the spin axis with respect to the orbital plane and,
to a lesser extent, on the angular velocity too. We thus have to
account for the long-term evolution of spins of asteroids which is
controlled by torques arising from the emission of thermal radia-
tion, i.e. the YORP effect. The implementation of the YORP effect
follows Vokrouhlický et al. (2006b). We assume the following re-
lations for the rate of angular velocity and obliquity:

dω

dt
= fi(ε) , i = 1, . . . , 200 , (5)

dε

dt
= gi(ε)

ω
, (6)

where f - and g-functions are given by Čapek & Vokrouhlický (2004)
for a set of 200 shapes with mean radius R0 = 1 km, bulk density
ρ0 = 2500 kg m−3, located on a circular orbit with semimajor axis
a0 = 2.5 au. The shapes of the Hilda family members are not known,
so we assign one of the artificial shapes (denoted by the index i)
randomly to each individual asteroid. We only have to scale the f -
and g-functions by the factor

c = cYORP

(
a

a0

)−2 (
R

R0

)−2 (
ρbulk

ρ0

)−1

, (7)

where a, R, ρbulk are semimajor axis, radius and density of the
simulated body, and cYORP is a free scaling parameter, which can
account for an additional uncertainty of the YORP model. Because
the values of f and g were computed for only a limited set of
obliquities (with a step �ε = 30◦) we use interpolation by Hermite
polynomials (Hill 1982) of the data in Čapek & Vokrouhlický (2004)
to obtain a smooth analytical function each for fi(ε) and gi(ε).

If the angular velocity approaches a critical value,

ωcrit =
√

8

3
πGρbulk , (8)

we assume a mass-shedding event, so we keep the orientation of the
spin axis and the sense of rotation, but we reset the orbital period
P = 2π/ω to a random value from the interval (2.5, 9) h. We also
change the assigned shape to a different one, since any change of
shape may result in a different YORP effect.

The differential equations (5) and (6) are integrated numerically
by a simple Euler integrator. The usual time-step is �t = 1000 yr.
An example of the results computed by the spin integrator for the
Hilda family is displayed in Fig. 6. The typical time-scale of the
spin-axis evolution is τYORP � 500 Myr. After � 3 times τYORP most
bodies have spin axes perpendicular to their orbits, what maximizes
the Yarkovsky drift rate of eccentricity.
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Figure 6. An example of the YORP-driven evolution of obliquities (namely
a z-component of the spin-axis unit vector, top panel) and angular velocities
ω (bottom panel) for the members of the synthetic ‘Hilda’ family. At the
beginning, all values of ω were selected positive and spin axes were dis-
tributed isotropically. The evolution may force ω to become negative, which
simply corresponds to an opposite orientation of the spin axis. The scaling
parameter selected for this run was cYORP = 0.33.

3.4 Collisions and spin-axis reorientations

In principle, collisions may directly affect the size distribution of
the synthetic Hilda family, but we neglect this effect because most
of the asteroids are large enough to remain intact.

However, we include spin-axis reorientations caused by col-
lisions. We use an estimate of the time-scale by Farinella,
Vokrouhlický & Hartmann (1998):

τreor = B

(
ω

ω0

)β1
(

D

D0

)β2

, (9)

where B = 84.5 kyr, β1 = 5/6, β2 = 4/3, D0 = 2 m and ω0 cor-
responds to period P = 5 h. These values are characteristic of the
main belt and we use them as an upper limit of τ reor for the J3/2
region. Even so, the time-scale is τ reor � 3 Gyr for the smallest
observable (D � 5 km) bodies, and reorientations are thus only of
minor importance. Note that the probability of the reorientation is
enhanced when the YORP effect drives the angular velocity ω close
to zero.

3.5 Results for the Yarkovsky/YORP evolution

We start a simulation with an impact disruption of the parent body
and create 360 fragments. Subsequent evolution of the synthetic
Hilda family due to the Yarkovsky/YORP effect is computed up to
6 Gyr in order to estimate the time-span needed to match the ob-
served family even though the family cannot be older than �4 Gyr,
of course. Planets are started on their current orbits. A typical out-
come of the simulation is displayed in Fig. 7.

Figure 7. Eccentricity versus absolute magnitude plot for the synthetic
‘Hilda’ family just after the impact disruption (time t = 0, top panel) and
after 4 Gyr of evolution due to the Yarkovsky/YORP effect (bottom panel).
There is a comparison with the observed Hilda family (grey dots).

Due to the long integration time-span and large number of bodies,
we were able to compute only four simulations with the following
values of true anomaly and YORP efficiency:

(i) f imp = 0◦, cYORP = 0;
(ii) f imp = 180◦, cYORP = 0;
(iii) f imp = 0◦, cYORP = 1;
(iv) f imp = 0◦, cYORP = 0.33.

The remaining parameters were fixed: ei = 0.14, ii = 7.◦8,
ωimp = 30◦, α = 3.25, vmax = 300 m s−1, RPB = 93.5 km, ρPB =
1300 kg m−3, pV = 0.044.

We are mainly concerned with the distribution of eccentricities
ep, because the observed family has a large spread of ep values,
while the initial synthetic family is very compact. For this purpose
we constructed a Kolmogorov–Smirnov test (Press et al. 1999) of
the normalized cumulative distributions N(<e):

DKS = max
0<e<1

|N (<e)syn − N (<e)obs| , (10)

which provides a measure of the difference between the synthetic
Hilda family, at a given time, and the observed Hilda family (see
Fig. 8 for an example). The results of the KS tests are summarized
in Fig. 9 (the first four panels).

There is an easy possibility to asses the sensitivity of results with
respect to the vmax parameter too, without the need to compute the
simulation again. We simply select bodies fulfilling the condition
v < v′

max, with v′
max = 200, 100 or 50 m s−1, and recompute only

the KS statistics for this subset. The results are plotted in Fig. 9 as
thin lines. We can state that values lower than vmax � 100 m s−1 are
surely excluded.

As a preliminary conclusion we may say that all simulations
point to a large age of the Hilda family. The ep-distributions are
most compatible with the observed family for ages t = (4.0 ±
1.0) Gyr. This suggests that the Hilda family might have experienced
the giant-planet migration period which is dated by the late heavy
bombardment to tLHB � 3.85 Gyr (Gomes et al. 2005). The large
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Figure 8. Normalized cumulative distributions N(<e) of eccentricities for
(i) the observed Hilda family, (ii) the synthetic ‘Hilda’ family at time t = 0
(just after the impact disruption), (iii) evolved due to the Yarkovsky/YORP
effect (at time t = 3845 Myr). In this figure we show the best fit for the
simulation with parameters f imp = 0◦, cYORP = 0.33. Note that the ‘bent’
shape of the observed distribution corresponds to the ‘ears’ on the (ep,
H) plot (Fig. 2). There is no perturbation by planetary migration in this
particular case.

uncertainty of the age stems from the fact that the runs including the
YORP effect (cYORP ≥ 0.33) tend to produce ages at a lower limit
of the interval while the YORP-less runs (with cYORP = 0) tend to
the upper limit.

3.6 Alternative hypothesis: high albedos of small asteroids

We now discuss two scenarios that further reduce the minimal
age of the family: (i) high albedos of small asteroids (i.e. larger
Yarkovsky/YORP drift); (ii) strongly asymmetric velocity field af-
ter impact (like that of the Veritas family).

Albedo is the most important unknown parameter, which can
affect results on the Yarkovsky/YORP evolution. Fernández, Jewitt
& Ziffer (2009) measured albedos of small Trojan asteroids and
found systematically larger values than those for large Trojans. If
we assume that the J3/2 asteroids behave similarly to Trojans, we
may try a simulation with a rather high value of geometric albedo
pV = 0.089 (compared to previous pV = 0.044). Moreover, we
decrease density ρbulk = 1200 kg m−3, increase maximum velocity
of fragments vmax = 500 m s−1 (though the velocity distribution is
still determined by equation 4) and select true anomaly f imp = 90◦

to maximize the spread of ep values.
The KS test is included in Fig. 9, panel (e). The most probable

age is (2.3 ± 0.5) Gyr in this case. However, we do not think that the
size-dependent albedo is very plausible because both large and small
family members should originate from the same parent body and
their albedos, at least just after the disruption, should be similar.
Nevertheless, the albedos may change to a certain degree due to
space weathering processes (Nesvorný et al. 2005). Unfortunately,
we do not have enough data for small asteroids to assess a possible
albedo difference between large and small family members.

3.7 Alternative hypothesis: strongly asymmetric velocity field

Another possibility to reduce the estimate of the family age is that
the original velocity was highly anisotropic. A well-known example
from the main belt is the Veritas family. Let us assume that the

anisotropy is of the order of Veritas, i.e. approximately four times
larger in one direction. Note that Veritas is a young family and can
be modelled precisely enough to compensate for chaotic diffusion in
resonances (Nesvorný et al. 2003; Tsiganis, Knežević & Varvoglis
2007). This family is characterized by a large spread of inclinations,
which corresponds to large out-of-plane components of velocities.
In case of the Hilda family we multiply by 4 the radial components
of initial velocities to maximize the dispersion of eccentricities,
assuming the most favourable geometry of disruption (f imp

.= 90◦).
The fit in Fig. 9, panel (f), is seemingly better at the beginning of

the simulation, but bodies on unstable orbits are quickly eliminated
and the fit gets much worse at t � 500 Myr. We can see that the
synthetic Hilda family is similar to the observed Hilda family quite
early (at t � 2.5 Gyr); however, the best fit is at later times (t �
3.5 Gyr), so there is no significant benefit compared to isotropic
velocity-distribution cases.

4 D I SRU PTION R ATES I N THE J 3 / 2
POPULATION

4.1 Present collisional activity

The results presented above show that the Hilda family is old.
However, the uncertainty of the age is too large to conclude whether
or not the family formed during the late heavy bombardment (LHB)
period. An alternative constraint is the collisional lifetime of the
parent body. If the probability that the parent body broke in the last
4 Gyr in the current collisional environment is negligible, it would
argue that the family broke during the LHB when the collisional
bombardment was much more severe. Thus, here we estimate the
collisional lifetime of the parent body.

In our case, the target (parent body) has a diameter Dtarget =
200 km, a mean impact velocity V i = 4.8 km s−1 (Dahlgren 1998),
and a probable strength Q�

D = 4 × 105 J kg−1 (Benz & Asphaug
1999), and thus the necessary impactor size (Bottke et al. 2005) is

ddisrupt =
(
2Q�

D/V 2
i

)1/3
Dtarget � 65 km . (11)

The population of ≥65 km projectiles is dominated by main-belt
bodies: nproject � 160, according to Bottke et al. (2006), and we
have only one 200-km target in the J3/2 region, so ntarget = 1. The
intrinsic collisional probability for Hilda versus main belt collisions
is Pi = 6.2 × 10−19 km−2 yr−1 (Dahlgren 1998) and the correspond-
ing frequency of disruptions is

fdisrupt = Pi

D2
target

4
nprojectntarget � 10−12 yr−1 . (12)

Thus, over the age of the Solar system TSS � 4 Gyr (after LHB),
we expect a very small number of such events nevents = TSSf disrupt �
0.004.

The value of strength Q�
D used above corresponds to strong tar-

gets. Though there is a theoretical possibility that the Hilda parent
body was weaker, it does not seem to us likely, because the Hilda
family is of the C taxonomic type. Thus, it is rather similar to
(presumably stronger) main belt asteroids, than to (likely weaker)
D-type objects. Anyway, even if we use an order of magnitude lower
strength inferred for weak ice, Q�

D � 4 × 104 J kg−1 (see Leinhardt
& Stewart 2009; Bottke et al. 2010), we obtain ddisrupt � 30 km,
nproject � 360 and nevents � 0.009, so the conclusion about the low
number of expected families remains essentially the same.
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Figure 9. Kolmogorov–Smirnov tests of the synthetic ‘Hilda’ family: (a) no migration, only initial disruption (at anomaly f imp = 0◦, � i = 30◦) and subsequent
Yarkovsky evolution; (b) the case with f imp = 180◦; (c) including the YORP effect; (d) YORP with efficiency factor cYORP = 0.33; (e) high albedo values (i.e.
small bodies); (f) strongly asymmetric velocity field. The horizontal line denotes the distance DKS = 0.165 for which the probability p(>DKS) that the two
eccentricity distributions differ by this amount equals 0.01.

4.2 The late heavy bombardment

We now compute the probability that the parent body broke during
the LHB. We can think of two projectile populations: (i) transient
decaying cometary disc; (ii) D-type asteroids captured in the J3/2.
Models like that of Levison et al. (2009) suggest that the decay
time-scale of the cometary bombardment is of the order of 10–
100 Myr and the flux of impactors integrated over this time-span
might have been 100 times larger than it is today. Higher mean
collisional velocities, due to projectiles on high-e and high-i orbits,
are also favourable.

In order to estimate collisional activity we use a self-consistent
model of the cometary disc from Vokrouhlický, Nesvorný &
Levison (2008). Their N-body simulations included four giant plan-
ets and 27 000 massive particles with a total mass of Mdisc = 35 M⊕.

The orbital evolution was propagated by the SyMBA integrator for
100 Myr. Using the output of these simulations, we calculate the
mean intrinsic collisional probabilities Pi(t) between the cometary-
disc population (at given time t) and the current J3/2 population.
We use an algorithm described in Bottke et al. (1994) for this pur-
pose. Typically, the Pi reaches 2to3 × 10−21 km−2 yr−1 and the
corresponding mean impact velocities are V imp = 7–10 km s−1 (see
Fig. 10).

The necessary impactor size is slightly smaller than before,
ddisrupt = 40–50 km due to larger V imp. To estimate the number
of such projectiles we assume that the cometary disc had a size dis-
tribution described by a broken power law with differential slopes
q1 = 5.0 for D > D0, q2 = 2.5 ± 0.5 for D < D0, where the diameter
corresponding to the change of slopes is D0 = 50–70 km. We then
use the following expressions to calculate the number of bodies
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Figure 10. Mean intrinsic collisional probability Pi and mean impact ve-
locity V imp versus time for one of the disc simulations from Vokrouhlický
et al. (2008).

larger than the given threshold (Vokrouhlický et al. 2008):

D1 = D0

[
(q1 − 4)(4 − q2)

(q1 − 1)(q1 − q2)

Mdisc

M0

] 1
q1−1

, (13)

N (>D) = q1 − 1

q2 − 1

(
D1

D0

)q1−1(
D0

D

)q2−1

− q1 − q2

q2 − 1

(
D1

D0

)q1−1

, (14)

where M0 = π
6 ρD3

0 and ρ = 1300 kg m−3. The result of this cal-
culation is N(>ddisrupt)

.= 0.3 to 1.7 × 109. The actual number of
bodies in the simulation (27 000) changes in course of time and
it was scaled such that initially it was equal to N(>ddisrupt). The
resulting number of events is

nevents =
D2

target

4
ntarget

∫
Pi(t) nproject(t) dt

� 0.05 to 0.2 , (15)

which is 10–50 times larger than the number found in Section 4.1.
Regarding the captured D-type asteroids, they were probably not

so numerous and their impact velocities were lower but their colli-
sional probabilities were larger and the population might have had a
substantially longer time-scale of decay (Levison et al. 2009). Using
the reasonable values V i = 4.0 km s−1, ddisrupt = 70 km, nproject =
5000, Pi = 2.3 × 10−18 km−2 yr−1, TLHB � 1 Gyr, we obtain the
number of events �0.1 which is again 25 times larger than the
number presented in Section 4.1.

We conclude that the Hilda family was likely created during
the LHB when the collisions were much more frequent than in
the current collisional environment. We must now test whether the
structure of the family is consistent with the giant-planet migration,
since it is connected with the LHB.

5 PL A N E TA RY M I G R AT I O N

At the LHB-time the planetary migration was most probably caused
by the presence of a massive cometary disc. Instead of a full N-
body model we use a simpler analytic migration, with an artificial
dissipation applied to the planets. This is the only realistic possibility
in our case, because we need to test not only a large number of
various migration scenarios but also various initial configurations
of the synthetic Hilda family.

For this purpose we use a modified version of the symplectic
SWIFT–RMVS3 integrator (Levison & Duncan 1994). We account
for four giant planets and include the following dissipation term

Table 1. Free parameters of our Hilda family model.

No. Parameter Description

1 aJi Initial semimajor axis of Jupiter
2 aSi Saturn
3 eJi Initial eccentricity of Jupiter
4 eSi Saturn
5 τmig Migration time-scale
6 edampJ Eccentricity damping for Jupiter
7 edampS Saturn
8 ei Initial eccentricity of the parent body
9 ii Initial inclination

10 f imp True anomaly at the impact disruption
11 ωimp Argument of perihelion
12 α Slope of the velocity distribution
13 vmax Maximum velocity of fragments
14 RPB Radius of parent body
15 ρPB Bulk density
16 pV Geometric albedo of fragments
17 cYORP Efficiency of the YORP effect

Table 2. Fixed (assumed) parameters of the Hilda family model. There are
also a number of less important parameters, such as the thermal ones (ρsurf ,
K, C, A, εIR) or the collisional ones (B, β1, β2).

No. Parameter Description

18 aJf Final semimajor axis of Jupiter
19 aSf Saturn
20 N(<H) (observed) absolute magnitude distribution

applied to the planets in every time-step:

v = v

[
1 + �v

v

�t

τmig
exp

(
− t − t0

τmig

)]
, (16)

where v denotes a velocity vector of a given planet, v is the absolute
value of velocity, �t is the time-step, τmig is the selected migration
time-scale, �v = √

GM/ai − √
GM/af the required total change

of velocity (i.e. the difference of mean velocities between the initial
and the final orbit), t is the time and t0 is some reference time. If
there are no perturbations other than (16), the semimajor axis of the
planet changes smoothly (exponentially) from the initial value ai to
the final af . We use time-step �t = 36.525 d and the total time-span
of the integration is usually equal to 3τmig when planetary orbits
practically stop to migrate.

We would like to resemble evolution of planetary orbits similar to
the Nice model so it is necessary to use an eccentricity-damping for-
mula, which simulates the effects of dynamical friction (Morbidelli
et al. 2010). This enables us to model a decrease of eccentricities
of the giant planets to relatively low final values. The amount of
eccentricity damping is characterized by a parameter edamp.

Because inclinations of the planets are not very important for
what concerns the perturbation of minor bodies (the structure of
resonances is mainly determined by planetary eccentricities), we
usually start with the current values of inclination of the planets.

We admit that the analytic migration is only a crude approxima-
tion of the real evolution, but we can use it as a first check to see
which kinds of migration scenarios are allowed and which are not
with respect to the existence and structure of the Hilda family.

As a summary we present a list of free and fixed (assumed)
parameters of our model in Tables 1 and 2. According to our nu-
merical tests the initial configuration of Uranus and Neptune is not
very important, as these planets do not produce significant direct
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perturbations on asteroids located in the J3/2 resonance. We thus
do not list the initial semimajor axes and eccentricities of Uranus
and Neptune among our free parameters though we include these
planets in our simulations.

The problem is that we cannot tune all the 17 parameters together,
since the 17-dimensional space is enormous. We thus first select a
reasonable set of impact parameters for the family (No. 8–17 in
Table 1), keep them fixed, and experiment with various values of
migration parameters (No. 1–7). We test roughly 103 migration
scenarios. Then, in the second step, we vary impact parameters for
a single (successful) migration scenario and check the sensitivity of
results.

5.1 Results for planetary migration

In the first test we compute an evolution of the synthetic Hilda
family during planetary migration phase for the following parameter
space (these are not intervals but lists of values): aJi = (5.2806 and
5.2027) au, aSi = (8.6250, 8.8250, 9.3000) au, eJi = (0.065, 0.045),
eSi = (0.08, 0.05), τmig = (0.3, 3, 30, 300) Myr, edampJ = 10−11,
edampS = 10−11.1 The values of aJi and aSi correspond to period
ratios PS/PJ from 2.09 to 2.39 (the current value is 2.49), i.e. the
giant planets are placed already beyond the 2:1 resonance, since
the 2:1 resonance crossing would destroy the Hilda family (Brož
& Vokrouhlický 2008). Impact parameters were fixed except f imp:
ei = 0.14, ii = 7.◦8, f imp = (0◦, 180◦), ωimp = 30◦, α = 3.25, vmax =
300 m s−1, RPB = 93.5 km, ρPB = 1300 kg m−3.

The synthetic Hilda family has 360 bodies in case of short simu-
lations (τmig = 0.3or3 Myr). In case of longer simulations we create
60 bodies only. Their absolute magnitudes (sizes) were thus selected
randomly from 360 observed values. This is a minimum number of
bodies necessary to compare the distributions of eccentricities. We
performed tests with larger numbers of bodies and the differences
do not seem significant.

A comparison of the final orbits of the planets with the current
planetary orbits shows we have to exclude some migration simula-
tions (mostly those with Uranus and Neptune on compact orbits).
One of the reasons for the unsuccessful scenarios is that a com-
pact configuration of planets is inherently unstable. If the migration
time-scale is too large or the eccentricity damping too low, it may
result in a violent instability, close encounters between planets and
eventually an unrealistic final configuration.

The change in the structure of the synthetic Hilda family due to
migration can be seen in Fig. 11. The family is shifted in semimajor
axis, because it moves together with the resonance with migrating
Jupiter. Moreover, the eccentricities are dispersed while the incli-
nations are barely affected.

We have found that the eccentricity distribution is modified when
secondary resonances occur between the libration frequency f J3/2

of an asteroid in the J3/2 resonance and the frequency f 1J−2S of the
critical argument of Jupiter–Saturn 1:2 resonance (see Kortenkamp,
Malhotra & Michtchenko 2004; Morbidelli et al. 2005 for the case
of Trojans):

nfJ3/2 = f1J−2S , (17)

1 In order to increase the statistics we ran simulations multiple times
with different initial conditions for Uranus and Neptune: aUi = (18.4479,
12.3170) au, aNi = (28.0691, 17.9882) au, eUi = (0.06, 0.04), eNi = (0.02,
0.01).

Figure 11. A usual evolution of the synthetic ‘Hilda’ family in the pseudo-
proper semimajor axis versus eccentricity plot. The initial (t = 0 Myr) and
final stages (t = 100 Myr) are plotted. The migration time-scale was τmig =
30 Myr in this particular example. We selected this longer time-scale because
secular frequencies can then be computed more precisely (see Fig. 12). The
arrow indicates a total change of the position of the J3/2 resonance due to
migration of Jupiter.

where n is a small integer number, n = 2, 3 or 4 in our case.2 We can
see the evolution of resonant semimajor axes and the correspond-
ing dominant frequencies, computed by means of periodogram, in
Fig. 12.

Because the resonances are localized – they act only at particular
values of semimajor axes of planets – it is not necessary to have a
dense grid in aJi, aSi parameters to study the dependence of the syn-
thetic Hilda family shape on aJi, aSi. Essentially, there are only three
situations when the Hilda family is strongly perturbed, otherwise
the spread in e does not change much in course of time.

A very simple test, which allows us to quickly select allowed
migration scenarios, is the number of remaining Hilda family mem-
bers. We may assume that the depletion by dynamical effects was
probably low (say 50 per cent at most), otherwise we would obtain a
much larger parent body than D � 200 km, which has a much lower
probability of collisional disruption. The fractions of the remaining
bodies N left/N initial versus initial conditions for planets are displayed
in Fig. 13.

The small number of remaining bodies N left indicates that per-
turbations acting on the synthetic family were too strong. It means
either the family had to be formed later (when fewer and weaker
secondary resonances are encountered) to match the observed fam-
ily or this migration scenario is not allowed. The same applies to the
dispersion of e-distribution (see below): if it is too large compared
to the observed Hilda family, the synthetic Hilda had to be formed
later or the scenario is not allowed. Our results indicate that

(i) a faster migration time-scale τmig � 0.3–30 Myr is preferred
over slower time-scales;

(ii) Jupiter and Saturn were not in the most compact configuration
(aJi = 5.2806 au, aSi = 8.6250 au) at the time when the Hilda family
was created.

5.2 A sensitivity to the impact-related parameters

Another important test was devoted to the impact parameters, which
were varied in relatively larger steps: ei = (0.12, 0.15), ii = (6.◦8,
8.◦8), f imp = (45◦, 90◦, 135◦), ωimp = (60◦, 90◦), α = (2.25, 4.25),
vmax = (200, 400) m s−1, RPB = (83.5, 103.5) km, ρPB = (1000,
2000) kg m−3. Note that the selected impact parameters are rather
extreme, reason that we do not expect them to ever be out of these

2 We also looked for secondary resonances connected with the 4:9, 3:7 and
2:5 Jupiter–Saturn resonances, but we found no significant effects.
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Figure 12. Top panel: the frequency f 1J−2S of the Jupiter–Saturn 1:2 mean
motion critical argument (thick grey curve) versus time t. The frequency
changes due to the migration of planets with the time-scale τmig = 30 Myr.
We also computed dominant frequencies f J3/2 of librations in the J3/2 res-
onance for three selected members of the synthetic Hilda family (black
curves). We do not plot the frequency itself but a selected multiple of it
nf J3/2. Captures in the secondary resonances of type nf J3/2 = f 1J−2S are
then clearly visible when the frequencies are equal. For the test particle
number 1 it occurs between 4 and 10 Myr, particle 2 was captured from 21
to 32 Myr and particle 3 from 54 Myr till the end of the simulation. Bottom
panel: the corresponding changes of the pseudo-proper semimajor axes ap

versus time t due to the secondary resonances. The three test particles from
the top panel are shown (black curves) together with the remaining members
of synthetic ‘Hilda’ family (grey curves). Note that some particles may be
pushed to the border of the stable libration zone and then escape from the
J3/2 resonance.

bounds. The total number of simulations is 384. The migration
parameters were fixed (they correspond to one successful migration
scenario): aJi = 5.2806 au, aSi = 8.8250 au, eJi = 0.065, eSi = 0.08,
τmig = 3 Myr, edampJ = 10−11, edampS = 10−11.

This time, we decided to use a simple quantity to discuss the
results, namely the eccentricity dispersion σe of the synthetic family
at the end of the giant-planet migration. The most frequent values of
the dispersion are σe = 0.015–0.04 (see the histograms in Fig. 14).
Further evolution by the Yarkovsky/YORP effect would increase the
dispersions up to σe = 0.045–0.06, while the observed dispersion
of the Hilda family is σe = 0.046.

It is notable that the histograms look similar for all the impact pa-
rameters, there is even no apparent correlation between them. The
explanation for this ‘lack of dependence’ is that the eccentricity
distribution is mainly determined by the perturbations of the giant
planets. A given planetary evolution therefore gives a characteristic
value of σe whatever the impact parameters are. The dispersion in
σe values is due to the fact that the planetary evolutions that we have
computed change widely from one simulation to another. Though
planet migration was prescribed analytically, there are mutual in-
teractions between planets and random captures in resonances (or
jumps across resonances) which may affect the eccentricity dis-
tribution of the synthetic Hilda family. An extreme case is shown
in Fig. 15. In this particular simulation, Jupiter and Saturn were
captured in the mutual 3:7 resonance for 0.5 Myr which resulted in
a large eccentricity dispersion σe = 0.044 of the synthetic family.
Our conclusion is that the impact parameters are less important than
the parameters related to migration.

5.3 Matching results together

Even though we do not perform a joint integration which includes
both the planetary migration and Yarkovsky/YORP effect, we try to
match the previous results from Sections 5.1 and 3.5. We do it by us-
ing a straightforward Monte Carlo approach: (i) we take the pseudo-
proper eccentricities emig of bodies at the end of planetary migration
from Section 5.1; (ii) we compute the total Yarkovsky/YORP drifts
�eYE in eccentricity from Section 3.5; (iii) we assign every body a
drift randomly (efinal = emig + �eYE) and this way we construct an

Figure 13. The number of simulations N versus the fraction of remaining bodies Nleft/Ninitial from the synthetic ‘Hilda’ family. The histograms are plotted for
four different time-scales of migration τmig and six different initial configurations of Jupiter and Saturn (aJi, aSi; we indicate period ratios PSi/PJi instead of
semimajor axes here). The ranges of the remaining free parameters are mentioned in the text. We only plot the successful migration scenarios with �vplanets ≤
2000 m s−1, where �vplanets = ∑4

1 δvi is a sum of the velocity differences δv (defined similarly as in the HCM metric, equation 3) between the final simulated
orbit of the ith planet and the currently observed one. This way we join differences in orbital elements a, e, I into a single quantity which has the dimension of
velocity.
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Figure 14. Eccentricity dispersions of the synthetic ‘Hilda’ families at the end of the giant-planet migration for the various initial conditions of the impact
disruption: initial eccentricity ei, inclination ii, true anomaly f imp, argument of perihelion ωimp, exponent α, maximum velocity vmax, radius of the parent body
RPB and its bulk density ρPB. The values of the remaining parameters related to migration are mentioned in the text. Note that there is no evolution by the
Yarkovsky/YORP effect in this simulation. The dotted vertical line denotes the value σe = 0.046 of the observed Hilda family.

Figure 15. An example of the orbital evolution of Jupiter and Saturn with
a rare temporary capture in the mutual 3:7 resonance (bottom panel). This
sort of evolution leads to a large spread of pseudo-proper eccentricities of
the synthetic ‘Hilda’ family by the end of the migration (top panel).

evolved synthetic family.3 Finally, we compare the synthetic family
to the observed Hilda family by computing a Kolmogorov–Smirnov
test for N(<efinal) and N(<eobs) distributions.

To avoid problems with the small number of bodies (60 in case of
planetary migration), we perform the above procedure 100 times,
always with a different random seed for the assignment of the �eYE.
We then take a median of the 100 KS statistics as a result for one
particular run. The resulting histograms of the median DKS for
various initial conditions are shown in Fig. 16.

We confirm the conclusions from Section 5.1 – those migration
scenarios that preserve the largest number of family members (i.e.

3 Note that gravitational perturbations, caused by planetary migration, are
independent of size (mass), so a large body may be easily found at the
outskirts of the family. This is another reason for the random assignment of
Yarkovsky/YORP drifts.

high N left) are the same, for which we can find a good fit of eccentric-
ity distribution (low DKS). Moreover, it seems we can exclude also
the time-scale of migration τmig = 30 Myr since the total number
of successful simulations is significantly smaller in this case.

6 C O N C L U S I O N S

Results of this paper can be summarized as follows.

(i) The Hilda family evolves mainly due to the Yarkovsky/YORP
effect and the observed large spread of eccentricities indicates the
age 4+0

−1 Gyr.
(ii) The collisional disruption of a D � 200 km parent body is

unlikely in the current environment. Instead, it rather occurred dur-
ing the LHB when collisions with comets dominated and were up
to 50 times more frequent. Another possible source of projectiles is
the population of D-type asteroids captured in the J3/2 resonance
(Levison et al. 2009).

(iii) In case the Hilda family was created during giant-planet
migration, which seems to us likely, the major perturbations of
the family were due to secondary resonances between libration
frequency and the frequency of Jupiter–Saturn 1:2 critical argument.

(iv) On the basis of our simulations, we argue that the migration
was relatively fast (with time-scale τmig � 0.3–3 Myr) and Jupiter
and Saturn were relatively closer to the current configuration (with
period ratio PS/PJ ≥ 2.13 or more) at the moment when the Hilda
family was created, otherwise the family would be ‘destroyed’ by
migration. Slower migration time scales are only allowed for larger
values of PS/PJ ratios.

The Hilda family thus proved to be one of the oldest families in
the main asteroid belt.

There are emerging indications that orbital evolution of plan-
ets was rather violent and close encounters between planets were
present (Nesvorný et al. 2007; Brasser et al. 2009). This might be
still consistent with our model of the Hilda family, but of course
we have to assume that the family formed after severe perturbations
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Figure 16. The number of simulations N versus the Kolmogorov–Smirnov distance DKS between the synthetic and the observed Hilda family. The simulations
differ by the time-scale of migration τmig and the initial conditions for Jupiter and Saturn (aJi, aSi). We only plot the successful migration scenarios with
�vplanets ≤ 2000 m s−1 and the number of bodies left Nleft > Ninitial/2. The dotted vertical line denotes the distance DKS for which the probability p(>DKS)
that the two eccentricity distributions differ by this amount equals 0.01.

in the J3/2 region ended. A more complicated migration scenario
like that of ‘jumping Jupiter’ (Morbidelli et al. 2010) even seems
favourable in our case because Jupiter and Saturn very quickly reach
a high period ratio (PS/PJ � 2.3, i.e. the planets are quite close to
their current orbits). Then, the perturbations acting on the J3/2 re-
gion are already small and the flux of impactors becomes high just
after the jump. The Hilda family thus might have formed exactly
during this brief period of time.

Regarding future improvements of our model, knowledge of ge-
ometric albedos for a large number of small asteroids may signifi-
cantly help and decrease uncertainties. The WISE infrared mission
seems to be capable of obtaining these data in near future.
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Sci, 294, 1693
Bottke W. F., Durda D. D., Nesvorný D., Jedicke R., Morbidelli A.,
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Tsiganis K., 2009, Nat, 460, 364
Malhotra R., 1995, AJ, 110, 420
Minton D. A., Malhotra R., 2009, Nat, 457, 1109
Morbidelli A., Moons M., 1993, Icarus, 102, 316
Morbidelli A., Levinson H. F., Tsiganis K., Gomes R., 2005, Nat, 435,

459
Morbidelli A., Brasser R., Tsiganis K., Gomes R., Levison H. F., 2009,

A&A, 507, 1041
Morbidelli A., Brasser R., Gomes R., Levison H. F., Tsiganis K., 2010, AJ,

140, 1391
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ABSTRACT

Asteroids residing in the first-order mean motion resonances with Jupiter hold important
information about the processes that set the final architecture of giant planets. Here, we revise
current populations of objects in the J2/1 (Hecuba-gap group), J3/2 (Hilda group) and J4/3
(Thule group) resonances. The number of multi-opposition asteroids found is 274 for J2/1,
1197 for J3/2 and three for J4/3. By discovering a second and third object in the J4/3 resonance
(186024) 2001 QG207 and (185290) 2006 UB219, this population becomes a real group rather
than a single object. Using both hierarchical clustering technique and colour identification,
we characterize a collisionally born asteroid family around the largest object (1911) Schubart
in the J3/2 resonance. There is also a looser cluster around the largest asteroid (153) Hilda.
Using N-body numerical simulations we prove that the Yarkovsky effect (infrared thermal
emission from the surface of asteroids) causes a systematic drift in eccentricity for resonant
asteroids, while their semimajor axis is almost fixed due to the strong coupling with Jupiter.
This is a different mechanism from main belt families, where the Yarkovsky drift affects
basically the semimajor axis. We use the eccentricity evolution to determine the following
ages: (1.7 ± 0.7) Gyr for the Schubart family and �4 Gyr for the Hilda family. We also find
that collisionally born clusters in the J2/1 resonance would efficiently dynamically disperse.
The steep size distribution of the stable population inside this resonance could thus make sense
if most of these bodies are fragments from an event older than �1 Gyr. Finally, we test stability
of resonant populations during Jupiter’s and Saturn’s crossing of their mutual mean motion
resonances. In particular, we find primordial objects in the J3/2 resonance were efficiently
removed from their orbits when Jupiter and Saturn crossed their 1:2 mean motion resonance.

Key words: methods: N-body simulations – celestial mechanics – minor planets, asteroids.

1 IN T RO D U C T I O N

Populations of asteroids in the Jovian first-order mean motion res-
onances – J2/1, J3/2 and J4/3 – are closely linked to the orbital
evolution of the giant planets. This is because of their orbital prox-
imity to Jupiter.1 Stability or instability of these asteroid populations
directly derives from the orbital configuration of the giant planets.
As such, it is also sensitive on the nature and amount of Jupiter’s
migration and other finer details of its dynamics. As a result, the
currently observed asteroids in the Jovian first-order resonances
contain valuable information about the early evolution of planets
and, if correctly understood and properly modelled, they may help
to constrain it.

�E-mail: mira@sirrah.troja.mff.cuni.cz (MB); vokrouhl@cesnet.cz (DV)
1 Interestingly, at their discovery (158) Hilda and (279) Thule, residing in the
J3/2 and J4/3 resonances, immediately attracted attention of astronomers by
vastly extending asteroid zone towards giant planets and by their ability to
apparently approach Jupiter near aphelia of their orbits (e.g. Kühnert 1876;
Krueger 1889).

Apart from the Trojan clouds (not studied in this paper), the
largest known population in the Jovian mean motion resonances oc-
cupies the J3/2 resonance, and is frequently called the Hilda group.
It was carefully studied in a parallel series of papers by Schubart and
Dahlgren and collaborators during the past few decades. Schubart
(1982a,b, 1991) analysed short-term dynamics of Hilda-type or-
bits and introduced quasi-constant orbital parameters that allowed
their first classification. While pioneering, Schubart’s work had the
disadvantage of having much smaller sample of known asteroids
and computer power than today. Dahlgren & Lagerkvist (1995)
and Dahlgren et al. (1997); Dahlgren (1998); Dahlgren, Lahulla
& Lagerkvist (1999) conducted the first systematic spectroscopic
and rotation-rate investigation of Hildas. They found about equal
abundance of D- and P-type asteroids2 and suggested spectral-size
correlation such that P-types dominate large Hildas and D-types
dominate smaller Hildas. They also suggested that small Hildas
have large light-curve amplitudes, as an indication of elongated or

2 Note the former P-type objects were reclassified to X-type in a newer
taxonomy by Bus and Binzel (e.g. Bus, Vilas & Barucci 2002).
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irregular shape, and that the distribution of their rotation rates is
non-Maxwellian. Further analysis using the Sloan Digital Sky Sur-
vey (SDSS) data, however, does not support significant dominance
of either of the two spectral types for small sizes and indicates
about equal mix of them (Gil-Hutton & Brunini 2008; see also be-
low). Smaller populations of asteroids in the J2/1 and J4/3 received
comparatively less observational effort.

Since the late 1990s, powerful enough computers allowed a more
systematic analysis of fine details of the longer term dynamics in the
Jovian first-order resonances. Ferraz-Mello & Michtchenko (1996)
and Ferraz-Mello et al. (1998a); Ferraz-Mello, Michtchenko & Roig
(1998b) determined that asteroids in the J2/1 resonance can be very
long-lived, possibly primordial, yet their motion is comparatively
more chaotic than those in the J3/2 resonance. The latter paper
showed that commensurability between the libration period and the
period of Jupiter’s and Saturn’s Great Inequality (GI) might have
played an important role in depletion of the J2/1 resonance. This
would have occurred when both giant planets were farther from
their mutual 2:5 mean motion configuration in the past. A still
more complete analysis was obtained by Nesvorný & Ferraz-Mello
(1997) who also pointed out that the J4/3 resonance stable zone is
surprisingly void of asteroids, containing only (279) Thule. Roig
et al. (2002) and Brož et al. (2005) recently revised the population
of asteroids in the J2/1 resonance and classified them into several
groups according to their long-term orbital stability. While the origin
of the unstable resonant population was successfully interpreted
using a model of a steady-state flow of main belt objects driven
by the Yarkovsky semimajor axis drift, the origin of the long-lived
asteroids in the J2/1 remains elusive. Population of Hildas and Thule
was assumed primordial or captured by an adiabatic migration of
Jupiter (e.g. Franklin et al. 2004).

It has been known for some time that the current configuration of
giant planets does not correspond to that at their birth. However, a
new momentum to that hypothesis was given by the so-called Nice
model (Gomes et al. 2005; Morbidelli et al. 2005; Tsiganis et al.
2005). The Nice model postulates the initial configuration of the
giant planets was such that Jupiter and Saturn were interior of their
mutual 1:2 mean motion resonance (see also Morbidelli et al. 2007).
The event of crossing this resonance had a major influence on the
final architecture of giant planets and strongly influenced structure
of small-body populations in the Solar system. Morbidelli et al.
(2005) showed that the population of Jupiters Trojan asteroids was
destabilized and repopulated during this phase. In what follows we
show that, within the Nice model, the same most probably occurs
for populations of asteroids in the J3/2 and J4/3 resonances.

The paper is organized as follows. In Section 2 we revise in-
formation about the current populations of asteroids in the Jovian
first-order resonances. We use an up-to-date AstOrb data base of
asteroid orbits from the Lowell Observatory (ftp.lowell.edu) as of
2007 September and eliminate only single-opposition cases to as-
sure accurate orbital information.

In Section 3 we apply clustering techniques and extract two
families of asteroids on similar orbits in the J3/2 resonance. We
strengthen their case with an additional colour analysis using the
SDSS broad-band data. We model the long-term orbital evolution
of these families and estimate their ages on the basis of Yarkovsky-
driven dispersion in eccentricity.

In Section 4 we determine an orbital stability of the putative
primordial populations of planetesimals in the Jovian first-order
resonances. We show that those in the J3/2 and J4/3 are very
efficiently eliminated when Jupiter and Saturn cross their mu-
tual 1:2 mean motion resonance. We also determine the removal

rate of very small resonant asteroids due to the Yarkovsky/YORP
effects.

2 C U R R E N T A S T E RO I D PO P U L AT I O N S I N

THE J OV IAN FIRST-ORDER R ESONANCE S

Dynamics of asteroid motion in the Jovian first-order resonances has
been extensively studied by both analytical and numerical methods
in the past few decades (e.g. Murray 1986; Ferraz-Mello 1988;
Sessin & Bressane 1988; Lemaitre & Henrard 1990; Morbidelli &
Moons 1993; Nesvorný & Ferraz-Mello 1997; Moons, Morbidelli
& Migliorini 1998; Roig, Nesvorný & Ferraz-Mello 2002; Schubart
2007). In what follows we review a minimum information needed to
understand our paper, referring an interested reader to the literature
mentioned above for more insights.

In the simplest framework of a circular restricted planar three-
body problem (Sun–Jupiter–asteroid) the fundamental effects of the
resonant dynamics is reduced to a one degree of freedom problem
defined by a pair of variables (�, σ ). For J(p + 1)/p resonance
(p = 1, 2 and 3 in our cases) we have

� = √
a

(
1 −

√
1 − e2

)
, (1)

σ = (p + 1) λ′ − p λ − �, (2)

where a is the semimajor axis, e is the eccentricity, � is the lon-
gitude of pericentre and λ is the mean longitude in orbit of the
asteroid, and λ′ is the mean longitude in orbit of Jupiter.

If the asteroid motion is not confined into the orbital plane of
the planet, we have an additional pair of resonant variables (�z, σz)
such that

�z = 2
√

a
(
1 − e2

)
sin2 i

2
, (3)

σz = (p + 1) λ′ − p λ − �, (4)

where i denotes the inclination of asteroids orbit and � the longitude
of its node. Remaining still with the simple averaged model, orbital
effects with shorter periods are neglected, the motion obeys an
integral of motion N given by

N = √
a

(
p + 1

p
−

√
1 − e2 cos i

)
. (5)

Because of this integral of motion, variations of � imply oscillations
of both a and e.

The two degree of freedom character of the resonant motion pre-
vents integrability. However, as an approximation we may introduce
a hierarchy by noting that perturbation described by the (�, σ ) vari-
ables is larger than that described by the (�z, σz) terms (e.g. Moons
et al. 1998). This is usually true for real resonant asteroids of interest.
Only the angle σ librates and σz circulates with a very long period.
The (�z, σz) dynamics thus produces a long-period perturbation of
the (�, σ ) motion.

Within this model the minimum value of � in one resonant cycle
(typically several hundreds of years) implies a is minimum and e
is maximum. These values do not conserve exactly from one cycle
to another because the (�z, σz) motion produces small oscillations.
Since � + �z − N = −√

a/p one needs to wait until �z reaches
maximum over its cycle to attain ‘real’ minimum of a values and
‘real’ maximum of e values over a longer time interval. From (3) we
note the maximum of �z occurs for the maximum of i variations.
This situations occurs typically once in a few thousands of years.
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In an ideal situation, these extremal values of (a, e, i) would be
constant and may serve as a set of proper orbital elements.

The motion of real asteroids in the Solar system is further compli-
cated by Jupiter having non-zero and oscillating value of eccentric-
ity. This brings further perturbations (e.g. Ferraz-Mello 1988; Sessin
& Bressane 1988 for a simple analytic description) and sources of
instability inside the resonance. Despite the non-integrability, we
follow Roig et al. (2001) and introduce pseudo-proper orbital el-
ements (ap, ep, sin ip) as the osculating elements (a, e, sin i) at the
moment, when the orbit satisfies the condition

σ = 0 ∧ dσ

dt
< 0 ∧ � − � ′ = 0 ∧ � − �′ = 0, (6)

where � ′ and �′ denote the longitude of pericentre and the lon-
gitude of node of Jupiter. As above, when (6) holds the osculating
orbital elements are such that a attains minimum, e attains max-
imum and i attains maximum. Numerical experiments show that
with a complete perturbation model and a finite time-step it is diffi-
cult to satisfy all conditions of (6) simultaneously. Following Roig
et al. (2001) we thus relax (6) to a more practical condition

|σ | < 5◦ ∧ �σ

�t
< 0 ∧ |� − � ′| < 5◦. (7)

Because this condition is only approximate, we numerically inte-
grate orbits of resonant asteroids for 1 Myr, over which the pseudo-
proper orbital elements are recorded. We then compute their mean
value and standard deviation, which is an expression of the orbital
stability over that interval of time.

In the case of the J3/2 and J4/3 resonances, we use condition
(7) with a different sign �σ/�t > 0 and, moreover, we apply a
digital filter (denoted as A in Quinn, Tremaine & Duncan (1991),
using 1-yr sampling and a decimation factor of 10) to σ (t). This
intermediate stage serves to suppress oscillations faster than the
libration period. The different sign of �σ/�t just means that our
pseudo-proper orbital elements correspond to maximum value of
a and minimum values of e and i, in order to allow more direct
comparison with previous analyses.

Aside to this short-term integration we perform long-term runs to
determine the stability of a particular resonant orbit. With this aim
we conduct integrations spanning 4 Gyr for all resonant asteroids.
Because of the inherent uncertainty in the initial conditions (orbital
elements at the current epoch), we perform such integration for the
nominal orbit and 10 clones that randomly span the uncertainty
ellipsoid. We then define dynamical lifetime of the orbit as the
median of time intervals, for which the individual clones stayed in
the resonance.

All integrations are performed using the SWIFT package
(Levison & Duncan 1994), slightly modified to include neces-
sary online digital filters and a second-order symplectic integrator
(Laskar & Robutel 2001). Most of numerical simulations take into
account gravitational interactions only, but in specific cases – and
when explicitly mentioned – we include also Yarkovsky (thermal)
accelerations. In this case we use an implementation described in
detail by Brož (2006). Our simulations include four outer planets.
We modify the initial conditions of the planets and asteroids by a
barycentric correction to partially account for the influence of the
terrestrial planets. The absence of the terrestrial planets as perturbers
is a reasonable approximation in the outer part of the main belt and
for orbits with e < 0.8 in general. We nevertheless checked the
short-term computations (determination of pseudo-proper resonant
elements) using a complete planetary model and noticed no sig-
nificant difference in results. The second-order symplectic scheme
allows us to use a time-step of 91 d.
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Figure 1. A distribution of the median dynamical lifetimes for objects in the
J2/1 resonance. A division to several groups is denoted: extremely unstable
objects (tJ2/1 ≤ 2 Myr), short-lived objects (tJ2/1 ≤ 70 Myr) and long-lived
objects (Griquas and Zhongguos, tJ2/1 > 70 Myr).

2.1 Hecuba-gap group

In order to determine, which objects are located in the J2/1 mean
motion resonance, we first extracted orbits from the AstOrb data
base with osculating orbital elements in a broad box around this
resonance (see e.g. Roig et al. 2001 for a similar procedure). We
obtained 7139 orbits, which we numerically integrated for 10 kyr.
We recorded and analysed behaviour of the resonance angle σ =
2λ′ − λ − � from equation (2). Pericentric librators, for which
σ oscillates about 0◦ were searched. We found 274 such cases;
this extends the previous catalogue of Brož et al. (2005) almost
twice. The newly identified resonant objects are mainly asteroids
discovered or recovered after 2005 with accurate enough orbits.
We disregard from our analysis asteroids at the border of the reso-
nance, for which σ (t) exhibits alternating periods of libration and
circulation, and also those asteroids for which σ oscillates but are
not resonant anyway (N ≤ 0.8 in equation 5; see e.g. Morbidelli
& Moons 1993). The latter reside on low-eccentricity orbits in the
main asteroid belt adjacent to the J2/1 resonance.

We conducted short- and long-term integrations of the resonant
asteroids as described above. They allowed us to divide the pop-
ulation into 182 long-lived asteroids (with the median dynamical
lifetime longer than 70 Myr, as defined in Brož et al. 2005) and 92
short-lived asteroids (the lifetime shorter than 70 Myr), see Fig. 1.3

Among the short-lived objects we found 14 have dynamical life-
times even less than 2 Myr and we call them extremely unstable.
Brož et al. (2005) suggested the unstable orbits in the J2/1 reso-
nance are resupplied from the adjacent main belt due to a permanent
flux driven by the Yarkovsky force, the extremely unstable objects
are most probably temporarily captured Jupiter-family comets. The
origin of the long-lived population in this resonance is still not
known.

Fig. 2 shows the pseudo-proper orbital elements of the J2/1 as-
teroids projected on to the (ap, ep) and (ap, sin ip) planes. Our data
confirm that the unstable population of J2/1 asteroids populates
the resonance outskirts near its separatrix, where several secular
resonances overlap and trigger chaotic motion (e.g. Morbidelli &
Moons 1993; Nesvorný & Ferraz-Mello 1997; Moons et al. 1998).

3 Our results for both J2/1 and J3/2 resonances are summarized in tables
available through a web site http://sirrah.troja.mff.cuni.cz/yarko-site/ (those
for J4/3 bodies are given in Table 1). These contain listing of all resonant
asteroids, their pseudo-proper orbital elements with standard deviations,
their dynamical residence time and some additional information.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 390, 715–732

90



718 M. Brož and D. Vokrouhlický

Table 1. Data on presently known population of asteroids residing in the J4/3 Jovian mean motion resonance (Thule group). Pseudo-
proper orbital elements (ap, ep, sin ip) are given together with their standard deviations (δap, δep, δsin ip) determined from a 1-Myr
numerical integration. σp, max is the maximum libration amplitude in the Sessin’s (K, H) variables (see Fig. 8), H is the absolute
magnitude from the AstOrb catalogue and D is the estimated size using pV = 0.04 geometric albedo (Tedesco et al. 2002).

No. Name ap ep sin ip δap δep δsin ip σp, max H D
(au) (au) (◦) (mag) (km)

279 Thule 4.2855 0.119 0.024 0.0005 0.012 0.003 ∼50 8.57 126.6
186024 2001 QG207 4.2965 0.244 0.042 0.0003 0.014 0.003 25 14.36 8.9
185290 2006 UB219 4.2979 0.234 0.102 0.0003 0.014 0.004 25 13.75 11.8
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Figure 2. Pseudo-proper orbital elements for the 247 objects in the J2/1
resonance projected on to the planes of semimajor axis ap versus eccentricity
ep (top) and semimajor axis ap versus sine of inclination sin ip (bottom).
Bars are standard deviations of the elements derived from 1-Myr numerical
integration. Position of several secular resonances embedded in J2/1 is shown
in the upper panel. The unstable population of asteroids (crosses) occupies
the region of their overlap; the stable population (full circles) occupies two
distinct zones – A and B – of low-eccentricity and low-inclination orbits
(e.g. Nesvorný & Ferraz-Mello 1997). The population of marginally stable
asteroids (open squares) resides in region adjacent to the unstable borders
of the resonance or near the bridge over the stable regions associated with
the ν16 secular resonance.

At low-eccentricities the chaos is also caused by an overlap on
numerous secondary resonances (e.g. Lemaitre & Henrard 1990).
Two ‘islands’ of stability – A and B – harbour the long-lived popu-
lation of bodies. The high-inclination island A, separated from the
low-inclination island B by the ν16 secular resonance, is much less
populated. Our current search identifies nine asteroids in the island
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curve). The straight lines show best-fitting approximations N(< H) ∝ 10γH

with the values of γ indicated by the corresponding label. The fit matches
N(< H) for H in the interval (12, 15) mag for J2/1 and (10.5, 14.5) mag for
J3/2; no such approximation is available for J4/3 where only three objects
are currently known. The H values where the straight line approximations
level off from the data roughly correspond to the completeness limit of the
population (R. Jedicke, personal communication). For sake of a rough com-
parison, the upper abscissa gives an estimate of sizes for the albedo value
pV = 0.05, average of the outer belt population.

A. The origin of the asymmetry in A/B islands is not known, but
since the work of Michtchenko & Ferraz-Mello (1997) and Ferraz-
Mello et al. (1998a,b) it is suspected to be caused by instability
due to the libration period commensurability with the forcing terms
produced by the GI.

The size–frequency distribution of objects of a population is
an important property, complementing that of the orbital distribu-
tion. Fig. 3 shows cumulative distribution N(< H) of the absolute
magnitudes H for bodies in the J2/1 (and other Jovian first-order
resonances as well). In between H = 12 mag and 14.5 mag (an
approximate completeness limit; R. Jedicke, personal communica-
tion) it can be matched by a simple power-law N(< H) ∝ 10γH , with
γ = (+0.70 ± 0.02).4 We thus confirm that the J2/1 population is
steeper than it would correspond to a standard collisionally evolved
system (e.g. Dohnanyi 1969; O’Brien & Greenberg 2003) with

4 This is equivalent to a cumulative size distribution law N(> D) ∝ Dα with
α = −5γ = (−3.5 ± 0.1), assuming all bodies have the same albedo.
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Figure 4. A zoom on the (ap, ep) and (ap, sin ip) plots from Fig. 2 with
relative size of the resonant asteroids indicated by size of the crosses. Note
the large bodies, some of which are labelled, reside far from each other.

γ = +0.5. The same result holds for both the short- and long-lived
subpopulations in this resonance separately.

Albedos of J2/1 bodies are not known, except for (1362) Griqua
for which Tedesco et al. (2002) give pV = 0.067. The surrounding
main belt population has an average pV = 0.05. For sake of sim-
plicity we convert absolute magnitudes to sizes using this averaged
value when needed. For instance in Fig. 4 we show a zoom on the
long-lived population of objects in the J2/1 resonance with symbol
size weighted by the estimated size of the body. We note large ob-
jects are located far from each other and they are quite isolated – no
small asteroids are in close surroundings. Both these observations
suggest that the long-lived J2/1 population does not contain recently
born collisional clusters.

2.2 Hilda group

Because asteroids in the J3/2 constitute a rather isolated group, it
is easy to select their candidates: we simply extracted from the
AstOrb data base those asteroids with semimajor axis in between
3.8 and 4.1 au. With that we obtained 1267 multi-opposition objects.
We numerically integrated these orbits for 10 kyr and analysed the
behaviour of the resonance angle σ = 3λ′ − 2λ − � . We obtained
1197 cases for which σ librates about 0◦ and which have N ≥ 0.44,
a threshold of the resonance zone (e.g. Morbidelli & Moons 1993);
see Fig. 5.
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Figure 5. Pseudo-proper orbital elements for 1197 Hildas projected on to
the planes of semimajor axis ap versus eccentricity ep (top) and semimajor
axis ap versus sine of inclination sin ip (bottom). Larger size of the sym-
bol indicates larger physical size of the asteroid. Because of Hildas orbital
stability, the uncertainty in the pseudo-proper element values is typically
smaller than the symbol size. Note a tight cluster around the proper incli-
nation value sin ip � 0.0505, led by the largest asteroid (1911) Schubart,
and a somewhat looser cluster around the proper inclination value sin ip �
0.151, led by the largest asteroid (153) Hilda. Both are discussed in more
detail in Section 3. Solid line denotes the libration centre of the J3/2
resonance.

The long-term evolution of Hildas indicates that not all of them
are stable over 4 Gyr, but 20 per cent escape earlier. A brief in-
spection of Fig. 6 shows that the escapees are essentially asteroids
located closer to the outer separatrix and exhibiting large ampli-
tudes of librations. If the Hilda group has been constituted during
the planetary formation some 4 Gyr ago, some non-conservative
process must have placed these objects on to their currently unsta-
ble orbits. We suspect mutual collisions or gravitational scattering
on the largest Hilda members might be the corresponding diffusive
mechanisms. Small enough members might be also susceptible to
the resonant Yarkovsky effect (see Section 4.2 and Appendix A).

Data in Fig. 3 confirm earlier findings that the Hilda group is char-
acterized by an anomalously shallow size distribution. In between
absolute magnitudes H = 10.5 and 14.5 mag the cumulative distri-
bution can be well matched by N(< H) ∝ 10γH with γ = (+0.35 ±
0.02) only. The distribution of albedo values is shown in Fig. 7.

Subpopulations among Hilda asteroids, namely two collisional
families, are studied in Section 3.
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2.3 Thule group

In spite of a frequent terminology ‘Thule group’, asteroids in the
J4/3 resonance consisted of a single object (279) Thule up to now.
Nesvorný & Ferraz-Mello (1997) considered this situation anoma-
lous because the extent of the stable zone of this resonance is not
much smaller than that of the J3/2 resonance (see also Franklin et al.
2004). In the same way, our knowledge about the low-e and low-i
Thule-type stable orbits (e.g. a = 4.27 au, e = 0.1 and i = 5◦) should
be observationally complete at about magnitudes H = 12.5–13 mag
(R. Jedicke, personal communication). A rough estimate also shows
that even one magnitude in H beyond this completeness limit the
Thule population should be known at ∼10 per cent completeness,
leaving only about 90 per cent undiscovered population. We thus
conclude that the objects in the magnitude range H = 9–13 mag
are very likely missing in this resonance. Where does the existing
population of small Thule-type asteroids begin?

Our initial search in the broad box around the J4/3 resonance
detected only 13 objects. Six of them, including the well-known ex-
tinct comet (3552) Don Quixote (e.g. Weissman, Bottke & Levison
2002), are on typical orbits of Jupiter-family comets that happen
to reside near this resonance with very high eccentricity and mod-
erately high inclination. Two more are single-opposition objects
and one has only poorly constrained orbit, leaving us with (279)
Thule and three additional candidate objects: (52007) 2002 EQ47,
(186024) 2001 QG207 and (185290) 2006 UB219.

Fig. 8 (top panels) shows short-term tracks of (279) Thule,
(186024) 2001 QG207 and (185290) 2006 UB219 in resonant vari-
ables

√
2� (cos σ, sin σ ) � (e cos σ, e sin σ ) of the J4/3 resonance

(σ = 4λ′ − 3λ − � in this case). In all cases their orbits librate about
the pericentric branch (σ = 0◦) of this resonance, although this is
complicated – mainly in the low-eccentricity case of (279) Thule
– by the forced terms due to Jupiter’s eccentricity (see e.g. Ferraz-
Mello 1988; Sessin & Bressane 1988; Tsuchida 1990). The leftmost
panel recovers the 40◦–50◦ libration of (279) Thule, determined
previously by Tsuchida (1990, fig. 3). The other two smaller aster-
oids show librations with comparable amplitudes. The last object,
(52007) 2002 EQ47, appears to reside on an unstable orbit outside
the J4/3 resonance. Our search thus lead to the detection of two new
asteroids in this resonance, increasing its population by a factor
of 3.5

Results of a long-term numerical integration of the nominal or-
bits plus 10 close clones, placed within an orbital uncertainty, reveal
that the orbit of (279) Thule is stable over 4 Gyr, but the orbits of
(186024) 2001 QG207 and (185290) 2006 UB219 are partially unsta-
ble. They are not ‘short-lived’ but 45 and 60 per cent of clones, re-
spectively, escaped before 4 Gyr. Fig. 9 shows pseudo-proper semi-
major axis versus time for nominal orbits and their clones of all J4/3
objects; the escaping orbits leave the figure before the simulation
was ended at 4 Gyr. We suspect similar non-conservative effects as
mentioned above for the 20 per cent fraction of long-term-unstable
Hildas to bring these two Thule members on to their marginally
stable orbits.

We would like to point out that it took more than a century from
the discovery of (279) Thule (Palisa 1888; Krueger 1889) until
further objects in this resonance were finally discovered. This is
because there is an anomalously large gap in size of these bodies:
(279) Thule is 127 km in size with pV = 0.04 au (e.g. Tedesco
et al. 2002), while the estimated sizes of (186024) 2001 QG207

and (185290) 2006 UB219 for the same value of albedo are 8.9 and
11.8 km only. It will be interesting to learn as much as possible about
the Thule population in the H = 13–15 mag absolute magnitude
range using future-generation survey projects such as Pan-STARRS
(e.g. Jedicke et al. 2007). Such a completed population may present
an interesting constraint on the planetesimal size distribution 4 Gyr
ago.

3 C OLLISI ONA L FAMILIES AMONG H ILDA

ASTERO IDS

Collisions and subsequent fragmentations are ubiquitous processes
since planets formed in the Solar system. Because the characteristic
dispersal velocities of the ejecta (as a rule of thumb equal to the es-
cape velocity of the parent body) are usually smaller than the orbital
velocity, the resulting fragments initially reside on nearby orbits. If
the orbital chaoticity is not prohibitively large in the formation
zone, we can recognize the outcome of such past fragmentations
as distinct clusters in the space of sufficiently stable orbital ele-
ments. More than 30 collisional families are known and studied
in the main asteroid belt (e.g. Zappalà et al. 2002) with important
additions in the recent years (e.g. Nesvorný et al. 2002; Nesvorný,
Vokrouhlický & Bottke 2006). Similarly, collisional families have
been found among the Trojan clouds of Jupiter (e.g. Milani 1993;

5 While our initial search used AstOrb catalogue from 2007 September, we
repeated it using the catalogue as of 2008 June. No additional J4/3 objects
were found.
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Figure 8. Top panels: orbits of (279) Thule (left-hand side), (186024) 2001 QG207 (middle) and (185290) 2006 UB219 (right-hand side) in resonant variables
(e cos σ , e sin σ ) of the J4/3 resonance. Here e is the eccentricity and σ = 4λ′ − 3λ − � , with λ and λ′ the mean longitude in orbit of the asteroid and
Jupiter and � is the longitude of asteroid’s pericentre (in all cases the osculating orbital elements are used). Each panel shows results of a short-term, 10-kyr
numerical integration. In all three cases the orbits librate about the pericentric branch (σ = 0◦) of the resonance. Perturbations due to Jupiter’s eccentricity
and its variations make the regular libration move in an epicyclic manner (e.g. Ferraz-Mello 1988; Sessin & Bressane 1988). Bottom panels: filtered resonant
variables (e cos σ , e sin σ ), with short-period oscillations forced by Jupiter removed by digital filtering. They are similar to Sessin’s (K, H) coordinates in
Sessin & Bressane (1988) or Tsuchida (1990). In each of the cases the pericentric libration is clearly revealed. The maximum libration amplitude in these
coordinates is denoted by σp, max in Table 1.
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Figure 9. Pseudo-proper semimajor axis ap versus time t plot for the three
orbits of asteroids located inside the J4/3 resonance and 10 close clones
orbits (placed randomly within the uncertainty ellipsoids) for each of them.
Thin lines denote the stable orbits and thick lines unstable, which escaped
from the J4/3 before the completion of the simulation at 4 Gyr.

Beaugé & Roig 2001; Roig, Ribeiro & Gil-Hutton 2008), irregu-
lar satellites of Jupiter (e.g. Nesvorný et al. 2003, 2004) and even
trans-Neptunian objects (e.g. Brown et al. 2007). Mean motion res-
onances, other than the Trojan librators of Jupiter, are typically too
chaotic to hold stable asteroid populations, or the populations were
too small to enable search for families. The only remaining can-
didate populations are those in the Jovian first-order resonances,
with Hilda asteroids the most promising group. However, low ex-
pectations for an existence of collisional families likely demotivated
systematic search. Note that the estimated intrinsic collisional prob-
ability of Hilda asteroids is about a factor of 3 smaller than in the

main asteroid belt (e.g. Dahlgren 1998; Dell’Oro et al. 2001) and
the population is more than two orders of magnitude smaller.

In spite of the situation outlined above, Schubart (1982a, 1991)
repeatedly noticed groups of Hilda-type asteroids with very sim-
ilar proper elements. For instance, in his 1991 paper he lists five
members of what we call Schubart family below and pointed out
their nearly identical values of the proper inclination. Already in his
1982 paper Schubart mentions a similarity of such clusters to Hi-
rayama families, but later never got back to the topic to investigate
this problem with sufficient amount of data provided by the growing
knowledge about the J3/2 population.6 Even a zero-order inspection
of Fig. 5, in particular the bottom panel, implies the existence of
two large clusters among the J3/2 population. In what follows we
pay a closer analysis to both of them.

We adopt an approach similar to the hierarchical clustering
method (HCM) frequently used for identification of the asteroid
families in the main belt (e.g. Zappalà et al. 1990, 1994, 2002). In
the first step of our analysis, we compute the number of bodies Nmin

which is assumed to constitute a statistically significant cluster for a
given value of the cut-off velocity vcut−off . We use a similar approach
to that of Beaugé & Roig (2001): for all asteroids in the J3/2 reso-
nance we determine the number Ni(vcut−off ) of asteroids which are
closer than vcut−off . Then we compute the average value N0 = N̄i .
According to Zappalà et al. (1994), a cluster may be considered
significant if N > Nmin = N0 + 2

√
N0. The plots N0(vcut−off ) and

the corresponding Nmin(vcut−off ) for Hilda population are shown in
Fig. 10. We use a standard metric (d1 defined by Zappalà et al.

6 Schubart lists 11 additional asteroids in the group on his web site
http://www.rzuser.uni-heidelberg.de/∼s24/hilda.htm, but again he does not
go into details of their putative collisional origin.
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Figure 10. The dependence of the minimum number of asteroids Nmin, to be
considered a statistically significant cluster, on the cut-off velocity vcut−off

(thick curve). The average number N0 and the maximum number max (Ni )
of asteroids, which are closer than vcut−off , is shown by dashed and thin
curves. All quantities are valid for the J3/2 population. The fact that max
(Ni ) is much larger than N0 and Nmin indicates a presence of a significant
cluster (or clusters) among the Hilda group.

Figure 11. A stalactite diagram computed for the J3/2 population (Hildas).
Two prominent groupings, the Schubart family and the Hilda family, are
indicated. Every group plotted here has at least five or Nmin members,
whichever is larger (see Fig. 10).

1994), namely

δv = nap

√
5

4

(
δap

ap

)2

+ 2 (δep)2 + 2 (δ sin ip)2, (8)

where (ap, ep, sin ip) are 10 Myr averaged values of the resonant
pseudo-proper elements (we checked that our results practically do
not depend on the width of this averaging interval).

Next, we construct a stalactite diagram for Hildas in a traditional
way (e.g. Zappalà et al. 1990): we start with (153) Hilda as the first
central body and we find all bodies associated with it at vcut−off =
300 m s−1, using an HCM (Zappalà et al. 1990, 1994). Then we
select the asteroid with the lowest number (catalogue designation)
from remaining (not associated) asteroids and repeat the HCM as-
sociation again and again, until no asteroids are left. Then we repeat
the whole procedure recursively for all clusters detected at vcut−off

= 300 m s−1, but now for a lower value, e.g. vcut−off = 299 m s−1.
We may continue until vcut−off = 0 m s−1, but of course, for too low
values of the cut-off velocity, no clusters can be detected and all
asteroids are single. The resulting stalactite diagram at Fig. 11 is
simply the asteroid number (designation) versus vcut−off plot: a dot

Figure 12. A stalactite diagram computed for the long-lived J2/1 popula-
tion. There are no prominent groupings; 60 asteroids are not associated with
any others, even at vcut−off = 300 m s−1. Every group plotted here has at
least five members.

at a given place is plotted only if the asteroids belongs to a cluster of
at least max (5, Nmin(vcut−off )) bodies. We are not interested in clus-
ters with less than five members; they are most probably random
flukes.

We can see two prominent clusters among Hildas: the first one
around the asteroid (153) Hilda itself, and the second one around
(1911) Schubart. In the remaining part of this Section we discuss
each of them separately.

The stalactite diagram constructed in the same way for Zhong-
guos and Griquas is shown in Fig. 12. No grouping seems to be
significant enough to be considered an impact-generated cluster.
This is consistent with the discussion of the (ap, ep, sin ip) plots in
Section 2.1.

3.1 Schubart family

The Schubart family can be distinguished from the remaining popu-
lation of Hildas on a large range of cut-off velocities: from 50 m s−1

to more than 100 m s−1 (Fig. 11). It merges with the Hilda family
at 200 m s−1. For the purpose of our analysis we selected vcut−off =
60 m s−1 as the nominal value. While the total number of Schubart
family members is not too sensitive to this cut-off value, we refrain
from using too high vcut−off , for which we would expect and in-
creasing number of interlopers to be associated with the family, and
the family would attain a rather peculiar shape in the (ap, ep, sin ip)
space.

Fig. 13 shows the cumulative distribution of the absolute magni-
tudes for the Schubart family members, compared to the rest of the
J3/2 population. Importantly, the slope γ = (+0.48 ± 0.02) of the
N(< H) ∝ 10γH fit is quite steeper for the Schubart family, which
supports the hypothesis of its collisional origin.

We also analysed the available SDSS catalogue of moving ob-
jects (ADR3; Ivezić et al. 2002). We searched for the J3/2 asteroids
among the entries of this catalogue and computed the principal
component PC1 of the spectrum in the visible band. Note the PC1

value is an indicator of the spectral slope and allows thus to broadly
distinguish principal spectral classes of asteroids (e.g. Bus et al.
2002). Fig. 14 shows our results. The top panel confirms the bimodal
character of the J3/2 population (see also Dahlgren et al. 1997;
Dahlgren 1998; Dahlgren et al. 1999 and Gil-Hutton & Brunini
2008). More importantly, though, the bottom panel indicates a
spectral homogeneity of the Schubart family, placing all members
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of moving objects (ADR3; Ivezić et al. 2002). Note some objects have
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The slope values of Hildas range from neutral to steep, with roughly
two groups separated by the value PC1 = 0.3: (i) C/X types with
PC1 < 0.3 and (ii) D types with PC1 > 0.3. Importantly, the Schubart family
members are spectrally similar; the median value PC1 = 0.20 corresponds
to a C- or X-type parent body.
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within the C/X taxonomy class branch. This finding strongly sup-
ports collisional origin of the Schubart family.

Tedesco et al. (2002) derive D = 80 km size for (1911) Schubart,
corresponding to a very low albedo pV = 0.025. The same authors
determine D = 38 km size of (4230) van den Bergh and exactly the
same albedo; this asteroid is among the five largest in the family.
Assuming the same albedo for all other family members, we can
construct a size–frequency distribution (Fig. 15). The slope α �
(−2.7 ± 0.1) fitted to the small end of the distribution, where
we still assume observational completeness, is rather shallow, but
marginally within the limits of population slopes produced in the
numerical simulations of disruptions (e.g. Durda et al. 2007).7

If we sum the volumes of the observed members, we end up with
a lower limit for the parent body size DPB = 110 km, provided there
are no interlopers. We can also estimate the contribution of small
(unobserved) bodies using the following simple method: (i) we sum
only the volumes of the observed bodies larger than an assumed
completeness limit Dcomplete = 10 km [Vcomplete = ∑

i(π/6)D3
i ]; (ii)

we fit the cumulative size distribution by a power law {log N(> D)
= α log [D]km + β; α = − 2.68, β = 4.73 for the Schubart}; (iii)
we prolong this slope from Dcomplete down to Dmin = 0 and calculate
the total volume of the parent body (provided α > − 3):

VPB = Vcomplete + π

6
10β α

α + 3

[
Da+3

min − Da+3
complete

]
. (9)

The result is DPB = 3
√

(6/π)VPB
.= 130 km, some sort of an upper

limit. The volumetric ratio between the largest fragment and the
parent body is then VLF/VPB

.= 0.2, a fairly typical value for as-
teroid families in the main asteroid belt. Obviously, the assumption
of a single power-law extrapolation of the N(> D) at small sizes
is only approximate and can lead to a result with a 10 per cent

7 We also mention that so far asteroid disruption simulations did not explore
cases of weak-strength materials appropriate for the suggested C/X spectral
taxonomy of the Schubart family parent body.
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uncertainty. However, if we use an entirely different geometric
method, developed by Tanga et al. (1999), we obtain DPB � 120–
130 km, i.e. comparable to our previous estimate.

What is an approximate size ddisrupt of a projectile necessary to
disrupt the parent body of the Schubart family? Using equation (1)
from Bottke et al. (2005):

ddisrupt =
(
2Q∗

D/V 2
imp

)1/3
Dtarget. (10)

and substituting Q∗
D = 105 J kg−1 for the strength (somewhat lower

than that of basaltic objects to accommodate the assumed C/X spec-
tral type; e.g. Kenyon et al. 2008 and references therein), V imp =
4.78 km s−1 for the typical impact velocity (see Dahlgren 1998) and
Dtarget � 130 km, we obtain ddisrupt � 25 km. At this size the projec-
tile population is dominated by main belt bodies. Considering also
different intrinsic collisional probabilities between Hilda–Hilda as-
teroids (2.3 × 10−18 km−2 yr−1; Dahlgren 1998) and Hilda–main
belt asteroids (0.6 × 10−18 km−2 yr−1), we find it more likely the
Schubart family parent body was hit by a projectile originating from
the main belt.

3.2 Hilda family

We repeated the same analysis as in Section 3.1 for the Hilda fam-
ily. The family remains statistically distinct from the whole J3/2
population in the range of cut-off velocities (130, 170) m s−1; we
choose vcut−off = 150 m s−1 as the nominal value.

The slope γ of the cumulative absolute magnitude distribution
N(< H) is (+0.50 ± 0.02) (Fig. 13), again steeper than for the
total J3/2 population and comparable to that of the Schubart family.
The spectral slopes (PC1) are somewhat spread from flat (C/X-
compatible values; PC1 < 0.3) to redder (D-compatible values; PC1

> 0.3) – see Fig. 14. Overall, though, the C/X members prevail
such that the D-type objects might be actually interlopers, at least
according to a simple estimate based on the volume of the Hilda
family in the (ap, ep, sin ip) space, compared to the total volume of
the J3/2 population.

Tedesco et al. (2002) determine albedos for six family members.
They range from 0.037 to 0.087, but three values are close to the
median albedo 0.044 of all J3/2 asteroids. We thus consider this
value to be representative of the Hilda family. The corresponding
cumulative size distribution is plotted in Fig. 15. Using the same
method as in Section 3.1 we estimate the size of the parent body
DPB = 180–190 km, with VLF/VPB � 0.8. With the model of Tanga
et al. (1999) we would obtain DPB � 210 km and thus VLF/VPB

� 0.5. This family forming event seems to be thus characterized
in between the catastrophic disruption and a huge cratering. The
necessary projectile size is ddisrupt = 50–55 km.

While not so prominent as the Schubart family, we consider the
group of asteroids around Hilda a fairly robust case of a collisionally
born family too.

3.3 Simulated disruption events

In order to asses some limits for the age of the Schubart and Hilda
families, we perform a number of numerical tests. In particular, we
simulate a disruption of a parent body inside the resonance and nu-
merically determine the long-term orbital evolution of fragments.
The evolved synthetic family at different time-steps is then com-
pared with the observed family. Ideally, this approach should allow
to constrain the time elapsed since the family formed.

As a first step, we need to create a synthetic family inside the
resonance. We use current orbital elements of the largest family
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Figure 16. The initial osculating elements of an impact-generated swarm of
139 fragments at the location of (1911) Schubart (bottom crosses), the corre-
sponding pseudo-proper elements computed from the first Myr of evolution
(upper crosses) and the pseudo-proper elements of the observed Schubart
family (circles). We show here projection on to the plane defined by semi-
major axis and eccentricity. Dots are the pseudo-proper elements of the
background J3/2-population asteroids. The initial synthetic swarm of aster-
oids poorly matches the observed family: it is both too extent in semimajor
axis and too compact in eccentricity.

member, (1911) Schubart in this case, as representative to the parent
body and only allow changes in the true anomaly f and in the
argument of pericentre ω at the break-up event. By changing these
two geometric parameters we can produce different initial positions
of the fragments in the orbital element space. For sake of our test,
fragments are assumed to be dispersed isotropically with respect to
the parent body, with a velocity distribution given by the model of
Farinella et al. (1993); Farinella, Froeschlé & Gonczi (1994). The
number of fragments dN(v) launched with relative velocities in the
interval (v, v + dv) is given by

dN (v) = Cv(v2 + v2
esc)

−(κ+1)/2 dv, (11)

with C a normalization constant, vesc the escape velocity from the
parent body and κ = 3.25. To prevent excessive escape velocities
we introduce a maximum allowed value vmax. Nominally, we set
vmax = 200 m s−1, but in Section 3.4 we also use restricted values of
this parameter to test sensitivity of our results to initial conditions.

To simulate an impact that might have created the Schubart
family, we generated velocities randomly for 139 fragments with
vesc = 65 m s−1 (note the number of fragments in the synthetic fam-
ily is equal to the number of the Schubart family members). The
resulting swarm of fragments is shown in Fig. 16, for the impact
geometry f = 0◦ and ω + f = 180◦. We show both the initial
osculating orbital elements and the pseudo-proper elements.

The synthetic family extends over significantly larger range of the
semimajor axis than the observed Schubart family, but all fragments
still fall within the J3/2 resonance. The eccentricity distribution is,
on the other hand, substantially more compact. Only the distribu-
tion of inclinations of the synthetic family roughly matches that of
the observed family. We verified this holds also for other isotropic-
impact geometries (such as f = 135◦ and ω + f = 180◦ shown in
Fig. 17). The peculiar shape of the synthetic family in the pseudo-
proper element space (ap, ep) is an outcome of the isotropic disrup-
tion, simply because some fragments fall to the left-hand side from
the libration centre of the J3/2 resonance (at 3.97 au) and they are
‘mapped’ to the right-hand side. This is because the pseudo-proper
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135◦, ω + f = 180◦). This choice of f maximizes the initial spread of the
synthetic family in proper eccentricity. In this case we do not show the initial
osculating orbital elements.

elements are the maxima and minima of a and e, respectively, over
their resonant oscillations.

The initial configuration of the synthetic family was propagated
for 4 Gyr, using the integrator described in Section 2. At this stage,
we use only the gravitational perturbations from the four exterior
giant planets. We performed such simulation for several impact
geometries, as determined by f and ω, with similar results.

Fig. 18 shows the long-term evolution of the synthetic family.
Because the family resides mostly in the stable zone of the J3/2
resonance, only little evolution can be seen for most of the bodies.
This is in accord with findings of Nesvorný & Ferraz-Mello (1997)
who concluded that the stable region in this resonance shows little
or no diffusion over time-scales comparable to the age of the Solar
system. Only about 10 per cent of orbits that initially started at the
outskirts of the stable zone (with large libration amplitudes) escaped
from the resonance during the 4-Gyr simulation.

Figure 18. The synthetic family from Fig. 16 evolved over 4 Gyr: the grey
dots show evolutionary tracks of the fragments in the pseudo-proper or-
bital element space. Overall, stability of the J3/2 resonance makes many
fragments to stay very close to their initial values. Only ∼10 per cent of
fragments with the initial extremal values of ap (and thus the libration am-
plitude) escape from the resonance during the simulation. This helps in part
to reduce the mismatch with the observed family (circles) in semimajor axis,
but is not sufficient to attain the Schubart-family full eccentricity dispersion.

The removal of orbits with large semimajor axis ap helps in
part to reconcile the mismatch with the distribution of the observed
Schubart family. However, the dispersion in eccentricity ep does not
evolve much and it still shows large mismatch if compared to the
observed family. Even in the case f = 135◦ (ω + f = 180◦; Fig. 17),
which maximizes the initial eccentricity dispersion of the synthetic
fragments, the final value at 4 Gyr is about three times smaller
than that of the Schubart family. Clearly, our model is missing a
key element to reproduce the current orbital configuration of this
family.

One possibility to resolve the problem could be to release the
assumption of an isotropic impact and explore anisotropies in the
initial velocity field. This is an obvious suspect in all attempts to
reconstruct orbital configurations of the asteroid families, but we
doubt it might help much in this case. Exceedingly large relative
velocities, compared to the escape velocity of the estimated parent
body, would be required. Recall, the fragments located in the stable
region of the J3/2 resonance would hardly evolve over the age of
the Solar system.

A more radical solution is to complement the force model, used
for the long-term propagation, by additional effects. The only viable
mechanism for the size range we are dealing with is the Yarkovsky
effect. This tiny force, due to anisotropic thermal emission, has been
proved to have determining role in understanding fine structures
of the asteroid families in the main belt (e.g. Bottke et al. 2001;
Vokrouhlický et al. 2006a,b). In these applications the Yarkovsky
effect produces a steady drift of the semimajor axis, leaving other
orbital elements basically constant.

However, the situation is different for resonant orbits. The semi-
major axis evolution is locked by the strong gravitational influence
of Jupiter. For that reason we first ran simplified simulations with
the Yarkovsky forces – results of these tests are briefly described in
Appendix A. We next applied the model containing both gravita-
tional and Yarkovsky perturbations to the evolution of the synthetic
family. Results of these experiments are described in Section 3.4.

3.4 Yarkovsky drift in eccentricity

We ran our previous simulation of the long-term evolution of the
synthetic family with the Yarkovsky forces included. Our best guess
of thermal parameters for bodies of the C/X type is: ρs = ρb =
1300 kg m−3 for the surface and bulk densities, K = 0.01 W m−1 K−1

for the surface thermal conductivity, C = 680 J kg−1 for the heat
capacity, A = 0.02 for the Bond albedo and ε = 0.95 for the ther-
mal emissivity parameter. Rotation periods are bound in the 2–12 h
range. Spin axes orientations are assumed isotropic in space. Fi-
nally, we assign sizes to our test particles equal to the estimate of
sizes for Schubart family members, based on their reported abso-
lute magnitudes and albedo pV = 0.025. The dependence of the
Yarkovsky force on these parameters is described, e.g. in Bottke
et al. (2002, 2006). We note the uncertainties of the thermal param-
eters, assigned to individual bodies, do not affect our results signif-
icantly, mainly because we simulate a collective evolution of more
than 100 bodies; we are not interested in evolution of individual
orbits.

We let the synthetic family evolve for 4 Gyr and recorded its
snapshots every 50 kyr. As discussed in Appendix A, the resonant
Yarkovsky effect produces mainly secular changes of eccentricity
(Fig. 19). We recall this systematic drift in e must not be confused
with the chaotic diffusion in e. We also note that inclination of the
orbits remains stable, in accord with a good match of the Schubart
family by the initial inclination distribution.
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Figure 19. The impact-generated swarm from Fig. 16 evolved by planetary
perturbations and the Yarkovsky forces, in the projection on the pseudo-
proper semimajor axis ap versus eccentricity ep plane. The grey dots in-
dicate the evolutionary tracks over the whole 4-Gyr time-span and crosses
denote the configuration at 1.7 Gyr, when the eccentricity dispersion of the
synthetic family particles roughly matches that of the observed Schubart
family (circles).

Because the initial eccentricity dispersion of the synthetic family
is much smaller than that of the observed one, its steady increase
due to the combined effects of the Yarkovsky forces and the res-
onant lock gives us a possibility to date the origin of the family
(see Vokrouhlický et al. 2006a for a similar method applied to fam-
ilies in the main belt). To proceed in a quantitative way, we use a
one-dimensional Kolmogorov–Smirnov (KS) test to compare cu-
mulative distribution of pseudo-proper eccentricity values ep of the
observed and synthetic families (e.g. Press et al. 2007).

Fig. 20 shows the KS distance DKS of the two eccentricity distri-
butions as a function of time. For sake of a test, we also use smaller
vmax values of the initial velocity field (essentially, this is like to
start with a more compact synthetic family). Regardless of the vmax

value, our model rejects Schubart family ages smaller than 1 Gyr
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99 per cent probability level.

and larger than 2.4 Gyr with a 99 per cent confidence level. For ages
in between 1.5 and 1.7 Gyr the KS-tested likelihood of a similarity
of the synthetic-family and the observed-family ep distributions can
reach up to 50 per cent. We thus conclude the most likely age of the
Schubart cluster is (1.7 ± 0.7) Gyr.

We repeated the same analysis for Hilda family by creating a
synthetic family of 233 particles about (153) Hilda. In this case
we used vesc = 110 m s−1. The situation is actually very similar to
the Schubart – there is again a problem with the small dispersion
of eccentricities in case of a purely gravitational model. Using the
model with the Yarkovsky effect, we can eventually fit the spread
of eccentricities and according to the KS test (Fig. 21) the age of
the family might be �4 Gyr. The match is still not perfect, but this
problem might be partly due to numerous interlopers in the family.
We also note that a 10 per cent relative uncertainty of the mean
albedo of the Hilda family members would lead to a 5 per cent
uncertainty of their sizes and, consequently, to a 5 per cent uncer-
tainty of the family age.

The Hilda family seems to be dated back to the Late Heavy
Bombardment era (Morbidelli et al. 2005; see also Section 4.1).
We would find such solution satisfactory, because the population
of putative projectiles was substantially more numerous than today
(note that a disruption of the Hilda family parent body is a very
unlikely event during the last 3.5 Gyr).

We finally simulated a putative collision in the J2/1 resonance,
around the asteroid (3789) Zhongguo (the largest asteroid in the
stable island B). There are two major differences as compared to
the J3/2 resonance.

(i) The underlying chaotic diffusion due to the gravitational per-
turbations is larger in the J2/1 resonance (e.g. Nesvorný & Ferraz-
Mello 1997), such that an initially compact cluster would fill the
whole stable region in 1–1.5 Gyr and consequently becomes unob-
servable.

(ii) Sizes of the observed asteroids are generally smaller, which
together with a slightly smaller heliocentric distance, accelerates
the Yarkovsky drift in ep. The latter effect would likely shorten the
time-scale to 0.5–1 Gyr.

Thus the non-existence of any significant orbital clusters in the
J2/1 resonance (Section 3 and Fig. 12) does not exclude a colli-
sional origin of the long-lived population by an event older than
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1 Gyr. This would also solve the apparent problem of the very steep
size distribution of the stable J2/1 population (Brož et al. 2005 and
fig. 3). Note the expected collisional lifetime of the smallest ob-
served J2/1 asteroids is several Gyr (e.g. Bottke et al. 2005).

4 R ESONAN T PO PULATIO N STA BILITY WI TH

RESPECT TO PLANETA RY MIG RATION AND

THE YA RKOV SKY EFFECT

We finally pay a brief attention to the overall stability of asteroid
populations in the first-order resonances with respect to different
configurations of giant planets. We are focusing on the situations
when the orbits of Jupiter and Saturn become resonant. This is mo-
tivated by currently adopted views about final stages of building
planetary orbits architecture, namely planet migration in a diluted
planetesimal disc (e.g. Malhotra 1995; Hahn & Malhotra 1999;
Gomes et al. 2005; Morbidelli et al. 2005; Tsiganis et al. 2005 –
these last three references are usually described as the Nice model).
Morbidelli et al. (2005) proved that the primordial Trojan asteroids
were destabilized when Jupiter and Saturn crossed their mutual
1:2 mean motion resonance and, at the same time, the Trojan re-
gion was repopulated by particles of the planetesimal disc. Since
the mutual 1:2 resonance of Jupiter and Saturn plays a central role
in the Nice model, and since these two planets had to cross other
(weaker) mutual resonances such as 4:9 and 3:7 before they ac-
quired today’s orbits, one can naturally pose a question about the
stability of primordial populations in the first-order mean motion
resonances with Jupiter. Ferraz-Mello et al. (1998a,b) demonstrated
that even subtler effects can influence the J2/1 population, namely
the resonances between the asteroid libration period in the J2/1 res-
onance and the period of the GI terms in planetary perturbations (i.e.
those associated with Jupiter and Saturn proximity to their mutual
2:5 mean motion resonance; Fig. 22). A first glimpse to the stability
of the first-order resonance populations with respect to these effects
is given in Section 4.1.

In Section 4.2 we also briefly estimate the change of dynamical
lifetimes for small J2/1 and J3/2 bodies caused by the Yarkovsky
effect.
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Figure 23. Histograms of dynamical lifetimes for asteroids in the J2/1 (top),
J3/2 (middle) and J4/3 (bottom) resonances, in case Jupiter and Saturn are
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resonance (in case of the J2/1 only). The histograms were computed for 106
long-lived asteroids in the J2/1, first 100 Hildas in the J3/2 and 8 in the J4/3
(including short-lived).

4.1 Planetary migration effects

In what follows we use a simple approach by only moving Saturn’s
orbit into different resonance configurations with Jupiter’s orbit.
We do not let orbits of these planets migrate, but consider them
static. With such a crude approach we can only get a first hint
about a relative role of depletion of the asteroid populations in the
first-order resonances (note in reality the planets undergo steady,
but likely not smooth, migration and exhibit jumps over different
mutual resonant states; e.g. supplementary materials of Tsiganis
et al. 2005).

The results are summarized in Fig. 23.

(i) The Hilda group in the J3/2 resonance is very unstable (on
the time-scale ∼1 Myr) with respect to the 1:2 Jupiter–Saturn reso-
nance8; on the contrary J2/1 asteroids may survive several 10 Myr
in this configuration of Jupiter and Saturn, so this population is not
much affected by this phase by planetary evolution (note, more-
over, that Jupiter and Saturn would likely cross the zone of other

8 Jupiter Trojans, which are already known to be strongly unstable
(Morbidelli et al. 2005), would have the dynamical lifetime of the order
of 0.1 Myr in this kind of simulation.
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mutual 1:2 resonance in ∼1 Myr only; e.g. Tsiganis et al. 2005 and
Morbidelli et al. 2005).

(ii) The 4:9 resonance has a larger influence on the J2/1 popula-
tion than on Hildas.

(iii) In the case of 3:7 resonance it is the opposite: the J3/2 is
more unstable than the J2/1.

(iv) The GI resonance does indeed destabilize the J2/1 on a time-
scale 50 Myr. Provided the last phases of the migration proceed very
slowly, it may cause a significant depletion of the primordial J2/1
population. In the exact 2:5 resonance, the J2/1 population would
not be affected at all.

According to our preliminary tests with a more complete N-body
model for planetary migration which includes a disc of 103 planetes-
imals beyond Neptune, the strong instability of the J3/2 asteroids
indeed occurs during the Jupiter–Saturn 1:2 resonance crossing (see
Fig. 24). A vast reservoir of planetesimals residing beyond the giant
planets, and to some extent also nearby regions of the outer asteroid
belt, are probably capable to repopulate the J3/2 resonance zone at
the same time and form the currently observed populations. This is
similar to the Trojan clouds of Jupiter (Morbidelli et al. 2005).

Figure 24. An N-body simulation of planetary migration driven by dynam-
ically cold planetesimal disc beyond Neptune, with 103 particles and total
mass 50 M⊕, and including also 103 massless particles in the J3/2 resonance
with Jupiter. Top: The semimajor axis aS of Saturn versus time and the
position of the 1:2 mean motion resonance with Jupiter [estimated from the
Kepler law (1/2)−2/3 aJ]. Bottom: The same for asteroids initially located
inside the J3/2 resonance with Jupiter. The J3/2 asteroids are strongly desta-
bilized at the very time of the 1:2 Jupiter–Saturn resonance crossing (t =
1.25 Myr) and none of the 1000 test particles survived in the J3/2 region
after a mere 0.5 Myr. This means more than 99.9 per cent depletion of the
primordial population. None of the planetesimal disc particles got trapped
in the J3/2 during or after Jupiter’s and Saturn’s passage through the 1:2
resonance, indicating that more particles are needed to study this process.
We used the Mercury hybrid-scheme integrator (Chambers 1999) for the
purpose of this test. The gravitational interactions between planets and mas-
sive planetesimals are accounted for, but planetesimals do not interact with
each other, nor with massless test particles. The time-step was 36 d and the
accuracy parameter 10−10. Initial conditions of planets were: aJ = 5.2 au,
aS = 8.05 au, aU = 12.3 au, aN = 17.5 au, with all eccentricities and in-
clination of the order of 10−3. We took the current orbits of Hildas as the
initial conditions for our test particles. Note the destabilization of the Hilda
region is neither sensitive to precise initial conditions nor to the mass of
the planetesimal disc; the only relevant condition is that Jupiter and Saturn
cross their mutual 1:2 resonance.

4.2 The Yarkovsky effect

In Section 3.4 we already discussed the influence of the Yarkovsky
effect on the families located inside the J3/2 resonance. In course of
time it modified eccentricities of their members, but did not cause a
large-scale instability; the families remained inside the resonance all
the time. Here we seek the size threshold for which the Yarkovsky
would case overall instability by quickly removing the bodies from
the resonance.

We perform the following numerical test: we multiply sizes of
the long-lived J2/1 objects by fudge factors of 0.2, 0.02 and 0.002,
for which the Yarkovsky effect is stronger, and compare respective
dynamical lifetimes with the original long-lived objects. Results are
summarized in Fig. 25. We can conclude that a significant destabi-
lization of the J2/1 resonant population occurs for sizes ∼ 0.1 km
and smaller (provided the nominal population has sizes mostly 4–
12 km).

We do not include the YORP effect (i.e. the torque induced by the
infrared thermal emission) at this stage. The YORP is nevertheless
theoretically capable to significantly decelerate (or accelerate) the
rotation rate, especially of the smallest asteroids, which can lead
to random reorientations of the spin axes due to collisions, because
the angular momentum is low in this spin-down state. These reori-
entations can be simulated by a Monte Carlo model with a typical
time-scale (Čapek & Vokrouhlický 2004; R is radius in kilometres
and a orbital semimajor axis in au):

τYORP � 25 Myr (R/1 km)2 (2.5 au/a)2. (12)

Since the Yarkovsky effect depends on the obliquity value, the
systematic drift would be changed to a random walk for bodies
whose spin axis undergo frequent re-orientations by the YORP
effect. We can thus expect that the YORP effect might significantly
prolong dynamical lifetimes of resonant objects with sizes ∼ 0.1 km
or smaller, because τYORP < 0.25 Myr for them.

We can also check which orientation of the spin axis makes
the escape from the J2/1 resonance more likely to happen. We
consider 0.08–0.24 km bodies, clone them five times and assign
them different values of the obliquity γ = 0◦, 45◦, 90◦, 135◦ and
180◦. Fig. 26 shows clearly that the retrograde rotation increases
the probability of the escape. This is consistent with the structure
of the J2/1 resonance, for which low-a separatrix does not continue
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to e = 0. We conclude the remaining very small (yet unobservable)
asteroids inside the J2/1 may exhibit a preferential prograde rotation.

We perform a similar simulation for the J3/2 population (first 100
bodies with sizes 10–60 km), but now with YORP reorientations
(equation 12) included. The results (Fig. 27) show the J3/2 popu-
lation is much less affected than the J2/1 by the Yarkovsky/YORP
perturbation.

We conclude the Yarkovsky/YORP effect may destabilize the
J2/1 and J3/2 bodies only partially on the 100-Myr time-scale and
only for sizes smaller than ∼ 0.1 km. It is obviously a remote goal
to verify this conclusion by observations (note the smallest bodies
in these resonances have several kilometres size). Nevertheless, the
dynamical lifetimes of small asteroids determined in this section,
might be useful for collisional models of asteroid populations, which
include also dynamical removal.

5 C O N C L U S I O N S A N D F U T U R E WO R K

The main results of this paper can be summarized as follows.

(i) We provided an update of the observed J2/1, J3/2 and J4/3
resonant populations.

(ii) We discovered two new objects in the J4/3 resonance.
(iii) We described two asteroid families located inside the J3/2
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the text.

resonance (Schubart and Hilda) and provided an evidence that they
are of a collisional origin.

(iv) We reported a new mechanism how the Yarkovsky effect
systematically changes eccentricities of resonant asteroids; we used
this phenomenon to estimate the ages of the Schubart and Hilda
families [(1.7 ± 0.7) Gyr and �4 Gyr respectively].

(v) Collisionally born asteroid clusters in the stable region of
J2/1 would disperse in about 1 Gyr.

(vi) 20 per cent of Hildas may escape from the J3/2 resonance
within 4 Gyr in the current configuration of planets.

(vii) Hildas are strongly unstable when Jupiter and Saturn cross
their mutual 1:2 mean motion resonance.

The J3/2 resonance is a unique ‘laboratory’ – the chaotic diffusion
is so weak, that families almost do not disperse in eccentricity and
inclination due to this effect over the age of the Solar system. What
is even more important, they almost do not disperse in semimajor
axis, even thought the Yarkovsky effect operates. The drift in a is
transformed to a drift in e, due to a strong gravitational coupling
with Jupiter. We emphasize, this is not a chaotic diffusion in e, but
a systematic drift in e.

Another piece of information about the families in J3/2 resonance
is hidden in the eccentricity ep versus absolute magnitude H plots
(see Fig. 28 for the Hilda family). The triangular shape (larger
eccentricity dispersion of the family members for larger H) is a
well-known combination of two effects: (i) larger ejection speed and
(ii) faster dispersal by the Yarkovky forces for smaller fragments.
Interestingly, there is also a noticeable depletion of small bodies in
the centre of the family and their concentration at the outskirts – a
phenomenon known from (a, H) plots of main belt families, which
was interpreted as an interplay between the Yarkovsky and YORP
effects (Vokrouhlický et al. 2006b).9 Indeed the estimated ∼4 Gyr
age for this family matches the time-scale of a YORP cycle for D
� 10 km asteroids in the Hilda region (e.g. Vokrouhlický & Brož
2002; Čapek & Vokrouhlický 2004). Vokrouhlický et al. (2006a)
pointed out that this circumstance makes the uneven distribution of
family members most pronounced.

We postpone the following topics for the future work.

9 The YORP effect tilts the spin axes of asteroids preferentially towards
obliquity γ = 0◦ or 180◦ and this enhances the diurnal Yarkovsky drift due
to its cos γ dependence.
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(i) A more precise age determination for the resonant asteroid
families, based on the Yarkovsky/YORP evolution in the (e, H)
space.

(ii) A more detailed modelling of analytic or N-body migration
of planets and its influence on the stability of resonant populations.
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A P P E N D I X A : R E S O NA N T YA R KOV S K Y

EFFECT

The effects of weak dissipative forces, such as the tidal force, gas-
drag force and the Poynting–Robertson force, on both non-resonant
and resonant orbits were extensively studied in the past (e.g.
Murray & Dermott 1999 and references therein). Interaction of
the Yarkovsky drifting orbits with high-order, weak resonances was
also numerically studied to some extent (e.g. Vokrouhlický & Brož
2002) but no systematic effort was paid to study Yarkovsky evolv-
ing orbits in strong low-order resonances. Here we do not intend to
develop a detailed theory, rather give a numerical example that can
both help to explain results presented in the main text and motivate
a more thorough analytical theory.

The Yarkovsky effect outside the resonance. We constructed the
following simple numerical experiment: we took the current orbit
of (1911) Schubart as a starting condition and integrated the motion
of two 0.1-km-sized objects with extreme obliquity values 0◦ and
180◦. Their thermal parameters were the same as in Section 3.4.
Because the diurnal variant of the Yarkovsky effect dominates the
evolution, the extreme obliquities would mean the two test bodies
would normally (outside any resonances) drift in semimajor axis
in two opposite directions (e.g. Bottke et al. 2002, 2006). The two
orbits would secularly acquire �a � + 0.25 or −0.25 au in 100 Myr,
about the extent shown by the arrow on top of the left-hand panel
of Fig. A1. Since the strength of the Yarkovsky forces is inversely
proportional to the size, we can readily scale the results for larger
bodies.

The resonance without the Yarkovsky effect. If we include grav-
itational perturbations by Jupiter only, within a restricted circular
three body problem (eJ = 0), and remove short-period oscillations
by a digital filter, the parameter N from equation (5) would stay con-
stant. The orbit would be characterized by a stable libration in (�,
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Figure A1. Orbital evolution of two D = 0.1 km asteroids in the J3/2 resonance within a circular restricted three-body problem (Jupiter on a circular orbit).
Obliquities 0◦ and 180◦ were assigned to the two bodies, such that outside the resonance they would migrate by the Yarkovsky forces in opposite direction.
The expected change �a of the semimajor axis in 100 Myr is depicted by the arrow on top of the left-hand panel. The left-hand and middle panels show 1-kyr
orbital segments at the beginning and at the end of the simulation: (i) in the semimajor axis a versus eccentricity e projection (left-hand panel) and (ii) in the
projection of Cartesian resonant variables

√
2� (cos σ, sin σ ) (see equations 1 and 2; short-period variations have been removed for better visibility) (middle).

The orbits slowly evolve from the initial N0 � 0.45 level-curve of the integral given by equation (5) to their final values of �0.44 (N+ with da/dt > 0) and
�0.46 (N− with da/dt < 0), respectively (see also the right-hand panel). During this evolution the libration centre follows the position of the exact periodic
orbit in the J3/2 (dashed curve in the left-hand panel). Because the latter has a steep progression in e as a changes, orbital evolution is characterized by a
significant change of the eccentricity �e (also ep) but only a small change in a (also ap).

σ ) variables with about 30◦ amplitude in σ (see the curve labelled
0 Myr in the middle panel of Fig. A1).

While evolving, some parameters known as the adiabatic in-
variants are approximately conserved (see e.g. Landau & Lifschitz
1976; Henrard 1982; Murray & Dermott 1999). One of the adiabatic
invariants is N itself. Another, slightly more involved quantity, is
the area J enclosed by the resonant path in the

√
2� (cos σ, sin σ )

space:

J =
∮ √

2� dσ. (A1)

We would thus expect these parameters be constant, except for
strong enough perturbation or long enough time-scales (recall the
adiabatic invariants are constant to the second order of the perturbing
parameter only).

Resonant Yarkovsky effect. Introducing the Yarkovsky forces
makes the system to evolve slowly. The lock in the resonance pre-
vents the orbits to steadily drift away in the semimajor axis and
the perturbation by the Yarkovsky forces acts adiabatically. This
is because (i) the time-scale of the resonance oscillations is much
shorter than the characteristic time-scale of the orbital evolution
driven by the Yarkovsky forces and (ii) the strength of the resonant
terms in the equations of motion are superior to the strength of the
Yarkovsky accelerations.

We let the two J3/2 orbits evolve over 100 Myr (Fig. A1). At the
end of our simulation the orbits moved from N0 � 0.45 to N+ � 0.46
(for the outward migrating orbit) or to N− � 0.44 (for the inward
migrating orbit), respectively. During this evolution, both orbits
remained permanently locked in the J2/1 resonance, librating about
the periodic orbit (dashed line in the left-hand panel of Fig. A1).
Because the position of this centre has a steep progression in the
eccentricity and only small progression in the semimajor axis, the
evolution across different N planes makes the orbital eccentricity
evolve significantly more than the semimajor axis. This is also
seen in the middle panel of Fig. A1, where the librating orbits
significantly split farther/closer with respect to origin of coordinates
(note the polar distance from the origin is basically a measure of
the eccentricity). The shape of the librating orbit is modified such
that the area J stays approximately constant. We have verified that
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the relative change in both adiabatic invariants, acquired during the
100 Myr of evolution, is about the same: δN/N ∼ δJ/J ∼ 5 × 10−2.
It is a direct expression of the strength of the perturbation by the
Yarkovsky forces.

We can conclude the Yarkovsky effect results in a significantly
different type of secular evolution for orbits initially inside strong
first-order mean motion resonances with Jupiter. Instead of secularly
pushing the orbital semimajor axis inward or outward from the Sun,
it drives the orbital eccentricity to smaller or larger values, while
leaving the semimajor axis to follow the resonance centre.

If we were to leave the orbital evolution continue in our simple
model, the inward-migrating orbit would leave the resonance to-

wards the zone of low-eccentricity apocentric librators. Such bodies
are observed just below the J2/1 resonance. On the other hand, the
outward-migrating orbit would finally increase the eccentricity to
the value when the orbit starts to cross the Jupiters orbit. Obviously,
in a more complete model, with all planets included, the orbits
would first encounter the unstable region surrounding the stable
resonant zone. Such marginally stable populations exist in both the
J3/2 and J2/1 resonances.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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a b s t r a c t

In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals
are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5–20) and
ascertain if it can be used for the whole belt. We want to find initial size–frequency distributions (SFDs)
for the considered six parts of the belt (inner, middle, ‘‘pristine’’, outer, Cybele zone, high-inclination
region) and to verify if the number of synthetic asteroid families created during the simulation matches
the number of observed families as well. We used new observational data from the WISE satellite
(Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with
a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558–573), where the
results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. [2007]. Icarus, 498–516)
and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57–76) are included. Because material
characteristics can significantly affect breakups, we created two models — for monolithic asteroids and
for rubble-piles. To explain the observed SFDs in the size range D ¼ 1 to 10 km we have to also account
for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids
leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt
asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of
disruptions of smaller targets (with a parent body size of the order of 1 km).

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The collisional evolution of the main asteroid belt has been
studied for more than 60 years (Dohnanyi, 1969; Davis et al.,
1979 etc.). The first collisional model was created by Dohnanyi
(1969) and his important result was that a size–frequency distribu-
tion for a population of mutually colliding asteroids will reach an
equilibrium. If the cumulative distribution is described by a power
law, the corresponding slope (exponent) will be close to �2:5. An
overview of previous modeling of the main belt and subsequent
advances can be found in a relatively recent paper by Bottke
et al. (2005), so that we shall not repeat it here. Nevertheless, it
is worth to mention another development, which is an attempt
to merge a classical particle-in-a-box collisional model with
(parametrized) results of smooth-particle hydrodynamic (SPH)
codes as done in Morbidelli et al. (2009). We are going to use this
kind of method in this work.

Every collisional model should comply with two important con-
straints: (1) the size–frequency distribution (SFD) of main belt at

the end of a simulation must fit the observed SFD; (2) the number
of asteroid families created during this simulation must fit the
observed number of families. It is important to note, that the mod-
els were improved in the course of time not only due to the pro-
gress of technology or new methods but also thanks to an
increasing amount of observational data. In this work, we could
exploit new data obtained by the WISE satellite (Wide-field Infra-
red Survey Explorer; Masiero et al., 2011), specifically, diameters
and geometric albedos for 129,750 asteroids.

Moreover, several tens of asteroid families are observed in the
main belt as shown by many authors (Zappalà et al., 1995;
Nesvorný et al., 2005, 2010; Brož et al., 2013; Masiero et al.,
2013; Milani et al., 2013). The lists of collisional families are also
steadily improved, they become more complete and (luckily)
compatible with each other.

In order to fully exploit all new data, we created a new colli-
sional model in which we divided the whole main belt into six
parts (see Section 2 for a detailed discussion and Section 3 for
the description of observational data). Our aims are: (1) to check
the number of families in individual parts of the belt — we use
the list of families from Brož et al. (2013) (which includes also their
physical properties) with a few modifications; (2) to verify
whether a single scaling law (e.g. Benz and Asphaug, 1999) can

http://dx.doi.org/10.1016/j.icarus.2014.07.016
0019-1035/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
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be used to fit the whole asteroid belt, or it is necessary to use two
different scaling laws, e.g. one for the inner belt and second for the
outer belt; (3) and we also test a hypothesis, if the main belt is
mostly composed of monolithic or rubble-pile objects.

In this paper, we assume that all families observed today were
created in the last �4 Gyr (without any influence of the late heavy
bombardment dated approximately 4.2 to 3.85 Gyr ago).1 We thus
focus on an almost steady-state evolution of the main belt, without
any significant changes of collisional probabilities or dynamical
characteristics. This is different from the work of Bottke et al.
(2005). We must admit here that the assumption of the steady-state
evolution could be disputable, since Dell’Oro et al. (2001) showed
that the formation of big asteroid families may influence the impact
probability.

We model collisions with the statistical code called Boulder
(Morbidelli et al., 2009) that we slightly extended to account for
six populations of asteroids (Sections 5 and 6). As mentioned
above, the Boulder code incorporates the results of the SPH simu-
lations by Durda et al. (2007) for monolithic DPB ¼ 100 km parent
bodies, namely for the masses of the largest remnant and fragment
and an overall slope of fragment’s SFD. For asteroids larger or smal-
ler than DPB ¼ 100 km a scaling is used for sake of simplicity.

Material characteristics definitely have significant influence on
mutual collisions (e.g. Michel et al., 2011; Benavidez et al., 2012).
Therefore, we also run simulations with rubble-pile objects, which
are less firm (refer to Section 7). A set of simulations analogous to
Durda et al. (2007) for rubble-pile targets with DPB ¼ 100 km was
computed by Benavidez et al. (2012).

First, we try to explore the parameter space using a simplex
algorithm while we keep the scaling law fixed. Considering a large
number of free parameters and the stochasticity of the system, we
look only for some local minima of v2 and we do not expect to find
a statistically significant global minimum. Further possible
improvements and extensions of our model are discussed in Sec-
tions 8 and 9.

2. A definition of the six parts of the main belt

We divided the main belt into six parts (sub-populations)
according the synthetic orbital elements (the semimajor axis a
and the inclination I, Fig. 1). Five parts separated by major mean-
motion resonances with Jupiter are well-defined — if an asteroid
enters a resonance due to the Yarkovsky effect (Bottke et al.,
2006), its eccentricity increases and the asteroid becomes a near-
Earth object. Consequently, vast majority of large asteroids do
not cross the resonances2 and we do not account for resonance
crossing in our model. The sixth part is formed by asteroids with
high inclinations, sin Ip > 0:34. This value corresponds approxi-
mately to the position of the m6 secular resonance.

Namely, the individual parts are defined as follows:

1. inner belt – from a ¼ 2:1 to 2.5 AU (i.e. the resonance 3:1);
2. middle belt – from 2.5 to 2.823 AU (5:2);

3. ‘‘pristine’’ belt – from 2.823 to 2.956 AU (7:3; as explained in
Brož et al. (2013));

4. outer belt – from 2.956 to 3.28 AU (2:1);
5. Cybele zone – from 3.3 to 3.51 AU;
6. high-inclination region – sin I > 0:34.

For a and sin I we preferentially used the proper values from the
AstDyS catalog (Asteroids Dynamic Site; Knežević and Milani,
2003).3 For remaining asteroids, not included in AstDyS, we used
osculating orbital elements from the AstOrb catalog (The Asteroid
Orbital Elements Database).4

More precisely, we used proper values from AstDyS for 403,674
asteroids and osculating values from AstOrb for 132,102 not-yet-
numbered (rather small) asteroids, which is a minority. We thus
think that mixing of proper and osculating orbital elements cannot
affect the respective size–frequency distributions in a significant
way. Moreover, if we assign (erroneously) e.g. a high-inclination
asteroid to the outer main belt, then it is statistically likely that
another asteroid from the outer main belt may be assigned (erro-
neously) to the high-inclination region, so that overall the SFDs
remain almost the same.

3. Observed size–frequency distributions

To construct SFDs we used the observational data from the
WISE satellite (Masiero et al., 2011)5 — for 123,306 asteroids. Typ-
ical diameter and albedo relative uncertainties are �10% and �20%,
respectively (Mainzer et al., 2011), but since we used a statistical
approach (104 to 105 bodies), this should not present a problem.
For asteroids not included there we could exploit the AstOrb catalog
(i.e. data from IRAS; Tedesco et al., 2002) — for 451 bodies. For
remaining asteroids (412,019), we calculated their diameters accord-
ing the relation (Bowell et al., 1989)

D ¼ 100:5ð6:259�log pV Þ�0:4H; ð1Þ

where H denotes the absolute magnitude from the AstOrb catalog
and pV the (assumed) geometric albedo. We assigned albedos to
asteroids without a known diameter randomly, by a Monte-Carlo
method, from the distributions of albedos constructed according

Fig. 1. A definition of the six parts of the main asteroids belt according to the
semimajor axis a and the inclination I: inner, middle, ‘‘pristine’’, outer, Cybele zone
and high-inclination region. The numbers of objects in these parts are the
following: 177,756; 186,307; 23,132; 121,186; 1894 and 25,501, respectively.

1 This is an approach different from Brož et al. (2013), where (at most) 5 large
(DPB > 200 km) catastrophic disruptions were attributed to the LHB. Nevertheless,
there was a possibility (at a few-percent level) that all the families were created
without the LHB. So our assumptions here do not contradict Brož et al. (2013) and we
will indeed discuss a possibility that the number of post-LHB families is lower than
our ‘nominal’ value.

2 For very small asteroids (D K 10 m) we must be more careful. Nevertheless, if an
asteroid is able to cross the resonance between e.g. the pristine and the middle belt
(i.e. increasing the population of the middle belt) then another asteroid is able to
cross the resonance between the middle and the inner belt (decreasing the population
of the middle belt). The crossing of the resonances essentially corresponds to a longer
time scale of the dynamical decay, which we shall discuss in Section 8.

3 http://hamilton.dm.unipi.it/astdys/.
4 ftp://ftp.lowell.edu/pub/elgb/astorb.html.
5 http://wise2.ipac.caltech.edu/staff/bauer/NEOWISE_pass1/.
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to the WISE data. Differences in albedo distributions can influence
the resulting SFDs, therefore for each part of the main belt, we con-
structed a distribution of albedos separately.

We checked that the WISE distributions of albedos are (within a
few percent) in agreement with the distributions found by Tedesco
et al. (2005). The (minor) differences can be attributed for example
to a substantially larger sample (119,876 asteroids compared to
5983), which includes also a lot of asteroids with smaller sizes
(D K 10 km). The resulting observed SFDs are shown in Fig. 2. We
can see clearly that the individual SFDs differ significantly in terms
of slopes and total numbers of asteroids.

To verify a validity of this method, we perform the following test
(for the whole main belt). We assume a known set of diameters. We
then assign albedos randomly to the individual diameters according
to the distribution of WISE albedos. We calculate the values of the
absolute magnitudes H by the inversion of Eq. (1). Now, we try to
reconstruct the SFD from H and pV . The new ’’unknown‘‘ values of
diameters are computed according to Eq. (1) and for the values of
pV we test three following options: (1) a fixed albedo pV ¼ 0:15;
(2) the mean value pV ¼ 0:13 (derived from the distribution of WISE
albedos); (3) for H < 15 mag we used the known albedos, for other
bodies we assigned albedos by the Monte-Carlo method as above.
The known SFD and the three reconstructed SFDs are shown in Fig. 3.

The largest uncertainties of the reconstruction are given by the
method of assignment of geometric albedos, but we verified that
the third method is the best one and that these uncertainties
(Fig. 3) are much smaller than the differences between individual
SFDs (Fig. 2).

Another possible difficulty, especially for asteroids with diame-
ters D < 10 km, is the observational bias. In Fig. 2, we can see that
for sizes smaller than some Dlimit the total number of asteroids
remains constant. We also probably miss same asteroids with
Dlimit < D < 10 km. These objects are less bright than the reach of
current surveys: LINEAR (Stuart, 2001), Catalina,6 Spacewatch
(Bottke et al., 2002), or Pan-STARRS (Hodapp et al., 2004). Neverthe-
less, for D > 10 km we do not need to perform debiasing and neither
for smaller asteroids we do not account for the bias, because the
range of diameters D where we fit out model is limited (see Table 4).

4. Collisional probabilities and impact velocities

To model the collisional evolution of the main belt by the Boul-
der code we need to know the intrinsic probabilities pi of collisions
between individual parts and the mutual impact velocities v imp.
The values of pi and v imp were computed by the code written by
W.F. Bottke (Bottke and Greenberg, 1993; Greenberg, 1982). For
this calculation, we used only the osculating elements from the
AstOrb catalog.

We calculated pi’s and v imp’s between each pair of asteroids of
different populations. We used first 1000 asteroids from each pop-
ulation (first according to the catalog nomenclature). We checked
that this selection does not significantly influence the result. We
constructed the distributions of eccentricities and inclinations of
first 1000 objects from each region and we verified that they
approximately correspond with the distributions for the whole
population. We also tried a different selection criterion (last 1000
orbits), but this changes neither pi nor v imp values substantially.

From these sets of pi’s and v imp’s, we computed the mean values
pi and v imp (for v imp only if corresponding pi – 0). We checked that
the distributions are relatively close to the Gauss distribution and
the computations of the mean values are reasonable.

We found out that the individual pi and v imp differ significantly
(values from 0:35� 10�18 to 11:98� 10�18 km�2 yr�1 and from

2.22 to 10:09 km s�1) — see Table 1. The collision probability
decreases with an increasing difference between semimajor axis
of two asteroids (the lowest value is for the interaction between
the inner belt and the Cybele zone, while the highest for the inter-
actions inside the inner belt). The highest impact velocities are for
interactions between the high-inclination region and any other
population.

The uncertainties of pi are of the order 0:1� 10�18 km�2 yr�1

and for v imp about 0:1 km s�1. Values computed by Dahlgren
(1998), pi ¼ 3:1� 10�18 km�2 yr�1 and v imp ¼ 5:28 km s�1 (mean
values for the whole main belt), are in accordance with our results
as well as values computed by Dell’Oro and Paolicchi (1998) —
from 3.3 to 3:5� 10�18 km�2 yr�1 (depending on assumptions for
orbital angles distributions). However, it seems to be clear that
considering only a single value of pi and v imp for the whole main
belt would result in a systematic error of the model.

5. A construction of the model

In this section, we are going to describe free and fixed input
parameters of our model, the principle how we explore the param-
eter space and we also briefly describe the Boulder code.

The initial SFDs of the six parts of the main belt are described by
36 free parameters — six for every part: qa; qb; qc; d1; d2 and
nnorm. Parameter qa denotes the slope of the SFD for asteroids with
diameters D > d1; qb the slope between d1 and d2; qc the slope for
D < d2 (in other words, d1 and d2 are the diameters separating dif-
ferent power laws) and nnorm is the normalization of the SFD at d1,
i.e. the number of asteroids with D > d1 (see also Table 4).

We must also ‘‘manually’’ add biggest asteroids, which likely
stay untouched from their formation, to the input SFDs: (4) Vesta
with a diameter 468.3 km (according to AstOrb) in the inner belt,
(1) Ceres with a diameter 848.4 km (AstOrb) in the middle belt,
and (2) Pallas with a diameter 544 km (Masiero et al., 2011) in
the high-inclination region. These asteroids are too big and ‘‘soli-
tary’’ in the respective part of the SFD and consequently cannot
be described by the slope qa.

The list of fixed input parameters is as follows: collision proba-
bilities and impact velocities from Section 4; the scaling law
parameters according to Benz and Asphaug (1999); initial
(�4 Gyr) and final (0) time and the time step (10 Myr).
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Fig. 2. The observed cumulative size–frequency distributions Nð> DÞ of the six
parts of the main belt. We used the observational data from the WISE satellite
(Masiero et al., 2011) and the AstOrb catalog for their construction. For asteroids
which have no albedos in the WISE database, we assigned albedos by a Monte Carlo
method from the distribution of WISE albedos.

6 http://www.lpl.arizona.edu/css/.
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5.1. The scaling law

One of the input parameters is the scaling law described by a
parametric relation

QH

D ¼
1

qfact
ðQ 0ra þ BqrbÞ; ð2Þ

where r denotes the radius in cm, q the density in g/cm3, parame-
ters qfact; Q0 and B are the normalization parameters, a and b char-
acterize the slope of the corresponding power law. QH

D is the specific
impact energy required to disperse half of the total mass of a target.
A scaling law which is often used is that of Benz and Asphaug
(1999) (Fig. 4), which was derived on the basis of SPH simulations.
Parameters in Eq. (2), corresponding to Benz and Asphaug (1999),
are listed in Table 2.

In our simulations, we used three different scaling laws, one for
monolithic bodies and two for rubble-pile bodies (to be studied in
Section 7). Densities we assumed are within the ranges reported by
Carry (2012) for major taxonomical classes (C-complex 1.3 to 2.9 g/
cm3; S-complex 2 to 4 g/cm3; for X-types the interval is wide; see
Fig. 7 or Table 3 therein).

5.2. A definition of the v2 metric

To measure a match between our simulations and the observa-
tions we calculate v2 prescribed by the relation

v2 ¼
Xn

i¼1

ðsyni � obsiÞ2

r2
i

; ð3Þ

where syni denotes the synthetic data (i.e. results from Boulder sim-
ulations) and obsi denotes the observed data, ri is the uncertainty of
the corresponding obsi. The quantities syni and obsi are namely the
cumulative SFDs Nð> DÞ or the numbers of families Nfamilies. More
exactly, we calculate v2

sfd for the 96 points in the cumulative SFDs
of the six populations (we verified that this particular choice does
not influence our results) and we add v2

fam for the numbers of fam-
ilies in these populations.7

To minimize v2 we use a simplex numerical method (Press
et al., 1992). Another approach we could use is a genetic algorithm
which is not-so-prone to ‘‘fall’’ into a local minimum as simplex.

Nevertheless, we decided to rather explore the parameter space
in a more systematic/controlled way and we start the simplex
many times with (729) different initial conditions. We thus do
not rely on a single local minimum.

The v2 prescribed by Eq. (3) is clearly not a ‘‘classical’’ v2, but a
‘‘pseudo’’-v2, because we do not have a well-determined ri.8 Using
v2 we can only decide, if our model corresponds to the observations
within the prescribed uncertainties ri. Specifically, we used
ri ¼ 10%, obsi for the SFDs9 (similarly as Bottke et al. (2005)) and

ri ¼
ffiffiffiffiffiffiffiffi
obs
p

i for the families.
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Fig. 3. A test of three reconstructions of a ’’known‘‘ size–frequency distribution. Diameters were calculated according to Eq. (1) and for values of pV we try to use: (1)
pV ¼ 0:15 (blue line), (2) pV ¼ 0:13, i.e. the mean value from the distribution of WISE albedos (red line), and (3) we used albedos from WISE for H < 15 mag; for other bodies
we assigned albedos by a Monte-Carlo method according to the distribution of WISE albedos (green line). We can see that the third method is the best one. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
The computed intrinsic collisional probabilities pi and the mutual impact velocities
v imp (for v imp only if pi – 0) between objects belonging to the different parts of the
main belt. The uncertainties are of the order 0:1� 10�18 km�2 yr�1 for pi and
0:1 km s�1 for v imp.

Interacting populations pi ð10�18 km�2 yr�1Þ v imp ðkm s�1Þ

Inner–inner 11.98 4.34
Inner–middle 5.35 4.97
Inner–pristine 2.70 3.81
Inner–outer 1.38 4.66
Inner–Cybele 0.35 6.77
Inner–high Inc. 2.93 9.55
Middle–middle 4.91 5.18
Middle–pristine 4.67 3.96
Middle–outer 2.88 4.73
Middle–Cybele 1.04 5.33
Middle–high Inc. 2.68 8.84
Pristine–pristine 8.97 2.22
Pristine–outer 4.80 3.59
Pristine–Cybele 1.37 4.57
Pristine–high Inc. 2.45 7.93
Outer–outer 3.57 4.34
Outer–Cybele 2.27 4.45
Outer–high Inc. 1.81 8.04
Cybele–Cybele 2.58 4.39
Cybele–high Inc. 0.98 7.87
High Inc.–high Inc. 2.92 10.09

7 We should mention that more sophisticated techniques of assessing the
goodness-of-fit (based on bi-truncated Pareto distributions and maximum likelihood
techniques) exist, as pointed out by Cellino et al. (1991).

8 We cannot use a usual condition v2 � n or the probability function qðv2jnÞ to
asses a statistical significance of the match between the synthetic and observed data.

9 We prefer to use cumulative values Nð> DÞ instead of differential, even though
the bins are not independent of each other. The reason is more-or-less technical: the
Boulder code can create new bins (or merge existing bins) in the course of simulation
and this would create a numerical artefact in the v2 computation.
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We are aware that the observed Nfam values do not follow a
Poissonian distribution, and that was actually a motivation for us
to use a higher value of weighting for families wfam ¼ 10 (we mul-
tiply v2

fam by wfam), i.e. we effectively decreased the uncertainty of
Nfam in the v2 sum. The weighting also emphasizes families,
because six values of v2

fam would have only small influence on
the total v2. Unfortunately, there are still not enough and easily
comparable family identifications. Even though there are a number
of papers (Parker et al., 2008; Nesvorný, 2012; Masiero et al., 2013;
Carruba et al., 2013; Milani et al., 2013), they usually do not discuss
parent-body sizes of families.

If a collision between asteroids is not energetic enough (i.e. a
cratering event), then only a little of the mass of the target (parent
body) is dispersed to the space. In this case, the largest remaining
body is called the largest remnant. The second largest body, which
has a much lower mass, is called the largest fragment. If a collision
is catastrophic, the first two fragments have comparable masses
and in such a case, the largest body is called the largest fragment.

In our simulations, we focused on asteroid families with the
diameter of the parent body DPB � 100 km and the ratio of the larg-
est remnant/fragment to the parent body MLF=MPB < 0:5 only (i.e.
catastrophic disruptions), though the Boulder code treats also cra-
tering events, of course. For that sample we can be quite sure that
the observed sample is complete and not biased. This approach is
also consistent with the work of Bottke et al. (2005). The numbers
of observed families Nfam in individual parts are taken from Brož
et al. (2013), except for the inner belt, where two additional fami-
lies were found by Walsh et al. (2013) (i.e. three families in total,
see Table 3). Our synthetic families then simply correspond to indi-
vidual collisions between targets and projectiles — which are ener-
getic enough to catastrophically disrupt the target of given
minimum size (D P 100 km) — as computed by the Boulder code.

In order to avoid complicated computations of the observa-
tional bias we simply limit a range of the diameters Dmax to Dmin

where v2 is computed (see Table 4) and we admit a possibility that
v2 is slightly increased for D approaching Dmin. We estimated Dmax

and Dmin for each population separately from the observed SFDs
shown in Fig. 2.

5.3. The Boulder code

A collisional evolution of the size–frequency distributions is
modeled with the statistical code called Boulder (Morbidelli

et al., 2009), originally developed for studies of the formation of
planetary embryos. Our simulations were always running from 0
to 4 Gyr. The Boulder code operates with particles separated to
populations, which can differ in values of the intrinsic impact prob-
ability pi, mutual velocity v imp, in material characteristics, etc. The
populations are then characterized by their distribution of mass.
The total mass range is divided to logarithmic bins, whose width
and center evolve dynamically. The processes which are realized
in every time step are:

1. the total numbers of collisions among all populations and all
mass bins are calculated according to the mutual pi’s;

2. the mass of the largest remnant MLR and the largest fragment
MLF and the slope q of the SFD of fragments are determined
for each collision;

3. the largest remnant and all fragments are distributed to the
mass bins of the respective population;

4. it is also possible to prescribe a statistical decay of the popula-
tions by dynamical processes;

5. finally, the mass bins are redefined in order to have an optimal
resolution and an appropriate next time step Dt is chosen.

The relations for MLR; MLF and q, derived from the works of
Benz and Asphaug (1999) and Durda et al. (2007), are

MLR ¼ �1
2

Q

QH

D

� 1

 !
þ 1

2

" #
Mtot for Q < QH

D ; ð4Þ

MLR ¼ �0:35
Q

QH

D

� 1

 !
þ 1

2

" #
Mtot for Q > QH

D ; ð5Þ

MLF ¼ 8� 10�3 Q

QH

D

exp � Q

4QH

D

 !2
0
@

1
A

2
4

3
5Mtot; ð6Þ

q ¼ �10þ 7
Q

QH

D

 !0:4

exp � Q

7QH

D

 !
; ð7Þ

where Mtot denotes the sum of the masses of target and of projec-
tile, QH

D the strength of the asteroid and Q the specific kinetic energy
of the projectile
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Fig. 4. The scaling law for basaltic material at 5 km/s (black line) according to Benz
and Asphaug (1999). The red a green lines represent two scaling laws assumed for
rubble-pile bodies (1. with less strength than monoliths at all sizes; 2. with less
strength than monoliths at large sizes). Their derivations are described in Section 7.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Parameters of the scaling law according to Benz and Asphaug (1999) (see Eq. (2)).
Parameters qfact ; Q0 and B are the normalization parameters, a and b characterize the
slope of the corresponding power law. The procedure how we obtained the
parameters for rubble-pile bodies is described in Section 7.

q (g/cm3) Q0 (erg/g) a B (erg/g) b qfact

Basalt 3.0 9� 107 �0:36 0.5 1.36 1.0

Rubble-pile 1 1.84 9� 107 �0:36 0.5 1.36 13.2

Rubble-pile 2 1.84 118:8� 107 �0:36 0.5 1.36 13.2

Table 3
The list of asteroid families in individual parts of the main belt according to Brož et al.
(2013) and Walsh et al. (2013). Only families with the diameter of the parent body
DPB > 100 km and the ratio of the largest remnant/fragment to the parent body
MLF=MPB < 0:5 are listed.

Belt Nfam Families

Inner 3 Erigone Eulalia Polana
Middle 8 Maria Padua Misa

Dora Merxia Teutonia
Gefion Hoffmeister

Pristine 2 Koronis Fringilla
Outer 6 Themis Meliboea Eos

Ursula Veritas Lixiaohua
Cybele 0
High Inc. 1 Alauda
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Q ¼
1
2 Mprojectilev2

imp

Mtot
: ð8Þ

The disruptions of large bodies have only a small probability during
one time step Dt. In such situations the Boulder uses a pseudo-ran-
dom-number generator. The processes thus become stochastic and
for the same set of initial conditions we may obtain different
results, depending on the value of the random seed (Press et al.,
1992).

The Boulder code also includes additional ‘‘invisible’’ bins of the
SFD (containing the smallest bodies) which should somewhat pre-
vent artificial ‘‘waves’’ on the SFDs, which could be otherwise cre-
ated by choosing a fixed minimum size.

6. Simulations for monolithic objects

We can expect a different evolution of individual populations as
a consequence of their different SFDs, collision probabilities and
impact velocities. Therefore, in this section we are going to run
simulations with a new collisional model with six populations.

6.1. An analysis of an extended parameter space

First, we explored the parameter space on larger scales and
started the simplex10 with many different initial conditions (see
Fig. 5). The calculation had 36 free parameters, as explained above.
To reduce the total computational time, we change the same
parameter in each part of the main belt with every initialisation
of the simplex. For example, we increase all parameters
qa1; qa2; qa3; qa4; qa5; qa6 together and then we search for a neigh-
boring local minimum with the simplex which has all 36 parameters
free — we call this one cycle. In total, we run 36 ¼ 729 cycles (i.e. ini-
tialisations of the simplex), for each parameter we examined 3 val-
ues (within the ranges from Table 4). The maximum permitted
number of iterations of the simplex was 300 in one cycle (and we
verified that this is sufficient to find a v2 value which is already close
to a local minimum). In total, we run 218,700 simulations of the col-
lisional evolution of the main belt.

The argument which would (partly) justify simultaneous
changes of all parameters in the 6 parts of the main belt is that
we use the same scaling law for each of them, therefore we can
expect a similar behavior in individual belts and it then seems log-
ical to choose initial conditions (SFDs) simultaneously.

The input parameters are summarized in Table 4. The mid-
in-the-range values were derived ‘‘manually’’ after several preli-
minary simulations of collisional evolution (without simplex or
v2 calculations). The changes of parameters between cycles and
the steps of simplex within one cycle are listed in Table 5.

The minimum value of v2, which we obtained, is v2 ¼ 562, but
we found many other values, that are statistically equivalent (see
Fig. 6 as an example). Therefore, we did not find a statistically
significant global minimum. The parameters qb1—b6 seem to be
well-determined within the parameter space, parameters
qa1—a6; d1 1—6; d2 1—6 and nnorm 1—6 are slightly less constrained. For
the remaining parameters qc1—c6 we essentially cannot determine
the best values. This is caused by the fact that the ‘tail’ of the
SFD is created easily during disruptions of larger asteroids, so that
the initial conditions essentially do not matter. The influence of the
initial conditions at the smallest sizes (D < d2) on the final SFDs
was carefully checked. As one can see e.g. from the dependence
v2ðqc1Þ, i.e. the resulting v2 values as a function of the initial slope
of the tail, the outcome is essentially not dependent on the tail
slope, but rather on other free parameters of our model.

The differences between simulated and observed SFDs and
numbers of families for individual populations corresponding to
v2 ¼ 562 are shown in Figs. 7 and 8. We can see that the largest dif-
ferences are for the inner and outer belt. Note that it is not easy to
improve these results, e.g. by increasing the normalization nnorm4 of
the outer belt, because this would affect all of the remaining pop-
ulations too.

From Fig. 7, we can also assess the influence of the choice of
Dmin and Dmax values on the resulting v2 — for example, an increase
of Dmin would mean that the v2 will be lower (because we would
drop several points of comparison this way). However, as this hap-
pens in all main belt parts (simultaneously), it cannot change our
results significantly. We ran one complete set of simulations with
Dmin ¼ 15 km (i.e. with qc unconstrained) to confirm it and we
found out that the resulting SFDs, at both larger and smaller sizes
than Dmin, are not significantly different from the previous ones.

The parameters of the initial SFDs for the minimal v2 are sum-
marized in Table 6. Comparing with Table 4, the best initial slopes
qa1—6 and qc1—6 are both significantly steeper than the mid-in-the-
range values (from Table 4) and they exceed the value�3:5 derived
by Dohnanyi. We can also see that the SFD of the Cybele zone is
significantly flatter than the SFDs of the other populations and is
more affected by observational biases (incompleteness) which
actually corresponds to our choice of (relatively large) Dmin ¼ 6 km.

Another approach to the initial conditions we tested is the fol-
lowing: we generated a completely random set of 729 initial condi-
tions — generated within the ranges simulated previously — and
without simultaneous (i.e. with uncorrelated) changes in the 6
parts of the main belt. We then started the simplex algorithms
again, i.e. we computed 729 initial conditions for the simplex
�300 iterations = 218,700 collisional models in total. Results are
very similar to the previous ones, with the best v2 ¼ 544, which
is statistically equivalent to 562, reported above. In Fig. 6, we com-
pare the dependence of the v2 on the parameter qb2 for simulta-
neous (correlated) changes of parameters and for the randomized
(uncorrelated) sets of initial parameters. Both results are equiva-
lent in terms of residuals and we can conclude that there is no sig-
nificantly better local minimum on the interval of parameters we
studied.

To test the influence of the choice of wfam, we ran simulation
with wfam ¼ 0. The resulting SFDs for monoliths were similar (i.e.
exhibiting the same problems) and v2

sfd ¼ 612 (among �100,000
simulations) remained high. We thus think that the choice of
wfam is not critical. While this seems like the families do not deter-
mine the result at all, we treat this as an indication that the num-
bers of families and SFDs are consistent.

6.2. A detailed analysis of the parameters space

We also tried to explore the parameter space in detail — with
smaller changes of input parameters between cycles and also smal-
ler steps of the simplex. The best v2 which we found is however
statistically equivalent to the previous value and we did not obtain
a significant improvement of the SFDs. Parameters are not well-
constrained in this limited parameter space, because the simula-
tions were performed in a surroundings of a local minimum and
the simplex was mostly contracting. An even more-detailed explo-
ration of the parameter space thus would not lead to any improve-
ment and we decided to proceed with a model for rubble-pile
asteroids.

7. Simulations for rubble-pile objects

The material characteristics of asteroids can significantly influ-
ence their mutual collisions. We can modify the Boulder code for10 The simplex as well as v2 calculation is not a direct part of the Boulder code.
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rubble-pile bodies on the basis of Benavidez et al. (2012) work,
who ran a set of SPH simulation for rubble-pile DPB ¼ 100 km
parent bodies. We used data from their Fig. 8, namely diameters
of fragments inferred for simulations with various projectile
diameters and impact velocities.

7.1. Modifications of the Boulder code for rubble-pile bodies

We need to modify the parameters of the scaling law first. We
were partly inspired by the shape of scaling laws presented in
Levison et al. (2009) for icy bodies (Fig. 3 therein). The modified
versions used by these authors are all scaled-down by a factor
(i.e. qfact in our notation). Thus, the only two parameters we chan-
ged are qfact and density. For the density of asteroids, we used
q ¼ 1:84 g cm�3 as Benavidez et al. (2012). We determined the
specific impact energy Q �D required to disperse half of the total
mass of a D ¼ 100 km rubble-pile target from the dependence of
the mass of the largest remnant MLR as a function of the kinetic

energy of projectile Q (see Fig. 9). Q �D is then equal to Q correspond-
ing to MLR=Mtarget ¼ 0:5. So the result is Q �D ¼ ð9� 1Þ � 107 erg g�1

and the corresponding parameter qfact in the scaling law is then
13:2� 1:5 (calculated according to Eq. (2) with q ¼ 1:84 g cm�3,
r ¼ 5� 106 cm, parameters Q 0; a; B and b remain same as for
the monolithic bodies). The scaling law for rubble-pile bodies
was already shown graphically in Fig. 4 (red line).

We must also derive new dependencies of the slope qðQÞ of the
fragments’ SFD and for the mass of the largest fragment MLFðQÞ on

Fig. 5. A set of 729 synthetic size–frequency distributions (for six parts of the main belt), which served as starting points for the simplex algorithm and subsequent
simulations of collisional evolution. Thin lines (with various colors) denote the synthetic SFDs, while the thick lines corresponds to the observed SFDs. Note that we tested
quite a large range of possible initial conditions. The number of simplex steps was limited to 300 because the convergence to a local minimum is difficult due to the
stochasticity of the collisional evolution. The total number of collisional simulations we ran was thus 729� 300 ¼ 218;700. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 4
The ranges of input parameters describing the size–frequency distributions (SFDs) of the six parts of the main belt: qa denotes the slope of the SFD for asteroids with diameters
D > d1, qb the slope between d1 and d2, qc the slope for D < d2 and nnorm is the normalization of the SFD at d1. Nfam denotes the number of observed families and Dmax and Dmin the
range of diameters in the SFD, where the v2 is calculated.

Population d1 (km) d2 (km) qa qb qc nnorm Nfam Dmax (km) Dmin (km)

Inner 75 to 105 14 to 26 �3:6 to �4:2 �1:5 to �2:7 �3:0 to �4:2 14 to 26 3 250 3
Middle 90 to 120 12 to 24 �4:0 to �4:6 �1:7 to �2:9 �3:0 to �4:2 60 to 90 8 250 3
Pristine 85 to 115 7 to 19 �3:3 to �3:9 �1:8 to �3:0 �3:0 to �4:2 15 to 27 2 250 5
Outer 65 to 95 14 to 26 �3:4 to �4:0 �1:9 to �3:1 �2:9 to �4:1 75 to 105 6 250 5
Cybele 65 to 95 9 to 21 �2:2 to �2:8 �1:4 to �2:6 �2:2 to �3:4 11 to 23 0 250 6
High-inclination 85 to 115 14 to 26 �3:6 to �4:2 �1:6 to �2:8 �2:9 to �4:1 24 to 36 1 250 5

Table 5
The changes of input parameters between cycles, and steps of the simplex within one
cycle. d1; d2; qa; qb ; qc and nnorm denote the same parameters as in Table 4. For the
middle and outer belt, which are more populous, we used Dnnorm ¼ 15 and dnnorm ¼ 5.

d1 (km) d2 (km) qa qb qc nnorm

Cycles ±15 ±6 ±0.3 ±0.6 ±0.6 ±6; 15
Steps 5 2 0.1 0.2 0.2 2; 5
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the specific energy Q of the impact. The cumulative SFDs of the
fragments cannot be always described with only one single slope.
We thus divided the fragments according to their diameters to
small (D < 10 km) and large (D > 10 km) and we determined two
slopes. Then we calculated the mean value and we used the differ-
ences between the two values as error bars (see Fig. 10).

For some of the SPH simulations outcomes it can be difficult to
determine the largest fragment, in other words, to distinguish a
catastrophic disruption from a cratering event, as explained in
Section 5.2. The error bars in Fig. 11 correspond to the points,
which we would get if we choose the other of the two above-
mentioned possibilities.
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Fig. 6. The values of v2 for all simulations of collisional evolution as a function of the parameter qb2 (i.e. the slope of the SFD of the middle belt for asteroids with diameters
D < d1 and D > d2). Black points display all initial conditions of the collisional models (within the ranges of the figure), red points display the initial conditions for which
simplex converged to a local minimum (i.e. 729 points in total, but less within the ranges of the figure). The dotted line is a value twice larger than the best v2. Values below
this line we consider statistically equivalent. Left: simultaneous (correlated) changes of parameters in individual parts of the main belt. Right: randomized (uncorrelated) set
of initial parameters (as described in the text). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The observed (black line) and simulated (green line) SFDs and the differences between them for the simulation with v2 ¼ 562. Sigma error bars denote the (prescribed)
uncertainties of the observed SFDs. This result is for the simulation with monoliths. The largest differences can be seen for the inner and outer belt. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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The parametric relations we determined for rubble-pile bodies
are the following

q ¼ �6:3þ 3:16
Q

QH

D
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QH

D

Mtot: ð10Þ

When we approximate scattered data with functions, we must care-
fully check their limits. In the case of low-energetic collisions there
is one largest remnant and other fragments are much smaller,
therefore for decreasing Q we need MLF to approach zero. The slope
q we need to stay negative and not increasing above 0 (that would
signify an unphysical power law and zero number of fragments).
These conditions are the reasons why our functions do not go
through all of the data points (not even within the range of uncer-
tainties). This problem is most pronounced for the dependence of
MLFðQÞ for small Q (Fig. 11). Nevertheless, we think that it is more
important that the functions fit reasonably the data for high Q’s,
because highly-energetic collisions produce a lot of fragments and
they influence the SFD much more significantly.

7.2. A comparison of results for monoliths and rubble-piles with less
strength at all sizes

We explored the parameter space in a similar way as for mono-
liths: with 729 different initial SFDs (i.e. 729 cycles), the maximum
permitted number of iterations 300 and 218,700 simulations in
total. The changes of parameters between cycles and the steps of

the simplex within one cycle are the same as for simulations with
monolithic bodies (see Table 5).
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Fig. 8. The differences between simulated and observed numbers of families Nfam in
individual populations, corresponding to the total v2 ¼ 562. Sigma error bars
denote the uncertainties of the observed numbers of families. This results is for
simulations with monoliths. The simulated and observed numbers of families seem
to be consistent within the uncertainties.

Table 6
The parameters describing the initial SFDs (for time t ¼ �4 Gyr) of the six parts of the
main belt for which we obtained the best fit (v2 ¼ 562) of the observed SFDs and the
number of families. d1 ; d2; qa; qb; qc and nnorm denote the same parameters as in
Table 4 and are rounded to two decimal places.

Population d1 (km) d2 (km) qa qb qc nnorm

Inner 90.07 20.03 �4:20 �2:10 �4:20 20.03
Middle 105.07 18.03 �4:60 �2:30 �4:20 75.07
Pristine 100.07 13.03 �3:90 �2:30 �4:20 21.03
Outer 80.07 20.03 �4:00 �2:50 �4:10 90.07
Cybele 80.07 15.03 �2:80 �2:00 �3:40 17.03
High-inclination 100.07 20.03 �4:20 �2:20 �4:10 30.03
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Fig. 11. The ratio MLF=Mtot (the mass of the largest fragment divided by the sum of
the mass of target and the mass of projectile) as a function of the impact energy
Q=Q �D for the rubble-pile parent bodies with the diameter DPB ¼ 100 km. The
horizontal axis is in a logarithmic scale. The uncertainties of MLF=Mtot are caused by
a problematic determination of the largest fragment and the largest remnant. The
horizontal error bars are given by the uncertainties of Q �D . The gray line corresponds
to the dependence for monoliths (Morbidelli et al., 2009) which we used in Section
6.
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The minimum v2 which we obtained was 1321. The differences
between the simulated and observed SFDs and the numbers of
families for individual populations corresponding to v2 ¼ 1321
are shown in Figs. 12 and 13. These values are significantly higher
than what we obtained for monoliths (v2 ¼ 562 at best). Given that
the set of initial conditions was quite extensive (refer to Fig. 5), we
think that this difference is fundamental and constitutes a major
result of our investigation.

It seems that, at least within our collisional model, we can pre-
liminarily conclude that the main belt does not contain only rub-
ble-pile bodies, because otherwise the corresponding fit would
not be that worse than for monoliths (see Figs. 7 and 8 for a
comparison).

It would be interesting to run a simulation with two different
population of the main belt — monolithic and rubble-pile bodies.
Also because Benavidez et al. (2012) concluded that some asteroid
families were more likely created by a disruption of a rubble-pile
parent body: namely the Meliboea, Erigone, Misa, Agnia, Gefion
and Rafita. Such simulation remains to be done.

7.3. Simulations for rubble-piles with less strength at large sizes

Large rubble-piles objects can be also assumed to be composed
of monolithic blocks with sizes of the order of 100 m. Then, at and

below this size, the scaling law QH

D should be a duplicate of the
Benz and Asphaug (1999) — see Fig. 4 (green line). We computed
a new set of 729 � 300 = 218,700 collisional simulations with the
scaling law modified in this way. The resulting smallest v2 is
1393, which should be compared to the previous result
v2 ¼ 1321 — i.e. no statistically significant improvement.

We thus can conclude that this kind of QH

D modification does not
lead to an improvement of the model. We think that the collisional
evolution and overall shape of the SFDs are more affected by dis-
ruptions of large asteroids.

8. Improvements and extensions of the model

We think that the match between our collisional model and the
observational data as presented in Sections 6 and 7 is not entirely
convincing. In this section we thus try to improve the model by the
following procedures: (i) we use a longer ‘tail’ of the SFD (down to
D ¼ 0:01 km), which is a straightforward modification. Neverthe-
less, the longer tail means a significant increase of the required
CPU time (which is proportional to N2

bins). (ii) We account for the
Yarkovsky effect whose time scales for small bodies (D K 0:1 km)
are already comparable to the collisional time scales (see Section
8.1). (iii) We do not converge all 36 free parameters at once but
we free only 6 of them (d1; d2; qa; qb; qc and nnorm for one popu-

Fig. 12. The observed (black line) and simulated (green line) SFDs and the differences between them for the simulation with rubble-piles with total v2 ¼ 1321. Sigma error
bars denote the adopted uncertainties of the observed SFDs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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lation only) and proceed sequentially with six parts of the main
belt (see Section 8.2). (iv) Finally, we try to use a scaling law differ-
ent from Benz and Asphaug (1999) (see Section 8.3).

8.1. Dynamical decay caused by the Yarkovsky effect

In order to improve the Boulder code and use a more complete
dynamical model, we try to account for the Yarkovsky effect as fol-
lows. We assume that the Yarkovsky effect causes a dynamical
decay of the population which can be described by the following
relation

Nðt þ DtÞ ¼ NðtÞ exp
Dt
sYE

� �
; ð11Þ

where NðtÞ denotes the number of bodies at time t, Dt the time step
of the integrator and sYE is the characteristic timescale.

We can compute the semimajor-axis drift rate da=dt, for both
the diurnal and seasonal variants of the Yarkovsky effect, using
the theory of Vokrouhlický (1998), Vokrouhlický and Farinella
(1999) and the (size-dependent) time scale is then

sYEðDÞ ¼
Da
d

a=dtðDÞ; ð12Þ

where Da is the range of semimajor axis given by the positions of
major mean-motion resonances which are capable to remove
objects from the respective populations. It differs for different zones
of the main belt, of course (see Table 7).

In the thermal model, we assume the following parameters: the
thermal conductivity K ¼ 0:01 W m�1 K�1 for D > DYE, i.e. a transi-
tion diameter, and 1:0 W m�1 K�1 for D 6 DYE. The break in KðDÞ
reflects the rotational properties of small bodies, as seen in
Fig. 14 (and Warner et al., 2009): they rotate too fast, above the
critical limit of about 11 revolutions/day, to retain low-conductiv-
ity regolith on their surfaces. This is also in accord with infrared
observations of Delbo’ et al. (2007), even though the authors pro-
pose a linear relationship between the thermal intertia
C ¼

ffiffiffiffiffiffiffiffiffiffi
KqC

p
and size D (their Fig. 6), a step-like function may be also

compatible with the data. The thermal capacity was

C ¼ 680 J kg�1 K�1, the infrared emissivity � ¼ 0:95 and the Bond
albedo AB ¼ 0:02. The latter value of AB corresponds to the geomet-
ric albedo pV ¼ 0:05, which is typical for C-complex asteroids (e.g.
Masiero et al., 2013), with AB ¼ pV q, where q denotes the phase
integral (with a typical value of 0.39; Bowell et al., 1989). If we

assume higher pV ¼ 0:15 (typical of S-complex) and AB ¼ 0:06,
the Yarkovsky dynamical time scale would remain almost the
same, because it is driven by the factor ð1� ABÞ. Remaining ther-
mal parameters, namely the densities, are summarized in Table 7.
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Fig. 13. The simulated and the observed numbers of families Nfam in individual
populations for the simulation with rubble-piles, corresponding to the total
v2 ¼ 1321. Sigma error bars denote the uncertainties of the observed numbers of
families.

Table 7
The parameters of the Yarkovsky-driven decay which are dependent
on the zone of the main asteroid belt: Da is half of the zone size (or a
typical distance from neighboring strong mean-motion resonances), q
denotes the (bulk and surface) density assumed for respective bodies.

Zone Da AU q kg m�3

Inner 0.2 2500
Middle 0.1615 2500
Pristine 0.0665 1300
Outer 0.162 1300
Cybele 0.105 1300
High-I 0.135 1300
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Fig. 15. The time scale sYE of the Yarkovsky-driven decay (as defined by Eq. (12)) vs
size D for three different models (denoted 1, 3 and 5), or in other words,
assumptions of the thermal conductivity KðDÞ and the spin rate xðDÞ, which were
described in the text. The obliquities c of the spin axes were assumed moderate,
jcj ¼ 45	 . Model 2 is quite similar to 1 and model 4 is similar to 3, so we decided not
to plot them in order to prevent many overlapping lines. For each model, we plot six
lines corresponding to the six zones of the main belt: inner, middle, ‘pristine’, outer,
Cybele and high inclination. Bottke et al. (2005) time scales were used for the whole
main belt (regarded as a single population).
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We tested five different models (assumptions):

1. low thermal conductivity K ¼ 0:01 W m�1 K�1 only, i.e.
DYE ¼ 0 km, fixed rotation period P ¼ 5 h;

2. both low/high K with DYE ¼ 200 m, again P ¼ 5 h;
3. the same KðDÞ dependence, but size-dependent spin rate

xðDÞ ¼ 2p
P0

D0
D ; P0 ¼ 5 h; D0 ¼ 5 km;

4. xðDÞ ¼ 2p
P0

D
D0

� ��1:5
; P0 ¼ 2 h; D0 ¼ 0:2 km (see Fig. 14);

5. we used Bottke et al. (2005) time scales.

It is important to explain that these spin rate dependencies are
not meant to describe bigger asteroids but rather smaller ones
(D K 1 km) that comprise the majority of impactors but mostly fall
below the detection threshold.

We then computed the Yarkovsky time scales sYEðDÞ (Fig. 15)
and constructed a ‘testing’ collisional model in order to check the
influence of the dynamical decay on the evolution of the main belt
SFD. Note that for small sizes D K 1 km; sYEðDÞ can be even smaller
than corresponding collisional time scales scolðDÞ.

Regarding the asteroid families, we use the most straightfor-
ward approach: we simply count only families large enough (origi-
nal DPB > 100 km, mLR=mPB < 0:5) which cannot be completely
destroyed by a collisional cascade (Bottke et al., 2005) or by the
Yarkovsky drift (Bottke et al., 2001). We verified this statement
(implicitly) also in our recent work (Brož et al., 2013) in which
the evolution of SFDs for individual synthetic families was studied.
At the same time, we use original parent-body sizes DPB of the
observed families — inferred by using methods of Durda et al.
(2007) or Tanga et al. (1999); as summarized in Brož et al.
(2013) — so that we can directly compare them to synthetic fami-
lies, as output from the Boulder code.

The results of models 1 and 2 above are clearly not consistent
with the observed SFD (see Fig. 16). The results of 3, 4 and 5 seem
to be equivalent and consistent with observations, however, we
cannot distinguish between them. We can thus exclude ‘extreme’
Yarkovsky drift rates and conclude that only lower or ‘reasonable’
drift rates provide a reasonable fit to the observed SFD of the main
belt.

8.2. Subsequent fits for individuals parts of the main belt

In order to improve our ‘best’ fit from Section 6 (and 7), we ran
simplex sequentially six times, with only 6 parameters free in each
case, namely d1; d2; qa; qb; qc; nnorm for a given part of the main
belt. We included a longer tail (Dmin ¼ 0:01 km) and the Yarkovsky
model discussed above.11 The number of simplex iterations was
always limited to 100.

We shall not be surprised if we obtain a v2 value which is
(slightly) larger than before because we changed the collisional
model and this way we moved away from the previously-found
local minimum. At the same time, we do not perform that many
iterations as before (600 vs. 218,700), so we cannot ‘pick-up’ the
deepest local minima.

For monoliths, we tried to improve the ‘best’ fit with v2 ¼ 562.
However, the initial value at the very start of the simplex was
v20 ’ 803 (due to the changes in the collisional model) and the final
value after the six subsequent fits v200 ¼ 520. This is only slightly
smaller than the previous v2 and statistically equivalent
(v200 ’ v2). For rubble-piles, a similar procedure for the v2 ¼ 1321
fit lead to the initial v20 ’ 1773 and the final v200 ¼ 1470. Again, a
statistically-equivalent result.

We interpret this as follows: our simplex algorithm naturally
selects deep local minima. It seems that the lowest v2 (for a given
set of initial conditions) can be achieved by a ‘lucky’ sequence of
disruptions of relatively large bodies (DPB J 100 km) which results
in synthetic SFDs and the numbers of families best matching the
observed properties. Of course, this sequence depends on the ‘seed’
value of the random-number generator.

To conclude, our improvements of the collisional model do not
seem significant and the v2 values are of the same order. This can
be considered as an indication that we should probably use an even
more complicated model. (Nevertheless, there is still a significant
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Fig. 16. Resulting synthetic size–frequency distributions of the main belt (regarded as a single population) after 4 Gyr of collisional evolution, as computed by the Boulder
code. We show results for three different models of the Yarkovsky-driven decay (denoted 1, 3 and 5 in the text). Model 1 (dotted line) is clearly inconsistent with the observed
SFD (thick gray line). The shaded region corresponds to the sizes well below the observational completeness.

11 This more complicated model runs about 10 times slower, because we have both
larger number of bins to account for smaller bodies and a shorter time step to account
for their fast dynamical removal. It is thus not easy to run a whole set of simulations
from Sections 6 and 7 again.
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difference between monoliths and rubble-piles and the assump-
tion of monolithic structure matches the observations better.)

8.3. Simulations with various scaling laws

So far we used the scaling law of Benz and Asphaug (1999) for
all simulations. In this section, we are going to test different scaling
laws. Similarly as Bottke et al. (2005), we changed the specific
impact energy Q �D of asteroids with D > 200 m (see Fig. 17, left).
For each scaling law we ran 100 simulations of the collisional evo-
lution with different random seeds. The initial parameters of SFDs
are fixed and correspond to the best-fit initial parameters found in
Section 6.

In order to decide which scaling laws are suitable, we can sim-
ply compare the resulting synthetic SFDs and the numbers of fam-
ilies to the observed ones. It is clear that if we increase the strength
of D ’ 100 km bodies by a factor of 10 or more, the number of syn-
thetic families (namely catastrophic disruptions with
DPB P 100 km) is much smaller than the observed number (usually
4 vs 20, see in Fig. 17, middle). On the other hand, if we decrease
the strength by a factor of 10, the synthetic SFDs exhibit a signifi-
cant deficit of small bodies with D < 10 km due to a collisional cas-
cade (especially in the inner belt, see Fig. 17, right). Moreover, the
number of synthetic families is then significantly larger, of course.

The fact that the number of synthetic families is dependent on the
scaling law confirm our statement that families are important
observational constraints.

These results lead us to the conclusion, that the ‘extreme’ scal-
ing laws (i.e. much different from Benz and Asphaug, 1999) cannot
be used for the main asteroid belt. This result is also in accord with
Bottke et al. (2005).

9. Conclusions

In this work, we created a new collisional model of the evolu-
tion of the main asteroid belt. We divided the main belt into six
parts and constructed the size–frequency distribution for each
part. The observed SFDs differ significantly in terms of slopes and
total numbers of asteroids. We then ran two sets of simulations
— for monolithic bodies and for rubble-piles.

In the case of monoliths, there seem to be (relatively minor) dis-
crepancies between the simulated and observed SFDs in individual
parts of the main belt, nevertheless, the numbers of families (cat-
astrophic disruptions) correspond within uncertainties. On the
other hand, the v2 value for rubble-pile bodies is more than twice
as large because there are systematic differences between the SFDs
and the number of families is substantially larger (usually 30 or
more) than the observed one (20 in total). We can thus conclude

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0.0001 0.001  0.01  0.1  1  10  100  1000

Q
* D

 [e
rg

/g
]

D [km]

b=1.0
b=1.1
b=1.2
b=1.3
b=1.36
b=1.42
b=1.5
b=1.6
b=1.7
b=1.8
b=1.9Benz & Asphaug (1999), basalt

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9

N

NFamilies

inner
middle

prinstine
outer

Cybele
high inc.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000

N
(>

D
)

D [km]

inner after 4 Gyr for different random seeds
initial inner

observed inner

Fig. 17. Left: A number of scaling laws with modified strength of large bodies (a similar set as in Bottke et al. (2005)). The red line represents the nominal scaling law of Benz
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that within our collisional model, monolithic asteroids provide a
better match to the observed data than rubble-piles, even though
we cannot exclude a possibility that a certain part of the popula-
tion is indeed of rubble-pile structure, of course.

We tried to improve our model by: (i) introducing a longer ‘tail’
of the SFD12 (down to D ¼ 0:01 km); (ii) incorporating the Yarkovsky
effect, i.e. a size-dependent dynamical decay; (iii) running many
simulations with different random seeds, in order to find even
low-probability scenarios. Neither of these improvements provided
a substantially better match in all parts of the main belt at once.

However, we can think of several other possible reasons, why
the match between our collisional model and the observed SFDs
is not perfect:

1. There are indeed different scaling laws for different parts of
the main belt. This statement could be supported by the
observed distribution of albedo, which is not uniform in
the main belt, and by the diverse compositions of asteroids
(DeMeo and Carry, 2014). This topic is a natural continuation
of our work (and a detailed analysis is postponed to a forth-
coming paper).

2. The scaling of the SPH simulations from DPB ¼ 100 km by
one or even two orders of magnitude is likely problematic.
Our work is thus a motivation to study disruptions of both
smaller (DPB ’ 1 km) and larger (400 km) targets. Similar
sets of SPH simulations as in Durda et al. (2007) and
Benavidez et al. (2012) would be very useful for further
work.

3. To explain the SFD of the inner belt, namely its ‘tail’, we
would need to assume a recent disruption (during the last
�100 Myr) of a large parent body (DPB J 200 km). In that
case the SFD is temporarily steep — and may be closer to
the observed SFD in the particular part of the main belt —
but only for a limited period of time which is typically about
200 Myr. After that time, the collisional cascade eliminates
enough bodies and consequently the SFD becomes flatter.
On the other hand, there must not have occurred a recent
large disruption in the middle or the outer belt, otherwise
the synthetic SFD is more populous than the observed one.
It is not likely, that all such conditions are fulfilled together
in our model, in which collisions occur randomly.

4. When we split the main belt into 6 parts, the evolution
seems too stochastic (the number of large events in individ-
ual part is of the order of 1). It may be even useful to prepare
a ‘deterministic model’, in which large disruptions are pre-
scribed, according to the observed families and their ages.
Of course, the completeness of the family list and negligible
bias are then crucial.

5. Our model does not yet include an YORP-induced fission
(Marzari et al., 2011), even though there are indications that
these ‘additional’ disruptions might affect the tail of the SFD
if they are frequent enough as stated by Jacobson et al.
(2014).

6. We can improve the modeling of the Yarkovsky/YORP effect,
e.g. by assuming a more realistic distribution of spin rates
(not only the xðDÞ dependence, Fig. 14) and performing an
N-body simulation of the orbital evolution to get a more
accurate estimate of the (exponential) time scale sYEðDÞ. It
may be difficult to estimate biases in the xðDÞ plot, because
the respective dataset is heterogeneous. Luckily, the Gaia
spacecraft is expected to provide a large homogeneous data-
base of asteroid spin properties (Mignard et al., 2007).

7. May be, the intrinsic collisional probabilities pi were sub-
stantially different (lower) in the past, e.g. before major
asteroid families were created (as suggested by Dell’Oro
et al. (2001)).

8. Some of the mutual impact velocities v imp, especially with
high-inclination objects, are substantially larger than the
nominal 5 km s�1, so the outcomes of these collisions are
most-likely different. On the other hand, these collisions
are usually of lower probability and the high-inclination
region is not that populous, so that this effect has likely a
minor contribution only. One should properly account for
observational biases acting against discoveries of high-incli-
nation objects, thought (Novaković et al., 2011).

9. Collisions occur not only at the mean impact velocity v imp,
but there is rather a distribution of velocities. It would be
then useful and logical to use a velocity-dependent scaling
law (Leinhardt and Stewart, 2012; Stewart and Leinhardt,
2009).

10. There might be several large undiscovered families, or in
other words, the lists of DPB 6 100 km families (Brož et al.,
2013, or Masiero et al., 2013) might be strongly biased,
because comminution is capable to destroy most of the
fragments.13

11. Possibly, parent-body sizes DPB of the observed families are
systematically underestimated or their mass ratios
MLR=MPB of the largest remnant to parent body are offset,
even though they were determined by best available meth-
ods (Durda et al., 2007; Tanga et al., 1999).

The topics outlined above seem to be good starting points for (a
lot of) further work.
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J. Hanuš1, J. Ďurech1, M. Brož1, B. D. Warner2, F. Pilcher3, R. Stephens4, J. Oey5, L. Bernasconi6, S. Casulli7,

R. Behrend8, D. Polishook9, T. Henych10, M. Lehký11, F. Yoshida12, and T. Ito12

1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 18000 Prague,
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ABSTRACT

Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured
by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
Aims. Tens of thousands of sparse-in-time lightcurves from astrometric projects are publicly available. We investigate these data
and use them in the lightcurve inversion method to derive new asteroid models. By having a greater number of models with known
physical properties, we can gain a better insight into the nature of individual objects and into the whole asteroid population.
Methods. We use sparse photometry from selected observatories from the AstDyS database (Asteroids – Dynamic Site), either alone
or in combination with dense lightcurves, to determine new asteroid models by the lightcurve inversion method. We investigate various
correlations between several asteroid parameters and characteristics such as the rotational state and diameter or family membership.
We focus on the distribution of ecliptic latitudes of pole directions. We create a synthetic uniform distribution of latitudes, compute
the method bias, and compare the results with the distribution of known models. We also construct a model for the long-term evolution
of spins.
Results. We present 80 new asteroid models derived from combined data sets where sparse photometry is taken from the AstDyS
database and dense lightcurves are from the Uppsala Asteroid Photometric Catalogue (UAPC) and from several individual observers.
For 18 asteroids, we present updated shape solutions based on new photometric data. For another 30 asteroids we present their partial
models, i.e., an accurate period value and an estimate of the ecliptic latitude of the pole. The addition of new models increases the
total number of models derived by the lightcurve inversion method to ∼200. We also present a simple statistical analysis of physical
properties of asteroids where we look for possible correlations between various physical parameters with an emphasis on the spin
vector. We present the observed and de-biased distributions of ecliptic latitudes with respect to different size ranges of asteroids as
well as a simple theoretical model of the latitude distribution and then compare its predictions with the observed distributions. From
this analysis we find that the latitude distribution of small asteroids (D < 30 km) is clustered towards ecliptic poles and can be
explained by the YORP thermal effect while the latitude distribution of larger asteroids (D > 60 km) exhibits an evident excess of
prograde rotators, probably of primordial origin.

Key words. minor planets, asteroids: general – thechniques: photometric – methods: numerical – methods: statistical

1. Introduction

The lightcurve inversion method (LI) is a powerful tool that
allows us to derive basic physical properties of asteroids (the
rotational state and the shape) from their disk-integrated pho-
tometry (see Kaasalainen & Torppa 2001; Kaasalainen et al.
2001, 2002). This photometry can be dense-in-time, which typi-
cally consists of tens to a few hundreds of individual data points

⋆ Tables 3–6 are available in electronic form at
http://www.aanda.org

observed during one revolution. This is in contrast to sparse-in-
time, where the typical separation of individual measurements is
large compared to the rotation period. For sparse data, we usu-
ally have a few measurements per night, such as in the case of
astrometric sky surveys. In the following text, we use the terms
“dense lightcurves” and “sparse lightcurves”.

To obtain a unique spin and shape solution, we need a set of
at least a few tens of dense lightcurves observed during at least
three apparitions. Based on simulated photometric data and the
survey cadence of the Panoramic Survey Telescope And Rapid
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Response System (Pan-STARRS), Kaasalainen (2004) showed
that we can also use only sparse data for the inversion tech-
nique. In this case, a unique model can be derived from more
than about one hundred calibrated measurements observed dur-
ing 3−5 years if the photometric accuracy is better than ∼5%

(Ďurech et al. 2005, 2007). Sparse data available so far are
not that accurate. Nevertheless, for many asteroids with high
lightcurve amplitudes, it is possible to derive their models from
current sparse data (see Sect. 2 for more details). We can also
combine sparse and dense data to derive models. First results

from this approach were presented by Ďurech et al. (2009),
where sparse data from the US Naval Observatory in Flagstaff
(USNO) were used.

Currently (January 2011), there are 113 models of aster-
oids derived by the lightcurve inversion method; most of them
are stored in the Database of Asteroid Models from Inversion
Techniques (DAMIT1, Ďurech et al. 2010). Most of these models
were derived from dense lightcurves. Only 24 of them were com-

puted from combined dense and sparse data (Ďurech et al. 2009).
The AstDyS database (Asteroids – Dynamic Site2), which con-
tains data from astrometric projects, is another possible source of
sparse data. However, most of the data are not accurate enough
to be used for inversion alone. On the other hand, even noisy
sparse data in combination with a few dense lightcurves can give

us, in many cases, a unique solution (Ďurech et al. 2007). The
aim of our work was to gather these data, keep only those that
were useful, and then combine them with dense lightcurves in
the lightcurve inversion method.

Dense data are best used to define the rotational period and
constrain the period interval that must be searched during the
model computation (see Sect. 3.1 for more details). On the other
hand, sparse data usually cover a long time interval, typically
over several apparitions, and carry information about brightness
variations for different geometries, which constrains the pole di-
rections.

A priori information about rotational periods of asteroids
plays an important role in the process of model determination.
When an approximate period is known, we search for the so-
lution near this value (details in Sect. 3.1) and thus save con-
siderable computational time. We use the latest update of the
Minor Planet Lightcurve Database3 published by Warner et al.
(2009) to check for previously derived periods. For many as-
teroids, there are only a few sparse lightcurves from different
astrometric observatories available but no dense lightcurves. In
these cases, we must scan the whole interval of expected pe-
riod values (2–30 h). This approach is time-consuming and there
is no guarantee that the correct period will lie in the scanned
interval.

The knowledge of rotational states of asteroids is fundamen-
tal for understanding the history of the Solar System, specifi-
cally the accretion of planets or the collisional processes. For
example, it was presumed that due to collisional evolution, the
spin-vector distribution of main belt asteroids (MBAs) should be
nearly isotropic, possibly with a small excess of prograde spins
(Davis et al. 1989). Johansen & Lacerda (2010) performed a hy-
drodynamical simulation of the accretion of pebbles and rocks
onto protoplanets and speculated that the trend of prograde rota-
tors among the largest asteroids is primordial.

1 http://astro.troja.mff.cuni.cz/projects/asteroids3D
2 http://hamilton.dm.unipi.it/
3 http://cfa-www.harvard.edu/iau/lists/Lightcurve-
Dat.html

First statistical analyses of the spin-vector distribution were
presented by Magnusson (1986, 1990) and Drummond et al.
(1988, 1991), later by Pravec et al. (2002) and Skoglöv &
Erikson (2002). They all observed a lack of poles close to
the ecliptic plane. Kryszczyńska et al. (2007) used more ob-
jects in the analysis, finding that the distribution was strongly
anisotropic with a moderate excess of prograde spins in the lim-
ited size range from 100 to 150 km. Interpretation of this de-
population of poles close to the ecliptic plane is still unclear.
Probable candidates are selection effects, the role of inclination,
the YORP effect4 (Rubincam 2000; Vokrouhlický et al. 2003),
or a combination of these. The YORP effect acts only on small
bodies with D � 40 km. Asteroids with these sizes have non-
Maxwellian spin rate distribution (Pravec & Harris 2000) and
is particularly evident for asteroids with D < 14 km (Warner
et al. 2009). It is believed that the YORP effect is responsible for
this trend since it can either spin up or spin down an irregularly-
shaped asteroid on the timescale shorter than the typical time
between collisions and also affects the obliquity of spin axes
(Rubincam 2000; Bottke et al. 2006).

In the near Earth asteroids (NEAs) population, the lat-
itude distribution of poles is different from that of MBAs
(La Spina et al. 2004; Kryszczyńska et al. 2007), i.e., there is
a significant excess of retrograde spins probably caused by the
transport mechanism of MBAs to Earth-crossing space by grav-
itational resonances and the Yarkovsky effect5 (Morbidelli &
Vokrouhlický 2003). There is no statistically significant clus-
tering in the longitude of poles of either MBAs or NEAs
(Kryszczyńska et al. 2007).

As the number of asteroid models with known physical prop-
erties grows, we can have a better insight into the nature of in-
dividual objects and into the asteroid population as a whole. In
Sect. 2, we describe available dense and sparse photometric data
and the selection of astrometric observatories with quality sparse
data. In Sect. 3, we present new asteroid models derived from
combined photometric data sets or from sparse data alone, men-
tioning a few individual objects and define several procedures on
how to test the reliability of new models. In Sect. 4, we present
a statistical analysis of asteroid physical parameters that we de-
rived using the lightcurve inversion method or adopted from dif-
ferent sources (proper elements from the AstDyS database, di-
ameters from IRAS, . . . ). We also present results of a numerical
simulation that allowed us to estimate the bias in pole directions
of the lightcurve inversion method. Using these results, we then
corrected the observed pole distributions for this effect. Finally,
in order to explain the observed latitude distributions, we present
a simple theoretical model of the latitude distribution in Sect. 5.

2. Photometric data

The main source of dense photometric lightcurves is the Uppsala
Asteroid Photometric Catalogue (UAPC, Lagerkvist et al. 1987;
Piironen et al. 2001), where the lightcurves for about 1 000 as-
teroids are stored. We also used data from several individual ob-
servers (Table 6).

Sparse photometry was first used in combination with dense

data for lightcurve inversion by Ďurech et al. (2009). These
sparse data were from the USNO-Flagstaff station and had a
typical photometric uncertainty of ∼8−10%. Other sparse photo-
metric measurements are produced by many astrometric surveys,

4 Yarkovsky-O’Keefe-Radzievskii-Paddack effect, a torque caused by
the recoil force from anisotropic thermal emission.
5 A thermal force acting on a rotating asteroid.
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Table 1. Comparison of estimated characteristics of residuals for 13 selected observatories: mode, “FWHM” and median.

Obs NLC Mode FWHM Median NP Weight Observatory name

608 2459 0.26 0.20 0.27 37 0 Haleakala-AMOS
644 2567 0.22 0.22 0.24 36 0 Palomar Mountain/NEAT
683 218 0.18 0.25 0.20 39 0 Goodricke-Pigott Observatory, Tucson
689 1970 0.14 0.12 0.15 118 0.3 U.S. Naval Observatory, Flagstaff
691 1893 0.23 0.22 0.24 39 0 Steward Observatory, Kitt Peak-Spacewatch
699 546 0.17 0.11 0.18 33 0.1 Lowell Observatory-LONEOS
703 8350 0.17 0.16 0.19 54 0.15 Catalina Sky Survey
704 8333 0.42 0.17 0.42 311 0 Lincoln Laboratory ETS, New Mexico
950 80 0.14 0.11 0.15 180 0.15 La Palma
E12 1354 0.14 0.16 0.15 41 0.1 Siding Spring Survey
G96 1810 0.14 0.22 0.17 43 0.1 Mt. Lemmon Survey
H07 161 0.20 0.18 0.23 47 0 7300 Observatory, Cloudcroft
Hip 49 0.10 0.10 0.11 53 0.3 Hipparcos satellite

Notes. For each observatory, the table gives also the number of sparse lightcurves NLC, and the average number of data points for a single lightcurve

NP.

but mostly as a by-product. In most cases, asteroid magnitudes
are given to only one decimal place, i.e., the accuracy is 0.1 mag
at best. Whether or not this is sufficient for a unique shape
determination for reasonable number of asteroids can be de-
duced from asteroids lightcurve amplitude distribution. We used
lightcurve amplitude data for ∼2500 asteroids from the Minor
Planet Lightcurve Database (Warner et al. 2009) and found that
the mean lightcurve amplitude is ∼0.3 mag. For 19% of aster-
oids, the amplitude is ≥0.5 mag. This means that, in principle,
photometry with an accuracy of ∼0.1 mag carries sufficient in-
formation about rotational states and shapes for a significant
number of asteroids.

Our goal was to find out which observatories produce pho-
tometry suitable for lightcurve inversion and to use these data for
determining new asteroid models. Through to September 2009
(the time of the data download), data for more than 350 000
objects from almost 1500 observatories were archived on the
AstDyS server. Some of the observatories contributed with only
a few data points, while others contributed tens of thousands of
photometric measurements (e.g., large sky surveys such as the
Catalina Sky Survey, LONEOS, or Siding Spring Survey).

2.1. Data reduction

The quality of the sparse photometry archived on the AstDyS
varies significantly. We investigated the photometry carefully by
establishing criteria for its quality. Then, using those criteria, we
choose only those data that were useful for inversion.

For each observatory, we extracted photometric data for the
first 10 000 numbered asteroids if there were at least 30 data
points for a single lightcurve. We then transformed this pho-
tometry to the standard format used in lightcurve inversion: we
computed geometry of observation (astrocentric ecliptic coordi-
nates of the Sun and the Earth), corrected for light-time, normal-
ized the brightness to the distance of 1 AU from the Sun and the
Earth, and excluded clear outliers.

For further investigation, we selected 13 observatories that
fulfilled the condition of having data for more than ∼50 aster-
oids. This resulted in almost 30 000 sparse lightcurves for ∼9000
asteroids. In the next step, we estimated mean uncertainties of
individual observatories and, based on these uncertainties, we
assigned a relative weight to the data from each observatory. In
this process, we assumed that the brightness vs. solar phase an-
gle relation can be fitted with a simple relation for each sparse

lightcurve:

f (α) = cos2
(α

2

) [
a exp

(
−α

b

)
+ c α + d

]
, (1)

where α is the solar phase angle6 and a, b, c and d are free pa-
rameters. Then, we constructed a histogram of residuals (rms)
for each observatory comparing actual data against the model
given by Eq. (1). Four examples are plotted in Fig. 1. The
dispersion is caused by observational uncertainties and by the
amplitudes of the lightcurves. From these histograms, we esti-
mated the “FWHM”7 values and the most frequent residual (the
mode); median values of the residual distributions for each lo-
cation (Table 1) were computed. Observatories with a high me-
dian or “FWHM” value (�0.2 mag for both) are not suitable for
the lightcurve inversion (e.g. observatory 691 in Fig. 1). Data
from only seven observatories, listed in Table 1 with non-zero
weights, had sufficient accuracy and so could be used for mod-
eling. Based on the values of medians and “FWHMs”, we esti-
mated a weight for the photometric data from each observatory
relative to dense data, which has a unity weight (see Table 1).
We assumed that the typical accuracy of dense lightcurves is
∼0.02 mag.

The USNO in Flagstaff (MPC code 689) and the Hipparcos
satellite are clearly the best observatories with respect to photo-
metric accuracy. Other observatories are less accurate but they
still hold some information about rotational states and shapes
of asteroids. For any given asteroid, we have typically 2−4
sparse lightcurves from different observatories covering the last

∼10−15 years. Data from USNO were already used by Ďurech
et al. (2009). We updated those data along with adding another
20−30% of new data from the years 2008 and 2009 if there was
an apparition for the asteroid.

3. Results

3.1. Models of asteroids

Our lightcurve inversion (LI) method is based on the optimiza-
tion of unknown parameters of the shape (modeled as a convex
hull), the rotational state, and the scattering law (see Kaasalainen
& Torppa 2001; Kaasalainen et al. 2001). The parameter space
have many local minims. Since LI is a gradient-based method

6 The Sun-asteroid-Earth angle.
7 The width of the distribution in the half of its maximum.
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Fig. 1. Four histograms of residuals comparing actual data against the
model given by Eq. (1) of all sparse lightcurves belonging to the follow-
ing observatories: 689 USNO, 691 Steward Observatory, 703 Catalina

Sky Survey and E12 Siding Spring Survey. Number of bins is ∼√N,
where N is the total number of sparse lightcurves used for histogram
construction.

that converges to a local minimum near the initial choice of pa-
rameter values, it is critical to find the global minimum for the
data set and then do the modeling. Finding a global minimum
involves a systematic search through all relevant parameter val-
ues. Each model corresponding to a particular local minimum
is characterized by a single value χ2, which corresponds to the
quality of the fit.

A unique solution is defined as follows: (i) the best period
has at least 10% lower χ2 than all other periods in the scanned
interval; (ii) for this period, there is only one pole solution with
at least 10% lower χ2 than the others (with a possible ambiguity
for λ ± 180◦); and (iii) this solution fulfills our additional tests
(see Sect. 3.3).

The most time-consuming part of the lightcurve inversion
method is scanning through all periods within a chosen interval,
which we determined by using the periods and reliability codes
given in the Minor Planet Lightcurve Database8. For each aster-
oid, we scanned an interval centered at the reported period value
P with a range of ±1%, ±5% and ±20% of P for reliability codes
4, 3 and 2, respectively. Half and double periods were tested later
on.

We combined relative lightcurves from the UAPC and from
individual observers together with sparse data obtained from the
AstDyS site to create a data set for each asteroid. This gave us
data sets for ∼2300 asteroids (in ∼900 cases there were only
sparse data available) to which we then applied the lightcurve
inversion method and then we ran the additional tests described
in Sect. 3.3. We derived 80 new unique models, 16 of which are
based only on sparse data. Basic characteristics of these models
are listed in Table 3. We estimated the uncertainty in the pole
direction as ±10–20◦ based on previous results with limited data
sets. As might be expected, the uncertainty seems dependent on
the number of dense and sparse photometric data. The longi-
tude uncertainty increases for higher latitudes because meridi-
ans on a (λ, β)-sphere are more dense with increasing latitude.
These uncertainties are discussed in more detail in Sect. 4.3. The

8 http://cfa-www.harvard.edu/iau/lists/Lightcurve-
Dat.html, there is also an explanation and more details about the
reliability codes too.

uncertainty of the rotational period depends on the time interval
covered by observational data and is of the order of the last dec-
imal place of period values P in Tables 3−5.

In some cases, we were able to determine a unique rota-
tional period, but we had multiple pole solutions with similar
ecliptic latitudes β. These models give us accurate period val-
ues and rough estimates of ecliptic latitudes β, which are also
important parameters. In Table 4, we present results for 30 par-
tial models, where β is the mean value for all different models
if the dispersion is smaller than 50◦. We defined a parameter
∆ = |βmax−βmin|/2 as being the estimated uncertainty of β, where
βmax and βmin are the extremal values within all β.

All new unique shape models are now included in DAMIT.

3.2. Comments to selected models

In DAMIT there are several solutions designated as “prelimi-
nary”. These models do not have a well-constrained pole so-
lution or are based on combined data sets. For 18 of those as-
teroids we derived updated model solutions based on additional
photometric data (see Table 5). The difference between the old
and new model for asteroid (1223) Neckar was significant. The
new model has a slightly different period, but the pole direc-
tions and shapes are nearly similar to the old model. The current
data suggest a period of P = 7.82401 h (previous value was
P = 7.82123 h).

The asteroid (4483) Petofi was recently observed by Brian
Warner. We derived a shape solution from three poor dense
lightcurves and one sparse lightcurve from Catalina Sky Survey.
Warner used these four lightcurves in combination with his new
observations and also derived the shape model of Petofi (Warner
2011a). His period of P = 4.3330 h and pole direction (90◦, 35◦)
are close to our solution of P = 4.33299 h and (107◦, 40◦).

The asteroid (832) Karin was also studied by Slivan &
Molnar (2010); their solution with P = 18.352 h and pole (51◦
or 228◦, 41◦) confirms our results, see Table 3.

In past decades, occultations of stars by several asteroids
were observed. These events give us additional information
about the shape and can help resolve which mirror solutions
of a model is the correct one. According to the recent work of

Ďurech et al. (2011), asteroid occultation measurements prefer
pole solutions of (122◦, −44◦) for (10) Hygiea, (347◦, 47◦) for
(152) Atala, (28◦, −72◦) for (302) Clarissa, (223◦, 67◦) for (471)
Papagena, and (296◦, 41◦) for (925) Alphonsina. Spin solutions
preferred by asteroid occultations appear in bold font in Tables 3
and 5.

3.3. Models and method testing

We constructed five additional tests to be sure that the new mod-
els are reliable. We performed the first two tests for all models.
For models derived only from sparse data, which are presented
for the first time, we performed three additional tests:

Inertia tensor of the shape model. The lightcurve inversion
method we use assumes that asteroids are in a relaxed rotational
state, which means that derived models should rotate around the
axis with a maximum moment of inertia. For each derived shape,
we computed principal moments using equations presented by
Dobrovolskis (1996) and checked if the rotation axis was close
to the principal axis of the maximum momentum of inertia. We
rejected those models for which the angle between the spin axis
and the axis with a maximum momentum of inertia was larger
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than ±30◦. However, this criterion is too strict for elongated
models with similar sizes along the rotational axis and the axis
that is both perpendicular to the rotational axis and is the min-
imal size of the model. In this case, the principal moments for
these two axes are similar. Under these circumstances, the angle
between the spin axis and the axis with a maximum momentum
of inertia can be large even for realistic shapes and so we allowed
these models to pass this test.

Half- and double-period models. In cases where we have only
a few dense lightcurves for a given asteroid, it is easy to confuse
the correct rotational period with its half or double value. When
the a priori period value in the Minor Planet Lightcurve Database
is uncertain, which corresponds to a low reliability code (see
Sect. 3.1), it is reasonable to check if the half and double period
value give a better fit. If the period was in doubt, we searched
for a solution also around 2P and P/2; if the χ2 was lower than
1.1χ2 of the solution with period P, we rejected the model as
unreliable.

Reduction of the number of sparse photometric data. In this
test, we used only the sparse data sets for modeling. For 63 as-
teroids, this led to unique shape and spin state solutions (after
performing the tests described above). For each solution, we
randomly reduced the original amount of observed sparse data
points to 90% and used these new limited data sets again in the
lightcurve inversion. Our expectation was that we would not get
a unique solution when using less data. This was true for five as-
teroids. These models, when using the full sparse data sets, are
not necessarily wrong, but the amount of available data is prob-
ably just at the level when a unique solution can be derived. The
important point of this test is that, for a given asteroid, we did not
find two different but formally correct solutions when using the
full versus reduced data sets. In Table 3, we present 16 models
successfully derived only from sparse data that passed this test.

Models from sparse data vs. DAMIT. Here, we used previously
derived models based only on relative photometry which are
stored in DAMIT. As can seen in the previous test, sparse data
are sometimes sufficient to produce a unique model of an aster-
oid. In 16 cases, we were able to derive a model for an asteroid
which was already included in DAMIT and thus a model based
on entirely different photometric data sets is available. These two
independent models can be then compared and should be similar.
We obtained similar resulting models for all 16 asteroids.

Models of “mock” objects. For each asteroid shape model de-
rived only from sparse data, we created a set of ten “mock”
objects of roughly the same appearance and spin state (see an
example of such shape in Fig. 2). For these synthetic objects,
we computed their photometric data using same epochs and ge-
ometries and with similar random noise level. These synthetic
photometric data sets were then used in the lightcurve inversion
method. A check that the original model using actual data is re-
liable is to be able to derive most of the models of the “mock”
objects. The dispersions between the periods and pole directions
of the “mock” objects represent the typical uncertainties of these
parameters. For all studied asteroids, we were able to derive
unique models for most of their “mock” objects. In all cases
when we did not get a unique solution for the “mock” object,
the best fit corresponded to the correct solution although other
solutions could not be ruled out. The typical uncertainty in pole
direction was ±10◦ and, for the period, ∼0.1 times the difference
between the two local minimums as determined by the period
value and the time span of the data.
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Fig. 2. Asteroid (810) Atossa: shape model (left panel) and an example
of a “mock” shape model (right panel).

4. An analysis of periods, poles and sizes

of asteroid models

Previous studies have been looking on spin state results using
different techniques, e.g. amplitude-epoch, lightcurve inversion
or radar methods. If there were multiple solutions for a given
asteroid, the most probable one or simply the weighted mean
was taken. However, this could cause systematic deviations. In
our study, we used only results based on the lightcurve inver-
sion method – i.e., unique and partial models presented in this
work and models from the DAMIT. Our sample consists of 221
asteroid models: 80 new models, 18 updates for models from
DAMIT, 30 new partial models, 84 models from DAMIT and

9 new models presented by Ďurech et al. (2011). Our sam-
ple consists of models for 206 MBAs, 10 NEAs, 3 Hungaria,
1 Trojan, and 1 Hilda and so a statistical study is only possible
for the MBAs. In many cases there is an ambiguity in the pole
direction since there are two, undistinguishable mirror solutions.
For our statistical analysis we randomly chose only one.

In Fig. 3, we show (among other things to be discussed
later) the relation between the proper semi-major axis and the
proper eccentricity for asteroids in our sample and for all main
belt asteroids. It is obvious that the positions of studied aster-
oids strongly correlate with the MBAs population and so derived
models are not significantly biased with respect to orbits, e.g.
they do not lie in the inner main belt. Several asteroids in Fig. 3
with semi-major axis a > 3.3 AU belong to the Cybele group,
e.g. (121) Hermione.

4.1. Pole distribution analysis

In the following study of spin axis directions, we did not use the
Koronis family members because their spin states are correlated,
i.e., their spin vectors are clustered towards two values of the
obliquity (Slivan 2002). In Fig. 4a, we show the ecliptic latitude
distribution of our MBA sample. As in all similar plots, the width
of the latitude and longitude bins corresponds to equal surfaces
on the (λ, β)-sphere (bins are equidistant in sin β for latitudes
and in λ for longitudes). We confirmed the expectation that there
is a lack of asteroids with latitudes close to the ecliptic plane.
The latitude distribution is clearly not symmetric: about half of
the retrograde rotators have latitudes in the bin (−53◦, −90◦). On
the other hand, less than a third of asteroids with prograde spins
are in the corresponding bin (53◦, 90◦). Moreover, the remaining
prograde bins are more populated than the corresponding retro-
grade ones. From a detailed look at the plot we can see that there
are up to 10% more prograde rotators among the MBAs.

In Fig. 5, we show the dependence of the ecliptic latitude β
of the pole direction on the diameter D (most of the diameters
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Fig. 3. Relation between the proper semi-major axis and the proper eccentricity for asteroids in our sample and for the first 100 000 numbered
asteroids for comparison. Main resonances are shown by dotted lines. Prograde rotators are plotted with blue circles and retrograde rotators with
red squares. The horizontal lines represent for each asteroid its estimated past drift (i.e. where the asteroid came from) during the collisional
lifetime computed with Eq. (7). Proper elements are from the AstDyS database.

used are based on the IRAS data (Tedesco et al. 2002) or occulta-
tions profiles and have an uncertainty±10%). Even for diameters
D � 50 km, the clustering of the latitudes towards higher abso-
lute values, and conversely, the depletion close to the ecliptic
plane is obvious and markedly so for D � 30 km. Asteroids with
larger diameters have a more isotropic distribution of latitudes
and only a moderate excess of prograde. In Fig. 6, we plotted
the latitude and longitude distributions of asteroids with respect
to their diameters. Based on Fig. 5, we resolved three different
size groups: 0–30 km, 30–60 km and >60 km.

The latitude distribution for asteroids with D > 60 km
(Fig. 6a) is close to the uniform distribution for latitudes lower
than 11◦ and for larger latitudes it exhibits an evident excess
of prograde rotators. This is in agreement with theoretical argu-
ments presented by Davis et al. (1989) and recently by Johansen
& Lacerda (2010). On the other hand, the latitude distribution
for asteroids with D < 30 km (Fig. 6e) exhibits a strong de-
population of pole vectors close to the ecliptic plane (i.e. small
absolute values of latitudes β). The few asteroids with small lat-
itudes have diameters D > 25 km. The latitude distribution for
asteroids with intermediate diameters of 30–60 km (Fig. 6c) is
also somewhat clustered towards higher latitudes but the bins
for small latitudes are more populated. Therefor, it is probably a
transition region between the two distinct distributions.

It is evident that the depopulation concerns mainly objects
with diameters D � 30 km (the distribution for the intermedi-
ate size sample shows that the limit is probably ∼50 km). This
size roughly corresponds to the value, when the YORP effect
starts to act and hence it is a natural candidate for a physical ex-
planation. It is known from previous studies (Pravec & Harris
2000; Rubincam 2000) that the YORP effect is significantly
altering the periods and also spin vectors of these objects on
a timescale shorter than the typical collisional lifetime of these
objects (timescales are discussed in more details in Sect. 5). In
Fig. 7, we show the relation between the spin rate and the latitude
for the small (D < 30 km) and large (D > 60 km) groups of
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asteroids. In concert with YORP theory, the spin up and spin
down and the simultaneous evolution of the latitudes towards
higher absolute values are evident in the small asteroid sample.
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Fig. 6. Histograms showing the observed latitude and longitude distri-
butions of MBAs (except Koronis cluster members) for different size
ranges. a) Shows the latitude distribution for asteroids with diame-
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Fig. 7. Dependence of the ecliptic latitude β (plotted as sin β) of the
pole direction on the models spin rate, a) for asteroids with diameter
D < 30 km and b) for asteroids with diameter D > 60 km.

Note that observed latitude and longitude distributions can
be biased by the convex inversion method and, therefore, this
bias should be taken into consideration. In general, models for
asteroids with higher amplitudes are more often successfully de-
rived than those asteroids with lower amplitudes. This is be-
cause, while the accuracy of the sparse photometry in both cases
is roughly the same, the signal-to-noise ratio is significantly bet-
ter for higher amplitude lightcurves. If we assume two bodies
with the same shapes and orbits and different ecliptic latitudes of
the poles, the body with higher absolute value of ecliptic latitude
usually has a higher amplitude. This effect is numerically inves-
tigated in Sect. 4.3.

Skoglöv & Erikson (2002) discussed the role of orbital
inclination in the observed distribution of latitudes. No indi-
cations of this effect were found in the asteroids sample of

Table 2. Test of the hypothesis that the observed pole distributions and
de-biased latitude distribution are drown from uniform distributions (a
χ2-test).

β λ βdeb

N = 9 N = 11 N = 9

Diameter χ2 % χ2 % χ2 %

all 63 10−9 5.9 88 39 10−3

>60 km 17 4.5 8.2 69 17 4.7

30−60 km 30 10−2 5.6 90 18 2.9

<30 km 59 10−7 20 4.8 37 10−3

Notes. N is the degree of freedom.

Kryszczyńska et al. (2007). We also did not find any indications
of such correlation in our sample and so we conclude that orbital
inclination does not affect the observed distribution of latitudes.

We are not aware of any other physical effects in the main
belt that could explain the non-uniform observed latitude distri-
bution of small asteroids (D < 30 km). Collisions are believed
to produce uniform spin distributions and close encounters with
planets are common only among NEAs.

There are many additional selection effects that influence the
properties of derived models, e.g. the role of amplitude, orbit,
time, accuracy and geometry of observations, among others. The
significance of this bias is unknown and cannot be easily deter-
mined. The main problem here is that for almost every asteroid,
the photometric data are from different observers with a differ-
ent number of measurements, quality, and purpose. The signif-
icance of this effect can be determined only from a comparison
of models derived from real and synthetic data of known prop-
erties. This may be possible in a few years when the photometry
from the Pan-STARRS is available, but not now. In the mean-
time, the role of the selection effects seems to be small and does
not significantly affect, for example, the latitude distribution.

The longitude distributions of the MBAs are plotted in
Figs. 4b and 6b, d, f. They are, contrary to the latitude distri-
butions, without any statistically significant features and have
very close to uniform distributions. The only exception are the
asteroids with D < 30 km, but the excess appears to be just a
random coincidence than a result of some physical process.

In all cases, we tested a hypothesis that the observed distri-
bution of latitudes or longitudes is uniform (using a χ2-test9).
The computed chi-squares and corresponding probabilities are
listed in Table 2. Higher χ2-values and lower probabilities mean
that the supposed hypothesis “the observed distribution is uni-
form” does not fit the observed data. If we assume a probability
of 5% or lower as statistically significant, we can say that the
latitude distributions for the whole sample and for asteroids with
D < 30 km and 30 < D < 60 km do not agree with a uniform
distribution. On the other hand, all longitude distributions are
consistent with uniform distributions. Latitude distribution for
the MBAs with diameters D > 60 km also disagrees with the
uniform distribution; this is because of the excess of prograde
rotators.

The overall view on the model positions within the main
belt of asteroids, together with their estimated total drifts and
the information about whether they are prograde or retro-
grade rotators (Fig. 3), shows behavior consistent with the
Yarkovsky/YORP theory: there is an asymmetry of prograde and
retrograde rotators near the main resonances and prograde aster-

9 The results based on the χ2-test are also in agreement with the
Kolmogorov-Smirnov test.
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oids drift outwards from the Sun and can reach the resonance
only from the left. On the other hand, retrograde rotators drift
the opposite direction and depopulate the zone left of the res-
onance because the resonance prevents the entry of new retro-
grade asteroids. This creates an excess of prograde rotators. The
same mechanism works also in the zone right of the resonance,
except, in this case, only an excess of retrograde asteroids is now
created. This effect is obvious in the neighborhood of the ν6 and
3:1 resonances. The total drift from an asteroid’s original loca-
tion during the collisional lifetime computed with Eq. (7) are in-
versely proportional to the size of the asteroids. Larger asteroids
(D � 50 km) do not drift significantly while smaller asteroids
frequently drift ±0.05 AU. Note that small-sized asteroids are
found mainly in the inner or middle part of the main belt (due
to selection effect; they have high albedos and/or are closer to
the Earth). Asteroids drifting through the resonances during their
collisional lifetime are interesting from the point of the dynami-
cal evolution. These asteroids were either recently collisionally-
affected or their shape models are wrong. There seems to be
three such models, two near the 3:1 resonance and one near the
resonance 5:2.

4.2. The Koronis family members

The analysis of rotational state solutions for ten members of the
Koronis asteroid family revealed a clustered distribution of their
spin vectors (Slivan 2002; Slivan et al. 2003). This spin dis-
tribution was later explained by Vokrouhlický et al. (2003) as
the result of the thermal torques and spin-orbital resonances that
modify the spin states over time of 2−3 Gyr. The modeling sug-
gested an existence of two groups of asteroids: (a) low-obliquity
retrograde objects with rotational periods P < 5 h or P > 13 h,
and (b) prograde rotators with periods 4 < P < 7 h that be-
came trapped in a spin-orbit resonance with secular frequency
s6 and thus have similar spin obliquities (42−51◦) and also simi-
lar ecliptic longitudes in the range of (24−73◦) and (204−259◦).
All ten members of the Koronis family studied by Slivan (2002)
and Slivan et al. (2003) had the expected properties: periods for
prograde rotators were shifted only to higher values of 7−10 h.
Slivan et al. (2009) published spin state solutions for another
four members of Koronis family. Only the solution for (253)
Dresda was not in agreement with the theoretical expectation.

Here, we present three new models of asteroids belonging to
the Koronis family: (832) Karin, (1482) Sebastiana, and (1635)
Bohrmann, along with two partial models for (1350) Rosselina
and (1389) Onnie. Only the spin state solutions for Bohrmann
and Onnie fit the theoretical expectations. Rotational parameters
for Karin (P = 18.3512 h, λ = 242◦, β = 46◦) are outside both
groups. Asteroids Sebastiana and Rosselina are low-obliquity
retrograde rotators, but their periods (10.49 h for Sebastiana and
8.14 h for Rosselina) are in the middle of the “wrong” range
of P = 5−13 h. Karin is the namesake and largest member of
a small and young (∼5.8 My, Nesvorný & Bottke 2004) colli-
sional family that is confined within the larger Koronis family.
The spin state of Karin was thus likely affected during this catas-
trophic event and changed to a random state that disagrees with
the clustered distribution.

We are not able to give a satisfactory explanation for
the peculiar spin state solutions for Sebastiana and Rosselina.
Nevertheless, we are aware of two possible scenarios: (i) the
initial rotational state and shape did not allow being captured
in the resonance or (ii) the objects were randomly reoriented
by non-catastrophic collisions. The timescales of such colli-
sions (given by Eq. (7)) are for Sebastiana τreor ∼ 7.5 Gyr and

for Rosselina τreor ∼ 14.7 Gyr. This leads to the probability
of a collision during the Koronis cluster lifetime (estimated to
∼2.5 Gyr, Bottke et al. 2001) ∼1/3 for Sebastiana and ∼1/6 for
Rosselina, respectively, which means that random collisional re-
orientation of the spin axis is likely for at least a few of 19 aster-
oids in the Koronis cluster with known spin state solutions (most
of them have τreor � 20 Gyr).

4.3. Biases of the LI method

We developed a numerical algorithm to estimate the selection
effect of the lightcurve inversion method and used this approach
to de-bias the observed distribution of asteroid’s pole directions.
The algorithm was as follows:

1. for a model with a known shape, we randomly generated a
new pole direction (while the overall distribution of poles
was isotropic);

2. for each shape with a new rotational state but with the period
unchanged, we computed synthetic lightcurves for the same
epochs as observed ones;

3. to each data point i, we added the corresponding noise δi

given by:

δi =
Lobs

i
− Lmod

i

Lmod
i

, (2)

where Lobs
i

is ith brightness observed and Lmod
i

is ith bright-
ness computed, both for the original model. This gave us
synthetic lightcurve data equivalent to the original observed
data, but for a new pole direction;

4. finally, we performed a lightcurve inversion the same way as
with the actual data and tried to derive a model;

5. we repeated steps 1–4 for 50 random poles for each asteroid
model.

In this simulation, we used 80 models derived from combined
dense and sparse data sets and 89 models from the DAMIT.

For each successfully derived model we have the generated
pole direction (λgen, βgen) and period Pgen, and also the com-
puted pole and period: λcomp, βcomp, Pcomp. We computed the
angular differences between the generated and derived ecliptic
latitude and longitude of the pole direction: βcomp − βgen and
(λcomp − λgen) cos βgen (the cosβgen factor is used for the correc-
tion of the different distances of meridians near the equator and
poles). In Fig. 8, we show the histograms of these differences in
a) ecliptic latitudes and b) ecliptic longitudes. We assumed that
the histograms can be described by a normal distribution and we
computed the mean and the standard deviation (µ; σ). We found
values of (−0.2; 10.2) for latitudes and (−0.2; 5.2) for longitudes.
The standard deviation σ is directly related to the typical uncer-
tainty that we can expect in pole determination by the lightcurve
inversion method, which is ∼5◦/ cos β in λ and ∼10◦ in β.

In Fig. 9a, we constructed a histogram of the latitude dis-
tribution for all successful models. The bins in β were again
equally spaced in sin β. The latitude distribution of all gener-
ated models was not exactly uniform, the amount of latitudes in
bins slightly differed. To remove this effect, we divided the lat-
itude distribution of successfully derived models by the latitude
distribution of all generated models normalized to unity. This
correction was also applied to latitude distributions in Figs. 10a,
c, e. It is obvious that the LI method is more efficient for aster-
oids with higher |β|. The amount of successfully derived models
with |β| ∼ 0◦ is about 30% lower than with |β| > 53◦.
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cessfully derived models. In b), the de-biased observed latitude distri-
bution is plotted. The bins are equidistant in sinβ. In the top right corner,
there is the probability value of the χ2-test (that the observed distribu-
tion is drown from a uniform one, see Table 2).

In Figs. 10a, c, e, we constructed the histograms of latitude
distributions for successfully derived models and distinguished
three size ranges. All three plots look very similar, except that
with decreasing size, the ratio between models with |β| ∼ 0◦ and
|β| > 53◦ goes down. This ratio is ∼75% for D > 60 km, ∼65%
for 30 < D < 60 km and ∼60% for D < 30 km.

The histograms in Figs. 9a and 10a, c, e define the bias in
latitude of the LI method and can be used for de-biasing the ob-
served latitude distributions presented in Figs. 4a and 6a, c, e.
The de-biased histograms of latitudes are plotted in Figs. 9b and
10b, d, f. The histograms changed only slightly and the conclu-
sions from Sect. 4.1 are still valid, i.e., the latitude distribution
differs significantly from a uniform distribution, and especially
so for D < 30 km. The distribution of latitudes for asteroids
with D > 60 has an evident excess of prograde rotators while
the distribution for a subsample with 30 km < D < 60 km shows
an enrichment of asteroids with large latitudes (|β| > 53◦). Other
bins have similar populations. We also performed a χ2–test in the
same way as for the observed distributions (see Table 2, Cols. 6
and 7).

We did not find any significant correlation between the eclip-
tic longitude and the efficiency of the model determination.

5. A theoretical model of the latitude distribution

In order to understand observations of main-belt asteroids,
namely the de-biased distribution of their ecliptic latitudes β
(Fig. 9b), we constructed a simple model for spin evolu-
tion that contains the following processes: (i) the YORP ef-
fect, i.e., torques arising from the emission of thermal radi-
ation, (ii) random reorientations induced by non-catastrophic
collisions, and (iii) mass shedding after a critical rotational fre-
quency is reached.

On the other hand, we did not include gravitational torques
of the Sun, spin-orbital resonances, damping (dissipation of
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Fig. 10. Histograms showing the simulated and corrected (de-biased)
observed latitude distributions of MBAs for different size groups, ex-
cluding the Koronis cluster members. a) Shows the simulated latitude
distribution for asteroids with the diameters larger than 60 km, c) for
asteroids with the size in range of 30−60 km, e) for asteroids with di-
ameters smaller than 30 km. Similarly b), d) and f) show the observed
latitude distributions corrected by the bias of the LI method. The bins
are equidistant in sinβ. In the top right corners, there are the probability
values of the χ2-tests (that the observed distributions are drown from a
uniform distribution, see Table 2).

rotational energy), or tumbling. Even though individual aster-
oids may be substantially affected by these processes, our model
is for a large statistical sample of asteroids and the effect on the
overall latitude distribution is assumed to be only minor. For
example, gravitational torques and spin-orbital resonances usu-
ally cause large oscillations of β for prograde-rotating asteroids,
but they remain bound to a certain interval (Vokrouhlický et al.
2006). Moreover, we tried to account for these (rather random)
oscillations in our model as well (see below).

Our sample of 220 asteroids was the same as the observed
sample discussed in Sect. 4. This means that the orbits and sizes
correspond to real asteroids. The model for spin evolution was
similar to that of Brož et al. (2011), where it was used for studies
of the long-term evolution of asteroid families. We assumed the
following relations for the rate of the angular velocity ω and the
obliquity ǫ due to the YORP effect

dω

dt
= fi(ǫ) , i = 1 . . .200 , (3)

dǫ

dt
=
gi(ǫ)

ω
, (4)

where f - and g-functions were given by Čapek & Vokrouhlický
(2004) for a set of 200 shapes with mean radius R0 = 1 km, bulk
density ρ0 = 2500 kg/m3, located on a circular orbit with semi-
major axis a0 = 2.5 AU. We assigned one of the artificial shapes
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(denoted by the index i) randomly to each individual asteroid10.
We had only to scale the f - and g-functions by a factor

c = cYORP

(
a

a0

)−2 (
R

R0

)−2 (
ρbulk

ρ0

)−1

, (5)

where a, R, ρbulk are semi-major axis, radius, and density of
the simulated body, respectively, and cYORP is a free scaling pa-
rameter, which can account for an additional uncertainty of the
YORP model. Because the values of f ’s and g’s were computed
for only a limited set of obliquities (with a step ∆ǫ = 30◦) we
used interpolation by Hermite polynomials (Hill 1982) of the

data in Čapek & Vokrouhlický (2004) to obtain a smooth analyt-
ical functions for fi(ǫ) and gi(ǫ).

When the angular velocity approached a critical value (i.e.,
the gravity was equal to the centrifugal force)

ωcrit =

√
4

3
πGρbulk , (6)

we assumed a mass shedding event. We kept the orientation of
the spin axis and the sense of rotation but reset the orbital pe-
riod P = 2π/ω to a random value from the interval (P1, P2) =
(2.5, 9) h. We also altered the assigned shape since any change of
shape can produce a different YORP effect. We did not change
the mass, however.

The differential Eqs. (3) and (4) were integrated numeri-
cally by a simple Euler integrator. The usual time step was
∆t = 1000 yr. The time scale of the spin axis evolution for small
bodies (D ≃ 10 km) is τYORP ≃ 500 Myr. After ≃ 3 times τYORP

most of these bodies have spin axes perpendicular to the ecliptic.

We also included a Monte-Carlo model for spin axis reorien-
tations caused by collisions11. We used an estimate of the time

10 We did not use the convex-hull shapes derived in this work for two
reasons: (i) the two samples of shapes are believed to be statistically
equivalent and it is thus not necessary to compute the YORP torques
again; (ii) the YORP effect seems sensitive to small-scale surface struc-
ture (Scheeres & Mirrahimi 2007) which cannot be caught by our shape
model. Nevertheless, the YORP torque remains of the same order, so
the random assignment of shapes seems reasonable.
11 Collisional disruptions are not important, since we are only interested
in the steady state. We can imagine that whenever an asteroid from our
sample is disrupted, another one with a randomly oriented spin axis is
created by a disruption of a larger body.

scale by Farinella et al. (1998)

τreor = B

(
ω

ω0

)β1
(

D

D0

)β2

, (7)

where B = 84.5 kyr, β1 = 5/6, β2 = 4/3, D0 = 2 m and ω0 corre-
sponds to period P = 5 h. These values are characteristic for the
main belt. After a collision, we reset the spin axis periods to ran-
dom values, using the interval (P′

1
, P′

2
) = (2.5, 9) h for the period.

Since the time scale is τreor ≃ 3 Gyr for the smallest (D ≃ 5 km)
bodies, reorientations are only of minor importance. However,
note that the probability of the reorientation is enhanced when
the YORP effect drives the angular velocity ω close to zero.

There were several free parameters in our model: the cYORP

parameter, thermal conductivity K, bulk density ρbulk, initial dis-
tribution of β and initial distribution of ω.

Our aim was to start with a simple β- andω-distribution, wait
until a steady state was reached, and then compare the resulting
synthetic to observed latitude distributions. We applied an obser-
vational bias derived in Sect. 4.3 to the synthetic distribution.

We partly accounted for spin-orbital resonances acting on
prograde asteroids by adding a sinusoidal oscillations to β with
a random phase and an amplitude ≃40◦, which are typically
induced by resonances. This procedure naturally decreased the
right-most bin (sin β = (0.8, 1)) of the synthetic distribution and
increased the next bin (sin β = (0.6, 0.8)).

We started with reasonable parameters of cYORP = 0.33, K =
10−2 W/K/m, ρbulk = 2500 kg/m3, a Maxwellian distribution
ofω, a uniform distribution of sin β (i.e., an isotropic distribution
of spin axes). We ran 100 such simulations with different random
seeds. A steady state was reached within ≃1 Gyr. The resulting
latitude distributions are shown in Figs. 11 and 12.

From these it can be seen that: (i) the observed distribution
of β for small asteroids seems compatible with our model; the
YORP effect is capable of creating such an uneven distribution
and (ii) there is a discrepancy for large asteroids (especially in
bins sin β ∈ (−1,−0.8) and (0.2, 0.4)), which can be explained as
a preference for prograde rotators in the primordial population
(see Davis et al. 1989; Johansen & Lacerda 2010). The results
regarding the spin rates agree with Pravec et al. (2008), so we do
not repeat the discussion here.

We also tested the sensitivity of our results with respect
to the free parameters. The thermal conductivity did not seem
important (we tested K = 10−3 W/K/m). A simulation with
cYORP = 0.66, ρ = 1300 kg/m3, and a uniform distribution of
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orbital periods P ∝ 1/ω produced almost the same resulting lat-
itude distribution. Nevertheless, a value of cYORP = 1.00 seems
too high because the extreme bins of the β-distribution were
overpopulated12. There is only a weak dependence of our results
on the period ranges that we used for resetting the orbital period
after a mass-shedding event (P1, P2) and collision (P′

1
, P′

2
). As

would be expected, the values P1, P2, P′
1
, P′

2
significantly affect

the period distribution. The relatively weak dependence on the
free parameters likely stems from the fact that we presume the
steady-state. Even though the free parameters change, e.g., the
strength of the YORP effect and the evolution of spins is slower
and/or faster, after reaching a steady state, the basic characteris-
tics of the latitude distribution remain similar. The observed β-
distribution of small asteroids (D < 30 km) cannot be explained
by our simulation without accounting the YORP effect.

6. Conclusions

The results of this paper can be summarized as follows.
We used combined dense and sparse data to derive new aster-

oid shape models. We systematically gathered and processed all
available sparse photometry from astrometric surveys and em-
ployed valuable data from seven observatories (see Table 1) in
lightcurve inversion.

We derived 80 new unique models of asteroids, from which
16 are based only on sparse data. We also present 30 partial mod-
els with accurate rotational periods and estimated ecliptic lati-
tudes of the pole directions and 18 updated solutions based on
new data for asteroids already included in DAMIT.

In the future, quality sparse data sets will be produced by all-
sky surveys such as Pan-STARRS, the Large Synoptic Survey
Telescope (LSST), and the Gaia satellite. When these data are
available, we will be able to apply the same methods in order to
derive many more new asteroid models. These surveys will have

12 As an alternative hypothesis, we assumed the spin axis evolution
without a YORP effect (cYORP = 0). In this case, the initial β-
distributions (Fig. 11, left panel, thin lines) do not change significantly
in time.

one advantage over dense data: their selection effects (e.g., with
respect to the orbit) will be known. This will allow us to make a
more accurate analysis of the asteroid population.

As expected, the observed ecliptic longitude distribution of
asteroid spin vector is independent of diameter and is compati-
ble with a uniform distribution. Unlike the latitude distribution,
the observed ecliptic longitude distribution is not significantly
biased by the LI method. However, the effect of the LI bias is
only minor and the global features of the observed latitude dis-
tribution do not change. The observed (and de-biased) latitude
distribution for asteroids with diameters D > 60 km shows an
excess of prograde rotators in the latitude interval (11◦, 90◦).
This excess is probably primordial. On the other hand, the lati-
tude distributions for the entire sample and in particular for as-
teroids with D < 30 km, is strongly anisotropic.

The dynamical evolution of asteroid spins seems to be dom-
inated by the YORP effect and also by collisions and mass shed-
ding for asteroids with diameters D � 30 km. We calculate that
YORP (with a small contribution for the LI method’s bias) is ca-
pable of producing the observed depopulation of spin vectors for
small asteroids.

We are not yet able to study small asteroids in individual
families (small bodies at the outskirts of a family should have
extreme spins); this is an aim of future work.
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Table 3. List of new asteroid models derived from combined data sets or sparse data alone.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [deg] [deg] [h]

10 Hygiea 312 −42 122 −44 27.6591 23 9 263 405 50
13 Egeria 44 21 238 11 7.04667 13 4 255 74 203 34
14 Irene 97 −22 268 −24 15.02991 20 8 250 48 161 45
37 Fides 270 19 89 27 7.33253 23 5 270 61 135 31
40 Harmonia 22 31 206 39 8.90848 19 6 210 48 255 102
42 Isis 106 40 302 28 13.58364 28 7 210 36 128 51
62 Erato 87 22 269 23 9.21819 1 1 164 48
68 Leto 103 43 290 23 14.84547 12 2 174 85 30 152
69 Hesperia 250 17 71 −2 5.65534 35 7 222 44 40
97 Klotho −1 30 161 40 35.2510 25 6 309 31 202
119 Althaea 339 −67 181 −61 11.46514 4 2 149 59 222
162 Laurentia 139 64 313 51 11.86917 4 2 166 31 40
174 Phaedra 94 36 266 14 5.75025 2 1 173 36
188 Menippe 32 48 198 25 11.9765 4 1 145 40
258 Tyche 224 −4 40 −9 10.04008 10 2 162 44
264 Libussa 157 18 338 −9 9.22794 19 3 129 39 49
291 Alice 69 51 249 56 4.316011 9 4 75 46
302 Clarissa 28 −72 190 −72 14.47670 8 2 102 104
310 Margarita 225 −35 42 −33 12.0710 27 1 88 31 51
312 Pierretta 82 −39 256 −58 10.20764 4 1 176 36 52
336 Lacadiera 194 39 37 54 13.69552 3 1 121 36 32
340 Eduarda 188 −43 18 −47 8.00613 2 1 117 76 31 36
354 Eleonora 144 54 4.277186 37 9 258 40 139 96
355 Gabriella 341 78 197 70 4.82899 4 1 128
367 Amicitia 203 38 21 32 5.05502 2 1 128 34
372 Palma 221 −47 44 17 8.58189 28 6 214 52 36
376 Geometria 239 45 63 53 7.71097 39 9 158 76
399 Persephone 36 63 9.14639 166 36
400 Ducrosa 328 56 158 62 6.86788 3 1 103
413 Edburga 202 −45 15.7715 2 1 148 43
436 Patricia 124 −30 339 −58 16.1320 4 1 97 53 91
440 Theodora 80 −88 4.83658 123 103 48
471 Papagena 223 67 22 18 7.11539 13 2 293 72 203 112
486 Cremona 227 59 31 30 65.151 1 1 127 55 35
499 Venusia 37 50 212 46 13.4871 4 1 122 39 31
544 Jetta 275 −84 31 −67 7.74528 3 1 139 60
573 Recha 74 −24 252 −48 7.16586 3 1 161 85
584 Semiramis 106 −56 315 −32 5.06893 24 6 150 59 49
590 Tomyris 273 −47 120 −46 5.55248 3 1 91 32
601 Nerthus 173 44 20 32 13.5899 139 94
606 Brangane 183 20 354 26 12.29067 2 1 108 70
629 Bernardina 40 33 236 48 3.76360 91 48
631 Philippina 183 −2 5.90220 6 2 171 38
685 Hermia 197 87 29 79 50.387 93 148
695 Bella 87 −55 314 −56 14.21900 8 1 184 90 30
753 Tiflis 5 36 199 57 9.8259 129 64
800 Kressmannia 345 37 172 34 4.460963 8 2 108 51
808 Merxia 26 54 192 57 30.630 4 1 158 87 32
810 Atossa 12 67 188 69 4.38547 99 71 60
825 Tanina 46 48 231 60 6.93981 2 1 114 40
832 Karin 242 46 59 44 18.3512 13 3 84 39
847 Agnia 341 18 162 13 14.8247 3 1 136
889 Erynia 187 −60 335 −74 9.8749 94 65
925 Alphonsina 296 41 147 22 7.87754 4 1 134 48 79
934 Thuringia 120 −52 8.16534 123 59
1002 Olbersia 220 35 16 54 10.2367 87 48 54
1087 Arabis 334 −7 155 12 5.79501 3 1 156 92
1102 Pepita 25 −34 231 −30 5.10532 147 47
1140 Crimea 12 −73 175 −22 9.7869 3 1 96 116
1148 Rarahu 148 −9 322 −9 6.54449 95 64
1207 Ostenia 310 −77 124 −51 9.07129 2 2 87 71
1291 Phryne 106 35 277 59 5.58414 2 1 129 72
1301 Yvonne 39 41 7.31968 78 56 33
1333 Cevenola 38 −86 220 −44 4.87932 3 1 104 91
1382 Gerti 268 23 87 28 3.081545 2 1 60 56 52
1419 Danzig 22 76 193 62 8.11957 1 1 135 87
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Table 3. continued.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [deg] [deg] [h]

1482 Sebastiana 262 −68 91 −67 10.48965 2 1 131 39 30
1514 Ricouxa 251 75 68 69 10.42468 3 1 68 56
1568 Aisleen 109 −68 6.67597 82 37
1635 Bohrmann 5 −38 185 −36 5.86427 8 1 108 47
1659 Punkaharju 259 −71 75 −22 5.01327 2 1 118 66
1682 Karel 232 32 51 41 3.37485 54 84 36
1709 Ukraina 165 −61 2 −40 7.30517 2 1 46 79
1742 Schaifers 198 57 47 55 8.53270 3 1 106
1747 Wright 227 31 5.28796 70 55
1889 Pakhmutova 22 −76 167 −40 17.5157 68 46 35
1930 Lucifer 32 17 211 −19 13.0536 6 1 106 43 66
2156 Kate 49 74 5.62215 4 1 44
3678 Mongmanwai 125 −65 4.18297 2 1 103 31
4483 Petofi 107 40 4.33299 3 1 36

Notes. For each asteroid, the table gives also the number of dense lightcurves Nlc observed during Napp apparitions and the number of sparse data
points for the corresponding observatory: N689, N699, N703, NE12, NG96, N950 and NHip. Pole solutions preferred by asteroid occultation measurements

(Ďurech et al. 2011) are emphasized by a bold font.

A134, page 14 of 16

134



J. Hanuš et al.: A study of asteroid pole-latitude distribution

Table 4. List of partial models derived from combined data sets.

Asteroid β ∆ P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [h]

163 Erigone −60 14 16.1403 3 1 168 72
187 Lamberta −58 9 10.66703 9 2 159 52 53
233 Asterope 49 8 19.6981 13 3 184 80 165
272 Antonia −70 6 3.85480 5 1 109 60 36
281 Lucretia −54 11 4.349710 6 3 123 30 62
313 Chaldaea 33 18 8.38992 9 3 176 80
390 Alma −60 22 3.74116 2 1 109 34
510 Mabella −59 12 19.4304 6 2 145 60
550 Senta −63 13 20.5726 9 1 151 61
622 Esther −61 9 47.5042 5 1 120 60
692 Hippodamia −52 25 8.99690 3 1 114 78 32
733 Mocia 36 16 11.37611 2 1 175 44
746 Marlu −54 18 7.78887 3 1 133 47 34
784 Pickeringia 58 15 13.1699 1 1 188 67 32
823 Sisigambis 57 9 146.58 8 1 123 90
877 Walkure 53 12 17.4217 3 1 141 45 104 32
899 Jokaste −58 19 6.24812 3 1 140 43

1010 Marlene 46 7 31.066 8 1 104 52
1103 Sequoia −48 19 3.037977 2 1 111 36 30
1185 Nikko 46 12 3.78615 3 1 91 46 32
1188 Gothlandia −63 19 3.491820 2 1 129 33 67 41
1214 Richilde −59 15 9.86687 4 1 101 78
1282 Utopia −39 21 13.6228 4 1 116 72
1350 Rosselia −58 13 8.14011 1 1 114 48
1368 Numidia −50 14 3.640740 3 1 129 47
1379 Lomonosowa −62 17 24.4845 2 1 96 100
1389 Onnie −56 10 23.0447 2 1 85 33 47 32 40
1665 Gaby 49 17 67.905 1 1 81 80
1719 Jens −56 19 5.87016 2 1 78 48 40
2001 Einstein −51 22 5.4850 2 1 84

Notes. For each asteroid, there is the mean ecliptic latitude β of the pole direction and its dispersion ∆, the other parameters have the same meaning
as in Table 3.

Table 5. List of improved asteroid models that were originally designated in DAMIT as “preliminary”.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [deg] [deg] [h]

73 Klytia 266 68 44 83 8.28307 21 7 131 36 98 47
82 Alkmene 164 −28 349 −33 13.00079 11 1 158 72 36 38 192
132 Aethra 326 67 5.16827 4 2 204 55
152 Atala 347 46 199 61 6.24472 2 1 101 32
277 Elvira 121 −84 29.6922 22 5 142 36 51
278 Paulina 307 31 118 38 6.49387 3 1 195 51
311 Claudia 214 43 30 40 7.53138 23 6 114 33 108 40
484 Pittsburghia 70 46 10.64977 2 1 100 52
516 Amherstia 254 22 81 54 7.48431 5 3 162 32
534 Nassovia 66 41 252 42 9.46889 16 6 151 64 32
614 Pia 348 48 162 27 4.57872 2 1 121 78
714 Ulula 224 −10 41 −5 6.99837 9 2 177 67
770 Bali 70 50 262 45 5.81894 2 1 131 52
915 Cosette 350 56 189 61 4.469742 1 1 106 32 35
1012 Sarema 45 67 253 63 10.30708 2 1 74 42
1022 Olympiada 46 10 242 52 3.83359 5 2 107 91
1088 Mitaka 280 −71 3.035378 1 1 104 39 41
1223 Neckar 252 28 69 30 7.82401 16 7 132 33 60 36

Notes. Pole solutions preferred by asteroid occultation measurements (Ďurech et al. 2011) are emphasized by a bold font.
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Table 6. Observations used for successful model determination that are not included in the UAPC.

Asteroid Date Observer Asteroid Date Observer

13 Egeria 2007.9−2009.3 Pilcher (2009) 808 Merxia 2003 1 26.8 Casullia

14 Irene 2007.11−2009.5 Pilcher (2009) 2003 1 28.8 Casullia

2008 2 3.7 Polishook 2003 2 7.0 Bernasconia

40 Harmonia 2008.12-2009.1 Pilcher (2009) 2003 2 8.0 Bernasconia

2010.5−2010.6 Pilcher (2010) 832 Karin 2003.8−2003.9 Yoshida et al. (2004)

68 Leto 2008 1 26.0 Pilcherb 2004.9−2004.9 Ito & Yoshida (2007)

2008 1 30.0 Pilcherb 899 Jokaste 2003.11−2003.12 Stephens (2004)

2008 2 6.1 Pilcherb 1010 Marlene 2005.1−2005.3 Warner (2005a)
264 Libussa 2005.2−2005.3 Pilcher & Cooney (2006) 1022 Olympiada 1999.6−1999.6 Warner (2005b)

2008.10−2008.12 Pilcher & Jardine (2009) 1087 Arabis 2003 2 23.0 Lehký
272 Antonia 2007.12−2008.1 Pilcher (2008) 1140 Crimea 2005.4−2005.4 Stephens (2005a)
310 Margarita 2010.3−2010.5 Pilcher & Oey (2010) 1185 Nikko 2004.11−2004.11 Stephens (2005b)
390 Alma 2004.8−2004.8 Stephens (2005c) 1282 Utopia 2000.11−2000.11 Warner (2011b)
400 Ducrosa 2005.1−2005.1 Warner (2005a) 1333 Cevenola 2002.2−2002.2 Warner (2002)
436 Patricia 2002.12−2003.1 Warner (2003) 1635 Bohrmann 2003.9−2003.10 Stephens & Warner (2004)
544 Jetta 2004.8−2004.8 Stephens (2005c) 1659 Punkaharju 2000.11−2000.11 Warner (2011c)
573 Recha 2001.1−2001.1 Warner (2011b) 1719 Jens 2000.9−2000.9 Warner (2011c)
714 Ulula 2005 9 23.8 Henych 1930 Lucifer 2003.10−2003.10 Warner (2005a)

2005 9 25.8 Henych 2001 Einstein 2004.12−2004.12 Warner (2005a)
2005 9 30.8 Henych 3678 Mongmanwai 2003.3−2003.3 Stephens (2003)
2005 10 1.8 Henych
2005 10 10.8 Henych

Notes. (a) Online at http://obswww.unige.ch/∼behrend/page_cou.html. (b) Online at http://aslc-nm.org/Pilcher.html
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ABSTRACT

Context. The larger number of models of asteroid shapes and their rotational states derived by the lightcurve inversion give us better insight into
both the nature of individual objects and the whole asteroid population. With a larger statistical sample we can study the physical properties of
asteroid populations, such as main-belt asteroids or individual asteroid families, in more detail. Shape models can also be used in combination
with other types of observational data (IR, adaptive optics images, stellar occultations), e.g., to determine sizes and thermal properties.
Aims. We use all available photometric data of asteroids to derive their physical models by the lightcurve inversion method and compare the
observed pole latitude distributions of all asteroids with known convex shape models with the simulated pole latitude distributions.
Methods. We used classical dense photometric lightcurves from several sources (Uppsala Asteroid Photometric Catalogue, Palomar Transient
Factory survey, and from individual observers) and sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff, Catalina Sky Survey,
and La Palma surveys (IAU codes 689, 703, 950) in the lightcurve inversion method to determine asteroid convex models and their rotational
states. We also extended a simple dynamical model for the spin evolution of asteroids used in our previous paper.
Results. We present 119 new asteroid models derived from combined dense and sparse-in-time photometry. We discuss the reliability of asteroid
shape models derived only from Catalina Sky Survey data (IAU code 703) and present 20 such models. By using different values for a scaling
parameter cYORP (corresponds to the magnitude of the YORP momentum) in the dynamical model for the spin evolution and by comparing synthetic
and observed pole-latitude distributions, we were able to constrain the typical values of the cYORP parameter as between 0.05 and 0.6.

Key words. minor planets, asteroids: general

1. Introduction

The lightcurve inversion method (LI) was developed by
Kaasalainen & Torppa (2001) and Kaasalainen et al. (2001). This
powerful tool allows us to derive physical models of asteroids
(their rotational states and the shapes) from series of disk-
integrated photometry.

Convex asteroid shape models can be derived from two dif-
ferent types of disk-integrated photometry: dense or sparse-in-
time. Originally, only dense photometry was used. About 20

⋆ Table 3 is available in electronic form at http://www.aanda.org

such dense lightcurves from at least four or five apparitions are
necessary for a unique shape determination. By this approach,
∼100 asteroid models have been derived (e.g., Kaasalainen et al.
2002; Michałowski et al. 2004; Ďurech et al. 2007; Marciniak
et al. 2007, 2008). To significantly enlarge the number of as-
teroid models, sparse photometric data were studied and used
in the LI. Ďurech et al. (2009) determined 24 asteroid models
from a combination of dense data with sparse photometry from
the U.S. Naval Observatory in Flagstaff (USNO-Flagstaff sta-
tion, IAU code 689). Sparse data from seven astrometric sur-
veys (including USNO-Flagstaff station) were used in the LI by
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Hanuš et al. (2011), who presented 80 asteroid models. Sixteen
models were based only on sparse data, the rest on combined
dense and sparse data.

Models of asteroids derived by the lightcurve inversion
method are stored in the Database of Asteroid Models from
Inversion Techniques (DAMIT1, Ďurech et al. 2010). In
October 2012, models of 213 asteroids were included there.

A larger number of asteroids with derived models of their
convex shapes and rotational states is important for further stud-
ies. Large statistical samples of physical parameters can tell us
more about processes that take place in the asteroids’ popula-
tions (near-Earth asteroids, main-belt asteroids, or asteroids in
individual families). For example, an anisotropy of spin-axis di-
rections is present in the population of main-belt asteroids with
diameters �30 km (Hanuš et al. 2011), where the YORP effect2,
together with collisions and mass shedding, is believed to be re-
sponsible. There are similar effects on the rotational states of
main-belt binaries (Pravec et al. 2012). Convex shape models
were also used in combination with stellar occultations by as-
teroids where global nonconvexities can be detected, and the di-
ameter can be estimated with a typical uncertainty of 10% (see
Ďurech et al. 2011).

In Sect. 2, we describe the dense and sparse photometric data
used in the lightcurve inversion method and present new asteroid
models derived from combined photometric data sets or from the
sparse-in-time data from the Catalina Sky Survey Observatory
(IAU code 703) alone. The reliability tests for derived models
are also described. In Sect. 3, we use a theoretical model of the
latitude distribution of pole directions published in Hanuš et al.
(2011) in a numerical simulation to constrain the free scaling
parameter cYORP describing our uncertainty in the shape and the
magnitude of the YORP momentum.

2. Asteroid models

We used four main sources of dense photometric lightcurves:
(i) the Uppsala Asteroid Photometric Catalogue (UAPC3,
Lagerkvist et al. 1987; Piironen et al. 2001), where lightcurves
for about 1000 asteroids are stored; (ii) data from a group of in-
dividual observers provided via the Minor Planet Center in the
Asteroid Lightcurve Data Exchange Format (ALCDEF4, Warner
et al. 2009); (iii) data from another group of individual ob-
servers available online via Courbes de rotation d’astéroïdes et
de comètes (CdR5); and (iv) data from the Palomar Transient
Factory survey (PTF6, Rau et al. 2009). Polishook et al. (2012)
recently analyzed a small fraction of PTF data and presented
dense lightcurves for 624 asteroids. So far, only a fraction of
photometric data from the PTF has been processed (four over-
lapping fields on four consecutive nights), which means that this
source will become very important in the near future.

We downloaded sparse data from the AstDyS site (Asteroids
– Dynamic Site7) and gathered sparse lightcurves from the

1 http://astro.troja.mff.cuni.cz/projects/asteroids3D
2 Yarkovsky–O’Keefe–Radzievskii–Paddack effect, a torque caused
by the recoil force from anisotropic thermal emission, which can alter
the rotational periods and orientation of spin axes, see e.g., Rubincam
(2000), Vokrouhlický et al. (2003).
3 http://asteroid.astro.helsinki.fi/
4 http://www.minorplanet.info/alcdef.html
5 http://obswww.unige.ch/~behrend/page2cou.html
6 http://www.astro.caltech.edu/ptf/
7 http://hamilton.dm.unipi.it/

USNO-Flagstaff station (IAU code 689) for ∼1000 aster-
oids, from Roque de los Muchachos Observatory, La Palma
(IAU code 950) for ∼500 asteroids and �100 sparse data points
from the Catalina Sky Survey Observatory (CSS for short,
IAU code 703, Larson et al. 2003) for ∼4000 asteroids. We
present 119 asteroid models derived from combined dense and
sparse data (Sect. 2.2) and 20 models based only on CSS data
(Sect. 2.3).

During the model computation, a priori information about
the rotational period of the asteroid was used, which signifi-
cantly reduced the volume of the multidimensional parameter
space that had to be searched, and saved computational time.
Period values were taken from the regularly updated Minor
Planet Lightcurve Database8 (Warner et al. 2009). If the period
was unknown or insecure, we searched the model over all possi-
ble period values of 2–100 h (usually, when only sparse data are
available).

2.1. Reliability tests

We carefully tested the reliability of derived models. If we had
several dense lightcurves and sparse data from USNO-Flagstaff
station for an asteroid, we considered a model as unique if: (i) the
modeled sidereal rotational period was close to the synodic rota-
tional period determined from a single apparition dense data set
(synodic period values have usually been previously published
and were available in the Minor Planet Lightcurve Database);
(ii) the shape model rotated close to its axis with a maximum
momentum of inertia (it was in a relaxed rotational state); and
(iii) models with half and double period values gave significantly
worse fits.

It was necessary to apply additional tests to models derived
from sparse-in-time data alone. We used the tests presented in
Hanuš et al. (2011, for more details, see Sect. 3.3 there), and
they were sufficient if photometry from USNO-Flagstaff station
was present. In Hanuš & Ďurech (2012), we have shown that re-
liable asteroid models can also be derived from the Catalina Sky
Survey data alone, and we described a convenient procedure for
how to proceed during the computation when the rotational pe-
riod is unknown: the solution should be searched for all periods
in an interval of 2–100 h, and the stability of the solution should
be tested for at least two different shape parametrizations9. The
correct solution had to be stable for both low (n = 3) and high
(n = 6) shape resolutions. We followed these recommendations:
we searched for the model in the multidimensional parameter
space for shape resolutions n = 3 and n = 6 and checked that
we derived solutions with similar rotational states. In Hanuš &
Ďurech (2012), we tested values n = 2, 3, 4, 5, 6 for the shape
resolution. Correct solutions (i.e., models from the CSS data
were similar to the models based on different data sets) were
reproduced for most values of n. On the other hand, incorrect
solutions were derived only for values n = 6 and sometimes also
for n = 4 or n = 5, but never for n = 2 or n = 3.

2.2. Models from combined dense and sparse data

The shape model determination scheme was very similar to the
one used in Hanuš et al. (2011). 119 new asteroid models were

8 http://cfa-www.harvard.edu/iau/lists/LightcurveDat.
html
9 Shape is represented by coefficients of its expansion into spherical
harmonic functions to the order n. We call n the shape resolution, the
number of shape parameters is then (n + 1)2, and our typical value for
the shape resolution is n = 6.
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derived because we gathered ∼1000 new dense lightcurves from
ALCDEF, another ∼1000 lightcurves from PTF, ∼300 from in-
dividual observers, and also additional sparse data observed by
the CSS during the second half of the year 2010 and the first
half of the year 2011. Derived rotational states with basic infor-
mation about the photometry used for 119 asteroids are listed
in Table 1. Out of them, 18 models are based only on com-
bined sparse data from various sources, but in all cases, sparse
data from USNO-Flagstaff station were present10. In Table 3, we
list the references to the dense lightcurves we used for the new
model determination.

Although the amount of photometric data from PTF was sim-
ilar to that from ALCDEF, only two new shape models (for as-
teroids with numbers 52 820 and 57 394, see Table 1) were de-
rived with their contribution. The first reason was a significantly
worse quality of PTF data: only for 84 asteroids out of 624 were
the data sufficient for determining a synodic period, while other
lightcurves were noisy or burdened with systematic errors. In
many cases they allowed only for an estimate of a lower limit
for the lightcurve amplitude (presented in Polishook et al. 2012).
The second reason was that PTF data alone were not sufficient
for a unique model determination (they covered only one ap-
parition), no other dense lightcurves were usually available, and
sparse data were available for only fewer than a half of these
asteroids. Many asteroids detected by the PTF survey were pre-
viously unknown.

There are previously published models available for 15 of
the asteroids modeled here: (11) Parthenope, (79) Eurynome,
(272) Antonia, (281) Lucretia, (351) Yrsa, (352) Gisela, (390)
Alma, (787) Moskva, (852) Wladilena, (1089) Tama, (1188)
Gothlandia, (1389) Onnie, (1572) Posnania, (1719) Jens, and
(4954) Eric (see databases by Kryszczyńska et al. 2007; and
Warner et al. 2009). As these models were usually based on lim-
ited datasets, our solutions differ from some of them substan-
tially, while agreeing for some in the spin axis latitude or the
sidereal period value. We fully confirmed previous models for
six objects of that sample: the spin models of (79) Eurynome
by Michałowski (1996), (787) Moskva by Svoren et al. (2009),
and (1572) Posnania by Michałowski et al. (2001), as well as our
preliminary solutions for (390) Alma, (1389) Onnie, and (1719)
Jens obtained in Hanuš et al. (2011).

The shape models and their spin solutions can be found in the
DAMIT database (Ďurech et al. 2010). We noticed that for the
models based only on sparse data, their shapes tend to be very
angular, with sharp edges and large planar areas, thus can be
treated only as crude approximations of the real asteroid shapes.
However, a substantial addition (�10 lightcurves from �2 ap-
paritions) of dense lightcurves smooths the shape models out,
making them look more realistic, as confirmed by their better fit
to occultation chords.

From observations of star occultations by asteroids, we can
reconstruct asteroid projected silhouettes. These silhouettes can
then be compared with the predicted contours of the convex
shape models and used for the asteroid size determination by
scaling the shape models to fit the occultation chords. A rea-
sonable number of observations were available for three as-
teroids from our sample. By using the same methods as in
Ďurech et al. (2011), we rejected mirror solutions for the as-
teroids (345) Tercidina and (578) Happelia, and also determined
equivalent diameters (corresponding to spheres with the same
volume as the scaled convex shape models): 96± 10 km for

10 Models based only on data from the Catalina Sky Survey are de-
scribed later in Sect. 2.3.
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Fig. 1. Two observations of star occultations by asteroid (345)
Tercidina. The solid contour corresponds to a scaled projected
silhouette of the shape model with the pole (346◦, −55◦), each chord
represents one occultation observation (solid lines are CCD, video, or
photoelectric observations; dashed lines are visual observations, and
dotted lines negative observations). Each plot also contains the time
scale (lower left corner), the latitude of the sub-Earth point θ for the
time of occultation (upper left corner), and the direction of the relative
velocity (the arrow in the upper right corner). East points to the left and
north up.
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Fig. 2. Two observations of star occultations by asteroid (404) Arsinoe.
The solid contour corresponds to a scaled projected silhouette of the
shape model with the pole (25◦, 57◦). See Fig. 1 for line types and sym-
bols explanation.
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Fig. 3. Two observations of star occultations by asteroid (578) Happelia.
The solid contour corresponds to a scaled projected silhouette of the
shape model with the pole (339◦, 62◦). See Fig. 1 for line types and
symbols explanation.

(345) Tercidina, 101± 5 km for (404) Arsinoe, and 70± 5 km
for (578) Happelia. Two different stellar occultations are avail-
able for all three asteroids, and are plotted in Figs. 1–3.

During the apparition in 2004, the lightcurves of asteroid
(1089) Tama have shown features typical of close binary sys-
tems (Behrend et al. 2004) and indeed, the system was later in-
terpreted as a synchronous close binary (Behrend et al. 2006).
Our brick-like convex shape model is strongly elongated with
sharp edges and is similar to a convex shape model of a close bi-
nary system (90) Antiope. Such a shape appearance for close bi-
naries was predicted from synthetic data (Ďurech & Kaasalainen
2003).
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Table 1. List of new asteroid models derived from combined dense and sparse data or from sparse data alone.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N703 N950

[deg] [deg] [deg] [deg] [h]

11 Parthenope 311 14 128 14 13.72205 107 13 297 24 147
25 Phocaea 347 10 9.93540 22 5 272 100
72 Feronia 287 −39 102 −55 8.09068 20 5 196 124 127
79 Eurynome 228 30 54 24 5.97772 36 4 240 168

147 Protogeneia 269 15 90 14 7.85232 11 3 152 80
149 Medusa 333 −73 156 −76 26.0454 13 4 134 60
157 Dejanira 319 −64 146 −33 15.8287 14 2 94 123
166 Rhodope 345 −22 173 −3 4.714793 7 2 141 111
178 Belisana 260 20 79 9 12.32139 35 3 147 127
183 Istria 85 20 11.76897 8 2 142 174
193 Ambrosia 141 −11 328 −17 6.58166 18 4 169 87
199 Byblis 344 −24 165 9 5.22063 22 5 184 108
220 Stephania 26 −50 223 −62 18.2087 9 2 117 99
222 Lucia 106 50 293 49 7.83671 9 4 160 100
242 Kriemhild 100 −40 285 −15 4.545174 25 7 179 144
257 Silesia 5 −53 176 −46 15.7097 18 2 167 88
260 Huberta 23 −28 206 −19 8.29055 6 2 162 90
265 Anna 109 −53 11.6903 114 79
272 Antonia 293 −90 3.85480 7 2 109 92
281 Lucretia 128 −49 309 −61 4.349711 8 4 129 83
290 Bruna 286 −80 37 −74 13.8055 9 1 97 66
297 Caecilia 223 −53 47 −33 4.151388 15 5 149 130
345 Tercidina 346 −55 12.37082 42 8 161 155
351 Yrsa 20 −70 193 −41 13.3120 2 1 183 52
352 Gisela 24 −21 206 −28 7.48008 6 4 134 140
371 Bohemia 93 49 256 43 10.73965 30 4 181 79
390 Alma 53 −50 275 −76 3.74117 5 2 142 58
403 Cyane 65 35 230 33 12.2700 7 3 186 104
404 Arsinoe 25 57 8.88766 49 9 199 104
406 Erna 357 −49 161 −60 8.79079 8 1 134 93
441 Bathilde 285 55 122 43 10.44313 32 7 158 112
507 Laodica 102 −55 312 −49 4.70657 162 103
509 Iolanda 245 65 98 38 12.2907 4 2 178 85
512 Taurinensis 324 45 5.58203 11 2 124 111
519 Sylvania 106 9 286 −13 17.9647 5 2 147 76
528 Rezia 176 −59 46 −66 7.33797 6 2 151 77
531 Zerlina 78 −84 16.7073 28 3 48 52
543 Charlotte 333 59 172 49 10.7184 4 1 138 98
572 Rebekka 1 54 158 39 5.65009 5 2 155 63
578 Happelia 339 62 10.06450 20 4 183 80
600 Musa 0 −74 208 −46 5.88638 23 7 96 132
669 Kypria 31 40 189 49 14.2789 5 1 142 126
708 Raphaela 37 27 217 22 20.8894 5 1 140 95
725 Amanda 145 −63 320 −70 3.74311 18 7 70 77
731 Sorga 83 40 275 21 8.18633 7 2 131 136
732 Tjilaki 160 23 353 24 12.3411 3 1 140 153
787 Moskva 331 59 126 27 6.05581 15 4 160 92
792 Metcalfia 88 −14 274 −13 9.17821 9 3 164 56
803 Picka 218 34 53 41 5.07478 154 50
807 Ceraskia 325 23 132 26 7.37390 2 1 132 111
812 Adele 301 44 154 69 5.85746 65 119
816 Juliana 124 −8 304 10 10.5627 11 2 158 107
819 Barnardiana 169 46 334 47 66.698 121 86
852 Wladilena 181 −48 46 −53 4.613301 30 8 138 101
857 Glasenappia 227 48 38 34 8.20757 4 2 140 116
867 Kovacia 200 −44 38 −50 8.67807 78 76
874 Rotraut 201 −41 2 −36 14.3007 3 1 129 68
875 Nymphe 42 31 196 42 12.6213 6 1 94 100
900 Rosalinde 276 70 90 39 16.6868 3 2 125 170
920 Rogeria 238 −15 47 −35 12.5749 137 79

Notes. For each asteroid, the table gives the ecliptic coordinates λ1 and β1 of the pole solution with the lowest chi-square, the corresponding mirror
solution λ2 and β2, the sidereal rotational period P, the number of dense lightcurves Nlc observed during Napp apparitions, and the number of sparse
data points for the corresponding observatory: N689, N703 and N950. The uncertainty of the sidereal rotational period corresponds to the last decimal
place of P and of the pole direction to 10–20◦ .
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Table 1. continued.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N703 N950

[deg] [deg] [deg] [deg] [h]

958 Asplinda 41 48 226 35 25.3050 2 1 98 68
994 Otthild 183 −50 41 –39 5.94819 26 5 140 125

1040 Klumpkea 172 48 56.588 114 88
1056 Azalea 252 51 64 41 15.0276 3 1 122 112
1089 Tama 193 32 9 28 16.4461 90 7 108 79
1111 Reinmuthia 356 68 153 78 4.007347 13 3 137 65
1126 Otero 44 75 240 56 3.64800 2 1 101 110
1130 Skuld 24 36 200 35 4.80764 14 1 92 106
1188 Gothlandia 334 −84 3.491820 36 5 134 91
1241 Dysona 125 −68 8.60738 7 1 156 64
1249 Rutherfordia 32 74 197 65 18.2183 6 2 187 75
1317 Silvretta 45 −57 161 −46 7.06797 13 3 120 69
1386 Storeria 227 −67 297 −67 8.67795 10 1 33 78
1389 Onnie 183 −75 0 −79 23.0447 2 1 90 97
1393 Sofala 319 28 134 41 16.5931 69 91
1401 Lavonne 204 23 27 44 3.93261 3 1 109 88
1432 Ethiopia 41 44 225 54 9.84425 11 1 88 101
1436 Salonta 223 18 57 35 8.86985 10 2 132 90
1450 Raimonda 231 −56 71 −60 12.6344 74 116
1472 Muonio 249 61 42 62 8.70543 6 1 99 93
1490 Limpopo 319 22 142 2 6.65164 5 1 103 107
1495 Helsinki 355 −39 5.33131 13 2 62 109
1518 Rovaniemi 62 60 265 45 5.25047 2 1 100 73
1528 Conrada 250 −51 93 −66 6.32154 2 1 93 126
1554 Yugoslavia 281 −34 78 −64 3.88766 3 1 75 75
1559 Kustaanheimo 275 29 94 33 4.30435 53 82
1572 Posnania 205 −82 85 −63 8.04945 46 7 141 83
1607 Mavis 0 59 222 70 6.14775 4 1 141 179
1630 Milet 304 34 121 40 32.485 3 1 72 92
1634 Ndola 261 45 66 34 64.255 7 1 71 110
1704 Wachmann 267 41 90 40 3.31391 54 135
1715 Salli 95 −24 254 −48 11.08867 2 1 84 97
1719 Jens 286 −88 55 −42 5.87016 4 2 78 53
1785 Wurm 11 57 192 47 3.26934 2 1 43 115
1837 Osita 167 −64 352 −54 3.81879 82 62
1905 Ambartsumian 52 −64 241 −68 92.153 50 101
1927 Suvanto 74 73 278 23 8.16154 4 1 64 119
1933 Tinchen 113 26 309 36 3.67062 72 103
1950 Wempe 90 −41 258 −45 16.7953 1 1 96 46
1963 Bezovec 219 7 18.1655 12 2 103 40
1996 Adams 107 55 3.31114 82 120
2002 Euler 30 44 188 47 5.99264 7 2 85
2094 Magnitka 107 57 272 48 6.11219 25 84
2510 Shandong 256 27 71 27 5.94639 4 1 132
2606 Odessa 25 −81 283 −88 8.2444 3 1 25 129
2709 Sagan 302 −14 124 −35 5.25636 6 2 160
2839 Annette 341 −49 154 −36 10.4609 8 1 99
2957 Tatsuo 81 45 248 32 6.82043 13 1 33 102
2991 Bilbo 277 54 90 51 4.06175 3 1 97
3722 Urata 260 −22 77 −9 5.5671 10 3 70
4954 Eric 86 −54 12.05207 7 2 68
5281 Lindstrom 238 −72 84 −81 9.2511 2 1 76
7517 1989 AD 314 −60 123 −51 9.7094 4 1 81
8132 Vitginzburg 33 −66 193 −48 7.27529 3 1 100
8359 1989 WD 121 −68 274 −68 2.89103 6 1 105

10772 1990 YM 16 46 68.82 5 1 73
31383 1998 XJ94 110 −74 279 −63 4.16818 4 1 71
52820 1998 RS2 228 −57 58 −48 2.13412 1 1 45
57394 2001 RD84 65 68 241 59 6.7199 4 1 47
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Table 2. List of new asteroid models derived from the Catalina Sky Survey data alone.

Asteroid λ1 β1 λ2 β2 P N703 Ppubl Period reference
[deg] [deg] [deg] [deg] [h] [h]

2112 Ulyanov 156 48 334 65 3.04071 118 3.000 Maleszewski & Clark (2004)
2384 Schulhof 196 −60 45 −42 3.29367 121 3.294 Ditteon et al. (2002)
2617 Jiangxi 224 76 1 54 11.7730 124 11.79 Carbo et al. (2009)
3170 Dzhanibekov 217 60 21 64 6.07168 105 6.0724 Molnar et al. (2008)
4507 1990 FV 143 55 323 49 6.57933 84 6.58 Yoshida et al. (2005)
5647 1990 TZ 253 77 119 −19 6.13867 87 6.144 Bembrick & Bolt (2003)

10826 1993 SK16 260 −56 60 −34 13.8327 90 13.835 Galad (2008)
19848 Yeungchuchiu 190 −68 3.45104 104 3.450 Yeung (2006)
3097 Tacitus 229 71 72 62 8.7759 99
4611 Vulkaneifel 5 −86 197 −50 3.75635 148
5461 Autumn 249 −26 79 −43 20.0929 106
5625 1991 AO2 265 −52 97 −78 6.67411 110
5960 Wakkanai 226 −69 69 −61 4.96286 102
7201 Kuritariku 22 67 249 64 48.849 103
7632 Stanislav 234 −50 46 −45 5.29073 99
7905 Juzoitami 105 −76 226 −55 2.72744 118

13002 1982 BJ13 58 −50 245 −57 3.13844 110
16009 1999 CM8 283 44 8.3476 124
16847 Sanpoloamosciano 91 −24 8.1845 114
26792 1975 LY 226 68 79.15 140

Notes. For each asteroid, the table gives the ecliptic coordinates λ1 and β1 of the pole solution, the corresponding mirror solution λ2 and β2, the
sidereal rotational period P, the number of sparse data points from the CSS N703, and the previously published period value Ppubl with the reference.
The uncertainty of the sidereal rotational period corresponds to the last decimal place of P and of the pole direction to 20–40◦ .

2.3. Models based on data from the Catalina Sky Survey
astrometric project

There are two different groups of asteroid models based on CSS
data: (i) models with previously reported synodic periods deter-
mined from dense data (we did not have these dense data, so
period values were taken from the literature, usually from the
Minor Planet Lightcurve Database); and (ii) models with pre-
viously unknown rotational periods. In the first case, we could
compare the published period value with the period value de-
rived by the LI (see Table 2, Cols. 7 and 9). If both periods agreed
within their uncertainties, we considered the solution reliable.
This test could not be performed for the second group of mod-
els, so we had to use additional reliability tests (see Sect. 2.1).

In Table 2, we present 20 asteroid models based only on the
CSS data. The previous period estimates were not available for
12 of them. All of these 20 models have higher uncertainties
of the pole orientations and lower shape resolution than mod-
els based on combined data, and all are possible candidates for
follow-up lightcurve observations for period confirmation and
more detailed shape determination.

3. Semi-empirical scaling of the YORP effect

Our enlarged sample of physical parameters for ∼330 asteroids11

validates our previous results based on a smaller asteroid sam-
ple (220 asteroids) presented in Hanuš et al. (2011). In Fig. 4,
we show the observed debiased (i.e., we removed the systematic
effect of the lightcurve inversion method caused by the method
having a higher probability of deriving a unique solution for as-
teroids with larger pole latitudes. The debiasing procedure was
based on a numerical simulation presented in Hanuš et al. 2011,

11 According to the asteroid size distribution function of Davis et al.
(2002), we have in our sample ∼30% of all asteroids with D > 100 km,
∼15% asteroids with 60 km < D < 100 km, and ∼14% asteroids with
30 km < D < 60 km.
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Fig. 4. Debiased observed latitude distribution of main-belt asteroids
with diameters D > 60 km (left panel) and D < 30 km (right panel).
The latitude bins are equidistant in sin β. The thin horizontal line corre-
sponds to the average value N̄ and the errorbar to

√
N̄.

see Sect. 4.3 there) latitude distributions of pole directions for
main-belt asteroids with diameters D < 30 km and D > 60 km.
The population of larger asteroids (D > 60 km) exhibits an ex-
cess of prograde rotators, probably of primordial origin (pre-
dicted also from numerical simulations by Johansen & Lacerda
2010). On the other hand, smaller asteroids (D < 30 km) have a
clearly bimodal latitude distribution – most of the asteroids have
ecliptic pole latitudes > 53◦.

The debiased observed latitude distribution of the pole di-
rections of MBAs represents fingerprints from the past evolution
of this population. Direct comparison between the observed as-
teroid properties and predictions of theoretical models can vali-
date/exclude some of the asteroid dynamical evolution theories
or constrain specific free parameters.

In Hanuš et al. (2011), we introduced a simple dynami-
cal model for the spin evolution of asteroids, where we in-
cluded (i) the YORP thermal effect; (ii) random reorienta-
tions induced by noncatastrophic collisions; (iii) oscillations
caused by gravitational torques and spin-orbital resonances; and
also (iv) mass shedding when a critical rotational frequency
is reached. Because we studied a large statistical sample of
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asteroids, the effect on the overall latitude distribution of pole
directions caused by other processes (gravitational torques by
the Sun, damping, or tumbling) was assumed to be only minor.

The model was based on the relations for the rate of the angu-
lar velocity ω (ω = 2π/P) and the obliquity ǫ (Euler equations)

dω
dt
= c fi(ǫ), i = 1 . . .200, (1)

dǫ
dt
=

cgi(ǫ)
ω
, (2)

where f - and g-functions describing the YORP effect for a set
of 200 shapes with the effective radius R0 = 1 km, the bulk den-
sity ρ0 = 2500 kg/m3, located on a circular orbit with the semi-
major axis a0 = 2.5 AU, were calculated numerically by Čapek
& Vokrouhlický (2004). We assigned one of the artificial shapes
(denoted by the index i) for each individual asteroid from our
sample12. The f - and g-functions were scaled by a factor

c = cYORP

(
a

a0

)−2 (
R

R0

)−2 (
ρbulk

ρ0

)−1

, (3)

where a, R, ρbulk denote the semi-major axis, the radius, and the
density of the simulated body, respectively, and cYORP is a free
scaling parameter reflecting our uncertainty in the shape models
and the magnitude of the YORP torque, which dependents on
small-sized surface features (even boulders, Statler 2009) and
other simplifications in the modeling of the YORP torque.

We enhanced the simulation of the spin evolution of aster-
oids presented in Hanuš et al. (2011), by testing different values
of the free parameter cYORP and comparing the resulting syn-
thetic latitude distributions with the observed debiased latitude
distributions. Thanks to the new asteroid models, we had an up-
dated observed spin vector distribution. We added 50% more ob-
served asteroids, so we used 307 instead of 220 models for this
comparison.

We used the following values of the parameter cYORP: 0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8. Values of cYORP � 1 were
already recognized as unrealistic.

For each value of cYORP, we ran 100 simulations with differ-
ent random seeds to generate different initial ω and spin vec-
tor distributions. We integrated Eqs. (1) and (2) numerically.
The time span was 4 Gyr with the time step of the explicit
Euler scheme ∆t = 10 Myr. As initial conditions, we assumed
a Maxwellian distribution of angular velocities ω and isotropi-
cally distributed spin vectors. We also used K = 10−2 W/K/m,
ρbulk = 2500 kg/m3.

Every time a critical angular velocity (ωcrit =
√

4/3πGρbulk)
was reached for an asteroid, we assumed a mass shedding event,
so that we reset the rotational period to a random value from an
interval of 2.5, 9 h. We altered the assigned shape, but we kept
the sense of the rotation and the orientation of the spin axis. We
also included a simple Monte-Carlo model for the spin axis re-

orientations caused by collisions (with τreor = B
(
ω
ω0

)β1
(

D
D0

)β2
,

where B = 84.5 kyr, β1 = 5/6, β2 = 4/3, D0 = 2 m, and ω0
corresponds to period P = 5 h, Farinella et al. 1998). After the
collision, we reset the spin axis and period to random values
(new period was from an interval of 2.5, 9 h). Collisional disrup-
tions are not important in our case so they were not considered.

12 We did not use the convex-hull shape models derived in this work
because the two samples of shapes are believed to be statistically equiv-
alent, and moreover, the YORP effect seems sensitive to small-scale sur-
face structure (Scheeres & Mirrahimi 2007), which cannot be caught by
our shape models.

Fig. 5. Temporal evolution of the χ2 that corresponds to the difference
between the simulated latitude distributions, averaged over all 100 runs,
and the debiased observed latitude distribution (i.e., χ̄2

t ) for three differ-
ent values of parameter cYORP = 0.05, 0.20, and 0.80 (we performed a
chi-square test). Vertical histograms on the righthand side represent the
distributions of χ2

t j at time t = 4 Gy for all 100 runs. Dotted line: the
statistically significant probability value of 5%, i.e. χ2 = 16.92.

We also accounted for spin-orbital resonances by adding a sinu-
soidal oscillation to β (to prograde rotators, only, Vokrouhlický
et al. 2006b) with a random phase and an amplitude ≃40◦.

The spin states of our synthetic asteroids evolve during the
simulation. At each time t of the simulation, we can construct a
latitude distribution of the pole directions with the latitude val-
ues split into ten bins with a variable width corresponding to
constant surface on the celestial sphere. Because we used eclip-
tic coordinates with the longitude λ and the latitude β, the bins
were equidistant in sin β. To describe the temporal evolution of
the simulated latitude distributions, we computed a χ2 metric
between the simulated and the debiased observed latitude distri-
butions of asteroids with diameters D < 60 km. The assumption
of isotropically distributed initial spin vectors is not fulfilled for
larger asteroids (D > 60 km), because this population has an
excess of prograde rotators (see Fig. 4), which is believed to
have a primordial origin (Johansen & Lacerda 2010). The sec-
ond reason we rejected asteroids with D > 60 km from latitude
comparison is that their evolution is rather slow compared to the
simulation time span.

For each time t within the simulation run j ( j = 1...100), the
corresponding chi-square value χ2

t j
is defined by

χ2
t j ≡
∑

i

(S t ji − Oi)2

σ2
t ji

, (4)

where S t ji denotes the number of synthetic bodies with latitudes
in bin i, Oi the number of observed latitudes in bin i, and σt ji ≡√

S t ji + Oi corresponds to the uncertainty estimate.
In Fig. 5, we show the temporal evolution of the average

chi-square χ̄2
t =
∑

j χ
2
t j
/100 in the course of our numerical sim-

ulations for different cYORP values. As we see in Fig. 5, the aver-
age synthetic latitude distribution evolves in course of the time
(while the debiased observed latitude distribution is fixed). We
can distinguish three basic cases of the temporal evolution:

– When the YORP effect is weak (cYORP � 0.1), the synthetic
latitude distribution only evolves slowly and is never simi-
lar to the observed latitude distribution, even at the end of
the simulation, because χ̄2

t is still large (for N = 9, a sta-
tistically significant probability value of 5% corresponds to
χ2 = 16.92).
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Fig. 6. Dependence of χ̄2
t and χ2

10 values calculated for the time t =
4 Gyr (i.e. the final state of the simulation) on different values of the
cYORP parameter. We also plotted the statistically significant probabil-
ity value of 5% which corresponds to χ2 = 16.92 and the interval of
plausible cYORP values from 0.05 to 0.6.

– A steady state (i.e., the state when the synthetic latitude dis-
tribution does not significantly evolve in time, and thus the
χ̄2

t is approximately constant) is only reached for cYORP val-
ues close to 0.2.

– For values cYORP � 0.3, the synthetic latitude distribution
evolves faster and, at a certain time, is most similar to the ob-
served latitude distribution (i.e., the minimum of χ̄2

t ). After
that, the χ̄2

t grows, because the YORP significantly develops
also larger asteroids, and thus the bins with low latitudes are
depopulated more than is observed.

Vertical histograms on the righthand side of Fig. 5 represent the
distributions of χ2

t j
at the time t = 4 Gy for all 100 runs. The av-

erage chi-square χ̄2
t of the model with cYORP = 0.05 is substan-

tially higher than 16.92, so this model can be considered wrong.
However, from the distributions of χ2

t j
we can see that about 25%

of individual runs have χ2
t j

lower than 16.92. To avoid rejecting
those cYORP values that are partially compatible with the obser-
vations, we should instead use a more representative value of χ2

than the average χ̄2
t , namely a value χ2

10, for which 10% runs
have lower χ2

t j
(see Fig. 6). Based on the χ2

10, the most probable
values of the cYORP parameter are between 0.05 and 0.6.

4. Discusion and conclusions

Our preferred interpretation of the optimal cYORP value being
much lower than one is that small-scale features (boulders) tend
to decrease the YORP torque. This hypothesis is supported by
the independent modeling of Rozitis & Green (2012), who esti-
mate, by including rough surface thermal-infrared beaming ef-
fects in their long-term spin evolution model, that the surface
roughness is on average responsible for damping the magnitude
of the YORP effect typically by half of the smooth surface pre-
dictions. This would correspond to cYORP = 0.5 in our notation.
The YORP effect is sensitive to the sizes of the boulders and can
vary tens of percent, so the results of Rozitis & Green (2012)
agree with our model.

As an important application, we mention that the constraint
for the value of cYORP can be used in simulations of the long-
term dynamical evolution of asteroid families. So far, cYORP has
been used as a free parameter (e.g., in the method presented
by Vokrouhlický et al. 2006a). Constraining cYORP therefore re-
moves one free parameter from the simulations and should thus
lead to a better determination of the ages of asteroid families.

Finally, the results of this paper can be briefly summarized
as follows.

– For 119 asteroids, we derived the convex shape models and
rotational states from their combined disk-integrated dense
and sparse photometric data. This effort was achieved with
the help of ∼100 individual observers who were willing to
share their lightcurves. The typical uncertainty of the side-
real rotational period is ∼10−5 h and of the pole direction
10–20◦. All new models are now included in the DAMIT
database.

– We also derived 20 asteroid models based purely on
sparse-in-time photometry from the Catalina Sky Survey
Observatory. The reliability of these models is supported by
the fact that for eight of them, we obtained similar rotational
period values that were previously reported in the literature
and derived from an independent data set (dense photome-
try). We do not have any previous information about the ro-
tational periods for the 12 other asteroids. Due to relatively
larger uncertainties of the CSS sparse data, the typical uncer-
tainty of the sidereal rotational period is ∼10−4−10−5 h and
of the pole direction 20–40◦.

– By combining observations of stellar occultations by as-
teroids with derived convex shape models, we determined
equivalent diameters for the asteroids (345) Tercidina,
(404) Arcinoe, and (578) Happelia to 96± 10 km,
101± 5 km, and 70± 5 km, respectively.

– We updated a simple dynamical model for the spin evolu-
tion of asteroids and compared the synthetic pole latitude
distributions to the debiased observed latitude distributions
of 307 asteroids. By using several values of the scaling pa-
rameter cYORP defined by Eq. (3) (from 0.01 to 0.8), we con-
strained its value to cYORP ∈ [0.05, 0.6]. We interpreted the
low value of cYORP as a result of the surface roughness.
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Table 3. Observations used for the successful model determinations that are not included in the UAPC.

Asteroid Date Observer Observatory (MPC code)

11 Parthenope 2008 5–2008 9 Warner Palmer Divide Observatory (716)
2008 7–2008 7 Pilcherb Organ Mesa Observatory (G50)
2009 11–2010 1 Pilcher (2010)
2011 2–2011 5 Pilcher (2011a)
2011 3–2011 3 Audejean Observatoire de Chinon, France (B92)
2011 4–2011 4 Naves Observatorio Montcabre (213)

25 Phocaea 2006 10–2006 10 Buchheim Altimira Observatory, USA (G76)
2006 10 21.9 Strajnic, Grangeon, Coupier, Godon, Roche Haute-Provence Observatory, France (511)

Danavaro, Dalmas, Bayol, Behrend
2008 1–2009 4 Pilcher (2009a)
2010 9–2010 12 Pilcher (2011b)

72 Feronia 2004 3–2004 4 Bernasconi Les Engarouines Observatory, France (A14)
2005 7–2005 8 Bernasconi Les Engarouines Observatory, France (A14)
2007 1 20.9 Coliac Observatoire Farigourette, France
2011 3–2011 4 Marciniak Borowiec, Poland (187)
2011 5 9.9 Hirsch Borowiec, Poland (187)

147 Protogeneia 2004 11–2004 12 Buchheim (2005)
2005 1 4.9 Roy Blauvac Observatory, France (627)
2005 1–2005 1 Bernasconi Les Engarouines Observatory, France (A14)
2008 5 29.7 Higginsa Hunters Hill Observatory, Ngunnawal (E14)

149 Medusa 2010 10–2010 11 Pilcher (2011b)
2010 11–2010 12 Martin Tzec Maun Observatory, Mayhill (H10)

157 Dejanira 2005 3–2005 3 Poncy Le Crés, France (177)
2005 4–2005 5 Warner (2005a)
2008 12–2009 2 Pilcher (2009c)

166 Rhodope 2010 12–2011 1 Conjat Cabris, France
178 Belisana 2007 4-2007 7 Oey & Krajewski (2008)

2008 9–2008 10 Pilcher et al. (2009)
183 Istria 2004 2 14.1 Bernasconi Les Engarouines Observatory, France (A14)
193 Ambrosia 2009 4–2009 4 Warner (2009b)

1999 10 15.0 Hirsch Borowiec, Poland (187)
2005 4–2005 4 Kaminski Borowiec, Poland (187)
2005 4 3.9 Marciniak Borowiec, Poland (187)
2005 4–2005 4 Hirsch Borowiec, Poland (187)
2009 3–2009 3 Audejean Observatoire de Chinon, France (B92)
2009 4–2009 5 Hirsch Borowiec, Poland (187)
2009 4 29.9 Kaminski Borowiec, Poland (187)
2010 4 19.1 Borczyk SAAO, Sutherland, South Africa

199 Byblis 2003 3–2003 4 Casulli Vallemare di Bordona, Italy (A55)
2003 5–2003 5 Bernasconi Les Engarouines Observatory, France (A14)
2005 10–2005 10 Roy Blauvac Observatory, France (627)
2005 10–2005 10 Casulli Vallemare di Bordona, Italy (A55)
2005 11–2005 11 Stoss, Nomen, Sanchez, Behrend OAM, Mallorca (620)
2005 11 20.9 Farroni
2006 12–2006 12 Roy Blauvac Observatory, France (627)
2008 2 9.1 Manzini Stazione Astronomica di Sozzago, Italy (A12)
2011 9 24.1 Sobkowiak Borowiec, Poland (187)
2011 11–2011 11 Marciniak Borowiec, Poland (187)

220 Stephania 2004 10–2004 10 Koff Antelope Hills Observatory, Bennett (H09)
222 Lucia 1999 4 18.2 Warner Palmer Divide Observatory (716)

2008 12–2008 12 Stephens (2009a)
2010 4–2010 5 Audejean Observatoire de Chinon, France (B92)
2010 4–2010 4 Bosch Collonges Observatory, France (178)

242 Kriemhild 2004 7–2004 7 Bosch Collonges Observatory, France (178)
2004 8–2004 8 Warner (2005b)
2004 9–2004 9 Rinner Ottmarsheim Observatory, France (224)
2005 11 7.9 Roy Blauvac Observatory, France (627)
2007 1–2007 1 Bembrick et al. (2007)
2009 8–2009 8 Audejean Observatoire de Chinon, France (B92)
2010 8–2011 3 Marciniak Borowiec, Poland (187)
2010 10 10.1 T. Michałowski Borowiec, Poland (187)
2011 11–2012 1 Marciniak Borowiec, Poland (187)
2011 11 13.1 Sobkowiak Borowiec, Poland (187)

Notes. (a) On line at http://www.david-higgins.com/Astronomy/asteroid/lightcurves.htm; (b) On line at http://aslc-nm.org/
Pilcher.html; (c) Observations, reductions, and calibration methods are described in Polishook & Brosch (2008, 2009).
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Table 3. continued.

Asteroid Date Observer Observatory (MPC code)

257 Silesia 2004 12–2004 12 Casulli, Behrend Vallemare di Bordona, Italy (A55)
2004 12–2005 1 Roy Blauvac Observatory, France (627)
2005 1 31.1 Starkey DeKalb Observatory, USA (H63)
2005 12 1.1 Strajnic, Paulo, Wagrez, Jade, Haute-Provence Observatory, France (511)

Rocca, Del Freo, Behrend
2005 12–2006 1 Roy Blauvac Observatory, France (627)
2005 12–2005 12 Antonini Observatoire de Bédoin, France (132)

260 Huberta 2005 3–2005 3 Roy Blauvac Observatory, France (627)
2007 7–2007 8 Roy Blauvac Observatory, France (627)

272 Antonia 2007 12–2008 1 Pilcher (2008)
2011 10–2011 10 S. Fauvaud, M. Fauvaud Observatoire du Bois de Bardon, France

281 Lucretia 2011 10–2011 10 S.Fauvaud, M. Fauvaud Observatoire du Bois de Bardon, France
290 Bruna 2008 3–2008 4 Pilcher (2009b)
297 Caecilia 2004 11–2004 12 Roy Blauvac Observatory, France (627)

2006 1–2006 1 Manzini Stazione Astronomica di Sozzago, Italy (A12)
2006 1 11.0 Antonini Observatoire de Bédoin, France (132)
2006 1 13.1 Roy Blauvac Observatory, France (627)
2009 12 11.8 Salom, Esteban Caimari (B81)
2011 2–2011 3 Marciniak Borowiec, Poland (187)
2012 1 30.2 Marciniak Borowiec, Poland (187)
2012 1 31.2 Polinska Borowiec, Poland (187)
2012 2–2012 3 Hirsch Borowiec, Poland (187)

345 Tercidina 2002 9–2002 10 Barbotin Villefagnan Observatory, France
2002 9–2002 12 Bernasconi Les Engarouines Observatory, France (A14)
2002 9–2002 10 Rinner Ottmarsheim Observatory, France (224)
2002 9–2002 9 Starkey, Bernasconi Les Engarouines Observatory, France (A14)
2002 9–2002 9 Waelchli, Revaz F.-X. Bagnoud Observatory, Switzerland (175)
2002 10 1.1 Michelet
2002 10 5.2 Barbotin Villefagnan Observatory, France
2002 11 22.9 Bosch Collonges Observatory, France (178)
2002 11-2002 12 Starkey DeKalb Observatory, USA (H63)
2004 4–2004 5 Bernasconi Les Engarouines Observatory, France (A14)
2004 4–2004 5 Roy Blauvac Observatory, France (627)
2005 8–2005 8 Bernasconi Les Engarouines Observatory, France (A14)
2005 8 27.0 Stoss, Nomen, Sanchez, Behrend OAM, Mallorca (620)
2005 9 8.0 Farroni
2008 7 5.0 Trégon, Leroy Pic du Midi Observatory (586)
2009 8–2009 10 Naves Observatorio Montcabre (213)
2011 4 22.9 Sobkowiak Borowiec, Poland (187)

352 Gisela 2002 10 8.7 Droege
2004 2 13.1 Bernasconi, Klotz, Behrend Haute-Provence Observatory, France (511)
2005 7–2005 8 Bernasconi Les Engarouines Observatory, France (A14)

371 Bohemia 2001 6–2004 3 Buchheim et al. (2004)
2006 9 2.0 Bernasconi Les Engarouines Observatory, France (A14)
2011 8–2011 11 Marciniak Borowiec, Poland (187)
2011 11 2.9 W. Ogłoza Mnt. Suhora, Poland
2011 11 30.9 Santana-Ros Borowiec, Poland (187)

390 Alma 2004 8–2004 8 Stephens (2005b)
2008 8–2008 10 Roy Blauvac Observatory, France (627)

403 Cyane 2001 12 9.1 Brunetto Le Florian, France (139)
2001 12–2001 12 Bernasconi Les Engarouines Observatory, France (A14)
2001 12 22.2 Cooney
2005 10 1.0 Bernasconi Les Engarouines Observatory, France (A14)
2007 2–2007 2 Roy Blauvac Observatory, France (627)

404 Arsinoe 1999 3–1999 4 Kryszczynska Borowiec, Poland (187)
1999 3 19.0 Hirsch Borowiec, Poland (187)
1999 3 20.0 T. Michałowski Borowiec, Poland (187)
2001 10–2001 10 S. Fauvaud, Heck, Santacana, Wucher Pic de Château-Renard Observatory
2001 11–2001 12 Bernasconi Les Engarouines Observatory, France (A14)
2003 4–2003 4 Roy Blauvac Observatory, France (627)
2005 8 10.1 Fagas Borowiec, Poland (187)
2005 10–2005 10 Hirsch Borowiec, Poland (187)
2005 10–2005 11 Roy Blauvac Observatory, France (627)
2006 11–2007 1 Fagas Borowiec, Poland (187)
2007 1–2007 4 Marciniak Borowiec, Poland (187)
2007 2 17.0 Hirsch Borowiec, Poland (187)
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Table 3. continued.

Asteroid Date Observer Observatory (MPC code)

2007 4–2007 4 Kaminski Borowiec, Poland (187)
2007 4 22.0 Kankiewicz Kielce, Poland (B02)
2008 6–2008 6 Marciniak SAAO, Sutherland, South Africa
2009 8–2009 10 Marciniak SAAO, Sutherland, South Africa
2009 9 27.0 Hirsch Borowiec, Poland (187)
2009 10 30.0 Polinska Borowiec, Poland (187)
2009 12 3.0 Kaminski Borowiec, Poland (187)
2010 12 5.0 Sobkowiak Borowiec, Poland (187)
2011 1–2011 5 Marciniak Borowiec, Poland (187)
2011 3–2011 3 Hirsch Borowiec, Poland (187)

406 Erna 2005 9–2005 10 Casulli Vallemare di Bordona, Italy (A55)
2005 11–2005 11 Crippa, Manzini Stazione Astronomica di Sozzago, Italy (A12)
2005 11–2005 11 Poncy Le Crés, France (177)

441 Bathilde 2003 1–2003 1 Roy Blauvac Observatory, France (627)
2003 2–2003 2 Bernasconi Les Engarouines Observatory, France (A14)
2003 2–2003 3 Vagnozzi, Cristofanelli, Paiella Santa Lucia Stroncone (589)
2005 7–2005 8 Bernasconi Les Engarouines Observatory, France (A14)
2006 12 11.9 Poncy Le Crés, France (177)
2010 9–2010 10 Marciniak Borowiec, Poland (187)
2010 10 4.8 Kaminski Borowiec, Poland (187)
2010 10 9.9 T. Michałowski Borowiec, Poland (187)
2011 10 14.0 Sobkowiak Borowiec, Poland (187)
2011 10–2011 11 Marciniak Borowiec, Poland (187)

507 Laodica 2001 8–2001 8 Charbonnel Durtal (949)
2001 8–2001 9 Leyrat

509 Iolanda 1996 10–1996 10 López-González & Rodríguez (2000)
2000 6 8.3 Koff & Brincat (2000)

512 Taurinensis 2004 12–2005 1 Poncy Le Crés, France (177)
2005 1 5.0 Correia Haute-Provence Observatory, France (511)

528 Rezia 2011 3–2011 3 Mottola
531 Zerlina 2002 6 2.9 Christophe

2007 9–2007 10 Brinsfield (2008b)
2011 3–2011 6 Pilcher & Brinsfield (2011)

543 Charlotte 2006 11–2006 12 Poncy Le Crés, France (177)
572 Rebekka 2007 2–2007 2 Warner (2007)

2009 8–2009 8 Audejean Observatoire de Chinon, France (B92)
578 Happelia 2006 12–2006 12 Leroy Uranoscope, France (A07)

2008 4–2008 4 Warner (2008b)
2010 11–2010 12 Antonini Observatoire de Bédoin, France (132)
2012 2–2012 4 Mottola, Hellmich

600 Musa 2001 4 6.0 Hirsch Borowiec, Poland (187)
2001 4 29.0 Colas Pic du Midi Observatory (586)
2005 2–2005 3 Bernasconi Les Engarouines Observatory, France (A14)
2005 3–2005 4 Hirsch Borowiec, Poland (187)
2005 4 1.0 Marciniak Borowiec, Poland (187)
2007 10–2007 10 S. Fauvaud, Santacana, M. Fauvaud Pic du Midi Observatory (586)
2009 3 25.8 Kaminski Borowiec, Poland (187)
2009 3 30.9 Marciniak Borowiec, Poland (187)
2010 4–2010 6 Marciniak Borowiec, Poland (187)
2011 11–2011 11 Marciniak Borowiec, Poland (187)
2011 11 29.8 Hirsch Borowiec, Poland (187)

669 Kypria 2006 3–2006 4 Bernasconi Les Engarouines Observatory, France (A14)
708 Raphaela 2007 2–2007 2 Warner (2007)
725 Amanda 2002 12 12.8 Marciniak Borowiec, Poland (187)

2002 12 31.8 T. Michałowski Borowiec, Poland (187)
2006 10–2006 10 S. Fauvaud, Santacana, Sareyan, Wucher Pic de Château-Renard Observatory
2006 10 30.1 Hirsch Borowiec, Poland (187)
2009 8–2009 8 Marciniak SAAO, Sutherland, South Africa
2010 10–2010 10 Audejean Observatoire de Chinon, France (B92)
2010 10 31.0 Marciniak Borowiec, Poland (187)
2012 3 3.1 Marciniak Borowiec, Poland (187)
2012 3–2012 3 Hirsch Borowiec, Poland (187)
2012 4 10.1 Oszkiewicz, Geier NOT, La Palma, Canary Islands

731 Sorga 2005 4–2005 4 Warner (2005a)
2009 2–2009 2 Warner (2009a)

732 Tjilaki 2004 3–2004 4 Bernasconi Les Engarouines Observatory, France (A14)
787 Moskva 1999 5–1999 5 Warner (2011a)
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Table 3. continued.

Asteroid Date Observer Observatory (MPC code)

2003 4–2003 5 Husarik, Behrend Skalnate Pleso, Slovakia (056)
2003 5–2003 5 Bernasconi Les Engarouines Observatory, France (A14)
2004 8–2004 8 Bernasconi Les Engarouines Observatory, France (A14)
2011 5–2011 5 Audejean Observatoire de Chinon, France (B92)
2011 5–2011 5 Morelle Observatoire Farigourette, France

792 Metcalfa 2010 7–2010 8 Roy Blauvac Observatory, France (627)
803 Picka 2006 12 10.8 Bosch Collonges Observatory, France (178)

2007 4–2007 4 Antonini Observatoire de Bédoin, France (132)
2010 11–2010 11 Antonini Observatoire de Bédoin, France (132)

812 Adele 2002 10–2002 10 Roy Blauvac Observatory, France (627)
816 Juliana 2005 4–2005 4 Stephens (2005a)

2005 5–2005 6 Conjat Cabris, France
2010 3–2010 3 Conjat Cabris, France

852 Wladilena 2003 2 23.2 J. Michałowski Borowiec, Poland (187)
2003 2 24.2 Marciniak Borowiec, Poland (187)
2003 2 26.2 T. Michałowski Borowiec, Poland (187)
2007 5–2007 5 Marciniak SAAO, Sutherland, South Africa
2008 8 22.2 M. J. Michałowski NOT, La Palma, Canary Islands
2008 10–2009 1 Kaminski Borowiec, Poland (187)
2008 9–2008 10 Marciniak Borowiec, Poland (187)
2008 12–2009 1 Sobkowiak Borowiec, Poland (187)
2010 2–2010 3 Antonini Observatoire de Bédoin, France (132)
2010 3–2010 5 Marciniak Borowiec, Poland (187)
2010 3–2010 3 Polishook (2012)c Wise Observatory, Mitzpeh Ramon (097)
2010 3–2010 4 Sobkowiak Borowiec, Poland (187)

857 Glasenapia 2006 12 23.0 Poncy Le Crés, France (177)
867 Kovacia 2006 11 22.8 Crippa, Manzini Stazione Astronomica di Sozzago, Italy (A12)

2008 1–2008 2 Roy Blauvac Observatory, France (627)
2008 2 8.9 Casulli Vallemare di Bordona, Italy (A55)
2008 2 9.0 Colas Pic du Midi Observatory (586)
2008 2–2008 2 Manzini Stazione Astronomica di Sozzago, Italy (A12)
2008 2–2008 2 Leroy Uranoscope, France (A07)
2008 2–2008 2 Demeautis Village-Neuf Observatory, France (138)
2008 2–2008 3 Coliac Observatoire Farigourette, France

874 Rotraut 2002 7–2002 7 Charbonnel Durtal (949)
2002 8 16.0 Rinner Ottmarsheim Observatory, France (224)

875 Nymphe 2003 7–2003 7 Warner (2011c)
2003 7–2003 7 Roy Blauvac Observatory, France (627)

900 Rosalinde 2007 5 19.0 Roy Blauvac Observatory, France (627)
994 Otthild 2001 9 22.0 Velichko, T. Michałowski Kharkov (101)

2001 10–2001 10 J. Michałowski Borowiec, Poland (187)
2001 10–2001 10 Conjat Cabris, France
2001 11–2001 11 T. Michałowski Borowiec, Poland (187)
2001 11–2001 11 Kwiatkowski Borowiec, Poland (187)
2005 8–2005 11 Stoss, Nomen, Sanchez, Behrend OAM, Mallorca (620)
2005 10 1.9 Bernasconi Les Engarouines Observatory, France (A14)
2005 10–2005 10 Fagas Borowiec, Poland (187)
2005 10 19.9 T. Michałowski Borowiec, Poland (187)
2007 2 26.9 S. Fauvaud, Esseiva, Michelet, Pic de Château-Renard Observatory

Saguin, Sareyan
2011 3 19.9 Polinska Borowiec, Poland (187)
2011 3 29.8 Marciniak Borowiec, Poland (187)

1056 Azalea 2004 2–2004 2 Klotz, Behrend Haute-Provence Observatory, France (511)
1089 Tama 2003 12–2004 3 Roy Blauvac Observatory, France (627)

2003 12–2004 2 Rinner Ottmarsheim Observatory, France (224)
2004 1–2004 1 Antonini Observatoire de Bédoin, France (132)
2004 1–2004 1 Sposetti, Behrend Gnosca Observatory, Switzerland (143)
2004 1 4.9 Klotz Haute-Provence Observatory, France (511)
2004 1–2004 1 Lecacheux, Colas Pic du Midi Observatory (586)
2004 1 22.8 Colas Pic du Midi Observatory (586)
2004 1 26.9 Michelsen, Augustesen, Masi Brorfelde (054)
2004 1–2004 1 Cotrez, Behrend Saint-Hélène Observatory, France (J80)
2004 1–2004 2 Durkee Shed of Science Observatory, USA (H39)
2004 2 7.9 Bernasconi Les Engarouines Observatory, France (A14)
2004 2 9.8 Coloma Sabadell (619)
2004 2–2004 2 Oksanen Nyrölä Observatory, Finland (174)
2004 2 11.9 Itkonen, Pääkkönen Jakokoski Observatory, Finland (A83)
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Table 3. continued.

Asteroid Date Observer Observatory (MPC code)

2004 2 15.0 Brochard
2004 2 20.9 Demeautis, Matter Village-Neuf Observatory, France (138)
2004 2 24.1 Barbotin, Cotrez, Cazenave, Laffont Pic du Midi Observatory (586)
2005 6–2005 7 Stoss, Nomen, Sanchez, Behrend OAM, Mallorca (620)
2005 7–2005 8 Teng, Behrend Observatoire Les Makes, France (181)
2006 9–2006 12 Sposetti, Pavic Gnosca Observatory, Switzerland (143)
2006 9–2006 12 Polishook (2012)c Wise Observatory, Mitzpeh Ramon (097)
2006 11 26.9 Sposetti, Behrend Gnosca Observatory, Switzerland (143)
2008 4 5.1 Klotz, Strajnic Haute-Provence Observatory, France (511)
2008 5–2008 5 Roy Blauvac Observatory, France (627)
2008 5–2008 5 Polishook (2012)c Wise Observatory, Mitzpeh Ramon (097)
2009 10–2009 11 Polishook (2012)c Wise Observatory, Mitzpeh Ramon (097)
2011 2–2011 3 Crippa, Manzini Stazione Astronomica di Sozzago, Italy (A12)

1111 Reinmuthia 2007 10–2007 11 Hiromi Hamanowa, Hiroko Hamanowa
1126 Otero 2008 2–2008 2 Stephens (2008)
1130 Skuld 2004 1 22.0 Colas Pic du Midi Observatory (586)

2009 10–2009 11 Buchheim (2010)
1188 Gothlandia 2006 1 2.9 Pallares Sabadell (619)

2006 1 11.9 Coloma Agrupación Astronómica de Sabadell, Spain (A90)
2006 2 2.9 Coloma, Garcia Agrupación Astronómica de Sabadell, Spain (A90)
2007 5–2007 5 Antonini Observatoire de Bédoin, France (132)
2008 12–2009 1 H. Hamanowa, H. Hamanowa
2011 8–2011 12 Baker et al. (2012)
2011 9–2011 9 S. Fauvaud, M. Fauvaud Observatoire du Bois de Bardon, France

1241 Dysona 2002 9–2002 11 Bosch Collonges Observatory, France (178)
2002 10 2.0 Brunetto Le Florian, France (139)
2006 4–2006 5 Oey Leura (E17)

1249 Rutherfordia 2001 8–2001 8 Bernasconi Les Engarouines Observatory, France (A14)
2008 8 22.0 Demeautis Village-Neuf Observatory, France (138)
2004 7–2004 7 Roy Blauvac Observatory, France (627)

1317 Silvretta 2006 4–2006 4 Bernasconi Les Engarouines Observatory, France (A14)
2009 12–2010 1 Ruthroff (2010)

1386 Storeria 2004 6–2004 6 Warner (2004)
2004 7 15.0 Behrend, Klotz Haute-Provence Observatory, France (511)
2004 7 17.0 Bernasconi Les Engarouines Observatory, France (A14)
2004 7 21.0 Coloma Agrupación Astronómica de Sabadell, Spain (A90)
2004 7 28.0 Roy Blauvac Observatory, France (627)

1401 Lavonne 2008 8 8.3 Durkee Shed of Science Observatory, USA (H39)
2008 9–2008 9 Antonini Observatoire de Bédoin, France (132)

1432 Ethiopia 2007 7–2007 9 Oey (2008)
1436 Salonta 2007 8–2007 9 Warner (2008a)

2007 10–2007 10 Antonini Observatoire de Bédoin, France (132)
2008 11–2008 11 Antonini Observatoire de Bédoin, France (132)
2008 11 27.8 Roy Blauvac Observatory, France (627)

1472 Muonio 2008 9–2008 9 Stephens (2009b)
2008 10–2008 10 Higginsa Hunters Hill Observatory, Ngunnawal (E14)

1490 Limpopo 2005 8–2005 8 Bernasconi Les Engarouines Observatory, France (A14)
1495 Helsinki 2006 4–2006 5 Oey et al. (2007)

2006 6 4.0 Payet, Teng, Leonie, Behrend Observatoire Les Makes, France (181)
2006 6–2006 7 Teng, Behrend Observatoire Les Makes, France (181)
2011 9–2011 9 S. Fauvaud, M. Fauvaud Observatoire du Bois de Bardon, France

1518 Rovaniemi 2009 1–2009 1 Warner (2009a)
2009 1–2009 1 Roy Blauvac Observatory, France (627)

1528 Conrada 2008 5–2008 5 Warner (2008b)
1554 Yugoslavia 2007 4–2007 4 Higgins (2008)
1559 Kustaanheimo 2005 3–2005 3 Bernasconi Les Engarouines Observatory, France (A14)
1572 Posnania 1993 9–1999 11 Michałowski et al. (2001)

2004 9–2004 9 Roy Borowiec, Poland (187)
2010 12 5.1 Sobkowiak Borowiec, Poland (187)
2011 2–2011 2 Kaminski Borowiec, Poland (187)
2011 2 8.8 Marciniak Borowiec, Poland (187)
2012 2–2012 3 Roy Blauvac Observatory, France (627)

1607 Mavis 2007 9–2007 9 Oey (2008)
1630 Milet 2005 2–2005 2 Bernasconi Les Engarouines Observatory, France (A14)
1634 Ndola 2006 9–2006 9 Higginsa Hunters Hill Observatory, Ngunnawal (E14)
1719 Jens 2000 9–2000 9 Warner (2011b)

2006 1–2006 2 Bernasconi Les Engarouines Observatory, France (A14)
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Table 3. continued.

Asteroid Date Observer Observatory (MPC code)

1785 Wurm 2008 3–2008 3 Oey (2009)
1837 Osita 2006 1–2006 3 Roy Blauvac Observatory, France (627)
1927 Suvanto 2005 2–2005 2 Bernasconi Les Engarouines Observatory, France (A14)
1933 Tinchen 2005 3 14.0 Roy Blauvac Observatory, France (627)
1950 Wempe 2006 2 1.9 Bernasconi Les Engarouines Observatory, France (A14)
1963 Bezovec 2005 1–2005 1 Bernasconi Les Engarouines Observatory, France (A14)

2009 3–2009 3 Romeuf
2009 4 6.9 Manzini Stazione Astronomica di Sozzago, Italy (A12)
2009 4–2009 4 Martin Tzec Maun Observatory, Mayhill (H10)

2002 Euler 2006 5–2006 5 Koff Antelope Hills Observatory, Bennett (H09)
2007 10–2007 10 Higginsa Hunters Hill Observatory, Ngunnawal (E14)

2510 Shandong 2006 8–2006 9 Higgins & Goncalves (2007)
2606 Odessa 2008 2–2008 2 Higgins et al. (2008)

2008 3 3.6 Oey Leura (E17)
2709 Sagan 2008 3–2008 3 Higgins et al. (2008)

2011 1–2011 2 Oey Leura (E17)
2839 Annette 2005 10–2005 11 Buchheim (2007)

2005 12–2005 12 Warner (2006a)
2957 Tatsuo 2005 8–2005 8 Bernasconi Les Engarouines Observatory, France (A14)

2005 8–2005 9 Poncy Le Crés, France (177)
2005 9–2005 9 Warner (2006b)

2991 Bilbo 2007 4–2007 4 Higginsa Hunters Hill Observatory, Ngunnawal (E14)
3722 Urata 2004 12–2004 12 Antonini Observatoire de Bédoin, France (132)

2006 9 3.0 Manzini Stazione Astronomica di Sozzago, Italy (A12)
2007 8–2007 8 Roy Blauvac Observatory, France (627)
2007 8–2007 8 Stephens Goat Mountain Astronomical Research Station (G79)

5281 Lindstrom 2008 6–2008 6 Brinsfield Via Capote Sky Observatory, Thousand Oaks (G69)
7517 1989 AD 2007 11–2007 11 Stephens Goat Mountain Astronomical Research Station (G79)
8132 Vitginzburg 2008 6–2008 6 Brinsfield (2008a)
8359 1989 WD 2009 4–2009 4 Higgins & Warner (2009)

2009 5–2009 5 Brinsfield (2009)
10772 1990 YM 2006 3–2006 3 Koff Antelope Hills Observatory, Bennett (H09)

2006 4–2006 4 Warner Palmer Divide Observatory (716)
31383 1998 XJ94 2006 4–2006 4 Higgins et al. (2006)
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ABSTRACT

Context. The current number of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method
allows us to study the spin-vector properties of not only the whole population of main-belt asteroids, but also of several individual
collisional families.
Aims. We create a data set of 152 asteroids that were identified by the hierarchical clustering method (HCM) as members of ten col-
lisional families, among which are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes
of the spin axes. The remaining models are adopted from the DAMIT database or a few individual publications.
Methods. We revised the preliminary family membership identification by the HCM according to several additional criteria: taxo-
nomic type, color, albedo, maximum Yarkovsky semi-major axis drift, and the consistency with the size-frequency distribution of each
family, and consequently we remove interlopers. We then present the spin-vector distributions for asteroidal families Flora, Koronis,
Eos, Eunomia, Phocaea, Themis, Maria, and Alauda. We use a combined orbital- and spin-evolution model to explain the observed
spin-vector properties of objects among collisional families.
Results. In general, for studied families we observe similar trends in (ap, β) space (proper semi-major axis vs. ecliptic latitude of the
spin axis): (i) larger asteroids are situated in the proximity of the center of the family; (ii) asteroids with β > 0◦ are usually found to
the right of the family center; (iii) on the other hand, asteroids with β < 0◦ to the left of the center; (iv) the majority of asteroids have
large pole-ecliptic latitudes (|β| � 30◦); and finally (v) some families have a statistically significant excess of asteroids with β > 0◦

or β < 0◦. Our numerical simulation of the long-term evolution of a collisional family is capable of reproducing the observed spin-
vector properties well. Using this simulation, we also independently constrain the age of families Flora (1.0± 0.5 Gyr) and Koronis
(2.5–4 Gyr).

Key words. methods: observational – minor planets, asteroids: general – techniques: photometric – methods: numerical

1. Introduction

An analysis of rotational state solutions for main belt asteroids
has been performed by many authors. All these authors ob-
served the deficiency of poles close to the ecliptic plane (e.g.,
Magnusson 1986; Drummond et al. 1988; Pravec et al. 2002;
Skoglöv & Erikson 2002; Kryszczyńska et al. 2007). Hanuš et al.
(2011) showed that this depopulation of spin vectors mainly
concerns smaller asteroids (D <∼ 40 km), while the larger as-
teroids (60 <∼ D <∼ 130–150 km, Kryszczyńska et al. 2007;
Paolicchi & Kryszczyńska 2012) have a statistically significant
excess of prograde rotators, but no evident lack of poles close
to the ecliptic plane. The observed anisotropy of pole vectors of
smaller asteroids is now believed to be a result of YORP thermal

⋆ Tables 3–5 are available in electronic form at
http://www.aanda.org

torques1, and of collisions that systematically evolve the spin
axes away from the ecliptic plane. The prograde excess of larger
asteroids is probably caused by a primordial preference that
agrees with the theoretical work of Johansen & Lacerda (2010).
While the number of asteroids with known rotational states
grows, we can not only study the spin vector distribution in
the whole main-belt asteroids (MBAs) or near-Earth asteroids
(NEAs) populations, but we can also focus on individual groups
of asteroids within these populations, particularly on collisional
families (i.e., clusters of asteroids with similar proper orbital ele-
ments and often spectra that were formed by catastrophic break-
ups of parent bodies or cratering events).

1 Yarkovsky-O’Keefe-Radzievskii-Paddack effect, a torque caused by
the recoil force due to anisotropic thermal emission, which can alter
both rotational periods and orientation of spin axes, see e.g., Rubincam
(2000).
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Fig. 1. Dependence of the absolute magnitude H on the proper semi-major axis ap for the Themis family (left) and for the Flora family (right)
with the likely positions of the family centers (vertical lines). We also plot three (ap, H) borders of the family for different parameters C (different
values correspond to a different initial extent of the family or different age and magnitude of the Yarkovsky semi-major axis drift) by gray lines,
the optimal border corresponds to the middle line. The vertical dotted line represents the approximate position of the secular ν6 resonance for the
inclination typical for Flora family members and the horizontal arrow its approximate range.

The theory of dynamical evolution of asteroid families (e.g.,
Bottke et al. 2006) suggests that the Yarkovsky2/YORP effects
change orbital parameters of smaller asteroids (<∼30–50 km) –
the semi-major axis of prograde rotators slowly grows the course
of time, unlike retrograde rotators whose semi-major axis de-
creases. This phenomenon is particularly visible when we plot
the dependence of the absolute magnitude H on the proper semi-
major axis ap (see an example of such a plot for Themis family
in Fig. 1, left panel). In addition, various resonances (e.g., mean-
motion resonances with Jupiter or Mars, or secular resonances)
can intersect the family and cause a decrease in the number of
asteroids in the family by inducing moderate oscillations to their
orbital elements (Bottke et al. 2001) as can be seen in Fig. 1 for
the Flora family, where the secular ν6 resonance with Saturn al-
most completely eliminated objects to the left of the center of
the family. The ν6 resonance has its center at 2.13 AU for ob-
jects with sin I ∼ 0.09, which is typical of Flora family mem-
bers. It develops objects which then approach the proximity of
the resonance. Some resonances can, for example, capture some
asteroids on particular semi-major axes (Nesvorný & Morbidelli
1998).

Laboratory experiments strongly suggest that a collisionally-
born cluster should initially have a rotational frequency distribu-
tion close to Maxwellian (Giblin et al. 1998) and an isotropic
spin vector distribution. For several families, we already know
their age estimates (e.g., 2.5 ± 1.0 Gyr for Koronis family,
Bottke et al. 2001), and so we have a constraint on the time
at which the family was evolving towards its current state. As
shown in Bottke et al. (2001), the family evolution is dominated
by Yarkovsky and YORP effects, as well as by collisions and
spin-orbital resonances. The knowledge of the age should con-
strain some free parameters in various evolutionary models.

The spin-vector properties in an asteroid family were first
studied by Slivan (2002) and Slivan et al. (2003), who reveal an
anisotropy of spin vectors for ten members of the Koronis family.
This was an unexpected result because collisionallyborn popula-
tion should have an isotropic spin-vector distribution. The pecu-
liar spin-vector alignment in the Koronis family was explained
by Vokrouhlický et al. (2003) as a result of the YORP torques
and spin-orbital resonances that modified the spin states over the
timespan of 2–3 Gyr. The secular s6 spin-orbital resonance with
Saturn may affect the Koronis family members, according to the

2 A thermal recoil force affecting rotating asteroids.

numerical simulations, it can (i) capture some objects and create
a population of prograde rotators with periods P ∈ (4, 7) h, sim-
ilar obliquities (42◦ to 51◦) and also with similar ecliptic longi-
tudes in the ranges of (24◦ to 73◦) and (204◦ to 259◦); or (ii) cre-
ate a group of low-obliquity retrograde rotators with rotational
periods P < 5 h or P > 13 h. The prograde rotators trapped in
the s6 spin-orbital resonance were referred to by Vokrouhlický
et al. (2003) as being in Slivan states. Most members of the
Koronis family with known rotational states (determined by the
lightcurve inversion by Slivan et al. 2003, 2009; Hanuš et al.
2011, 2013) had the expected properties except for the periods
of observed prograde rotators were shifted to higher values of
7–10 h. Rotational states of asteroids that did not match the
properties of the two groups were probably reorientated by re-
cent collisions, which are statistically plausible during the fam-
ily existence for at least a few Koronis members (e.g., asteroid
(832) Karin was affected by a collision when a small and young
collisional family within the Koronis family was born, Slivan &
Molnar 2012).

Another study of rotational states in an asteroid family was
made by Kryszczyńska (2013), who focuses on the Flora family.
She distinguishes prograde and retrograde groups of asteroids
and reports an excess of prograde rotators. This splitting into
two groups is most likely caused by the Yarkovsky effect, while
the prograde excess by the secular ν6 resonance that significantly
depopulates the retrograde part of the family. See Fig. 1b, only
retrograde rotators can drift via the Yarkovsky/YORP effects to-
wards the resonance.

Future studies of rotational properties of collisional families
should reveal the influence of the Yarkovsky and YORP effects,
and possibly a capture of asteroids in spin-orbital resonances
similar to the case of the Koronis family. The Yarkovsky effect
should be responsible for spreading the family in a semi-major
axis (retrograde rotators drift from their original positions to-
wards the Sun, on the other hand, prograde rotators drift away
from the Sun, i.e. towards larger ap’s), and the YORP effect
should eliminate the spin vectors close to the ecliptic plane.

Disk-integrated photometric observations of asteroids con-
tain information about an object’s physical parameters, such as
the shape, the sidereal rotational period, and the orientation of
the spin axis. Photometry acquired at different viewing geome-
tries and apparitions can be used in many cases in a lightcurve in-
version method (e.g., Kaasalainen & Torppa 2001; Kaasalainen
et al. 2001) and a convex 3D shape model including its rotational
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state can be derived. This inverse method uses all available pho-
tometric data, both the classical dense-in-time lightcurves or the
sparse-in-time data from astrometric surveys. Most of the as-
teroid models derived by this technique are publicly available
in the Database of Asteroid Models from Inversion Techniques
(DAMIT3, Ďurech et al. 2010). In February 2013, models of
347 asteroids were included there. About a third of them can
be identified as members of various asteroid families. This large
number of models of asteroids that belong to asteroid families
allows us to investigate the spin-vector properties in at least
several families with the largest amount of identified members.
Comparison between the observed and synthetic (according to a
combined orbital- and spin-evolution model) spin-vector prop-
erties could even lead to independent family age estimates.

The paper is organized as follows. In Sect. 2, we investigate
the family membership of all asteroids for which we have their
models derived by the lightcurve inversion method and present
31 new asteroid models that belong to ten asteroid families. An
analysis of spin states within these asteroid families with at least
three identified members with known shape models is presented
in Sect. 3.1. A combined spin-orbital model for the long-term
evolution of a collisional family is described in Sect. 4, where we
also compare the synthetic and observed spin-vector properties
and constrain the ages of families Flora and Koronis.

2. Determination of family members

2.1. Methods for family membership determination

For a preliminary family membership determination, we adopted
an online catalog published by Nesvorný (2012), who used the
hierarchical clustering method4 (HCM, Zappalà et al. 1990,
1994). Nesvorný (2012) used two different types of proper el-
ements for the family membership identification: semi-analytic
and synthetic. The more reliable dataset is the one derived
from synthetic proper elements, which were computed numer-
ically using a more complete dynamical model. The major-
ity of asteroids are present in both datasets. A few asteroids
that are only in one of the datasets are included in the study
as well (e.g., asteroids (390) Alma in the Eunomia family or
(19848) Yeungchuchiu in the Eos family), because at this stage it
is not necessary to remove objects that still could be real family
members.

The HCM selects a group of objects that are separated in the
proper element space by less than a selected distance. However,
not all of these objects are actually real members of the colli-
sionallyborn asteroid family. A fraction of objects have orbital
elements similar to typical elements of the asteroid family mem-
bers only by a coincidence, the so-called interlopers. Interlopers
can be identified (and removed), for example, by

– inspection of reflectance spectra. Because they are usually
of different taxonomic types those that of the family mem-
bers, we use the SMASSII (Bus & Binzel 2002) or Tholen
taxonomy (Tholen 1984, 1989);

– inspection of colors based on the Sloan Digital Sky Survey
Moving Object Catalog 4 (SDSS MOC4, Parker et al. 2008).

3 http://astro.troja.mff.cuni.cz/projects/asteroids3D
4 In this method, mutual distances in proper semi-major axis (ad),
proper eccentricity (ed), and proper inclination (id) space are computed.
The members of the family are then separated in the proper element
space by less than a selected distance (usually, it has a unit of velocity),
a free parameter often denoted as “cutoff velocity”.

Fig. 2. Dependence of the color indexes a⋆ and i − z (from the Sloan
Digital Sky Survey Moving Object Catalog 4) for a C-type family
Themis and S-type family Eunomia. The family corresponds to a com-
pact structure in this parameter space marked by a rectangle. There is a
qualitative difference between C- and S-types asteroids.

We used the color indexes a⋆ and i − z, which usually de-
fine the core of the family well (see examples for Themis
and Eunomia families in Fig. 2), and for each asteroid with
available color indexes, we compared values a⋆ and i − z to
those that define the family;

– inspection of albedos based on the WISE data (Masiero et al.
2011);

– construction of a diagram of the proper semi-major axis vs.
the absolute magnitude (see Fig. 1), estimating the V-shape
defined by the Yarkovsky semi-major axis drift and exclud-
ing outliers, i.e. relatively large asteroids outside the V-shape
(see Vokrouhlický et al. 2006b, for the case of the Eos fam-
ily). We refer here to the (ap, H) border of the family as the
border of the V-shape; or by

– construction of a size-frequency distribution (SFD) of the
cluster. Some asteroids can be too large to be created within
the family and thus are believed to be interlopers (see, e.g.,
numerical simulations by Michel et al. 2011, who excluded
the asteroid (490) Veritas from the Veritas family).

These methods for determining family membership have one
common characteristic – we have to determine or choose a range
for a quantity that defines the family members (range of spectra,
sizes, or distance from the family center), which affects the num-
ber of objects we include in the family. Our criteria correspond
to the fact that usually 99% of the objects are within the ranges.

2.2. New asteroid models

From the DAMIT database, we adopt 96 models of asteroids
that are, according to the HCM, members of collisional fami-
lies. Currently, we have about 100 new asteroid models that have
not yet been published. Here, we present new physical mod-
els of 31 asteroids from this sample that are identified as mem-
bers of asteroid families by the HCM. We choose only asteroids
that belong to ten specific families for which we expect a rea-
sonable amount of members, i.e., at least three. These convex
shape models are derived by the lightcurve inversion method
from combined dense and sparse photometry. The derivation
process is similar to the one used in Hanuš et al. (2013).
The dense photometry was from two main sources: (i) the
Uppsala Asteroid Photometric Catalogue (UAPC5, Lagerkvist
et al. 1987; Piironen et al. 2001), where lightcurves for about
1000 asteroids are stored; and (ii) the data from a group of in-
dividual observers provided by the Minor Planet Center in the

5 http://asteroid.astro.helsinki.fi/
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Table 1. List of new asteroid models derived from combined dense and sparse data or from sparse data alone.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N703 N950

[deg] [deg] [deg] [deg] [hours]
243 Ida 259 −66 74 −61 4.633632 53 6 134 122 25
364 Isara 282 44 86 42 9.15751 4 1 98 104
540 Rosamunde 301 81 127 62 9.34779 3 1 135 83
550 Senta 63 −40 258 −58 20.5726 9 1 151 85
553 Kundry 197 73 359 64 12.6025 5 1 61 80
621 Werdandi 247 −86 66 −77 11.77456 12 2 146 71
936 Kunigunde 47 57 234 50 8.82653 154 88
951 Gaspra 20 23 198 15 7.042027 71 4 117 89

1286 Banachiewicza 214 62 64 60 8.63043 81 51
1353 Maartje 266 73 92 57 22.9926 154 139
1378 Leonce 210 −67 46 −77 4.32527 89 113
1423 Jose 78 −82 12.3127 121 134
1446 Sillanpaa 129 76 288 63 9.65855 2 1 76 73
1464 Armisticia 194 −54 35 −69 7.46699 2 1 231 67
1503 Kuopio 170 −86 27 −61 9.9586 116 68
1527 Malmquista 274 80 14.0591 49 107
1618 Dawn 39 −60 215 −51 43.219 93 91
1633 Chimay 322 77 116 81 6.59064 2 1 127 83
1691 Oort 45 68 223 58 10.2684 86 60
1703 Barry 46 −76 221 −71 107.04 89 138
1805 Dirikis 364 48 188 61 23.4543 117 91
1835 Gajdariya 34 74 204 69 6.33768 66 86
1987 Kaplan 357 −58 9.45950 8 2 81 28
2430 Bruce Helin 177 −68 129.75 15 1 112
3279 Solon 268 −70 8.1043 3 1 137
3492 Petra-Pepi 9 −57 202 −16 46.570 15 1 25 111
4399 Ashizuri 266 −48 45 −61 2.830302 4 1 20 84
4606 Saheki 44 59 222 68 4.97347 6 1 123
6159 1991 YH 266 67 62 67 10.6590 3 1 102
6262 Javid 93 76 275 69 8.02054 3 1 106
6403 Steverin 246 77 109 73 3.49119 2 1 74
7043 Godart 73 62 235 80 8.4518 4 1 121
7169 Linda 11 −60 198 −61 27.864 5 1 95

Notes. For each asteroid, the table gives the ecliptic coordinates λ1 and β1 of the pole solution with the lowest χ2, the corresponding mirror
solution λ2 and β2, the sidereal rotational period P, the number of dense lightcurves Nlc observed during Napp apparitions, and the number of sparse
data points for the corresponding observatory: N689, N703, and N950. The uncertainty of the sidereal rotational period corresponds to the last decimal
place of P and of the pole direction to 5–10◦ if we have multi-apparition dense data or 10–20◦ if the model is based mainly on sparse data (i.e.,
only a few dense lightcurves from 1–2 apparitions).

Asteroid Lightcurve Data Exchange Format (ALCDEF6, Warner
et al. 2009). The sparse-in-time photometry is downloaded from
the AstDyS site (Asteroids – Dynamic Site7). We use data
from the three most accurate observatories: USNO–Flagstaff sta-
tion (IAU code 689), Roque de los Muchachos Observatory,
La Palma (IAU code 950), and Catalina Sky Survey Observatory
(CSS for short, IAU code 703, Larson et al. 2003).

To increase the number of asteroid models for our study of
asteroid families, we performed additional analysis of our pre-
vious results of the lightcurve inversion. For many asteroids, we
are able to determine a unique rotational period, but get multiple
pole solutions (typically 3–5) with similar ecliptic latitudes β,
which is an important parameter. In Hanuš et al. (2011), we
presented a reliability test where we checked the physicality of
derived solutions by the lightcurve inversion (i.e., if the shape
model rotated around its axis with a maximum momentum of in-
ertia). By computing models for all possible pole solutions and
by checking their physicality, we removed the pole ambiguity
for several asteroids, and thus determined their unique solutions

6 http://www.minorplanet.info/alcdef.html
7 http://hamilton.dm.unipi.it/

(listed in Table 1). For other asteroids, the pole ambiguity re-
main and the models give us accurate period values and also
rough estimates of ecliptic latitudes β (if the biggest difference
in latitudes of the models is <50◦). We call these models par-
tial and present them in Table 2. For the ecliptic latitude β, we
use the mean value of all different models. We define parameter
∆ ≡ |βmax−βmin|/2 as being the estimated uncertainty of β, where
βmax and βmin are the extremal values within all β. The threshold
for partial models is ∆ < 25◦.

We present 31 new models and 24 partial models. References
to the dense lightcurves used for the model determination are
listed in Table 3. In Sect. 4, we compare the numbers of asteroids
in four quadrants of the (ap, β) diagram (defined by the center
of the family and the value β = 0◦) with the same quantities
based on the synthetic family population. The uncertainties in
β are rarely greater than 20◦, and the assignment to a specific
quadrant is usually not questionable (only in 4 cases out of 136
does the uncertainty interval lie in both quadrants, and most of
the asteroids have latitudes |β| � 30◦), and thus give us useful
information about the rotational properties in asteroid families.
Partial models represent about 20% of our sample of asteroid
models.
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Table 2. List of partial models derived from combined data sets.

Asteroid β ∆ P Nlc Napp N689 N703

[deg] [deg] [hours]
391 Ingeborg −60 7 26.4145 24 2 141 96
502 Sigune −44 3 10.92667 9 2 157 52
616 Elly 67 23 5.29771 4 1 101 133

1003 Lilofee 65 10 8.24991 107 83
1160 Illyria 47 23 4.10295 96 100
1192 Prisma −65 14 6.55836 5 1 44 43
1276 Ucclia −49 22 4.90748 114 45
1307 Cimmeria 63 9 2.820723 2 1 91 54
1339 Desagneauxa 65 17 9.37510 78 120
1396 Outeniqua 62 7 3.08175 2 1 112 68
1493 Sigrid 78 7 43.179 78 103
1619 Ueta 39 6 2.717943 5 1 122 51
1623 Vivian −75 8 20.5235 77 58
1738 Oosterhoff −72 8 4.44896 109 105
1838 Ursa 47 17 16.1635 102 91
2086 Newell −60 12 78.09 10 1 24 84
3017 Petrovic −73 8 4.08037 3 1 114
3786 Yamada 56 2 4.03294 3 1 71
3896 Pordenone −32 9 4.00366 3 1 22 71
4209 Briggs −56 25 12.2530 2 1 64
4467 Kaidanovskij 54 13 19.1454 20 107
6179 Brett −42 20 9.4063 6 1 93
7055 1989 KB −61 11 4.16878 7 1 117
7360 Moberg −18 18 4.58533 3 1 103

Notes. For each asteroid, there is the mean ecliptic latitude β of the pole direction and its dispersion ∆. The other parameters have the same
meaning as in Table 1. The uncertainty of the sidereal rotational period corresponds to the last decimal place of P.

The typical error for the orientation of the pole is (5–
10◦)/cos β in longitude λ and 5–20◦ in latitude β. Both uncer-
tainties depend on the amount, timespan, and quality of used
photometry. Models based purely on dense photometry are typi-
cally derived from a large number (∼30–50) of individual dense
lightcurves observed during about five to ten apparitions, and
thus the uncertainties of parameters of the rotational state cor-
respond to lower values of the aforementioned range. On the
other hand, models based on combined sparse-in-time data have
larger uncertainties, owing to the poor photometric quality of the
sparse data (corresponds to the upper bound of the aforemen-
tioned range).

Models of asteroids (281) Lucretia and (1188) Gothlandia
published by Hanuš et al. (2013) were recently determined also
by Kryszczyńska (2013) from partly different photometric data
sets. Parameters of the rotational state for both models agree
within their uncertainties.

The spin vector solution of asteroid (951) Gaspra based on
Galileo images obtained during the October 1991 flyby was al-
ready published by Davies et al. (1994b). Similarly, the solution
of a Koronis-family member (243) Ida based on Galileo images
and photometric data was previously derived by Davies et al.
(1994a) and Binzel et al. (1993). Here we present convex shape
models for both these asteroids. Our derived pole orientations
agree within only a few degrees with the previously published
values (see Table 5), which again demonstrates the reliability of
the lightcurve inversion method.

2.3. Family members and interlopers

We revise the family membership assignment by the HCM ac-
cording to the criteria described above for interlopers or border-
line cases. Interlopers are asteroids that do not clearly belong to

the family; for example, they have different taxonomic types or
incompatible albedos or are far from the (ap, H) border. On the
other hand, borderline cases cannot be directly excluded from
the family, since their physical or orbital properties are just not
typical in the context of other members (higher/lower albedos,
close to the (ap, H) border). These asteroids are possible family
members, but can just as easily be interlopers. In the penultimate
column of Table 5, we show our revised membership classifica-
tion for each object (M is a member, I an interloper, and B a
borderline case), the table also gives the rotational state of the
asteroid (the ecliptic coordinates of the pole orientation λ and β
and the period P), the semi-major axis a, the diameter D, and
the albedo pV from WISE (Masiero et al. 2011), the SMASS II
(Bus & Binzel 2002), and Tholen (Tholen 1984, 1989) taxo-
nomic types, and the reference to the model).

Although we got several members by the HCM for Vesta
and Nysa/Polana families, we excluded these two families from
further study of spin states. The Vesta family was created by a
cratering event, and thus a majority of the fragments are rather
small and beyond the capabilities of the model determination.
Most of the models we currently have (recognized by the HCM)
are not compatible with the SFD of the Vesta family and thus are
interlopers. On the other hand, Nysa/Polana family is a complex
of two families (of different age and composition), hence should
be treated individually. Additionally, we only have five member
candidates for the whole complex, so even if we assign them to
the subfamilies, the numbers would be too low to make any valid
conclusions.

In Table 4, we list asteroids for which the HCM suggested a
membership in families Flora, Koronis, Eos, Eunomia, Phocaea
and Alauda, but using the additional methods for the family
membership determination described above, we identified them
as interlopers or borderline cases. In Fig. 3, we show the (ap, H)
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Fig. 3. Dependence of the absolute magnitude H on the proper semi-major axis ap for the eight families: Flora, Koronis, Eos, Eunomia, Phocaea,
Themis, Maria and Alauda with the likely positions of the family centers (vertical lines). We also plot the possible range of the (ap, H) borders
(two thick lines) of each family for values of the parameter C from Brož et al. (2013) (different values correspond to a different initial extent of the
family or different age and magnitude of the Yarkovsky semi-major axis drift.). The pink triangles represent the members from our sample (M),
green circles borderline cases (B) and blue circles interlopers (I). Borderline cases and interlopers are identified by several methods including the
position in the (ap, H) diagram, and thus could also lie close to the center of the family (e.g., in the case of the Flora family).

diagrams for all eight studied families. We plotted the adopted
(ap, H) border (from Brož et al. 2013) and labeled the members,
borderline cases, and interlopers by different colors.

Several asteroids in our sample belong to smaller
and younger subclusters within the studied families (e.g.,
(832) Karin in the Koronis family, (1270) Datura in the Flora
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family, or (2384) Schulhof in the Eunomia family). These sub-
clusters were probably created by secondary collisions. As a
result, the spin states of asteroids in these subclusters were
randomly reoriented. Because our combined orbital- and spin-
evolution model (see Sect. 4) includes secondary collisions
(reorientations), using asteroids from subclusters in the study
of the spin-vector distribution is thus essential: asteroids from
subclusters correspond to reoriented asteroids in our synthetic
population.

3. Observed spin vectors in families

There are eight asteroid families for which we find at least three
members (together with borderline cases) in our data set of as-
teroid models (after the family membership revision, labeled by
M or B in the last column of Table 5) – Flora (38 members),
Koronis (23), Eos (16), Eunomia (14), Phocaea (11), Themis (9),
Maria (9), and Alauda (3) families. Now that we have the mod-
els and membership, we can proceed to the discussion of the spin
states in families in general (Sect. 3.1), and for families Flora and
Koronis (Sects. 3.2, 3.3).

3.1. Spin-vector orientations in individual families

In Fig. 4, we show the dependence of asteroid’s pole latitudes
in ecliptic coordinates on the semi-major axes. If there are two
possible pole solutions for an asteroid, we take the first one in
Table 1, because it corresponds to a formally better solution, ad-
ditionally, latitudes for both ambiguous models are usually sim-
ilar. To determine the centers of families, we use all members of
each family assigned by the HCM, see Figs. 1 and 3. The Eos
family has an asymmetric V-shape (the (ap, H) diagram), so we
compute centers for both wings of the V-shape individually. For
the Flora family, we use only the right wing of the V-shape to
derive the center, while the left one is strongly affected by the ν6
secular resonance.

In the study of spin-vector properties in families, we simply
use the ecliptic coordinates for the pole orientation: ecliptic lon-
gitude λ and latitude β. A formally better approach would be to
use the coordinates bound to the orbital plane of the asteroid:
orbital longitude λorb and latitude βorb. The orbital latitude can
then be easily transformed to obliquity, which directly tells us
whether the asteroid rotates in a prograde or retrograde sense.
However, for several reasons, we prefer the ecliptic coordinates:
(i) most of the asteroids have low inclinations and thus the dif-
ferences between their ecliptic and orbital latitudes are only a
few degrees, and the maximum differences for the families with
higher inclination (Eos, Eunomia, Phocaea, Maria) are 20–30◦;
(ii) the orbital coordinates of the pole direction cannot be com-
puted for partial models, because we do not know the ecliptic
longitude, these models represent about 20% of our studied sam-
ple; (iii) the positions of the asteroids in the (ap, β) diagrams
(i.e., to which quadrant they belong), namely if they have β > 0◦
or β < 0◦, are sufficient information. Because most of the as-
teroids have latitudes larger than 30◦, their positions in the (ap,
βorb) are similar (not true only for three asteroids out of 136);
and (iv) we compare the (ap, β) diagrams (numbers of objects in
the quadrants) between the observed and synthetic populations
for ecliptic latitudes, so the consistency is assured.

In general, we observe similar trends for all studied families:
(i) larger asteroids are situated in the proximity of the center
of the family; (ii) asteroids with β > 0◦ are usually found to
the right of the family center; (iii) asteroids with β < 0◦ are to
the left of the center; (iv) the majority of asteroids have large
pole-ecliptic latitudes (|β| � 30◦); and finally (v) some families

have a statistically significant excess of asteroids with β > 0◦ or
β < 0◦.

Case (i) is evident for families Flora, Eunomia, Phocaea,
Themis, or Maria. We have no large asteroids in the samples
for the remaining families.

Cases (ii) and (iii) are present among all families with the
exception of Eos, where all the asteroids are close to the (badly
constrained) center. This phenomenon can be easily explained
by the Yarkovsky drift, which can change asteroid’s semi-major
axes a; that is, it can increase a of prograde rotators, and de-
crease a of retrograde once. The magnitude of the Yarkovsky
drift is dependent on the asteroid size, is negligible for asteroids
with diameters D >∼ 50 km (the case of Eos), and increases with
decreasing diameter. For the Flora, Eunomia, Phocaea, or Maria
families, we can see that the smallest asteroids in the sample
(D ∼ 5–10 km) can be situated far from the family center, and
we can also notice a trend toward decreasing size with increasing
distance from the center that probably corresponds to the magni-
tude of the Yarkovsky effect and the initial velocities vini(D) that
the objects gained after the break-up.

Observation (iv) is a result of the dynamical evolution of
the asteroid’s spin vector orientations dominated by the YORP
effect, which increases the absolute value of the pole-ecliptic
latitude. See papers Hanuš et al. (2011, 2013), where this ef-
fect is numerically investigated and compared with the ob-
served anisotropic spin vector distribution of the sample of
∼300 MBAs.

Case (v) concerns families Flora, Eunomia, Phocaea,
Themis, and Maria. The different number of asteroids with
β > 0◦ and β < 0◦ among these families is statistically signifi-
cant and cannot be coincidental. The obvious choice for an ex-
planation are mean-motion or secular resonances. Indeed, the ν6
secular resonance removed many objects with β > 0◦ from the
Flora family (see Sect. 3.2 for a more thorough discussion). The
8:3 resonance with Jupiter truncated the Eunomia family, which
resulted in there being no objects with ap > 2.70 AU; similarly,
the 3:1 resonance with Jupiter affected the Maria family, for
which we do not observe objects with smaller ap than 2.52 AU.
The 3:1 resonance with Jupiter is situated near the Phocaea fam-
ily at a = 2.50 AU. Due to the high inclination of objects in the
Phocaea family (I ∼ 24◦), the resonance affects asteroids with
ap > 2.40 AU, which corresponds to the probable center of the
family. The resonance removed a significant number of objects
between 2.40 AU and 2.45 AU, and all objects with larger ap.

The asymmetry of asteroids with β > 0◦ and β < 0◦ in
the Themis family is caused by a selection effect: in the fam-
ily, there are no objects with absolute magnitude H < 12 mag
(i.e., large asteroids) and ap < 3.10 AU. On the other hand, with
ap > 3.10 AU, there are more than a hundred such asteroids (see
Fig. 1a). Our sample of asteroid models derived by the lightcurve
inversion method is dominated by larger asteroids, so it is not
surprising that we did not derive models for the Themis family
asteroids with ap < 3.10 AU. The Flora and Koronis families are
also interesting for other aspects, and thus are discussed in more
detail in Sects. 3.2 and 3.3.

3.2. The Flora family

The Flora cluster is situated in the inner part of the main belt be-
tween 2.17–2.40 AU, and its left part (with respect to the (ap, H)
diagram) is strongly affected by the secular ν6 resonance with
Saturn, which is demonstrated in Fig. 1b. The probable cen-
ter of the family matches the position of asteroid (8) Flora at
a = 2.202 AU. Because of the relative proximity to the Earth,
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Fig. 4. Dependence of the pole latitude β on the proper semi-major axis ap for eight studied asteroid families: Flora, Koronis, Eos, Eunomia,
Phocaea, Themis, Maria, and Alauda. Family members are marked by circles and borderline cases by squares, whose sizes are scaled proportionally
to diameters. Only the scale for (15) Eunomia was decreased by half to fit the figure. The vertical lines correspond to the likely centers of the
asteroid families, whose uncertainties are usually <0.01 AU. The Eos family has an asymmetric V-shape (the (ap, H) border is asymmetric), which
makes the center determination harder, so we marked two possible positions. One corresponds to the right (ap, H) border, the second to the left
border. The uncertainties in β are usually 5–20◦. In most cases, the value of |β| � 30◦, hence the quadrant to which the asteroid belongs (defined
by the center of the family and the value β = 0◦), is not changed.

more photometric measurements of smaller asteroids are avail-
able than for more distant families, and thus more models were

derived. So far, we identified 38 models of asteroids that belong
to the Flora family (together with borderline cases).
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The majority of asteroids within this family have β > 0◦
(∼68%; due to small inclinations of the family members, the
majority of the objects with β > 0◦ are definitely prograde ro-
tators, because their obliquities are between 0◦ and 90◦) and lie
to the right of the center of the family, confirming the presence
of the Yarkovsky drift. Nine out of twelve asteroids with β < 0◦
can be found in Fig. 4 near to or to the left of the center of the
family. The exceptions are the borderline asteroids (1703) Barry
and (7360) Moberg, and asteroid (7169) Linda with ap close
to 2.25 AU (see Fig. 4). The borderline category already sug-
gests that the two asteroids could be possible interlopers, and
their rotational state seems to support this statement. However,
it is also possible that these asteroids have been reoriented by
noncatastrophic collisions. The rotational state of another bor-
derline asteroid (800) Kressmannia also does not agree with the
Yarkovsky/YORP predictions, so it could be an interloper (or
reoriented). The asteroid (7169) Linda classified as a member
could still be an interloper, which was not detected by our meth-
ods for interloper removal, or could have recently been reori-
ented by a noncatastrophic collision. The typical timescale for a
reorientation (Farinella et al. 1998, see Eq. (5)) of this 4km-sized
asteroid with rotational period P = 27.9 h is τreor ∼ 500 Myr,
which is comparable to the age of the family. The depopulation
of poles close to the ecliptic plane is also clearly visible.

The ν6 resonance to the left of the center of the family cre-
ates an excess of retrograde rotators not only among the family,
but also among the whole main belt population if we use the
currently available sample of asteroid models (there are ∼300
asteroid models in the DAMIT database). In the Flora family,
there are 14 more asteroids with β > 0◦ than with β < 0◦ (i.e, we
have a prograde excess), which corresponds to about 6% of the
whole sample. This bias needs to be taken into consideration, for
example, in the study of rotational properties among MBAs.

The missing asteroids with β < 0◦ were delivered by this
resonance to the orbits crossing the orbits of terrestrial planets
and are responsible, for example, for the retrograde excess of
the NEAs (La Spina et al. 2004). The ν6 resonance contributes
to the NEA population only by retrograde rotators, and other
major mean-motion resonances, such as the 3:1 resonance with
Jupiter, deliver both prograde and retrograde rotators in a similar
amount.

We did not observe a prograde group of asteroids with simi-
lar pole-ecliptic longitudes in the Flora family (i.e., a direct ana-
log of the Slivan state in the Koronis family) that was proposed
by Kryszczyńska (2013). Although Kryszczyńska (2013) claims
that Slivan states are likely to be observed in the Flora family,
no corresponding clustering of poles of the prograde rotators is
shown, particularly for ecliptic longitudes. We believe that the
term Slivan state was used incorrectly there.

3.3. The Koronis family

The Koronis family is located in the middle main belt between
2.83–2.95 AU with the center at a = 2.874 AU. We identi-
fied 23 members (together with borderline cases) with deter-
mined shape models. The concept given by the Yarkovsky and
YORP predictions also work among the Koronis family (aster-
oids with β < 0◦ lie to the left from the family center, as-
teroids with β > 0◦ to the right, see Fig. 4). In addition to
that, Slivan (2002) and Slivan et al. (2003) noticed that pro-
grade rotators have also clustered pole longitudes. These aster-
oids were trapped in a secular spin-orbital resonance s6 and are
referred to as being in Slivan states (Vokrouhlický et al. 2003).
Several asteroids were later recognized as being incompatible

with the Slivan states, such as (832) Karin and (263) Dresda
by Slivan & Molnar (2012). Asteroid (832) Karin is the largest
member of a young (∼5.8 Myr, Nesvorný & Bottke 2004) col-
lisional family that is confined within the larger Koronis family.
The spin state of (832) Karin was thus probably affected during
this catastrophic event and changed to a random state. Asteroid
(263) Dresda could be randomly reoriented by a noncatastrophic
collision that is likely to happen for at least a few of 27 asteroids
in the Koronis cluster with known spin state solutions, or its ini-
tial rotational state and shape did not allow a capture in the res-
onance. All four borderline asteroids have rotational states that
agree with the Yarkovsky/YORP concept, which may support
their membership in the Koronis cluster. On the other hand, ro-
tational states of asteroids (277) Elvira and (321) Florentina do
not match the expected values, and thus could again be interlop-
ers or be affected by reorientations.

Being trapped in the spin-orbital resonance does not neces-
sarily mean that the asteroid is a member of the Koronis family.
It rather indicates that its initial orbital position, the rotational
state, and the shape were favorable to being trapped in the res-
onance. For example, asteroids (311) Claudia, (720) Bohlinia,
(1835) Gajdariya, and (3170) Dzhanibekov have expected rota-
tional states but are either rejected from the Koronis family or
classified as borderline cases by our membership revision.

4. Long-term evolution of spin vectors in asteroid

families

Here we present a comparison of the observed spin-vector orien-
tations in several asteroid families with a numerical model of the
temporal spin-vector evolutions. We used a combined orbital-
and spin-evolution model, which was described in detail in Brož
et al. (2011). We need to account for the fact that the Yarkovsky
semi-major axis drift is sensitive to the orientation of the spin
axis, which is in turn affected by the YORP effect and nondis-
ruptive collisions. This model includes the following processes,
which are briefly described in the text: (i) impact disruption;
(ii) gravitational perturbations of planets; (iii) the Yarkovsky ef-
fect; (iv) the YORP effect; (v) collisions and spin-axis reorienta-
tions; and (vi) mass shedding.

Impact disruption. To obtain initial conditions for the family
just after the breakup event, we used a very simple model of an
isotropic ejection of fragments from the work of Farinella et al.
(1994). The distribution of velocities “at infinity” follows the
function

dN(v)dv = C′v
(
v2 + v2esc

)−(α+1)/2
dv, (1)

with the exponent α as a free parameter, C′ a normalization con-
stant and vesc the escape velocity from the parent body, which
is determined by its size DPB and mean density ρPB as vesc =√

(2/3)πGρPB DPB. The distribution is usually cut at a selected
maximum-allowed velocity vmax to prevent outliers. The initial
velocities |v| of individual bodies are generated by a straightfor-
ward Monte-Carlo code, and the orientations of the velocity vec-
tors u in space are assigned randomly. We also assume that the
velocity of fragments is independent of their size.

We must also select initial osculating eccentricity ei of the
parent body, initial inclination ii, as well as true anomaly fimp
and argument of perihelionωimp at the time of impact disruption,
which determine the initial shape of the synthetic family just
after the disruption of the parent body.
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Gravitational perturbations of planets. Orbital integrations
were performed using the SWIFT package (Levison & Duncan
1994), slightly modified to include necessary online digital fil-
ters and a second-order symplectic integrator (Laskar & Robutel
2001). The second-order symplectic scheme allows us to use a
timestep up to ∆t = 91 d.

Our simulations included perturbations by four outer planets,
with their masses, initial positions and velocities taken from the
JPL DE405 ephemeris (Standish et al. 1997). We modified the
initial conditions of the planets and asteroids by a barycentric
correction to partially account for the influence of the terrestrial
planets. The absence of the terrestrial planets as perturbers is a
reasonable approximation in the middle and outer parts of the
main belt (for orbits with a > 2.5 AU and e < 0.6)8.

Synthetic proper elements are computed as follows. We first
apply a Fourier filter to the (nonsingular) orbital elements in a
moving window of 0.7 Myr (with steps of 0.1 Myr) to eliminate
all periods smaller than some threshold (1.5 kyr in our case). We
use a sequence of Kaiser windows as in Quinn et al. (1991).

The filtered signal, which are mean orbital elements, is
then passed through a frequency analysis code adapted from
Šidlichovský & Nesvorný (1996) to obtain (planetary) forced
and free terms in Fourier representation of the orbital elements.
The isolated free terms are what we use as the proper orbital
elements.

Yarkovsky effect. Both diurnal and seasonal components of the
Yarkovsky accelerations are computed directly in the N-body
integrator. We used a theory of Vokrouhlický (1998) and
Vokrouhlický & Farinella (1999) for spherical objects (but the
magnitude of the acceleration does not differ substantially for
nonspherical shapes Vokrouhlický & Farinella 1998). The im-
plementation within the SWIFT integrator is described in detail
by Brož (2006).

YORP effect. The evolution of the orientation of the spin axis
and of the angular velocity is given by

dω
dt
= c fi(ǫ), i = 1 . . . 200, (2)

dǫ
dt
= c
gi(ǫ)
ω
, (3)

where f - and g-functions describing the YORP effect for a
set of 200 shapes were calculated numerically by Čapek &
Vokrouhlický (2004) with the effective radius R0 = 1 km and
the bulk density ρ0 = 2500 kg/m3, located on a circular orbit
with the semi-major axis a0 = 2.5 AU. We assigned one of the
artificial shapes (denoted by the index i) to each individual as-
teroid from our sample. The f - and g-functions were then scaled
by the factor

c = cYORP

(
a

a0

)−2 (
R

R0

)−2 (
ρbulk

ρ0

)−1

, (4)

where a, R, and ρbulk denote the semi-major axis, the radius, and
the density of the simulated body, respectively, and cYORP is a
free scaling parameter reflecting our uncertainty in the shape

8 For the Flora family located in the inner belt, we should account
for terrestrial planets directly, because of mean-motion resonances with
Mars, but we decided not do so to speed the computation up. Anyway,
the major perturbation we need to account for is the ν6 secular reso-
nance, which is indeed present in our model.

models and the magnitude of the YORP torque, which depends
on small-sized surface features (even boulders, Statler 2009)
and other simplifications in the modeling of the YORP torque.
In Hanuš et al. (2013), we constrained this parameter and find
cYORP = 0.2 to be the optimal value when comparing the results
of the simulation with the observed latitude distribution of main
belt asteroids. In our simulation, we used this value for cYORP.

The differential Eqs. (2) and (3) are integrated numerically
by a simple Euler integrator. The usual time step is ∆t = 1000 yr.

Collisions and spin-axis reorientations. We neglected the ef-
fect of disruptive collisions because we do not want to lose ob-
jects during the simulation, but we included spin axis reorienta-
tions caused by collisions. We use an estimate of the timescale
by Farinella et al. (1998).

τreor = B

(
ω

ω0

)β1
(

D

D0

)β2

, (5)

where B = 84.5 kyr, β1 = 5/6, β2 = 4/3, D0 = 2 m, and ω0
corresponds to period P = 5 h. These values are characteristic of
the main belt.

Mass shedding. If the angular velocity approaches a critical
value

ωcrit =

√
4
3
πGρbulk, (6)

we assume a mass shedding event, so we keep the orientation of
the spin axis and the sense of rotation, but we reset the orbital
period P = 2π/ω to a random value from the interval (2.5, 9) h.
We also change the assigned shape to a different one, since any
change in shape may result in a different YORP effect.

Synthetic Flora, Koronis, and Eos families. In Fig. 5 (top
panel), we show a long-term evolution of the synthetic Flora
family in the proper semi-major axis ap vs. the pole latitude β
plane for objects larger and smaller than 30 km. The values of the
model parameters are listed in the figure caption. Larger aster-
oids do not evolve significantly and remain close to their initial
positions. On the other hand, smaller asteroids (D < 30 km) are
strongly affected by the Yarkovsky and YORP effects: They drift
in the semi-major axis, differently for prograde and retrograde
rotators, and their pole orientations become mostly perpendicu-
lar to their orbits (corresponding to the proximity of the ecliptic
plane for small inclinations). After the simulation at t = 1 Gyr,
we observe a deficiency of asteroids with β > 0◦ to the left of
the family center and a deficiency of asteroids with β < 0◦ to the
right of the family center.

The asymmetry of the synthetic Flora family with respect to
its center (Fig. 5) caused by the secular ν6 resonance is obvious.
The own-right hand quadrant (β < 0◦, ap > 2.202 AU) still con-
tains many objects for t = 1 Gyr, because for some of them the
evolution in β and ap is rather small, and others were delivered
to this quadrant by collisional reorientations.

The appearance of the evolved proper semi-major axis ap
vs. the pole latitude β diagrams for Koronis and Eos families
are qualitatively similar to the one of the Flora family. Because
the asteroid samples for Koronis and Eos families are dominated
by intermediate-sized asteroids (D ∼ 20−50 km), the evolution
in ap and β is on average slower than in the Flora family. We
show the state of the simulation for Koronis family in 4 Gyr and
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Fig. 5. A simulation of the long-term evolution of the synthetic Flora (top), Koronis (middle) and Eos (bottom) families in the proper semi-major
axis ap vs. the pole latitude β plane. Left: objects larger than D > 30 km, which almost do not evolve in β. Right: objects with D ≤ 30 km, with
the initial conditions denoted by empty circles and an evolved state at 1 Gyr denoted by full circles. The sizes of symbols correspond to the actual
diameters D. The initial conditions for Flora correspond to an isotropic size-independent velocity field with α = 3.25 and vesc = 95 m s−1, and a
uniform distribution of poles (i.e. sin β). We increase the number of objects 10 times compared to the observed members of the Flora (Koronis
and Eos as well) family to improve statistics. We retain their size distribution, of course. The objects in Flora family are discarded from these
plots when they left the family region (eccentricity ep = 0.1 to 0.18, inclination sin Ip = 0.05 to 0.13), because they are affected by strong mean-
motion or secular resonances (ν6 in this case). Thermal parameters were set as follows: the bulk density ρbulk = 2500 kg m−3, the surface density
ρsurf = 1500 kg m−3, the thermal conductivity K = 0.001 W m−1 K−1, the thermal capacity Ct = 680 J kg−1, the Bond albedo A = 0.1, and the
infrared emissivity ǫ = 0.9. The time step for the orbital integration is dt = 91 days and dtspin = 103 yr for the (parallel) spin integration. The
parameters for Koronis and Eos are chosen similarly, only for Koronis do we use vesc = 100 m s−1, and vesc = 225 m s−1 and ρsurf = 2500 kg m−3 for
Eos.

for Eos in 1.5 Gyr (based on the expected ages). The Eos family
thus seems less evolved than the Koronis family.

We also checked the distributions of the proper eccentrici-
ties and inclinations of the synthetic Flora/Koronis/Eos objects
for whether they (at least roughly) correspond to the observed
family. However, the number of objects to compare is fairly low
and seems insufficient for any detailed comparison of distribu-
tions in 3D space of proper elements (ap, ep, sin Ip).

Ages of the Flora, Koronis, and Eos families. To quantitatively
compare the simulation of the long-term evolution of the syn-
thetic families in the proper semi-major axis ap vs. the pole lati-
tude β plane with the observation, we constructed the following
metric: we divide the (ap, β) plane into four quadrants defined by
the center of the family and value β = 0◦ and compute the ratio
(k2 + k4)/(k1 + k3), where ki correspond to the numbers of syn-
thetic objects in quadrants i (i = 1, 2, 3, 4). In Fig. 6, we show the
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Fig. 6. Time evolution of the metric (k2 + k4)/(k1 + k3), where ki corre-
spond to the numbers of synthetic objects in quadrants i (i = 1, 2, 3, 4)
that are defined by the center of the family and value β = 0◦, for syn-
thetic Flora, Koronis, and Eos families (red lines). The spread corre-
sponds to 100 different selections of objects (we simulate 10 times more
objects to reach a better statistics). the upper curve denotes the 90%
quantile and the bottom 10%. Thick horizontal line is the observed ra-
tio (k2 + k4)/(k1 + k3) with the uncertainty interval.

evolution of the metric (k2 + k4)/(k1 + k3) during the simulation
of families Flora, Koronis, and Eos for all synthetic objects with
D < 30 km, and the value of the same metric for the observed
population for comparison.

For the Koronis family (middle panel), the synthetic ratio
reaches the observed one after t = 2.5 Gyr and remains similar
until the end of the simulation at t = 4 Gyr. Bottke et al. (2001)
published the age t = (2.5 ± 1.0) Gyr for the Koronis family.
Unfortunately, we cannot constrain the age of the Eos family
from this simulation owing to objects with the relatively small
evolution in ap and β. The fit for the Flora family is not ideal,
and the reason could be differences in the initial velocity field or
the true anomaly fimp of the impact. The best agreement is for
the age t = (1.0±0.5) Gyr, which is approximately in agreement
with the dynamical age in Nesvorný et al. (2005): (1.5±0.5) Gyr.

5. Conclusions

We have identified 152 asteroids for which we have convex
shape models, and simultaneously the HCM identifies them as
members of ten collisional families. Owing to a large number

of expected interlopers in families Vesta and Nysa/Polana, we
excluded these families from the study of the rotational proper-
ties. In the remaining sample of asteroids from eight families,
we identified ∼20% of objects that are interlopers or border-
line cases (see Table 4). We used several methods, described in
Sect. 2.1, for their identification. The borderline cases are still
possible members of the families and thus were included in our
study of the spin-vector distribution.

From the dependence of the asteroid’s pole latitudes on the
semi-major axes, plotted in Fig. 4, we can see fingerprints of
families spreading in a and spin axis evolution due to Yarkovsky
and YORP effects: Asteroids with β < 0◦ lie on the left side of
the center of the family, and asteroids with β > 0◦ on the right
side. The asymmetry with respect to the family centers is in most
cases caused by various resonances that cut the families, and in
the case of Themis family, a selection effect is responsible.

However, we did not observe perfect agreement with the
Yarkovsky and YORP effects predictions. A few individual ob-
jects (eight) that have incompatible rotational states could (i) be
incorrectly determined; (ii) be interlopers; (iii) have initial rota-
tional states that only cause a small evolution in the (ap, β) space
(i.e., they are close to their initial positions after the break-up);
or (iv) be recently reoriented by collisional events.

In the case of the Flora family, significantly fewer asteroids
with β < 0◦ (∼32%) than with β > 0◦ (∼68%) are present. The
secular ν6 resonance is responsible for this strong deficit, be-
cause objects with β < 0◦ are drifting towards this resonance
and are subsequently removed from the family. They become
part of the NEAs population where they create an excess of ret-
rograde rotators. We did not find any analog of the Slivan states
(observed in the Koronis family) among any other of the studied
families.

We simulated a long-term evolution of the synthetic Flora,
Koronis, and Eos families (Fig. 5) in the proper semi-major
axis ap vs the pole latitude β plane and compared the results with
the properties of observed asteroid families. We obtained a good
qualitative agreement between the observed and synthetic spin-
vector distributions. For all three families, we computed evolu-
tion of the number of objects in the four quadrants of the families
in the (ap, β) diagram, and we estimated ages for families Flora
(1.0 ± 0.5) Gyr and Koronis (2.5 to 4 Gyr) that agree with pre-
viously published values. However, we did not estimate the age
of the Eos family due to a small evolution of the objects in the
(ap, β) diagram.

The uncertainties seem to be dominated by the observed
quadrant ratios. We expect that increasing the sample size by
a factor of 10 would decrease the relative uncertainty by a factor
of about 3, which is a good motivation for further work on this
subject.
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Table 3. Observations not included in the UAPC used for successful model determinations.

Asteroid Date Observer Observatory (MPC code)
364 Isara 2009 5–2009 05 Warner (2009) Palmer Divide Observatory (716)
391 Ingeborg 2000 8–2000 12 Koff et al. (2001) Antelope Hills Observatory, Bennett (H09)
502 Sigune 2007 6 – 2007 6 Stephens (2007b) Goat Mountain Astronomical Research Station (G79)
553 Kundry 2004 12–2005 1 Stephens (2005) Goat Mountain Astronomical Research Station (G79)
616 Elly 2010 1–2010 1 Warner (2010) Palmer Divide Observatory (716)

2010 2–2010 2 Durkee (2010) Shed of Science Observatory, USA (H39)
621 Werdandi 2012 1 22.9 Strabla et al. (2012) Bassano Bresciano Observatory (565)

2012 1–2012 2 Strabla et al. (2012) Organ Mesa Observatory (G50)
1307 Chimmeria 2004 9–2004 9 Warner (2005) Palmer Divide Observatory (716)
1396 Outeniqua 2006 3–2006 3 Warner (2006) Palmer Divide Observatory (716)
1446 Sillanpaa 2009 3–2009 3 Higgins1 Hunters Hill Observatory, Ngunnawal (E14)
1464 Armisticia 2008 1–2008 1 Brinsfield (2008b) Via Capote Sky Observatory, Thousand Oaks (G69)
1619 Ueta 2010 9–2010 10 Higgins (2011) Hunters Hill Observatory, Ngunnawal (E14)

2010 9–2010 9 Stephens (2011b) Goat Mountain Astronomical Research Station (G79)
1633 Chimay 2008 4–2008 4 Brinsfield (2008a) Via Capote Sky Observatory, Thousand Oaks (G69)
1987 Kaplan 2000 10–2000 10 Warner (2001, 2011) Palmer Divide Observatory (716)

2011 12–2011 12 Warner Palmer Divide Observatory (716)
2086 Newell 2007 1–2007 2 Stephens (2007c) Goat Mountain Astronomical Research Station (G79)
2403 Bruce Helin 2006 9–2006 9 Higgins1 Hunters Hill Observatory, Ngunnawal (E14)
3279 Solon 2006 11–2006 11 Stephens (2007a) Goat Mountain Astronomical Research Station (G79)
3492 Petra-Pepi 2011 6–2011 7 Stephens (2011a) Goat Mountain Astronomical Research Station (G79)
3786 Yamada 2002 7–2002 8 Stephens (2003) Goat Mountain Astronomical Research Station (G79)
3896 Pordenone 2007 10–2007 10 Higgins1 Hunters Hill Observatory, Ngunnawal (E14)
4209 Briggs 2003 9–2003 9 Warner (2004) Palmer Divide Observatory (716)
4399 Ashizuri 2008 6–2008 6 Brinsfield (2008a) Via Capote Sky Observatory, Thousand Oaks (G69)
4606 Saheki 2009 1–2009 3 Brinsfield (2009) Via Capote Sky Observatory, Thousand Oaks (G69)
6159 1991 YH 2006 3–2006 3 Warner (2006) Palmer Divide Observatory (716)
6179 Brett 2009 4–2009 4 Warner & Pray (2009) Palmer Divide Observatory (716)
6262 Javid 2010 2–2010 2 PTF2

6403 Steverin 2004 9–2004 9 Warner (2005) Palmer Divide Observatory (716)
7043 Godart 2008 8–2008 8 Durkee Shed of Science Observatory, USA (H39)

2008 8–2008 9 Pravec et al. (2012) Goat Mountain Astronomical Research Station (G79)
7055 1989 KB 2007 5–2007 5 Stephens (2007b) Goat Mountain Astronomical Research Station (G79)

2007 5–2007 6 Higgins1 Hunters Hill Observatory, Ngunnawal (E14)
7169 Linda 2006 8–2006 8 Higgins & Goncalves (2007) Hunters Hill Observatory, Ngunnawal (E14)
7360 Moberg 2006 4–2006 4 Oey (2006) Leura (E17)

Notes. (1) On line at http://www.david-higgins.com/Astronomy/asteroid/lightcurves.htm (2) Palomar Transient Factory survey (Rau
et al. 2009), data taken from Polishook et al. (2012).
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Table 4. List of asteroids for which the HCM alone suggests membership in families Flora, Koronis, Eos, Eunomia, Phocaea, and Alauda.

Asteroid Status Reason
Flora

9 Metis Interloper Far from the (ap, H) border, peculiar SFD
43 Ariadne Interloper Associated at vcutoff = 70 m/s, peculiar SFD

352 Gisela Borderline Associated at vcutoff = 70 m/s, big object
364 Isara Interloper Big, peculiar SFD, close to (ap, H) border
376 Geometria Interloper Far from the (ap, H) border, peculiar SFD
800 Kressmannia Borderline Associated at vcutoff = 70 m/s, lower albedo

1188 Gothlandia Borderline Associated at vcutoff = 70 m/s
1419 Danzing Interloper Far from the (ap, H) border
1703 Barry Borderline Associated at vcutoff = 70 m/s
2839 Annette Interloper Associated at vcutoff = 70 m/s, C type
7360 Moberg Borderline Redder (color from SDSS MOC4)

Koronis
167 Urda Borderline Close to the (ap, H) border
208 Lacrimosa Interloper Far from the (ap, H) border, peculiar SFD
311 Claudia Borderline Close to the (ap, H) border
720 Bohlinia Borderline Close to the (ap, H) border

1835 Gajdariya Interloper Close to the (ap, H) border, incompatible albedo
2953 Vysheslavia Borderline Close to the (ap, H) border
3170 Dzhanibekov Interloper Behind the (ap, H) border, incompatible albedo

Eos
423 Diotima Interloper Far from the (ap, H) border, big, C type
590 Tomyris Borderline Close to the (ap, H) border

Eunomia
85 Io Interloper Behind the (ap, H) border, peculiar SFD, incompatible albedo

390 Alma Borderline Borderline albedo, borderline in (ap, ep, Ip) space
4399 Ashizuri Borderline Close to the (ap, H) border

Phocaea
290 Bruna Borderline Close to the (ap, H) border
391 Ingeborg Interloper Clearly outside (ap, H)
852 Wladilena Borderline Slightly outside (ap, H)

1963 Bezovec Interloper C type, incompatible albedo (pV = 0.04)
5647 1990 TZ Interloper Incompatible albedo (pV = 0.64)

Themis
62 Erato Borderline Close to the (ap, H) border

1633 Chimay Borderline Close to the (ap, H) border
Maria

695 Bella Borderline Close to the (ap, H) border
714 Ulula Borderline Close to the (ap, H) border

Alauda
276 Adelheid Interloper Far from the (ap, H) border, big

Notes. By additional methods for determining family membership we identify them as interlopers or borderline cases. We also give the name of
the asteroid, the family membership according the HCM, if it is an interloper or a borderline case and the reason. Peculiar SFD means a size
frequency distribution that is incompatible with the SFD typically created by catastrophic collisions or cratering events (i.e., a large remnant, large
fragment, and steep slope). Quantity vcutoff corresponds to the cutoff value of the HCM for a particular family.
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Table 5. List of asteroids that (i) have been identified as members of the Flora, Koronis, Eos, Eunomia, Phocaea, Themis, Maria, Vesta, Nysa/Polana, and Alauda families by the HCM; and (ii) for
which shape models from LI are available in the DAMIT database or are newly derived.

Asteroid λ1 β1 λ2 β2 P ap D Bus/DeMeo Tholen pV M/I/B Reference
[deg] [deg] [deg] [deg] [hours] [AU] [km]

Flora
8 Flora 335 −5 155 6 12.8667 2.2014 141.0 − S 0.26± 0.05 M Torppa et al. (2003)
9 Metis 180 22 5.079177 2.3864 169.0 − S 0.13± 0.02 I Torppa et al. (2003)

43 Ariadne 253 −15 5.761987 2.2034 72.1 Sk S 0.23± 0.05 I Kaasalainen et al. (2002)
281 Lucretia 128 −49 309 −61 4.349711 2.1878 11.8 S SU 0.20± 0.01 M Hanuš et al. (2013)/Kryszczyńska (2013)
352 Gisela 205 −26 23 −20 7.48008 2.1941 26.7 Sl S 0.19± 0.02 B Hanuš et al. (2013)
364 Isara 282 44 86 42 9.15748 2.2208 35.2 − S 0.16± 0.03 I this work
376 Geometria 239 45 63 53 7.71098 2.2886 39.0 Sl S 0.19± 0.04 I Hanuš et al. (2011)
540 Rosamunde 301 81 127 62 9.34779 2.2189 20.3 − S 0.22± 0.05 M this work
553 Kundry 197 73 359 64 12.6025 2.2308 9.6 S − 0.25± 0.04 M this work
685 Hermia 197 87 29 79 50.387 2.2359 10.9 − − 0.28± 0.05 M Hanuš et al. (2011)
700 Auravictrix 67 46 267 51 6.074836 2.2295 20.6 − − 0.14± 0.05 M Kryszczyńska (2013)
800 Kressmannia 345 37 172 34 4.460964 2.1927 17.0 − S 0.15± 0.02 B Hanuš et al. (2011)
823 Sisigambis 86 74 146.58 2.2213 15.8 − − 0.23± 0.03 M Hanuš et al. (2011)
915 Cosette 350 56 189 61 4.46974 2.2277 12.3 − − 0.23± 0.04 M Ďurech et al. (2009)
951 Gaspra 20 23 198 15 7.04203 2.2097 12.2 S S 0.33± 0.13 M this work

19 21 Davies et al. (1994b)1

1056 Azalea 242 61 49 48 15.0276 2.2300 13.0 S − 0.25± 0.04 M Hanuš et al. (2013)
1088 Mitaka 280 −71 3.035378 2.2014 16.0 S S 0.16± 0.02 M Hanuš et al. (2011)
1185 Nikko 359 34 3.786149 2.2375 11.3 S S 0.20 M Hanuš et al. (2011)/Ďurech et al. (2009)
1188 Gothlandia 133 −84 335 −81 3.491820 2.1907 12.7 S − 0.25± 0.02 B Hanuš et al. (2013)/Kryszczyńska (2013)
1249 Rutherfordia 204 72 31 74 18.2183 2.2243 14.1 − S 0.22± 0.02 M Hanuš et al. (2013)
1270 Datura 60 76 3.358100 2.2347 8.2 − − 0.24 M Vokrouhlický et al. (2009)
1307 Cimmeria 63 2.820723 2.2505 10.1 − S 0.22± 0.02 B this work
1396 Outeniqua 62 3.08175 2.2480 11.7 − − 0.21± 0.01 M this work
1419 Danzig 22 76 193 62 8.11957 2.2928 14.1 − − 0.24± 0.05 I Hanuš et al. (2011)
1446 Sillanpaa 129 76 288 63 9.65855 2.2457 8.8 − − 0.21± 0.01 M this work
1514 Ricouxa 251 75 68 69 10.42467 2.2404 8.1 − − 0.18± 0.04 M Hanuš et al. (2011)
1518 Rovaniemi 62 60 265 45 5.25047 2.2255 9.0 − − 0.26± 0.04 M Hanuš et al. (2013)
1527 Malmquista 274 80 14.0591 2.2274 10.3 − − 0.22± 0.02 M this work
1619 Ueta 39 2.717943 2.2411 9.9 − S 0.25± 0.03 M this work
1675 Simonida 23 58 227 54 5.287962 2.2332 11.1 − − 0.25± 0.03 M Kryszczyńska (2013)
1682 Karel 232 32 51 41 3.37486 2.2388 7.1 − − 0.24 M Hanuš et al. (2011)
1703 Barry 46 −76 221 −71 107.04 2.2148 9.4 − − 0.22± 0.03 B this work
1738 Oosterhoff −72 4.44896 2.1835 8.7 S − 0.28± 0.04 M this work
1785 Wurm 11 57 192 47 3.26934 2.2359 6.2 S − 0.24 M Hanuš et al. (2013)
2017 Wesson 159 81 356 79 3.415579 2.2521 7.2 − − 0.20± 0.05 M Kryszczyńska (2013)
2094 Magnitka 107 57 272 48 6.11219 2.2323 12.1 − − 0.13± 0.01 M Hanuš et al. (2013)
2112 Ulyanov 151 61 331 61 3.04071 2.2547 7.5 − − 0.24 M Hanuš et al. (2013)
2510 Shandong 256 27 71 27 5.94638 2.2531 9.0 − S 0.20 M Hanuš et al. (2013)
2709 Sagan 308 −8 124 −16 5.25638 2.1954 6.8 S − 0.24 M Hanuš et al. (2013)
2839 Annette 341 −49 154 −36 10.4609 2.2166 7.6 − − 0.06± 0.01 I Hanuš et al. (2013)

Notes. For each asteroid, the table gives the spin state solution (i.e., ecliptic coordinates λ and β of the spin axis and the sidereal rotational period P, usually for both ambiguous pole solutions), the
proper semi-major axis ap, the diameter D and albedo pv based on WISE data (Masiero et al. 2011), the SMASS II taxonomy (Bus & Binzel 2002), the Tholen (Tholen 1984, 1989) taxonomical
type, the information if the asteroid is, according to our membership revision, a member (M), an interloper (I) or a borderline case (B), and the reference to the convex model. (1) The spin vector
solution of asteroid (951) Gaspra is based on Galileo images obtained during the October 1991 flyby. (2) The solution of asteroid (243) Ida is based on Galileo images and photometric data.
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Table 5. continued.

Asteroid λ1 β1 λ2 β2 P ap D Bus/DeMeo Tholen pV M/I/B Reference
[deg] [deg] [deg] [deg] [hours] [AU] [km]

3279 Solon 268 −70 8.1041 2.2027 5.9 − − 0.24 M this work
7043 Godart 73 62 235 80 8.4518 2.2447 5.7 − − 0.23± 0.04 M this work
7169 Linda 11 −60 198 −61 27.864 2.2487 4.5 − − 0.24 M this work
7360 Moberg −18 4.58533 2.2510 7.7 − − 0.22± 0.04 B this work

Flora
31383 1998 XJ94 110 −74 279 −63 4.16818 2.1853 4.1 − − 0.29± 0.03 M Hanuš et al. (2013)

Koronis
158 Koronis 30 −64 14.2057 2.8687 47.7 S S 0.14± 0.01 M Ďurech et al. (2011)

220 −68 35 −65 14.20569 Slivan et al. (2003)
167 Urda 249 −68 107 −69 13.06133 2.8535 44.0 Sk S 0.16± 0.04 B Ďurech et al. (2011)

225 −73 40 −75 13.06135 Slivan et al. (2003)
208 Lacrimosa 170 −68 350 −71 14.076919 2.8929 45.0 Sk S 0.17± 0.06 I Slivan et al. (2003)
243 Ida 259 −66 74 −61 4.633632 2.8616 28.0 S S 0.24± 0.07 M this work

263 −67 4.633632 Davies et al. (1994a); Binzel et al. (1993)2

263 Dresda 105 76 285 80 16.81387 2.8865 25.5 S − 0.18± 0.02 M Slivan et al. (2009)
277 Elvira 121 −84 29.69219 2.8856 31.2 − S 0.20± 0.05 M Hanuš et al. (2011)

50 −80 244 −81 29.69218 Slivan et al. (2009)
311 Claudia 214 43 30 40 7.5314 2.8976 25.8 − S 0.24± 0.03 B Hanuš et al. (2011)

209 48 24 48 7.53139 Slivan et al. (2003)
321 Florentina 264 −63 91 −60 2.870866 2.8856 34.0 S S 0.14± 0.01 M Slivan et al. (2003)
462 Eriphyla 108 35 294 34 8.65890 2.8737 41.9 S S 0.17± 0.02 M Slivan et al. (2009)
534 Nassovia 66 41 252 42 9.46889 2.8842 38.6 Sq S 0.12± 0.02 M Hanuš et al. (2011)

58 50 244 50 9.46896 Slivan et al. (2003)
720 Bohlinia 230 41 40 43 8.91862 2.8873 34.0 Sq S 0.20± 0.02 B Slivan et al. (2003)
832 Karin 242 46 59 44 18.35123 2.8644 16.3 − − 0.21± 0.05 M Hanuš et al. (2011)

230 42 52 42 18.352 Slivan & Molnar (2012)
1223 Neckar 252 28 69 30 7.82401 2.8695 25.7 − S 0.15± 0.03 M Hanuš et al. (2011)

259 41 73 40 7.82124 Slivan et al. (2003)
1289 Kutaissi 158 −79 338 −74 3.624174 2.8605 22.6 − S 0.16± 0.04 M Slivan et al. (2003)
1350 Rosselia 166 −72 8.14011 2.8580 21.1 Sa S 0.20± 0.05 M Hanuš et al. (2011)
1389 Onnie 183 −75 360 −79 23.0447 2.8661 14.7 − − 0.17± 0.04 M Hanuš et al. (2013)
1423 Jose 78 −82 12.3127 2.8602 20.0 S − 0.28± 0.04 M this work
1482 Sebastiana 262 −68 91 −67 10.48966 2.8723 17.6 − − 0.21± 0.05 M Hanuš et al. (2011)
1618 Dawn 39 −60 215 −51 43.219 2.8688 17.5 S − 0.15± 0.04 M this work
1635 Bohrmann 5 −38 185 −36 5.86427 2.8534 17.5 S − 0.21± 0.02 M Hanuš et al. (2011)
1742 Schaifers 56 52 247 68 8.53271 2.8892 16.6 − − 0.11± 0.02 M Hanuš et al. (2011)
1835 Gajdariya 34 74 204 69 6.33768 2.8331 12.8 − − 0.27± 0.04 I this work
2953 Vysheslavia 11 −64 192 −68 6.29453 2.8282 12.8 S − 0.25± 0.07 B Vokrouhlický et al. (2006a)
3170 Dzhanibekov 216 62 30 63 6.07167 2.9291 9.6 S − 0.30± 0.04 I Hanuš et al. (2013)
4507 1990 FV 137 50 307 51 6.57932 2.8689 11.0 − − 0.28± 0.02 M Hanuš et al. (2013)
6262 Javid 93 76 275 69 8.02054 2.9063 7.8 − − 0.29± 0.04 M this work

Eos
423 Diotima 351 4 4.775377 3.0684 177.3 C C 0.07± 0.00 I Marchis et al. (2006)
573 Recha 74 −24 252 −48 7.16585 3.0138 44.4 − − 0.13± 0.02 M Hanuš et al. (2011)
590 Tomyris 273 −47 120 −46 5.55247 3.0006 31.1 − − 0.18± 0.03 B Hanuš et al. (2011)
669 Kypria 31 40 190 50 14.2789 3.0114 29.2 − S 0.17± 0.02 M Hanuš et al. (2013)
807 Ceraskia 325 23 132 26 7.37390 3.0185 21.4 − S 0.21± 0.05 M Hanuš et al. (2013)
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Table 5. continued.

Asteroid λ1 β1 λ2 β2 P ap D Bus/DeMeo Tholen pV M/I/B Reference
[deg] [deg] [deg] [deg] [hours] [AU] [km]

1087 Arabis 334 −7 155 12 5.79499 3.0150 45.6 − S 0.10± 0.01 M Hanuš et al. (2011)
1148 Rarahu 148 −9 322 −9 6.54448 3.0161 26.3 K S 0.22± 0.06 M Hanuš et al. (2011)
1207 Ostenia 310 −77 124 −51 9.07129 3.0207 22.9 − − 0.13± 0.02 M Hanuš et al. (2011)
1286 Banachiewicza 214 62 64 60 8.63041 3.0223 22.6 − S 0.16± 0.03 M this work
1291 Phryne 106 35 277 59 5.58414 3.0130 22.4 − − 0.19± 0.04 M Hanuš et al. (2011)
1339 Desagneauxa 65 9.37510 3.0211 26.1 − S 0.12± 0.02 M this work
1353 Maartje 266 73 92 57 22.9927 3.0120 42.2 − − 0.07± 0.00 M this work
1464 Armisticia 194 −54 35 −69 7.46699 3.0035 23.3 − − 0.13± 0.36 M this work
2957 Tatsuo 88 57 246 37 6.82042 3.0221 22.9 K − 0.29± 0.02 M Hanuš et al. (2013)
3896 Pordenone −32 4.00366 3.0057 20.0 − − 0.13± 0.01 M this work
5281 Lindstrom 238 −72 84 −81 9.2511 3.0125 20.0 − − M Hanuš et al. (2013)

19848 Yeungchuchiu 66 −70 190 −67 3.45103 3.0075 13.2 − − 0.21± 0.03 M Hanuš et al. (2013)
Eunomia

15 Eunomia 363 −67 6.082752 2.6437 259.0 S S 0.21± 0.06 M Kaasalainen et al. (2002)
85 Io 95 −65 6.87478 2.6537 161.0 B FC 0.06± 0.03 I Ďurech et al. (2011)

390 Alma 54 −48 263 −73 3.74117 2.6517 31.2 − DT 0.13± 0.02 B Hanuš et al. (2013)
812 Adele 301 44 154 69 5.85745 2.6594 13.6 − − 0.24± 0.03 M Hanuš et al. (2013)

1333 Cevenola 8 −79 201 −40 4.87933 2.6336 17.1 − − 0.17± 0.04 M Hanuš et al. (2011)
1495 Helsinki 356 −33 5.33131 2.6392 13.3 − − 0.23± 0.02 M Hanuš et al. (2013)
1503 Kuopio 170 −86 27 −61 9.9586 2.6263 18.4 − − 0.30± 0.06 M this work
1554 Yugoslavia 281 −34 78 −64 3.88766 2.6194 17.2 − − 0.10± 0.01 M Hanuš et al. (2013)
1927 Suvanto 90 39 277 6 8.16154 2.6497 12.5 − − 0.26± 0.04 M Hanuš et al. (2013)
2384 Schulhof 194 −57 46 −36 3.29367 2.6099 11.7 − − 0.27± 0.02 M Hanuš et al. (2013)
3017 Petrovic −73 4.08037 2.6074 12.7 − − 0.21± 0.02 M this work
3492 Petra−Pepi 9 −57 202 −16 46.570 2.6159 12.2 − − 0.23± 0.03 M this work
4399 Ashizuri 266 −48 45 −61 2.830302 2.5759 8.8 − − 0.28± 0.06 B this work
4467 Kaidanovskij 54 19.1454 2.6383 11.6 − − 0.21 M this work
8132 Vitginzburg 33 −66 193 −48 7.27529 2.6263 11.6 − − 0.21 M Hanuš et al. (2013)

Phocaea
25 Phocaea 347 10 9.935397 2.4002 75.1 S S 0.23± 0.02 M Hanuš et al. (2013)

290 Bruna 286 −80 37 −74 13.8055 2.3372 10.4 − − 0.42± 0.08 B Hanuš et al. (2013)
391 Ingeborg −60 26.4145 2.3202 19.6 S S 0.20 I this work
502 Sigune −44 10.92667 2.3831 19.5 − S 0.23± 0.02 M this work
852 Wladilena 218 −41 57 −16 4.613301 2.3627 31.1 − − 0.16± 0.02 B Hanuš et al. (2013)

1192 Prisma −65 6.55836 2.3660 7.2 − − 0.23 M this work
1568 Aisleen 109 −68 6.67598 2.3520 12.0 − − 0.18± 0.03 M Hanuš et al. (2011)
1963 Bezovec 218 16 50 −49 18.1655 2.4231 45.0 − C 0.04± 0.01 I Hanuš et al. (2013)
1987 Kaplan 357 −58 9.45950 2.3822 14.6 − − 0.21± 0.04 M this work
2430 Bruce Helin 177 −68 129.75 2.3627 12.7 Sl S 0.23 M this work
5647 1990 TZ 266 69 6.13868 2.4241 9.3 S − 0.64± 0.07 I Hanuš et al. (2013)
6179 Brett −42 9.4063 2.4278 5.8 − − 0.23 M this work
7055 1989 KB −61 4.16878 2.3496 6.7 − − 0.33± 0.15 M this work

10772 1990 YM 16 46 68.82 2.3901 6.2 − − 0.38± 0.06 M Hanuš et al. (2013)
Themis

62 Erato 87 22 269 23 9.21813 3.1217 95.4 Ch BU 0.06± 0.00 B Hanuš et al. (2011)
222 Lucia 107 54 290 51 7.83671 3.1349 56.5 − BU 0.12± 0.02 M Hanuš et al. (2013)
621 Werdandi 247 −86 66 −77 11.77456 3.1193 27.1 − FCX 0.15± 0.02 M this work
936 Kunigunde 47 57 234 50 8.82653 3.1383 39.6 − − 0.11± 0.01 M this work
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Table 5. continued.

Asteroid λ1 β1 λ2 β2 P ap D Bus/DeMeo Tholen pV M/I/B Reference
[deg] [deg] [deg] [deg] [hours] [AU] [km]

1003 Lilofee 65 8.24991 3.1483 31.4 − − 0.15± 0.04 M this work
1623 Vivian −75 20.5235 3.1347 29.6 − − 0.08 M this work
1633 Chimay 322 77 116 81 6.59064 3.1748 37.7 − − 0.08± 0.01 B this work
1691 Oort 45 68 223 58 10.2684 3.1664 33.2 − CU 0.07± 0.01 M this work
1805 Dirikis 364 48 188 61 23.4543 3.1333 28.1 − − 0.09± 0.01 M this work

Maria
616 Elly 67 5.29771 2.5526 22.6 − S 0.19± 0.04 M this work
695 Bella 87 −55 314 −56 14.21899 2.5391 41.2 − S 0.24± 0.03 B Hanuš et al. (2011)
714 Ulula 224 −10 41 −5 6.99838 2.5352 39.2 − S 0.27± 0.04 B Hanuš et al. (2011)
787 Moskva 330 60 122 19 6.05581 2.5396 40.3 − − 0.12± 0.02 M Hanuš et al. (2013)
875 Nymphe 42 31 196 42 12.6213 2.5539 15.2 − − 0.19± 0.02 M Hanuš et al. (2013)

1160 Illyria 47 4.10295 2.5604 14.8 − − 0.22± 0.04 M this work
1996 Adams 107 55 3.31114 2.5587 13.5 − − 0.14± 0.01 M Hanuš et al. (2013)
3786 Yamada 56 4.03294 2.5503 16.7 − − 0.23± 0.04 M this work
6403 Steverin 246 77 109 73 3.49119 2.5945 6.9 − − 0.49± 0.05 M this work

Vesta
63 Ausonia 305 −21 120 −15 9.29759 2.3952 90.0 Sa S 0.16± 0.03 − Torppa et al. (2003)

306 Unitas 79 −35 8.73874 2.3580 49.0 S S 0.17± 0.06 − Ďurech et al. (2007)
336 Lacadiera 194 39 37 54 13.69555 2.2518 69.0 Xk D 0.05± 0.01 − Hanuš et al. (2011)
556 Phyllis 34 54 209 41 4.292622 2.4654 38.5 S S 0.18± 0.03 − Marciniak et al. (2007)

1933 Tinchen 113 26 309 36 3.67062 2.3530 6.5 − − 0.29± 0.06 − Hanuš et al. (2013)
2086 Newell −60 78.09 2.4014 9.8 Xc − 0.20 − this work
6159 1991 YH 266 67 62 67 10.6589 2.2914 5.4 − − 0.46± 0.13 − this work
8359 1989 WD 121 −68 274 −68 2.89103 2.3500 8.2 − − 0.22± 0.03 − Hanuš et al. (2013)

Nysa/Polana
44 Nysa 99 58 6.421417 2.4227 70.6 Xc E 0.55± 0.07 − Kaasalainen et al. (2002)

135 Hertha 272 52 8.40060 2.4285 77.0 Xk M 0.15± 0.05 − Torppa et al. (2003)
1378 Leonce 210 −67 46 −77 4.32526 2.3748 22.5 − − 0.03± 0.00 − this work
1493 Sigrid 78 43.179 2.4297 22.1 Xc F 0.04± 0.00 − this work
4606 Saheki 44 59 222 68 4.97347 2.2518 6.7 − − 0.33± 0.02 − this work

Alauda
276 Adelheid 199 −20 9 −4 6.319200 3.1162 125.0 − X 0.06± 0.01 I Marciniak et al. (2007)

1276 Ucclia −49 4.90748 3.1698 40.0 − − 0.05± 0.01 M this work
1838 Ursa 47 16.1635 3.2111 48.6 − − 0.04± 0.01 M this work
4209 Briggs −56 12.2530 3.1564 30.9 − − 0.09± 0.03 M this work
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ABSTRACT

The multiple system V505 Sagittarii is composed of at least three stars: a compact eclipsing pair and a distant
component, whose orbit is measured directly using speckle interferometry. In order to explain the observed orbit
of the third body in V505 Sagittarii and also other observable quantities, namely the minima timings of the eclips-
ing binary and three different radial velocities (RVs) detected in the spectrum, we thoroughly test a fourth-body
hypothesis—a perturbation by a dim, yet-unobserved object. We use an N-body numerical integrator to simulate
future and past orbital evolution of three or four components in this system. We construct a suitable χ2 metric from
all available speckle-interferometry, minima-timings, and RV data and we scan a part of a parameter space to get
at least some of the possible solutions. In principle, we are able to explain all observable quantities by the presence
of a fourth body, but the resulting likelihood of this hypothesis is very low. We also discuss other theoretical
explanations of the minima-timing variations. Further observations of the minima timings during the next decade
or high-resolution spectroscopic data can significantly constrain the model.

Key words: binaries: close – stars: individual (V505 Sgr)

Online-only material: color figures

1. INTRODUCTION

The star V505 Sagittarii (HD 187949, HR 7571, HIP 97849,
WDS 19531-1436) is known as an eclipsing binary with a vari-
able period. Spectral types of its primary and secondary com-
ponents are A2 V and G5 IV, orbital period is 1.183 days, and
visual magnitude is maximum 6.m5 (Chambliss et al. 1993). In
1985, the V505 Sgr was also resolved using speckle interferom-
etry (McAlister et al. 1987b), and several measurements of the
third component were published since that time. Mayer (1997)
attempted to join the measured times of minima with visual orbit
and determined a distance of the system 102 pc.

The third-body orbit with the period of about 40 years
seemed well justified until about the year 2000. An abrupt
change in more recent data, however, excludes this simple
model—it is impossible to fit both light-time effect data and
the interferometric trajectory assuming three bodies on stable
orbits. We thus test a fourth-body hypothesis: a perturbation
by a low-mass star (i.e., the fourth body), which has not been
resolved spatially so far. Such a fourth body was suspected
already by Chochol et al. (2006) due to conspicuous deviations
of minimum times from those expected. While we consider the
fourth-body model as the main working hypothesis in this paper,
we also discuss other possible effects that can produce minima
timing variations.

The data set we have for V505 Sgr is described in Section 2.
We introduce our dynamical model, numerical method, free/
dependent parameters, and χ2 metric in Section 3. The results
of our simulations and conclusions are presented in Sections 4
and 5.

4 On leave from Astronomical Institute, Slovak Academy of Sciences, 05960
Tatranská Lomnica, Slovakia.

2. OBSERVATIONAL DATA

2.1. Speckle Interferometry

The available speckle-interferometry data are summarized in
Table 1. Most of them were extracted from the Fourth Catalog of
Interferometric Measurements of Binary Stars (Hartkopf et al.
2009), but we also added two speckle measurements from the
SAO BTA 6 m telescope by E. Malogolovets (using a speckle
camera and a method described in Balega et al. 2002 and
Maksimov et al. 2009) and one direct-imaging measurement,
performed at CFHT by S. Rucinski (using a method described
in Rucinski et al. 2007).

We estimated weight factors w and corresponding uncertain-
ties as σsky = 0.005 arcsec/w. This uncertainty refers to the
measured position on the plane of the sky (X2 + Y 2), which
results from a combination of uncertainties in the measured an-
gular separations and position angles. The values of σsky vary
because different telescopes and techniques were used. Any non-
monotonic changes in the measured position angles are simply
due to observational uncertainties.

We are aware of a possible 180◦ ambiguity in the speckle
measurements, but V505 Sgr is a lucky case: we have one direct
measurement by Hipparcos prior to 2000 perihelion passage,
and another direct-imaging datum after 2000. We thus can be
sure about the shape of the orbit.

2.2. Minima Timings

We list recent O − C data for the (1+2) binary in Table 2.
Only measurements not presented in Chambliss et al. (1993)
are included in the table, but we use all of them of course.
An uncertainty of a minimum determination is estimated to be
σlite = 1 minute in most cases, only photographic minima and
data from Hipparcos were considered worse. Epoch and O − C
were calculated using the ephemeris of Mayer (1997), with zero
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Table 1
Speckle-interferometry Data for V505 Sgr, Mainly from the Fourth

Interferometric Catalogue (Hartkopf et al. 2009)a

Year P.A. (deg) ρ (mas) Weight Source

1985.5150 189.6 302 1 3.6 m
1985.8425 189.8 311 1 3.8 m
1989.3069 181.0 261 1 4.0 m
1990.3445 176.9 246 1 4.0 m
1991.2500 170 234 0.6 Hipparcos
1991.3903 173.4 234 1 4.0 m
1991.5575 174 240 0.4 2.1 m
1991.5602 174 260 0.4 2.1 m
1991.7124 173.3 226 1 4.0 m
1992.4497 171.7 214 1 4.0 m
1992.6961 164 190 0.4 2.1 m
1994.7079 159.9 192 1 3.8 m
1995.4398 152.5 169 0.6 2.5 m
1995.7675 154.2 177 0.3 2.5 m
1996.5320 145.8 149 0.3 2.5 m
2003.6365 236.3 152 1 3.5 m
2005.7948 218 183 0.6 Direct CFHT
2006.1947 215.8 182 1 4.0 m
2007.3306 212.4 210 1 3.5 m
2007.4927 212.0 212 1 6.0 m
2008.4901 207.8 231 1 6.0 m
2009.2662 204.2 247.5 1 4.0 m

Notes. a P.A. denotes the position angle and ρ the angular distance between
the central pair (1+2) and the third component. Estimated weight factors w and
uncertainties σsky = 0.005 arcsec/w correspond to the sizes of telescopes and
techniques, which were used to acquire these measurements (1991.25 and 2005
measurements result from direct imaging).

point shifted by 6754 epochs:

Pri.Min. = 2433490.483 + 1.d1828688 × E . (1)

In the analysis below, when we compare minima timings to
our simulations, the period and base minimum are treated as
adjustable variables and may therefore differ from the values
presented here.

2.3. Radial Velocities

We use radial-velocity (RV) data from Tomkin (1992),
Table 4, who measured sharp spectral lines in the 5580–5610 Å
region and attributed them to the third component. The values of
vrad3 range from −13 to −9 km s−1. One more measurement ex-
ists (Worek 1996), which confirms the values given by Tomkin.

The uncertainties of the RV data σrv = 2 km s−1 were
estimated from a scatter of the RV measurements close in time.
We also checked for possible blends with nearby faint lines—we
computed a synthetic spectrum with the same resolution as
Tomkin (1992) and fitted the lines in question by a Gaussian
function. The observed width of the sharp lines is Δλ � 1 Å. If
we fit them by a Gaussian function, assuming the broadening is
mostly caused by a rotational Doppler effect, we can estimate
rotational velocity about vrot3 = (20 ± 5) km s−1.

Wide lines in the V505 Sgr spectrum are attributed to
the components of the eclipsing pair (1+2). The binary is
tight and in all likelihood rotates synchronously; thus the
corresponding rotational Doppler broadening is large (vrot1+2 =
(100 ± 10) km s−1). The systemic RV of the (1+2) body is
vrad1+2 = (1.9 ± 1.4) km s−1.

Table 2
Minima Timings for the Eclipsing Binary (1+2) in V505 Sgra

HJD − 2400000 Epoch O − C (d) σlite (d) Source

48432.4871 12632.0 +0.0054 0.0007 R.-L.
48501.0981 12690.0 +0.0100 0.0021 Chochol
48858.3253 12992.0 +0.0109 0.0007 Müyesseroglu
51000.4948 14803.0 +0.0049 0.0007 Ibanoglu
51051.3578 14846.0 +0.0046 0.0007 ”
51057.2724 14851.0 +0.0048 0.0007 ”
51064.3692 14857.0 +0.0044 0.0007 ”
52754.6756 16286.0 −0.0087 0.0007 Chochol
52843.3891 16361.0 −0.0103 0.0007 ”
53263.3029 16716.0 −0.0150 0.0007 ”
53525.8969 16938.0 −0.0178 0.0007 Cook
53626.4399 17023.0 −0.0187 0.0007 Chochol
54267.5469 17565.0 −0.0266 0.0007 Zasche
54267.5472 17565.0 −0.0263 0.0007 ”
54648.4260 17887.0 −0.0313 0.0005 ”
54655.5233 17893.0 −0.0312 0.0003 ”
54658.4817 17895.5 −0.0299 0.0005 ”
54706.3869 17936.0 −0.0309 0.0002 ”
55027.5302 18207.5 −0.0365 0.0018 Uhlář
55049.4152 18226.0 −0.0346 0.0002 ”
55062.4266 18237.0 −0.0347 0.0011 Šmelcer
55068.3400 18242.0 −0.0357 0.0011 Uhlář

Notes. a Epoch and O − C were calculated using the ephemeris Pri.Min. =
2433490.483 + 1.d1828688 × E. σlite denotes the assumed standard uncertainty
of the minimum determination. Only newer minima after Chambliss et al. (1993)
are listed. The last four measurements are new.
References. Rovithis-Livaniou & Rovithis 1992; Müyesseroglu et al. 1996;
Ibanoglu et al. 2000; Cook et al. 2005; Chochol et al. 2006; and Zasche et al.
2009.

Table 3
Free Parameters of Our Dynamical Four-body Model

No. Parameter Brief Description

1. d Distance between the Earth and V505 Sgr barycenter, in pc
2. m3 Mass of the third body, in M�
3. zh3 Position, (1+2)-centric, epoch T0, in AU
4. vxh3 Velocities, (1+2)-centric, epoch T0, in AU d−1

5. vyh3

6. vzh3

7. m4 Mass of the fourth body, in M�
8. xh4 Positions, (1+2)-centric, epoch T0, in AU
9. yh4

10. zh4

11. vxh4 Velocities, (1+2)-centric, epoch T0, AU d−1

12. vyh4

13. vzh4

3. NUMERICAL INTEGRATOR AND χ2 METRIC

In order to model orbital evolution of the multiple-star system
V505 Sgr, namely mutual gravitational interactions of all bodies,
we use a Bulirsch–Stöer (BS) N-body numerical integrator from
the SWIFT package (Levison & Duncan 1994).

Our method is quite general—we can model classical Kep-
lerian orbits, of course, but also non-Keplerian ones (involving
three-body interactions). We are able to search for both bound
(elliptical) and unbound (hyperbolic) trajectories. Free parame-
ters of our model are listed in Table 3. Hereinafter, we strictly
denote individual bodies by numbers: 1, 2 (Algol-type pair), 3
(resolved third component), and 4 to avoid any confusion.

Fixed (assumed) parameters are listed in Table 4. Masses of
the first three components are well constrained by photometry
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Figure 1. Comparison of two third-body trajectories, computed for three-body (1, 2, 3) and two-body (1+2, 3) configurations. Left: an overview of the trajectories in
a 1-centric frame. Right: a detail of the small part of the trajectory, where the difference is visible. Error bars denote speckle-interferometry observations.

Table 4
Fixed (Assumed) Parameters of Our Model

No. Parameter Brief Description

14. m1+2 = 3.4 M� Mass of the (1+2) body
16. xh1+2 = 0 AU Positions of the (1+2) body,
17. yh1+2 = 0 (1+2)-centric
18. zh1+2 = 0
19. vxh1+2 = 0 AU d−1 Velocities
20. vyh1+2 = 0
21. vzh1+2 = 0
22. xh3 Positions of the third body,
23. yh3 (1+2)-centric, in AU
24. T0 = 2446282.24375 JD UTC time corresponding

(or 2447607.5185) to initial conditions

and spectroscopy: m1 = (2.20 ± 0.09) M�, m2 = (1.15 ±
0.05) M�, m3 = (1.2±0.1) M� (Chambliss et al. 1993; Tomkin
1992). We take m3 as a free parameter, though, because of larger
relative uncertainty. When we test three-body configurations, we
have simply m4 = 0.

First, it is often useful to adopt a simplification: first and
second bodies can be regarded as a single (1+2) body in
our dynamical model. The central pair (1+2) is so compact
(a = 0.033 AU) and the distance of other components so large
that it behaves like a single body; its equivalent J2 gravitational
moment is negligible. Indeed, at distance r = 10 AU,

J2 � 1

2

(a

r

)2 m1m2

(m1 + m2)2
� 10−6 . (2)

This can be confirmed easily by a direct numerical integration.
The difference between trajectories computed for three-body (1,
2, 3) and two-body (1+2, 3) configurations is insignificant and
always smaller than observational uncertainties (see Figure 1).

We also make use of the following two constraints: (1)
initial positions xh3, yh3, and zero time T0 of the third body
correspond to a selected speckle-interferometry datum (e.g., the
mean of the first two points, or to the third point) (2) third-body
initial velocity components are almost tangent to the observed
interferometric trajectory in the (x, y) plane.

Initial conditions of the integration are specified in an arbi-
trary (usually 1+2-centric) frame. We then perform a transfor-
mation to a barycentric frame. The numerical integration runs in
the barycentric Cartesian frame, where x, y axes correspond to

the sky plane, the z axis is oriented from the observer toward the
system. We use AU, AU day−1 units for positions and velocities.

We integrate the system forward for 10,000 days and back-
ward (i.e., with opposite sign of initial velocities) for 20,000
days in order to cover the observational time span. The time
step used is Δt = 10 days and the precision parameter of the BS
integrator is ε = 10−8. Finally, we transform the output back to
the (1+2)-centric frame and linearly interpolate the output data
to the exact times of observations.

In order to compare the observations to our model, we
constructed a χ2 metric as follows:

χ2 = χ2
sky + χ2

lite + χ2
rv , (3)

where

χ2
sky =

Nsky∑

i=1

(x ′
h3 − xh3[i])2 + (y ′

h3 − yh3[i])2

σ 2
sky[i]

. (4)

We denote x ′
h3, y ′

h3 (1+2)-centric coordinates of the third body
calculated from our model, which were linearly interpolated to
the times tsky[i] of observations xh3[i], yh3[i]. Distance d is used
to convert angular coordinates to AU. Second,

χ2
lite =

Nlite∑

i=1

(z′
b1+2 − zb1+2[i])2

σ 2
lite[i]

, (5)

where z′
b1+2 are barycentric coordinates of the (1+2) body

computed from our model and interpolated to the times tlite[i]
of observations zb1+2[i]. In order to convert O − C values from
Table 2 to AU, we use a simple formula: zb1+2 = [O − C]days ·
86,400 s · c , where c denotes the speed of light. Because of
freedom in the period determination and freedom in the selection
of initial velocities, we have to detrend the light-time effect data
(by two least-square fits of z′

b1+2(t) and zb1+2(t)). Finally,

χ2
rv =

Nrv∑

i=1

(v′
zh3 − vzh3[i])2

σ 2
rv[i]

, (6)

where we again interpolate our model to the times trv[i]. Note
that in case of a four-body configuration we will attribute the
velocities to the fourth body and change this metric correspond-
ingly (see below).
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Figure 2. Best-fit solution for the trajectory of the third body, which corresponds to speckle-interferometry data (but excluding 1985 measurements). Neither light-time
effect nor RVs were fitted in this case. Left panel: trajectory of the third body in the sky-plane angular coordinates (X, Y ), observations are denoted by error bars and
our simulated data by small crosses, red lines represent the residuals. Middle panel: minima timings (O − C) of the (1+2) eclipsing binary vs. time (HJD). Right panel:
RV vzh3 of the third body vs. time. Parameters of the third body are m3 = 1.17 M�, xh3 = −0.15 AU, yh3 = −25.9 AU, zh3 = −0.63 AU, vxh3 = 0.0037 AU d−1,
vyh3 = 0.0017 AU d−1, vzh3 = 0.0000 AU d−1 for T0 = 2447607.5185 JD. The inclination of the orbit is very low in this case (I = 1.◦5). The resulting χ2

sky = 52,

with the number of data points Nsky = 20. Note there is a strong disagreement of this Keplerian orbit with both O − C data and RVs (total χ2 = 1700, N = 90).

(A color version of this figure is available in the online journal.)

Optionally, we can add an artificial function to χ2 in order to
constrain the mass m4 within reasonable limits, e.g.,

χ2
m4

=
[(

m4 − m4min + m4max

2

)
· 2

m4max − m4min

]100

, (7)

with m4min = 0.1 M�, m4max = 1.2 M�. The upper limit follows
from the fact that no other bright star is observed in the vicinity
of V505 Sgr.

A similar expression can be used to constrain the absolute
value of velocity v4 (e.g., to be smaller than the escape
velocity from the system, otherwise, we often obtain hyperbolic
velocities).

Occasionally, we use a different metric instead of
Equation (3):

χ2 = wskyχ
2
sky + wliteχ

2
lite + wrvχ

2
rv, (8)

with weights wsky � wlite, wrv, in order to fit the interferometric
trajectory better. There are only five points after the periastron
passage, which would otherwise have too low statistical signif-
icance compared to a lot of light-time data.

What can we expect about the 13 dimensional function
χ2(d,m3, zh3, . . . , vzh4)? It will surely have many local minima,
which would be statistically almost equivalent. (One can shoot
the fourth body from a slightly different position with a slightly
different velocity to get almost the same result.) The problem is
degenerate in this sense. Clearly, there are strong correlations,
e.g., between the mass m4 and the minimal distance of a close
encounter (and consequently initial positions/velocities of the
fourth body). Minimization of the χ2 function is thus a difficult
task.

We use a simplex algorithm (Press et al. 1997) to save
computational resources and to find local minima. However,
it is not our goal to find a global minimum of χ2, because of
the degeneracy and the immense size of the parameter space.
We anyway do not expect a deep, statistically significant global
minimum. Instead, we will choose a set of starting points for
the fourth body and look for a subset of allowed solutions.

On the other hand, in the case we test a three-body configu-
ration only, the problem is much simpler: the six-dimensional
χ2(d,m3, zh3, vxh3, vyh3, vzh3) is well behaved and we may ex-
pect to find a unique solution (and its uncertainty).

4. RESULTS

In the following subsections, we consider and analyze several
hypotheses about the nature of the V505 Sgr system.

1. There are three bodies only in V505 Sgr.
2. The third body directly perturbs the central pair.
3. A steady mass transfer causes minima timing variations.
4. There is modulation of mass transfer by the third body.
5. A sudden mass transfer occurred around 2000.
6. Appelgate’s mechanism is operating.
7. A fourth body is present (either on a bound or hyperbolic

orbit).

4.1. The Third Body Alone on a Keplerian Orbit

At first, let us test a standard “null” hypothesis, i.e., only
a third body exists (m4 = 0). It is possible to fit speckle
data alone (wlite = wrv = 0) by an elliptical orbit with a
(29 ± 1) year period, especially, if we assume the first two 1985
measurements are erroneous (offset by 50 mas; see Figure 2,
left). The χ2

sky = 50 for this fit and the respective number of data
points is Nsky = 20 (though ideally, χ2 should be comparable
to N.).

Note the χ2
sky would be much higher, if we include the

1985 measurements: χ2
sky = 210, Nsky = 22. It means, if

these two measurements are not systematic errors, the 29 year
Keplerian orbit is essentially excluded! The two respective
measurements were obtained by two different telescopes during
two different nights (see McAlister et al. 1987a, 1987b). We
checked measurements of another 34 stars in these publications,
observed with the same telescope and during the same night as
V505 Sgr, and we have found no indication of a wrong plate
scale—all measurements lie on Keplerian ellipses within usual
observational uncertainties (5 mas). We thus believe the 1985
measurements are not erroneous and they should be included in
the χ2 metric.

Without additional (non-positional) data it is not possible to
distinguish between different inclinations—there are equivalent
low-I and high-I solutions with almost the same χ2 � 50.
Nevertheless, every inclined orbit of the third body has to cause
a corresponding light-time effect, otherwise must be considered
wrong! Even a slight I � 2◦ inclination would easily be
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Figure 3. Simulated osculating orbital period P of the central binary (bodies 1
and 2), perturbed by the third body. The periastron passage occurred in 2000 and
the corresponding change of period is ΔP � 10−7 days. The observed values
of |ΔP | � 10−5 days are much larger than in this simulation.

detectable in the light-time effect data (see Figure 2, middle).
A period analysis of the O − C data (with Period04 program;
Lenz 2008) also does not show a prominent 29 year period. On
the other hand, there is a clear signal at P = 39 years, with an
amplitude of the peak A = 0.0092 days.

If we assume the O − C data are indeed caused by a light-
time effect, there is a strong disagreement of the 29 year
Keplerian orbit with the light-time effect data (and also with
RVs), even prior to 2000! If we try to fit the whole orbit and
light-time effect data together, we would have χ2

sky = 107
and Nsky = 20, i.e., such an orbit is excluded with a high
significance. There are also clear systematic departures between
the observed interferometric data and calculated Keplerian orbit.

The only possibility is that the inclination of the third-body
orbit is almost zero I � 2◦, so we do not see any light-time
effect at all. The observed O − C variations then must caused
by an entirely different phenomenon (see Sections 4.2–4.6 for a
detailed discussion).

Nevertheless, there still remains a strong disagreement with
the observed high RVs vrad3 � 10 km s−1, because a non-
inclined orbit should have vrad3 � 1 km s−1. We have no solution
for this problem (unless there is a fourth body present in the
system; see Sections 4.7–4.9).

4.2. Direct Perturbation of the 1+2 Orbital Period by the
Third Body

One may ask, if the observed variations in minima timings
(Table 2), which correspond to the changes of the period of
the order |ΔP | � 10−5 days, could be caused by a direct
gravitational perturbation of the tight central pair (1, 2) by the
orbiting third body. In periastron, the minimum distance is of the
order �10 AU. So as to test this possibility, we use our dynamical
model with three bodies 1, 2, and 3 taken separately. A detection
of minute changes of the orbital period requires a smaller time
step and higher precision of the BS integrator (Δt = 0.01 day,
ε = 10−12). The resulting osculating orbital period changes
during one periastron passage are shown in Figure 3. They are
much smaller than ΔP � 10−7 days, if we compare values
far from periastron, i.e., ∼ 2 years before and after periastron
passage. An extremely close encounter (within less than 0.1 AU,
which corresponds to 0.001 arcsec) would be needed to change
the orbital period of the tight Algol system substantially.

Moreover, anything directly connected with the third body
should conform to the 39 year period of the minima timings
and this, according to Section 4.1, is in conflict with any
29 year Keplerian orbit of the third body.

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3

A
 (

M
1) 

/ R
S

M1 / MS

3.4

Amin

Figure 4. Dependence of separation A of the eclipsing binary on the mass M1 of
the first body, resulting from the conservation of total mass and orbital angular
momentum. The thick line denotes past evolution, the circle the current state
M1 = 2.2 M�, and the thin line the future evolution.

4.3. Effects of Mass Transfer Between 1 and 2

Past photometric and spectroscopic observations confirm that
the central pair of V505 Sgr is a classical semi-detached Algol
system, with a less-massive secondary filling its Roche lobe
(Chambliss et al. 1993). In the case of a conservative mass
transfer, the sum of masses is constant,

M1(t) + M2(t) = K , (9)

as well as the orbital angular momentum

A(t)M2
1 (t)M2

2 (t) = C , (10)

where A(t) denotes the actual separation of the stars. We
can substitute current masses and separation A = 7.1 R�
(Chambliss et al. 1993) into these equations, compute constants
K, C, and consequently the dependence A(M1) (see also
Figure 4),

A(M1) = CM−2
1 (K − M1)−2 . (11)

A smooth conservative mass transfer should increase the orbital
period steadily, since in the V505 Sgr case the mass ratio has
been reversed already (M1 > M2). On the contrary, we observe
an abrupt decrease of the period ΔP = −1.2 × 10−5 days after
2000. We thus conclude a simple mass transfer cannot explain
the observer minima timings.

4.4. Modulation of Mass Transfer Between 1 and 2 During the
Third-body Encounter

In this section, we test if the third body is capable of changing
the Roche potential of the central binary (bodies 1 and 2) in a
such a way that the mass transfer rate dM/dt (and consequently
dP/dt) changes by a substantial amount. We add a third-body
term to the Roche potential:

Ω(x, y, z) = 1

r1
+

q

r2
+

1

2
(1 + q)r2

3 +
q3rd

r3rd
, (12)

where q = M2/M1 denotes the mass ratio and similarly
q3rd = M3/M1. We see immediately, that relative change of
the potential due to the third body at distance r3rd � 10 AU
is δΩ/Ω � 10−13. We do not find it likely that such a
minuscule perturbation of the potential, and thus the related tidal
acceleration, could produce significant effects. Consequently,
we cannot explain minima timing variations by the modulation
of mass transfer. Finally, as in Section 4.2, this effect would also
be in conflict with a 29 year Keplerian orbit of the third body.

176



No. 6, 2010 A UNIFIED SOLUTION FOR THE ORBIT AND LIGHT-TIME EFFECT IN V505 Sgr 2263

-40

-30

-20

-10

 0

 10

-30 -20 -10  0  10  20

y /
 A

U

x / AU

1+2

  3

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 25000  30000  35000  40000  45000  50000  55000  60000

 1930  1940  1950  1960  1970  1980  1990  2000  2010  2020

z 1
+

2
   

  /
 A

U

JD - 2400000

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 25000  30000  35000  40000  45000  50000  55000  60000

 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

v z
3 /

 A
U

/d
ay

JD - 2400000

Figure 5. Best-fit solution for the orbit of the third body and the light-time effect before 2000: d = 102 pc, m3 = 1.2 M�, zh3 = 4.0 AU, vxh3 = 0.0036 AU day−1,
vyh3 = 0.0013 AU day−1, vzh3 = −0.0015 AU day−1 for T0 = 2446282.24375 JD. The resulting χ2 = 88, with the total number of data points N = 46. The red lines
denote differences between observed and calculated data. Radial velocities were not fitted in this case; they are shown for comparison only.

(A color version of this figure is available in the online journal.)

4.5. A Sudden Mass Transfer of Biermann & Hall (1973)

According to Biermann & Hall (1973) a sudden mass transfer
between the Algol components may result in a temporary
decrease of the orbital period, even though mass is flowing from
the lighter component to the more massive one. In our case, we
would need dM/dt as high as � 10−6 M� yr−1 to explain period
changes |dP/dt | � 10−6 days yr−1. Such a mass transfer rate
seems to be too large compared to theoretical models (Harmanec
1970), dM/dt � 10−6 M� yr−1 are reached only during a very
short interval of time, before the reversal of mass ratio.

Another problem of this scenario is that we observe rather
smooth periodic variations of the minima timings before 2000.
These do not seem to be entirely compatible with this mecha-
nism, which may be more irregular in time. This phenomenon
is also rarely confirmed by independent observations. (It would
require a very precise photometry on a long timescale or a
spectroscopic confirmation of circumstellar matter.) Today, this
mechanism is not generally accepted as a major cause of minima
timing variations among Algol-type systems.

4.6. Applegate (1992) Magnetic Mechanism

Applegate (1992) proposed that a gravitational quadrupole
coupling of orbit and shape variations of a magnetically ac-
tive subgiant (second component) can result in variations
of the orbital period and hence minima timings. In this scenario,
the observed 39 year period would correspond to the period of
the magnetic dynamo.

The second (G5 IV) star rotates quickly (1.2 d); it has a
convective envelope in this evolutionary stage and, presumably,
there is a differential rotation and operating dynamo, which can
result in a sufficiently strong magnetic field (104 G), necessary
for Applegate’s mechanism to work. Period changes of the
order ΔP/P � 10−5 should also correspond to changes of
the luminosity ΔL2/L2 = 0.1, in phase with minima timings.
Unfortunately, we are not able to confirm this by our photometry
(0.01 mag precision over tens of years would be required).

In principle, this mechanism can explain minima timing
variations, but it is not clear, why there is an abrupt change
after 2000. An independent confirmation is rare and difficult.
One of the possibilities might be a spectroscopic observation of
magnetically active lines (Ca ii H and K or Mg ii). This scenario
also does not provide any solution for the observed large RVs.

4.7. Distance, Mass, and the Third-body Orbit (Prior to 2000)

Hereinafter, we assume minima timing variations are caused
mainly by the light-time effect due to the orbiting third body.
Because the orbit of the third body prior the periastron passage in
2000 seems unperturbed, we first determine the optimal distance
d of the system, third-body mass m3, and orbit (z3, vxh3, vyh3,
vzh3). We use only the observational data older than 2000 for
this purpose.

We compute χ2 values for the following set of initial condi-
tions (we do not use a simplex here): d ∈ (95, 105) pc, Δd =
1 pc, m3 ∈ (1.1, 1.3) M�, Δm3 = 0.1 M�, zh3 ∈ (2.0, 8.0) AU,
Δzh3 = 1.0 AU, vxh3 ∈ (0.0033, 0.0040) AU day−1,
vyh3 ∈ (0.0008, 0.0016) AU day−1, vzh3 ∈ (−0.0018, 0.0012)
AU day−1, Δvxh3 = Δvyh3 = Δvzh3 = 0.0001 AU day−1.

The best-fit solution is displayed in Figure 5. The orbital
period of the third body is P = (39 ± 2) years. The resulting
distance d = (102 ± 5) pc. This solution is very similar to that
in Mayer (1997). The parallactic distance of V505 Sgr given
by Hipparcos (π = (8.40 ± 0.57) mas, d = 111–128 pc, cf.,
van Leeuwen 2007) is offset and even the error intervals do not
overlap.

Note that the RVs of the order −10 km s−1 measured by
Tomkin (1992) cannot be attributed to the third body, whose
orbital velocity should be much smaller ((−2.5 ± 0.5) km s−1)
according to interferometric and light-time effect data. Conse-
quently, we do not fit the velocities in this case (wrv = 0); we
are going to attribute them to the fourth body (in Section 4.8).

Finally, it is important to mention that our solution does not
depend on the two (“offset”) 1985 speckle measurements at all!
We can exclude them completely from our considerations and
the result would be the same. Our only assumption was that
minima timing variations are caused by the light-time effect
and this enforces the orbital period of P � 39 years. (But
coincidentally, both 1985 measurements fit perfectly this longer-
period orbit.)

4.8. Encounter with a Fourth Body (a χ2 Map)

We next fix initial conditions of the third body according to
the results in Section 4.7 and model a perturbation by a fourth
body under different geometries.

The free parameters of the model are m4, xh4, yh4, zh4,
vxh4, vyh4, vzh4. We include RV data, but we assume the spec-
tral lines (and corresponding velocities) belong to the fourth
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Figure 6. Best-fit solution for the trajectory of the fourth body, which best explains the observed trajectory of the third body, light-time effect, and RVs: m4 = 0.8 M�,
xh4 = 45.0 AU, yh4 = 39.5 AU, zh4 = 28.0 AU, vxh4 = −0.0105 AU day−1, vyh4 = −0.008 AU day−1, vzh4 = −0.0075 AU day−1. The resulting χ2 = 331, with
the total number of data points N = 102. The motion of the fourth body captured in the left panel spans from 1994 to 2003. The squares connected by a straight line
indicate the closest encounter between the third and fourth bodies.

(A color version of this figure is available in the online journal.)
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body. Note that there might be a problem with too low lu-
minosity and thus too weak spectral lines of the fourth body,
in case it has low mass. We discuss this possible inconsis-
tency in detail in Section 4.11. We scan the following lim-
ited set of initial conditions (over 8 million trials): m4 ∈
(0.5, 0.8) M�, Δm4 = 0.05 M�, xh4 ∈ (38, 45) AU, Δxh4 =
1.0 AU, yh4 ∈ (37, 40) AU, Δyh4 = 0.5 AU, zh4 ∈ (20, 30) AU,
Δzh4 = 1.0 AU, vxh4 ∈ (−0.011,−0.005) AU day−1,
vyh4 ∈ (−0.010,−0.005) AU day−1, vzh4 ∈ (−0.012,−0.006)
AU day−1, Δvxh4 = Δvyh4 = Δvzh4 = 0.0005 AU day−1.

A comparison of the best-fit solution with observational data
is displayed in Figure 6. We use a modified metric, Equation (8),
with wsky = 10, wlite = wrv = 1. The respective trajectories of
the bodies are shown in Figure 7. Note, however, that according
to the χ2 map (Figure 8) there are many local minima, which
cannot be distinguished from a statistical point of view, because
the values of χ2 differ only little (χ2 ∈ [284, 325]). The
corresponding χ2 probabilities Q(χ2|N ) that the observed value
of χ2 = 340 (for a given number of degrees of freedom N =
105) is that large by chance even for a correct model are too low
(essentially zero). It may also indicate that real uncertainties
might be a bit larger (by a factor of 2) than the values estimated
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free parameters m4, zh4, vxh4, vyh4, vzh4. Cross is an overall minimum and black
dots represent computed points.

by us. Nevertheless, we will find better solutions using a simplex
method (in Section 4.9).

4.9. Encounter with a Fourth Body (Different Geometry,
Simplex)

We selected a different set of initial conditions for the
following modeling. They serve as starting points for the
simplex algorithm: m4 = 0.5 M�, xh4 ∈ (−100,−10) AU,
yh4 ∈ (−50.1,−0.1) AU, zh4 ∈ (0, 50) AU, Δxh4 =
Δyh4 = Δzh4 = 5.0 AU, vxh4 ∈ (0.005, 0.015) AU day−1,
Δvxh4 = 0.001 AU day−1, vyh4 ∈ (0, 0.01) AU day−1, Δvyh4 =
0.002 AU day−1, vzh4 ∈ (−0.007, 0) AU day−1, Δvzh4 =
0.001 AU day−1. The total number of trials reaches 106.

We reject RV constraints (wrv = 0), although we can find
a lot of allowed solutions with velocities in the correct range
(vzh4

.= −0.008 AU day−1). On the other hand, we use a mass
limit according to Equation (7). An example of a typical good
fit is shown in Figure 9. We selected one with mass around
m4 = 0.6 M�; the corresponding χ2 = 168, N = 73, and
probability Q(χ2|N ) � 10−9, still too low. This solution can
be further improved by a 15 dimensional simplex (i.e., with all
parameters of the third-body free) to reach χ2 as low as 130 and
Q(χ2|N ) as high as 10−5.

As before, there are many solutions, which are statistically
equivalent. We present allowed solutions in Figure 10 as plots
χ2 versus a free parameter, with each dot representing one
local minimum found by simplex. Prominent concentrations of
solutions in these plots can be regarded as an indication of more
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Figure 9. Typical solution (out of many) for the trajectory and light-time effect (without RVs): m4 = 0.576 M�, xh4 = 27.912 AU, yh4 = −84.809 AU,
zh4 = 30.482 AU, vxh4 = −0.00584 AU day−1, vyh4 = 0.01612 AU day−1, vzh4 = −0.00620 AU day−1. The corresponding χ2 = 168, with the number of
data points N = 73. This solution can be further improved by a 15 dimensional simplex to reach χ2 as low as 130.

(A color version of this figure is available in the online journal.)

Figure 10. Distribution of good solutions (χ2 < 300) in the space of free parameters: xh4, yh4, zh4, vxh4, vyh4, vzh4.

probable solutions. Only minority of trials were successful. Most
of them were stopped too early (at high χ2) due to numerous
local minima.

According to the histogram of masses m4 (Figure 11, left)
the values m4 < 0.5 M� are less probable, and the histogram
peaks around m4 = 0.9 M�. Note the simplex sometimes tends
to “drift” to zero or large masses, which leads to artificial
peaks at the limits of the allowed interval. The same applies to
velocity v4.

Histogram of total energies E4 of the fourth body
(Figure 11, middle) shows a strong preference for hyperbolic
orbits (E4 > 0), but elliptic orbits (E4 < 0) also exist
(with a 1% probability and slightly larger best χ2 = 199).

The reason for this preference stems from the fact that third-
body orbit seems almost unperturbed prior to 2000, so one needs
rather a higher-velocity encounter of the fourth body from larger
initial distance.

Typical minimum distances between the fourth and third
bodies during an encounter are around dmin3 � 6 AU and they
are even smaller between the fourth body and the (1+2) body
dmin1+2 � 1.5 AU (Figure 11, right). They are of comparable
size and consequently a simple impulse approximation, i.e., an
instantaneous change of orbital velocity, cannot be used to link
the two elliptic orbits of the third body (before and after the
perturbation). There are no good solutions (with χ2 < 300),
which would lead to an escape of the third body.

179
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Figure 12. Observational limits (black lines) of interferometric measurements (left panel) and the CFHT imaging (right panel). Our solutions from Section 4.9 are
plotted as dots. Many of them are well below the observational limits.

4.10. Observational Limits of Interferometry and CFHT
Imaging

Postulating an existence of a fourth body, inferred from its
gravitational influence on the V505 Sgr system, we should check
if this object could have been directly observed in the past.

According to A. Tokovinin (2009, private communication),
the limit of recent interferometric measurements can be approx-
imated by a linear dependence of brightness difference δy in
Strömgren y magnitudes on angular separation d of the compo-
nents: Δy = 4.7 mag at d = 0.15 arcsec and Δy = 6.5 mag at
d = 1 arcsec adaptive optics at CFHT can reach even fainter.
The limit in the K band is given by Rucinski et al. (2007),
Figure 7, as a nonlinear dependence ΔK(d).

We can easily select solutions from Section 4.9, which fulfill
both limits, albeit a lot of them is excluded by the CFHT limit
(see Figure 12). Note that we are not able to predict exact
magnitudes or positions of the fourth body, because there are
still many solutions possible.

Note that there is an object in the USNO-A2.0 catalog, very
close to V505 Sgr: 0750-19281506, R.A.J2000 = 298.◦277034,
decl.J2000 = −14.◦603839. This corresponds to an angular
separation of 2.6 arcsec and a position angle of 235◦ with
respect to V505 Sgr, at the epoch of observation 1951.574.
The magnitudes R = 10.9 mag and B = 11.8 mag are marked
as uncertain (since the object is located in the area flooded
by light of V505 Sgr). This is an interesting coincidence
with “our” fourth body, but we doubt if the source is real.
Moreover, if the brightness of the USNO source is correct within

±1 mag, it should be well above the observational limits of
CFHT.

4.11. Constraints from Spectral Lines Radial-velocity
Measurements

In Section 4.8, we tried to attribute the observed high RVs
to a hypothetic fourth component. We thus have to ask a
question: could the low-mass fourth component be visible in
the spectrum?

To this end, we used a grid of synthetic spectra based on
Kurucz model atmospheres, which was calculated and provided
for general use by J. Kubát (for details of the calculations,
cf., e.g., Harmanec et al. 1997). We calculate synthetic spectra
for three and four lights (stars) and compare them with the
spectrum observed by Tomkin (1992), Figure 2. This spectrum
was taken at HJD = 2444862.588, close to the primary eclipse
of the central binary, which decreases the luminosity of the first
component and thus weak narrow lines of the third (or fourth)
component are more prominent.

Modeling of spectra (relative intensities) requires a number of
parameters: luminosities, effective temperatures, surface grav-
ity, rotational and RVs. Luminosities of the known components
are L1 = 26 L�, L2 = 3.8 L�, L3 = 2.1 L�, respectively. The
amplitude of the light curve is Δm = 1.1 mag (Chambliss et al.
1993). The effective temperatures are approximately (Popper
1980) Teff1 � 9000 K (corresponding to A2 V spectral type),
Teff2 � 6000 K (F8 IV to G6–8 IV), Teff3 � 6000 K (F8 V).
We assume the following values of the surface gravitational
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Tomkin (1992). The wavelength range, which we fitted, was 5580–5607 Å.
The best solution for the luminosity of the fourth body is L4 = 0.22 L� (with
χ2 = 465, N = 239) The fit with three lights only is worse, with the χ2 value
equal to 542. For T4 = 5700 K, we would have L4 = 0.43 L� and χ2 = 495.

acceleration: log g1 = log g2 = 4.0 (cgs units), log g3 = 4.5
(valid for stars close to the main sequence). Rotational veloci-
ties of the first and second components, a semi-contact binary
with an orbital period of 1.2 days, are synchronized by tidal
lock and are of the order vrot1 � vrot2 � 100 km s−1. These
are in concert with the observed width of broad spectral lines
Δλ = 6 Å. For the third component, we assume a lower velocity
vrot3 = 20 km s−1, usual for late F-type main-sequence stars.
This matches the width of sharp lines. Radial velocities of the
first and second components are close to zero because of the
eclipse proximity (vrad1 = vrad2

.= 0).
We assume the following reasonable parameters for the

fourth component: T4 = 4000 K or 5700 K, log g4 = 4.0,
vrot4 = 20 km s−1. We construct a χ2 metric:

χ2 =
Nobs∑

i=1

(Iobs[i] − I ′)2

σobs[i]2
, (13)

where Iobs[i] denote observed relative intensities, σobs[i] as-
sociated uncertainties, and I ′ is a sum of synthetic intensities
weighted by luminosities:

I ′ =
∑4

j=1 I ′(Teffj , log gj , vrotj ) · Lj

∑4
j=1 Lj

(14)

and of course Doppler shifted due to RVs (λ′ = λobs[i](1 −
vradj /c)) and interpolated to the required wavelengths λ′ using
Hermite polynomials (Hill 1982). We use a simple eclipse
modeling: we decrease L1 according to the Pogson equation
to get the observed total magnitude increase Δm. Errors σobs[i]
were estimated from the scatter in small continua, σ = 0.01.
Artificially small errors σ = 0.003 were assigned to the
measurements in the cores of the narrow lines, in order to match
precisely their depths.

We constructed a simplex algorithm (Press et al. 1997) with
the following free parameters: L4, vrad3, vrad4. Other luminosities
and RVs remain fixed. This simplex is well behaved and
converges to final values almost regardless of the starting
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(A color version of this figure is available in the online journal.)

point. There is no reasonable improvement, if we let all eight
parameters (Lj, vradj ) to be free.

The result for a selected temperature T4 = 4000 K is shown
in Figure 13. The best fit is for L4 = 0.22 L�, and it is
marginally better that the fit with three lights only (i.e., with
fixed L4 = 0). The luminosity corresponds roughly to the mass
m4/M� ∝ (L4/L�)1/4 = 0.68, which seems reasonable with
respect to the results in Section 4.9.

Note that we used vrot3 = 20 km s−1 for rotational velocity
of the third body. No reasonable solution was found for vrot3
as high as 100 km s−1, which would cause a strong rotational
broadening and almost a “disappearance” of spectral lines of the
third body. It means that a low-mass fourth body alone cannot
produce deep sharp lines. We thus suspect, there is a blend of
lines in the spectrum observed by Tomkin (1992), which may
originate on the third and fourth bodies, with low and high RVs.
However, observations with high spectral resolution would be
needed to resolve such blending.

4.12. Constraints from the Stellar Evolution of the Eclipsing
Binary

To assess the long-term evolution of V505 Sgr, we need
some information about the age of the system. An upper limit
for the age can be estimated easily from masses of stars. The
semi-detached central binary (bodies 1 and 2) has a total mass
(3.4 ± 0.1) M�. In order to evolve into the current stage, when
the second lighter component fills its Roche lobe, the original
mass of the second star had to be at least slightly larger than half
of the total mass, i.e., M2 > 1.7 M�. The evolution of radius
is shown in Figure 14; we are mainly concerned with the large
increase of radius, when the star leaves main sequence. Given
the uncertainties of the masses and unknown metallicities, the
upper limit for the age is (2.0 ± 0.5) Gyr.

In order to find a lower limit, we have to check a minimum
separation of the components first (cf. Equation (11) and
Figure 4). A minimum separation occurs when M1 = 0.5 K,
in our case Amin = (5.9 ± 0.1) R�. This value is larger than the
radius of a 3.4 M� star during the whole evolution on the main
sequence. Thus, the mass transfer had to start later, in the red
giant phase.

181
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The maximum mass of the second star had to be slightly
below the total mass, i.e., M2 < 3.4 M�. According to the R(t)
dependence (Figure 14), the red giant phase starts at the age of
(0.26 ± 0.03) Gyr, which could be considered as a lower limit
for the age of the V505 Sgr system.

5. CONCLUSIONS

Generally speaking, we are able to explain the observed
orbit of the third body together minima timings and RVs by
a low-mass fourth body, which encounters the observed three
bodies with a suitable geometry. There is no unique solution,
but rather a set of allowed solutions for the trajectory of the
hypothetic fourth body. It is quite difficult to find a solution for
both speckle-interferometry and light-time effect data. There
are a few systematic discrepancies at the 2σ level, which cause
the likelihood of the hypothesis to be low. Possibly, realistic
uncertainties σsky are slightly larger (by a factor of 1.5) than the
errors estimated by us.

Of course, there are other hypotheses, which do not need
a fourth body at all (a sudden mass transfer, Applegate’s
mechanism, etc.), but none of them provides a unified solution
for all observational data we have for V505 Sgr.

Further observations of the light-time effect during the
next decade can significantly constrain the model. A new
determination of the systemic velocity of V505 Sgr may confirm,
that the change in the O − C data after 2000 resulted from
an external perturbation. (Tomkin’s (1992) value was (1.9 ±
1.4) km s−1.) Spectroscopic measurements of the indicative
sharp lines would also be very helpful to resolve the problem
with radial velocities and relative intensity of spectral lines.
These lines can be attributed neither to the third nor to the
fourth body alone.

If we indeed observe the V505 Sgr system by chance during
the phase of a close encounter with a fourth star, we can imagine
several scenarios for its origin:

1. A random passing star approaching V505 Sgr on a hyper-
bolic orbit. The problem of this scenario is a very low num-
ber density of stars. If we take the value n	 � 0.073 pc−3

from the solar vicinity (Fernández 2005), the mean velocity
with respect to other stars of the order vrel � 10 km s−1 and
the required minimum distance of the order rimp � 102 AU,
we end up with a mean time between two encounters τ �
1/(n	vrelr

2
imp) � 1012 yr, thus an extremely unlikely event.

2. A loosely bound star on a highly eccentric orbit, with
the same age as other three components of V505 Sgr.
Unfortunately, there is a large number of revolutions and
encounters (102–105) over the estimated age of V505 Sgr
and the system practically cannot remain stable over this
timescale (Valtonen & Mikkola 1991).

3. A more tightly bound star on a lower-eccentricity orbit,
which experienced some sort of a late instability, induced
by long-term evolution due to galactic tides, distant passing
stars, which shifted an initially stable configuration into

an unstable state, e.g., driven by mutual gravitational
resonances between components. The problem in this case
is that tightly bound orbits of the fourth body are very rare
in our simulations, thus seem improbable.

None of the scenarios is satisfactory. Nevertheless, we find
the fourth-body hypothesis, the only one which is able to
explain all available observations. Clearly, more observations
and theoretical effort is needed to better understand the V505
Sagittarii system.
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ABSTRACT

The A-type star HR 6412 = V2368 Oph was used by several investigators as a photometric comparison star for the known eclipsing
binary U Oph but was found to be variable by three independent groups, including us. By analysing series of new spectral and
photometric observations and a critical compilation of available radial velocities, we were able to find the correct period of light
and radial-velocity variations and demonstrate that the object is an eclipsing and double-lined spectroscopic binary moving in a
highly eccentric orbit. We derived a linear ephemeris Tmin.I = HJD (2 454 294.67 ± 0.01) + (38.d32712±0d.00004) × E and estimated
preliminary basic physical properties of the binary. The dereddened UBV magnitudes and effective temperatures of the primary and
secondary, based on our light- and velocity-curve solutions, led to distance estimates that agree with the Hipparcos distance within the
errors. We find that the mass ratio must be close to one, but the limited number and wavelength range of our current spectra does not
allow a truly precise determination of the binary masses. Nevertheless, our results show convincingly that both binary components
are evolved away from the main sequence, which makes this system astrophysically very important. There are only a few similarly
evolved A-type stars among known eclipsing binaries. Future systematic observations and careful analyses can provide very stringent
tests for the stellar evolutionary theory.
Key words. stars: early-type – binaries: close – stars: individual: V2368 Oph – stars: individual: U Oph – binaries: spectroscopic

1. Introduction

HR 6412 = HD 156208 has often been used as the photometric
comparison star for a well-known eclipsing binary U Oph, which
exhibits apsidal motion (Huffer & Kopal 1951; Koch & Koegler
1977; Wolf et al. 2002; Vaz et al. 2007). McAlister et al. (1987)
reported that HR 6412 is a speckle-interferometric binary with a
separation of 0.′′136 and estimated the orbital period to 72 years.
However, McAlister et al. (1993) could not resolve this pair and
concluded that the original detection had been spurious.

In Table 1, we summarize the various determinations of the
yellow magnitude of V2368 Oph published by several authors. It
seems to indicate that no secular variations in its brightness have
been recorded, since the scatter of values of a few hundredths of

⋆ Based on new spectral and photometric observations from the
following observatories: Dominion Astrophysical Observatory, Hvar,
Ondřejov, San Pedro Mártir, Tubitak National Observatory, and ASAS
service.
⋆⋆ Appendices are available in electronic form at
http://www.aanda.org
⋆⋆⋆ Tables 2–4 are only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A49

Table 1. Published yellow magnitudes of V2368 Oph.

Mag. Source Photometric system

6m.17 Eggen (1955) (P,V)E system
6m.19 Stokes (1972) uvby and Hβ
6m.16 Becker et al. (1975) Cousins’ values
6m.178 Grønbech & Olsen (1976) uvby; 1965−1970
6m.177 Sowell & Wilson (1993) uvby; Nov. 1988 & Apr. 1991
6m.18 van Gent (1982) BVR; 1970

a magnitude is quite normal for yellow magnitudes recorded in
different photometric systems.

During our 2001 observations of U Oph at San Pedro Mártir
Observatory (SPM hereafter), HR 6412 was also used as the
comparison star. We noticed large changes in this comparison on
JD 2 452 071.71–1.85. Upon a literature search, we found that
the variability of HR 6412 has been discovered by Perryman
& ESA (1997), who classified it as an eclipsing binary with
a period of 7.d70. Kazarovets et al. (1999) then assigned it the
variable-star name V2368 Oph. The variability has also been
confirmed by Vaz et al. (2007), who mention that the period
found by Perryman & ESA (1997) was incorrect but give no
other details.

Article published by EDP Sciences A49, page 1 of 10
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Fig. 1. One complete Ondřejov red spectrum of V2368 Oph, taken on
HJD 2454357.2917, which shows that the only stronger lines, suitable
for the RV measurements, are Hα and the SiII 6347 and 6371 Å. The
spectrum contains many water vapour and oxygen telluric lines and the
interstellar line at 6613.56 Å.

The main goal of this study is to publish the first correct and
accurate linear ephemeris of V2368 Oph, which can be used to
correct earlier photometric observations of U Oph. We also de-
rive preliminary orbital and light-curve solutions and show that
they can lead to self-consistent basic physical properties of the
binary. However, considering the limited amount and hetero-
geneity of our observational material, we do not aim to deter-
mine the final, accurate physical elements of the system.

2. Observational material used

2.1. Photometry

After realising that V2368 Oph is a variable star, we started sys-
tematic UBV observations of it at Hvar and SPM observatories.
A limited set of UBV observations was also obtained by HA
at the Turkish National Observatory. Besides, we compiled the
Hipparcos Hp observations and V photometry from the ASAS
project (Pojmanski 2002). Details on data sets and their reduc-
tion are in Appendix A, and all individual UBV and V observa-
tions with their HJDs are provided in Table 2 (available at the
CDS).

2.2. Spectroscopy

Simultaneously with photometric observations, we also begun
to collect electronic spectra in Ondřejov, San Pedro Mártir, and
Dominion Astrophysical Observatory (OND, SPM, and DAO
hereafter). A detailed discussion of all spectra, their reduction,
and a journal of observations can be found in Appendix B.

Here, we only want to add a few comments relevant to fur-
ther analyses. The only spectral region that is available in the
spectra from all three observatories is the red region containing
only three strong enough spectral lines suitable for the RV mea-
surements: the Balmer Hα line and the doublet of SiII 6347 and
6371 Å lines (see Figs. 1 and 2). The SPM spectra also cover
the region of MgII 4481 Å line, in which both components are
clearly seen, so this line was also found suitable for the RV mea-
surements. The RV measurements were carried out in three dif-
ferent ways. (1) We used the program SPEFO (Horn et al. 1996;
Škoda 1996), which permits the RV measurements via sliding

Fig. 2. The Hα and SiII 6347 and 6371 Å line profiles from
the Ondřejov spectrum taken near one periastron passage on
HJD 2 454 636.4608. One can clearly see the lines of both binary com-
ponents, separated by more than 200 km s−1 in their radial velocity.

direct and flipped line profiles on the computer screen until a
perfect match is obtained. (2) We fitted the observed line profiles
by two Gaussians shifted in their positions in such a way as to
obtain the best match of the observed, often blended line profiles
of the primary and secondary. (3) We verified our RV values by
an automated fitting of a combination of two synthetic spectra –
selected from the Ondřejov library of synthetic spectra, prepared
and freely distributed by Dr. J. Kubát – to each of the observed
spectra using a simplex algorithm. The χ2 (defined in Brož et al.
2010) was calculated for the entire red spectrum in the wave-
length range 6256 to 6768 Å, which includes all the individual
lines analysed previously.

The second method is preferred as it returns the most likely
velocity amplitudes. The results of the third method are statis-
tically compatible. The first method (SPEFO RV measurements)
usually underestimates the true semi-amplitudes of the orbital
motion, because of the line blending, especially for the steep
wings of Hα. We, therefore, used the SPEFO Hα RVs only for
the initial search of the orbital period, to combine them with
older published RVs, measured in a standard way from the pho-
tographic spectra.

For all red spectra, we followed the procedure outlined in
Horn et al. (1996) and measured RVs of a selection of unblended
telluric lines in SPEFO. We then used the difference between the
calculated heliocentric RV correction and the true mean RV of
telluric lines to correct the zero point of the RV scale individ-
ually for each spectrogram. Regrettably, these corrections were

A49, page 2 of 10
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Fig. 3. The radial-velocity curve of the primary component of
V2368 Oph based on Hα RVs measured in SPEFO for our OND, DAO,
and SPM spectra (filled circles) and published RVs (open circles) for
the period of 38.d3307 from the FOTEL orbital solution with phase zero
at periastron passage. See the text for details.

less reliable for the majority of the red SPM spectra, which only
contain very weak telluric lines owing to the high altitude of that
observatory. No such corrections were possible for the blue SPM
spectra in the absence of telluric lines, of course.

Individual Hα, SiII, and MgII RVs, measured in a standard
way in SPEFO and via Gaussian fits to line profiles with their
HJDs of mid-exposures are in Table 3 (available at the CDS).
The rectified and wavelength-calibrated spectra are in Table 4
(available at the CDS).

3. Preliminary analysis and search for a correct

orbital period

As our observations progressed, it soon became obvious that the
orbital period must be much longer than the 7.d70 period reported
by Perryman & ESA (1997) and that the orbit had to have a high
eccentricity, since we were observing a constant brightness and
only small RV changes. When we finally succeeded in observ-
ing a decline into the minimum on the night JD 2 454 294.35-
4.54, we were able to combine it with earlier minima recorded
by Hipparcos, ASAS, and our discovery observation at SPM
and to obtain the first guess that the period should be close to
38 days. Continuing spectroscopic observations then allowed us
to cover parts of two periastron passages on JD 2 454 366-67,
and JD 2 454 636 and an iterative analyses of the RV and light
curves allowed us to estimate the value of the orbital period to
38.d33.

There are two limited sets of earlier RV measure-
ments. Christie (1925) published five RVs covering the in-
terval JD 2 423 233.8–995.8, and Palmer et al. (1968) pub-
lished another five RVs from low-dispersion spectra covering
JD 2 437 441.6-740.7. We combined these RVs with our own RV
measurements in the program SPEFO (Horn et al. 1996; Škoda
1996) for the Hα line and used the FOTEL program (Hadrava
1990, 2004a) to derive preliminary orbital elements and a more
accurate value of the period. We obtained P = 38.d3302±0.d0015,
Tperiast. = HJD 54 290.894 ± 0.096, Tmin I = HJD 54 294.417,
e = 0.551 ± 0.010, ω = 355.2 ± 1.6, K1 = 59.71 ± 4.1 km s−1,
γold = 17.0 ± 3.4, and γnew = 10.07 ± 0.50, the rms errors of the
model fit to the data per 1 observation being 10.3, and 4.1 km s−1

for the old and new RVs.

Since the narrow and steep photometric eclipses are very
sensitive to the phase shifts, we used an interactive computer
program (written by HB), which allows the user to display the
phase diagrams based on the observed data in the neighbourhood
of the eclipses for various smoothly varied values of the orbital
period. This way we found that the true orbital period must be
very close to the value of 38.d3272.

4. Towards basic physical properties

of the binary

To obtain self-consistent physical properties of the components
and the binary system, we had to proceed in an iterative way. We
selected several stronger lines seen in both binary components
and derived their RVs via Gaussian fits to line profiles. In par-
ticular, we used the SiII 6347&6371 Å and Hα lines, available
in all spectra, and MgII 4481 Å, measurable in the SPM spectra.
For Hα, the Gaussian profiles were not optimal so we tentatively
disentangled the Hα profiles, using the KOREL program (Hadrava
1995, 1997, 2004b, 2005) and used the disentangled profiles in-
stead of Gaussians1.

We alternatively used the programs PHOEBE (Prša & Zwitter
2005, 2006) based on the Wilson & Devinney (1971) program,
and FOTEL, already used in the first step, to derive preliminary
values of some critical parameters. To obtain the best possible
estimate of the RV semi-amplitudes, we allowed for individual
systemic velocities for each of the ions used. In particular, we
found the systemic velocities of 2.97 ± 0.55, 0.14 ± 0.54, and
9.9 ± 6.0 for SiII, MgII, and Hα, respectively. The differences
between these values are probably insignificant considering their
errors and the inability to check the zero point of the RV scale
for the blue spectra via measurements of the telluric lines. Since
PHOEBE can treat only one joint systemic velocity, we subtracted
the values of respective systemic velocities from the observed
RVs and used these shifted RVs from all three ions as one dataset
for the primary and another one for the secondary in PHOEBE. We
then naturally kept the systemic velocity fixed at zero in PHOEBE
solutions.

In the latest (development) version of PHOEBE that we are
using, the convergence is governed by minimization of a cost
function χ2 defined in the case of our datasets as

χ2 =
∑

p

1
σ2

p

Np∑

i=1

wi( fi − si)2, (1)

where index p denotes the individual photometric passbands,
σp their standard deviations per 1 observation, Np is the num-
ber of individual observations for pth passband, wi are standard
weights of individual observations, and fi and si the observed
and calculated fluxes, respectively. The value of the χ2 function
is tabulated along with the solutions.

Although it should be possible to derive the effective tem-
peratures of both binary components from calibrated UBV pho-
tometry (Prša & Zwitter 2006; Wilson 2008), the propagation
of errors often leads to unreliable results. For that reason we re-
stricted ourselves to the standard approach of estimating the ef-
fective temperature of the primary from the dereddened colours
and observed spectra, then keeping its value fixed in the solu-
tions.
1 It would seem logical to derive the orbital solution directly with
KOREL. However, due to heterogeneity of the available spectra, their dif-
ferent spectral resolutions and relatively limited number, this procedure
was not satisfactory in the given case.

A49, page 3 of 10

185



A&A 531, A49 (2011)

Table 5. Published uvby and Hβ observations of V2368 Oph.

V b − y m1 c1 Nuvby Hβ NHβ Source

– 0m.167 0m.090 1m.195 5 2.850 4 Crawford et al. (1972)
6m.19 0m.177 0m.095 1m.216 3 2.860 3 Stokes (1972)
6m.178(1) 0m.161(2) 0m.095(2) 1m.204(2) 2 – Grønbech & Olsen (1976)
– – – – 2.870(2) 3 Gronbech et al. (1977)
6m.177(5) 0m.189(2) 0m.072(5) 1m.203(5) 3 – Sowell & Wilson (1993)

Table 6. The final combined light-curve and RV-curve solutions obtained with PHOEBE.

Element Primary Binary Secondary Primary Binary Secondary

P (d) 38.327115(43) 38.327118(43)
Tperiastr. (RJD) 54291.039(11) 54291.042(11)
Tmin.I (RJD) 54294.670(17) 54294.668(17)
Tmin.II (RJD) 54287.498(17) 54287.495(17)
e 0.51527(14) 0.51524(14)
ω (◦) 359.33(20) 359.41(20)
i (◦) 86.165(22) 86.139(22)
r 0.0473 0.0460 0.0477 0.0464
Ω 23.29(11) 24.75(12) 23.05(11) 23.71(11)
a (R⊙) 83.67(67) 83.70(68)
Kj (km s−1) 65.7(8) 62.9(9) 64.3(6) 64.3(6)
K2/K1 1.044(15) 1.0 fixed
Teff (K) 9300 fixed 9500(200) 9300 fixed 9500(200)
M (M⊙) 2.62(2) 2.74(7) 2.68(8) 2.68(8)
R (R⊙) 3.96(2) 3.84(2) 3.99(3) 3.87(2)
Mbol (mag) −0.31(9) −0.34(9) −0.33(9) −0.36(9)
log g [cgs] 3.66(1) 3.71(1) 3.66(3) 3.69(3)
Lj V band 0.5029(30) 0.4971 0.5024(30) 0.4976
Lj B band 0.5004(32) 0.4996 0.4995(32) 0.5005
Lj U band 0.4942(37) 0.5058 0.4927(38) 0.5073
V (mag) 6.913(16) 6.167(11) 6.926(16) 6.913(16) 6.166(11) 6.924(16)
B (mag) 7.137(17) 6.386(11) 7.139(17) 7.139(17) 6.385(11) 7.137(17)
U (mag) 7.363(20) 6.598(13) 7.338(20) 7.367(20) 6.599(13) 7.335(20)
V0 (mag) 6.26(8) 6.29(8) 6.26(8) 6.29(8)
(B−V)0 (mag) 0.021(11) 0.014(11) 0.021(11) 0.014(11)
(U−B)0 (mag) 0.077(15) 0.054(15) 0.078(15) 0.053(15)
No. of obs. UBV/RV 1913 / 268 1913 /268
χ2 1726 1730

Notes. Columns 2–4 contain a solution based on the free convergence; Cols 5–7 contain the solution for the fixed mass ratio of 1. All epochs are in
RJD = HJD− 2 400 000. Probable elements and their formal error estimates are provided, where Ω is the value of the Roche-model potential used
in the WD program, and L j ( j = 1, 2) are the relative luminosities of the components in individual photometric passbands. They are normalized so
that L1 + L2 = 1. The number of observations represents the sum of RVs of the primary and secondary and a sum of individual observations in all
passbands.

There are four sets of uvby observations and three sets
of Hβ photometry of V2368 Oph – see Table 5. Using the
program UVBYBETA written by T. T. Moon and modified by
R. Napiwotzki, which is based on a calibration devised by Moon
& Dworetsky (1985), we found that those sets of Strömgren pho-
tometry imply a mean effective temperature of the binary be-
tween 8900 K, and 9400 K and a mean log g between 3.50 and
3.61.

Since both stars are detached well even near periastron, the
light-curve solution basically does not depend on the exact value
of the mass ratio. Considering this, a preliminary PHOEBE so-
lution was used to derive relative luminosities of both compo-
nents, UBV magnitudes of the binary at maximum light from
the UBV observations transformed to the standard system and
from them the UBV magnitudes of the primary and secondary in
each passband. These were then dereddened in a standard way,
assuming AV = 3.2 E(B−V). The dereddened magnitudes and
indices confirmed the spectral type of A2 for the primary. Using
Flower (1996) calibration of (B−V)0 indices vs. bolometric

corrections and Teff, we estimated the effective temperature of
the primary to (9300 ± 200) K. Keeping the value of 9300 K
fixed, we derived a freely converged PHOEBE solution, which is
presented in detail in Table 6. The rms errors of all converged
parameters in PHOEBE are derived from a covariance matrix. For
other, deduced parameters, we propagated the errors to obtain
the estimates given in the Table. Since a realistic error of the ef-
fective temperature of the primary is about ±200 K, this must
imply that the formal error of the effective temperature of the
secondary, estimated from a covariance matrix in PHOEBE, is too
low and must also be about ±200 K.

It is clear at first sight that this solution is not satisfactory
since it leads to a model in which the more massive component
is the less evolved of the two. We believe that the problem lies
in the limited quality of our radial velocities. As a matter of fact,
the solutions for RVs of individual ions oscillated between 0.95
and 1.05 in the resulting mass ratio. At the same time, since
both binary components are well detached, the light curve so-
lution is stable and basically does not depend on the mass ratio.
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Fig. 4. The final radial-velocity curves of both binary components of
V2368 Oph based on Gaussian fits (circles) and the theoretical RV
curves based on our PHOEBE solution (lines). The lower panel shows
the O−C residua from the solution. Typical observational uncertainties
are 10 km s−1. Orbital phases from ephemeris (2) are used.

Therefore, we derived another PHOEBE solution, this time with
the mass ratio fixed to 1.0. This solution is also provided in the
last three columns of Table 6 and we take it as the reference solu-
tion for the following discussion. The corresponding RV curves
and the light curve in the V band are shown in Figs. 4, and 5,
respectively. It is seen that there is little difference in all parame-
ters, which do not depend on the mass ratio between the two so-
lutions. For completeness, we also derived another solution for
the mass ratio of 0.95. This led to a slightly worse χ2 = 1770,
but the photometric elements were again very similar to those
two shown in Table 6.

The solutions led to the following linear ephemeris, which
should enable correction of existing photometric observations of
U Oph secured differentially relative to V2368 Oph:

Tmin.I = HJD 2 454 294.67+ 38.d32712 × E. (2)

It is encouraging to note that a separate dereddening of the
UBV magnitudes of the primary and secondary led invariably
to E(B−V) = 0m.20 and to distance moduli of 6.46(12), and
6.47(12) for the primary and secondary, respectively. The dered-
dened values of the secondary indicate a slightly earlier spec-
tral type, in accordance with its higher effective temperature ob-
tained from the PHOEBE solution. We note that E(b − y) derived
with the program UVBYBETA from the uvby values of Table 5 is
0m.15, which agrees well with the E(B−V) derived by us2.

The parallax of V2368 Oph was obtained by the ESA
Hipparcos mission, and its originally published value (Perryman
& ESA 1997) is 0.′′00554 ± 0.′′00086, while an im-
proved value obtained by van Leeuwen (2007a,b) reads as
0.′′00455 ± 0.′′00048. The distance modulus obtained from our

2 Note that E(b − y) = 0.74E(B−V).

Fig. 5. The observed V-band light curve compared to the theoretical
one, based on our PHOEBE solution. The lower panels show a zoom of
the curves in the neighbourhood of both binary eclipses and the O−C
residua from the model fit. Typical 1-σ observational uncertainties are
0m.01. Orbital phases from ephemeris (2) are used.

photometric solution implies a parallax of 0.′′00506, in excellent
agreement with the above values, deduced from the Hipparcos
observations.

5. Stellar evolution of the components

Since V2368 Oph is a detached binary with no evidence of
mass transfer, one can use a one-dimensional program for stellar
evolution to see whether the observed properties of the binary
agree with the model prediction. To this end, we used the stellar-
evolution module MESAstar by Paxton et al. (2011).

We first calculated the model evolution for the masses M1 =
2.62 M⊙ and M2 = 2.74 M⊙ which follow from the free PHOEBE
solution with the lowest χ2 for the combined photometric and
RV data (Table 6, left). We assumed the same metallicities of
Z = 0.02 for both components, of course, the helium abun-
dance Y = 0.28 and the mixing-length parameter α = 2.0.
The result is compared to the observed binary properties in the
Hertzsprung–Russell diagram, and the Teff vs. radius diagram
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Fig. 6. Left panels: a Hertzsprung-Russel diagram (top), and the Teff vs. radius diagram (bottom) showing the stellar evolution of the primary and
secondary components of V2368 Oph. It was computed with the MESAstar module, for the masses M1 = 2.62 M⊙, M2 = 2.74 M⊙ and for the
metallicity Z = 0.02. The evolutionary tracks are plotted by thick lines from ZAMS up to the age 3.877× 108 y. The ranges in temperatures T1, T2,
luminosities L1, L2 and radii R1, R2 inferred from photometry/spectroscopy are denoted by lines (refer to Table 6). There is a strong disagreement
between the observations and the stellar evolution, especially for the primary. Right panel: same for the masses M1 = 2.682 M⊙, M2 = 2.678 M⊙
(i.e., the mass ratio very close to one), and a different value of the metallicity Z = 0.014. The thick lines are terminated at the age 3.938 × 108 y.

(Fig. 6, left panels). Even though there are uncertainties in tem-
peratures, luminosities and masses of the individual components
(refer to Table 6), their differences are established much more
accurately; e.g., the difference in temperatures T2 − T1 ≃ 200 K
is always present in PHOEBE solutions since this is enforced by
the observed light curve and colour indices.

There is a clear disagreement between the photomet-
ric/spectroscopic observations and the predicted stellar evolution
in this case. Since the mass ratio q = M1/M2 � 0.96 differs
significantly from 1, the calculated luminosities of the compo-
nents are always very different owing to a strong dependence
of the stellar evolution on the mass (log L2/L⊙ reaches ≃2.0 and
log L1/L⊙ ≃ 1.9), while the observed luminosities are rather sim-
ilar (log L1/L⊙ ≃ log L2/L⊙ ≃ 2.03). A change in neither metal-
licity nor in the mixing-length parameter could alter this result
since a different value of Z would shift both tracks in the same
direction, and varying α from 1.5 to 2.5 does not alter evolution-
ary tracks significantly before the red giant branch is reached.

As a second test, we took the mass ratio q close to 1, which is
still compatible with the photometric/spectroscopic observations
from a statistical point of view (Table 6, right). Because the stel-
lar evolution is very sensitive to the stellar mass, we may actu-
ally use this approach to constrain the mass ratio of V2368 Oph.

The most sensitive indicator seems to be the temperature – there
is approximately a 200 K difference between T1 and T2, which
corresponds to a 0.004 to 0.008 M⊙ difference between M1 and
M2, according to our tests. If we use M1 = 2.682 M⊙ and M2 =
2.678 M⊙ we also have to decrease the metallicity to Z = 0.014,
which shifts both the evolutionary tracks towards higher T and
L, in order to match the observed state of V2368 Oph (Fig. 6,
right panels). Another possibility would be to slightly increase
the masses to M1 = 2.760 M⊙ and M2 = 2.752 M⊙ and to retain
the Z = 0.02 value. To conclude, it is possible to find a con-
sistent solution for the available photometry and spectroscopy
and the stellar evolution, even though the parameters presented
above cannot be considered as final, because the total mass of
the system is not yet constrained precisely enough.

From the standpoint of stellar evolution, V2368 Oph is a
very interesting evolved system with both components leaving
the main sequence. It is in a rapid phase of evolution and conse-
quently may serve as a very sensitive test case for the stellar-
evolution programmes, provided new, accurate RVs and pho-
tometric observations are acquired. Considering the relatively
short distance of the binary from us, its interferometry would
also be of utmost importance, providing the angular separa-
tion of the components and orbital inclination, consequently a
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Fig. 7. A comparison of disentangled (solid lines) and synthetic (dotted lines) profiles of the SiII line (left panels) and Hα line (right) for the
primary (top panels) and secondary components (bottom). See the text for details.

much more precise parallax and the total mass of the system.
Interferometry can also provide independent constraints on the
component radii.

6. A comparison with synthetic spectra

and the rotation of the binary components

As another consistency check, we disentangled the SiII and Hα
line profiles with the help of the KOREL program (Hadrava 1995,
1997, 2004b, 2005), keeping the orbital parameters from the sec-
ond PHOEBE solution fixed, but using the mass ratio of 0.998
(considering the discussion above). In Fig. 7, the disentangled
line profiles, normalized to their individual continua using the
relative luminosities derived by PHOEBE, are compared with the
synthetic line profiles from the Ondřejov library of synthetic
spectra prepared and freely distributed by Dr. J. Kubát – see,
e.g. Harmanec et al. (1997a) for details. We used the synthetic
spectra for the parameters close to the PHOEBE results, namely
Teff = 9500 K and log g = 3.5, rotationally broadened in SPEFO
to 40 km s−1 for the primary and to 90 km s−1 for the secondary.
Varying these values for more than ±5 km s−1 would result in
a significant disagreement in the depths and widths between the
observed and synthetic line profiles.

The agreement between the observed and synthetic spectra
is satisfactory, lending some credibility to our result. We warn,
however, that the heterogeneity of our material means that there
can still be rather large uncertainties in the derived masses, radii,
and luminosities. Another study based on rich and homogeneous
observational material is therefore desirable.

Taken at face value, the observed projected rotational ve-
locities and the PHOEBE solution would imply the stellar rota-
tional periods of 5.d0 and 2.d2 for the primary and secondary,

respectively, while the spin-orbit synchronization in periastron
would imply a rotational period of 10.d5. It is notable that in their
detailed study of another evolved A-type binary with eccentric
orbit, θ2 Tau, Torres et al. (2011) also found the projected rota-
tional velocity for the secondary roughly twice as high as for the
primary.

In passing, we wish to mention that it is also possible to
make a theoretical prediction of the internal structure constant
based on the current evolutionary models of Claret (2004) with
the standard chemical composition of (X, Z) = (0.70, 0.02):
log k2 = −2.498 for both binary components. Taking the val-
ues of the eccentricity and fractional radii from Table 6 into
account, we can predict a very slow apsidal-motion rate of
ω̇obs = 0.00028 deg/cycle, which is only 0.27 deg/century.
The relativistic contribution to the apsidal motion is substantial:
ω̇rel = 0.00020 deg/cycle or about 70% of the total apsidal-
advance rate (Gimenez 1985). In other words, there is little
chance of detecting a measurable apsidal motion for this binary
in the foreseeable future.
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Appendix A: Photometry

Here we provide detailed comments on the photometric obser-
vations used in this study and the way we treated them.

1. Hvar observations were secured in 2007, 2008, and 2009 and
reduced and transformed into the standard UBV system with
the HEC22 release 16.1 reduction program via nonlinear
transformation formulæ (Harmanec et al. 1994; Harmanec
& Horn 1998). This recent version of the program allows
modelling of variable extinction during the observing night,
which significantly improves the accuracy of the observa-
tions. The typical rms errors of the multinight fit to all stan-
dard stars used to define the transformation formulæ in a
given observating season are 0m.008 for V and B, and 0m.010
for U. This is similar for observations from other observing
stations reduced with the help of HEC22.

2. San Pedro Mártir observations were collected during the
observational runs in 2001–2003 and 2007. Observations
were reduced and transformed into the standard UBV sys-
tem with the HEC22 release 14.1 reduction program via
nonlinear transformation formulæ (Harmanec et al. 1994;
Harmanec & Horn 1998). At that station V2368 Oph was
used in 2001 as a recommended comparison star for the
eclipsing binary U Oph and its magnitude difference rela-
tive to several comparison stars (HD 183324, HD 187458,
HD 161132, HD 153808, and HD 144206) was derived. For
all these stars, save HD 183324, the magnitudes and colours
are well established from the calibrated Hvar all-sky pho-
tometry. HD 183324 = V1431 Aql was found to be a small-
amplitude λ Bootis variable (Kuschnig et al. 1994). It served
for a long time as a comparison star for observations of
V923 Aql and V1294 Aql in the Photometry of the Bright
Northern Be Star Programme (Harmanec et al. 1982, 1994;
Pavlovski et al. 1997; Harmanec et al. 1997b) and its vari-
ability on longer time scales is safely excluded by numer-
ous Hvar observations. The mean all-sky UBV magnitudes
of HD 183324 are accurately derived. It was actually used as
a comparison for V2368 Oph only on the night JD 2 452 065,
and we feel that its 2 mmag microvariability is not criti-
cal for the purpose of this study. For 13 observations se-
cured on JD 2 452 071 (when we recorded the first eclipse
of V2368 Oph), it was not possible to derive the differen-
tial values for it so we adopted its all-sky values instead,
since enough standard stars had been observed during the
night, and the nightly transformation coefficients (extinction
and its variations and the zero points) could be derived. As
soon as we realized that V2368 Oph is a variable, its subse-
quent observations in 2002 and 2003 were carried out dif-
ferentially, relative to HD 154660 = HR 6361. This A9V
star is a visual binary ADS 10347A with a close compan-
ion ADS 10347B at 20.′′3, which is some 3m.35 fainter than
ADS 10347A. The 2007 observations were obtained with
a larger diaphragm so that the light of the visual compo-
nent ADS 10347B was recorded with the brighter compo-
nent ADS 10347A = HD 6361. We carried out dedicated
observations at Hvar to derive the total magnitude of both
visual components and added this value to the magnitude
differences var – comp. from this season. In all other in-
stances, observations were carried out in such a way as to
keep ADS 10347B outside the diaphragm.

3. Hipparcos all-sky Hp broad-band magnitudes secured be-
tween 1989 and 1993 (Perryman & ESA 1997) were trans-
formed to the standard Johnson V magnitude with the non-
linear transformation formula derived by Harmanec (1998).

The rms error of the fit per 1 observations is 0m.0067. For
the solutions, the transmission and the limb darkening coef-
ficients for the Hp passband were considered, however. All
data with error flags larger than 1 and one deviating point at
HJD 2448661.4682 were omitted.

4. TNO (Tubitak National Observatory) observations were se-
cured during two consecutive nights in 2003 and were re-
duced and transformed into the standard UBV system with
the HEC22 release 14.1 reduction program via nonlinear
transformation formulæ (Harmanec et al. 1994; Harmanec
& Horn 1998).

5. ASAS V magnitude observations were extracted from the
public ASAS database (Pojmanski 2002); we used the data
from the diaphragm, which gives the smallest rms errors and
omitted a few clearly deviating data points.

The journal of all photometric observations is in Table A.1.
Homogenized UBV magnitudes of all comparison and check
stars used can be found in Table A.2.

Appendix B: Spectroscopy

The journal of all spectroscopic observations can be found in
Table B.1. The individual data files are identified there by letters.
Below, we provide a few comments on them.

– File A. CCD spectra of V2368 Oph covering the wavelength
region 6260–6750 Å. They were secured with a SITe-005
800 × 2000 CCD detector attached to the medium 0.7-m
camera of the coudé focus of the Ondřejov 2.0 m telescope
(OND). The spectra were obtained between June 2007 and
June 2008 and have a linear dispersion of 17.2 Å mm−1 (red)
and a 2-pixel resolving power of about 12600 (11−12 km s−1

per pixel). Their S/N ranges from 50 (1 spectrum) to 370,
and the majority have S/N over 200.

– File B. CCD spectra covering the wavelength region 6150–
6750 Å with a resolution of 6.6 km s−1 per pixel. They were
obtained at the DAO 1.22-m telescope between August 2007
and September 2009 and have a reciprocal linear dispersion
of 10 Å mm−1. The detector used was a SITe-4 4096 × 2048
CCD, and the 3-pixel resolving power was about 15 000.
Their S/N ranges from 100 to 370.

– File C. CCD echelle spectra secured with the 2.14-m reflec-
tor of the SPM observatory in April 2003. The CCD detec-
tor has 1024 × 1024 pixels, and the setting used covered the
wavelength region from 4000 to 6700 Å in grating orders 33
to 60. The nominal resolution of the spectrograph is 18 000
at 5000 Å, which translates into 2-pixel resolution of about
17 km s−1.

– File D. Another set of echelle CCD spectra from SPM, se-
cured in April 2007.

– File E. The third set of echelle CCD spectra from SPM, se-
cured from May 30 to June 1, 2007. The S/N of the SPM
spectra ranges between 120 and 500 for the red, and 85 to
230 for the blue parts of the spectra.

The initial reductions of the DAO spectra (bias subtraction, flat-
fielding and conversion to 1-D images) were carried out by SY
in IRAF. The initial reduction of the SPM and OND spectra was
carried out by PE and by Dr. M. Šlechta, respectively, includ-
ing the wavelength calibration. The remaining reductions of all
spectra (including wavelength calibration for the DAO spectra,
continuum rectification, and removal of cosmics and flaws) was
carried out with the program SPEFO (Horn et al. 1996; Škoda
1996).
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Table A.1. Journal of available photometry of V2368 Oph.

Station Time interval No. of Passbands HD of comparison Source
(HJD−2 400 000) obs. /check star

1 542 73.4–550 61.4 423 UBV 154660/154895 this paper
30 520 65.8–542 76.8 152 UBV *) this paper
66 527 65.4–527 66.6 10 UBV 154660/154895, 154445 this paper
61 479 12.6–490 61.9 111 V all-sky Perryman & ESA (1997)
93 530 55.9–532 90.5 47 V all-sky Pojmanski (2002)

Notes. Individual observing stations are distinguished by running numbers they have in the Prague/Zagreb photometric archives – see column
“Station”: 01 . . . Hvar 0.65-m, Cassegrain reflector, EMI9789QB tube; 30 . . . San Pedro Mártir, 0.84-m reflector, Cuenta-pulsos photometer;
61 . . . Hipparcos all-sky Hp photometry transformed to Johnson V ; 66 . . . TNO 0.40-m Cassegrain reflector, SSP5A photometer; 93 . . . ASAS
data archive (Pojmanski 2002). *) All-sky photometry or differential photometry relative to various comparisons during the first season when
V2368 Oph was used as a comparison for observations of U Oph, then relative to HD 154660 – see the text for details.

Table A.2. Comparisons and check stars of V2368 Oph.

HD/BD Other ident. V B−V U−B

154660 HR 6361 6.357 0.211 0.103
−01◦ 3292B ADS 10347B 9.71 0.66 0.15

ADS 10347AB 6.308 0.227 0.094
154895 HR 6367 6.058 0.075 0.028
183324 V1431 Aql 5.801 0.086 0.067
187458 HR 7550 6.660 0.426 −0.056
162132 HR 6641 6.494 0.085 0.075
153808 ǫ Her 3.916 −0.024 −0.088
144206 υ Her 4.739 −0.096 −0.326

Notes. Magnitude and colours of ADS 10347AB are values resulting from co-added flux of HR 6361 and BD−01◦ 3292B measured simultaneously
though a larger diaphragm in the photometer.

Table B.1. Journal of spectroscopic data of V2368 Oph.

Spg. Time interval No. of Station, telescope
no. (HJD−2 400 000) spectra and instrument

A 542 66.4–546 38.4 11 OND 2.0-m, grating spg.
B 543 39.7–551 02.6 19 DAO 1.22-m, grating spg.
C 527 45.8–527 49.0 21 SPM 2.1-m, echelle spg.
D 541 93.9–542 00.0 21 SPM 2.1-m, echelle spg.
E 542 50.8–542 53.0 12 SPM 2.1-m, echelle spg.
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ABSTRACT

The long-period (P = 27.1 years) peculiar eclipsing binary ε Aur, which has recently completed its two year-long primary eclipse,
has perplexed astronomers for over a century. The eclipse arises from the transit of a huge, cool and opaque, disk across the face of
the F0 Iab star. One of the principal problems with understanding this binary is that the very small parallax of p = (1.53 ± 1.29) mas,
implying a distance range of d ∼ (0.4−4.0) kpc, returned by a revised reduction of the H satellite observations, is so uncertain
that it precludes a trustworthy estimate of the luminosities and masses of the binary components. A reliable distance determination
would help solve the nature of this binary and distinguish between competing models.
A new approach is discussed here: we estimate the distance to ε Aur from the calibration of reddening and interstellar-medium gas
absorption in the direction of the system. The distance to ε Aur is estimated from its measured E(B−V) and the strength of the diffuse
interstellar band 6613.56 Å. Spectroscopy and UBV photometry of several B- and A-type stars (<1◦ of ε Aur) were carried out.
The distances of the reference stars were estimated from either measured or spectroscopic parallaxes. The range in distances of the
reference stars is from 0.2 to 3.0 kpc. We find reasonably tight relations among E(B − V), EW, and Ic (6613 Å feature) with distance.
From these calibrations, a distance of d = (1.5±0.5) kpc is indicated for ε Aur. If ε Aur is indeed at (or near) this distance, its inferred
absolute visual magnitude of MV ≃ (−9.1 ± 1.1) mag for the F-supergiant indicates that it is a very young, luminous and massive
star. Noteworthy, the high luminosity inferred here is well above the maximum value of MV ≃ −6.m2 expected for (less-massive) post
asymptotic giant branch supergiant stars. Thus, based on the circumstantial evidence, the higher-mass model appears to best explain
the properties of this mysterious binary system.
As a by-product of this study, our spectroscopy led to the finding that two of the stars used in the distance calibrations, HD 31617
and HD 31894, are newly discovered spectroscopic binaries, and HD 32328 is a new radial-velocity variable.

Key words. binaries: eclipsing – stars: AGB and post-AGB – stars: distances – stars: massive – stars: individual: eps Aurigae

1. Introduction

ε Aur (7 Aur, HR 1605, HD 31964) is a bright (V ≃ 3.m0) single-
line eclipsing binary with so far the longest known orbital pe-
riod of 27.1 years (9890.d3) (Ludendorff 1903; Stefanik et al.
2010; Chadima et al. 2010). The duration of the eclipse is almost
2 years and its last eclipse terminated by the end of August 2011.
For the first time, interferometric observations carried out during
the recent eclipse (see Kloppenborg et al. 2010) “imaged” the
dark, flattened disk component transiting the F-supergiant star.

Two principal models of the system have been considered,
often referred to as the high- and low-mass models (Guinan &
DeWarf 2002, and references therein). Although they differ quite
substantially from each other, the distances that follow from the
rather uncertain H parallax quoted in Table 1 do not
allow to distinguish between the models from mainly luminosity

⋆ Based on new spectral and photometric observations from the Hvar,
Ondřejov and Tautenburg Observatories, the Four College Automatic
Photoelectric Telescope and from the ESA H satellite.
⋆⋆ Appendices are available in electronic form at
http://www.aanda.org

considerations. In Table 1 we also summarize several other at-
tempts to derive the parallax of ε Aur. The true nature of this
unusual eclipsing binary remains a puzzle in spite of many at-
tempts to explain its properties. As noted previously, one of the
principal problems is that the very small parallax returned by the
H satellite is so uncertain that it precludes a trustwor-
thy estimate of the luminosities and thus masses of the binary
components. A reliable distance determination would help solve
the nature of this binary and distinguish between the competing
models that explain this extraordinary binary system.

According to the high-mass model, first considered by
Kuiper et al. (1937) and later developed by Carroll et al. (1991),
the F-supergiant component is a normal high mass/high lumi-
nosity Pop. I supergiant and its mysterious cool disk (+ star)
companion is either a very young, high mass object that has ac-
creted gas from the F-supergiant or a pre-Main Sequence star
with circumstellar material.

In the low mass model, first suggested by Eggleton & Pringle
(1985) and by Lambert & Sawyer (1986) and recently advocated
by Hoard et al. (2010), the F-supergiant is a post-asymptotic gi-
ant branch (AGB) star, of low to moderate mass (initial mass
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Table 1. Various determinations of the parallax of ε Aur.

Source p (mas) Notes
Adams & Joy (1917) 11–22 1
Adams & Joy (1917) 60 2
Strand (1959) 6 ± 4 3
Strand (1959) 1 4
van de Kamp & Lippincott (1968) 4 ± 2 5
van de Kamp (1978) 1.72 ± 0.08 4
Heintz & Cantor (1994) 3 ± 2 6
Heintz & Cantor (1994) 1.65 ± 0.15 4
Perryman & ESA (1997) 1.60 ± 1.16 7
van Leeuwen (2007a,b) 1.53 ± 1.29 8

Notes. Trigonometric parallaxes are quoted unless specified otherwise.
1... spectroscopic parallax; 2... by Jewdokimow at Yerkes; 3... 59 nights,
Yerkes 1926−58; 4... comparing the semi-major axis from the astro-
metric and spectroscopic solutions; 5... 174 obs. at Sproul in 1938−56;
6... an extended series of the Sproul 363 night means over 44 years;
7... original H parallax; 8... revised reduction of H
parallaxes.

Table 2. Equatorial coordinates and spectral types of ε Aur and the
calibration stars in its neighbourhood.

Star α (J2000.0) δ (J2000.0) Sp. type Note

ε Aur 5h01m58.s13245 43◦49′23.′′9059 F0Ia
HD 31617 4h59m21.s24899 43◦19′24.′′1690 B2IV 1
HD 31894 5h01m34.s29127 43◦26′08.′′6252 B2IV-V 2
HD 32328 5h04m32.s73112 43◦43′39.′′5641 B8V 1
HD 277197 5h01m11.s5460 43◦34′41.′′915 B3V 3
BD+43◦1168 5h02m12.s374 43◦51′42.′′35 B9Iab

Notes. 1... newly discovered SB1; 2... newly discovered SB2; 3... the
spectral class estimated by us.

≈1−7 M⊙; final (current) mass <1.0 M⊙). In this model, the
large, cool disk binary component resulted from the recent cap-
ture of gas from a prior large mass-loss/transfer phase from the
F-supergiant.

2. A methodology of the distance calibration

We initially selected three stars close in the sky to ε Aur,
HD 31617, HD 31894, and HD 277197, because they all have
similarly small space motions and reddening values as ε Aur it-
self. We thought that these stars, together with ε Aur, could be
the brighter members of a young stellar association. Even though
this could be the case, the errors in their proper motions and
spectroscopic distance estimates preclude drawing definite con-
nection. But if this were the case, this would imply a distance
to ε Aur of about 1.1 kpc (see Table 10).

We decided to try an alternative approach to the problem. On
the premise that the interstellar medium in the direction of ε Aur
has similar properties as in the surrounding directions (within
a few degrees around ε Aur) as projected onto the sky, we se-
lected several stars closer than 1◦ to ε Aur in the sky (and acces-
sible to the telescopes available to us) and obtained their spectra
and UBV photometry. The list of these stars is in Table 2.

Infrared data from DIRBE/COBE (Schlegel et al. 1998) con-
firm that our assumption is valid – the calibration stars are lo-
cated at positions, where the dust thermal emission (summed
along the line of sight) is indeed comparable (see Fig. 1).

  HD 32328  

  HD 277197  

  HD 31617  

  HD 31894  

  ε Aur  
  BD+43 1168  

 162.5  163  163.5
λg [deg]

 0.5

 1

 1.5

β
g 

[d
eg

]

 0.5

 1

 1.5

 2

 2.5

E
 (

B
 −

V
 )

Fig. 1. Reddening E(B−V) computed from IR emission for extragalac-
tic sources as a function of galactic coordinates. The data were taken
from Schlegel et al. (1998). Our calibration stars and ε Aur are denoted
by crosses. The values of E(B − V) range from 0.65 to 1.22 for the po-
sitions of the calibration stars (note that these are not E(B − V) for the
stars themselves). The cloud visible in the north-east direction is the
nebular region TGU H1105 (Dobashi et al. 2005).

Table 3. Comparison of the E(B−V) and E(V−K) reddening for our
calibration stars in the neighbourhood of ε Aur.

Star E(B−V) E(V−K) E(V−K)/E(B−V)
HD 31617 0.25 0.63 2.52
HD 31894 0.27 0.74 2.74
HD 32328 0.06 0.19 3.17
HD 277197 0.26 0.73 2.82
BD+43◦1168 0.90 2.46 2.74

Notes. See the text for details.

Using the data from the 2MASS catalogue, it is possible to
calculate the ratio E(V−K)/E(B−V) for all calibration stars (see
Table 3). Comparison of these data with the values derived by
Koornneef (1983) also clearly shows that the extinction of these
stars is normal (cf. Table 4 of Johnson 1965).

Using the measured parallaxes or spectroscopically esti-
mated distances to these stars, we attempted to derive two inde-
pendent calibration relations: (1) the distance d as a function of
the strength of the diffuse interstellar band (DIB) at 6613.56 Å,
and (2) the distance d as a function of the E(B−V) redden-
ing. The idea is to use these calibrations for a new estimate of
the distance to ε Aur. It is worth noting that a smooth depen-
dence of the reddening on the distance in the region near ε Aur
has already been found by McCuskey (1949), based on pho-
tographic spectra and magnitudes. There are several studies of
the strength and shape of the DIB at 6613 Å in the recent lit-
erature (cf., e.g. Jenniskens & Desert 1994; Galazutdinov et al.
2008; Hobbs et al. 2009; McCall et al. 2010) but we were un-
able to find any published calibration of this feature vs. distance.
Munari et al. (2008) found a tight relation between the EW of
another DIB at 8620.4 Å and E(B−V) and another, though a less
perfect such relation was also published for the DIB at 5780.5 Å
by McCall et al. (2010). The latter authors also found a very
good correlation between the EWs of 6613.6 and 6196.0 DIBs.
Unfortunately, none of these additional DIBs are covered by our
spectra. The limited spectral resolution of our spectra may im-
ply that our EWs only represent a lower limit to the true EW
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of the 6613 DIB but in the light of the above-mentioned stud-
ies we do believe that with a homogeneous series of the spectra
taken with the same instrument a calibration of the 6613 DIB vs.
distance within a limited area in the sky should be feasible.

Details of all spectral observations, their reduction and
radial-velocity (RV hereafter) measurements can be found in
Appendix A, while the photoelectric UBV observations and their
reductions are described in Appendix B.

For each of the calibration stars we proceed as follows:
(i) using the observed spectra, we derive Teff, log g by match-
ing the synthetic spectra; (ii) using a modern stellar-evolution
code, we determine the corresponding mass m⋆ and luminosity L
which enables us to compute the distance. We now describe the
procedure in more details.

One of us, JN, has developed a program, which derives the
optimal values of the effective temperature Teff , logarithm of
the gravitational acceleration log g, projected rotational veloc-
ity v sin i and RV via interpolation in a grid of synthetic spectra
and minimalization of the sum of squares of O−C between the
observed and interpolated synthetic spectrum. For multiple sys-
tems of N components, it also derives the relative luminosities of
the components, preserving the constraint that

∑N
j=1 Li = 11. For

practical applications, we used the grid of recent elaborated syn-
thetic spectra published by Lanz & Hubeny (2007) (Bstar grid
hereafter). We assumed a (fixed) value of metallicity Z = 0.04
corresponding to massive and consequently young stars.

Realistic uncertainties of the best-fit effective temperatures
are of the order ∆Teff ≃ 1000 K for hot stars (with Teff �
20 000 K) and down to 100 K for cooler stars (Teff � 10 000 K).
For log g we typically have an uncertainty of about ∆log g ≃ 0.5.

We also adopted Lanz & Hubeny (2007) bolometric correc-
tions BC, interpolating for the optimal values of Teff and log g.
Their BCs have a zero point defined by adopting the BC⊙ =
−0.m07. Following Torres (2010), we therefore adopted the ob-
served Johnson V magnitude of the Sun, V⊙ = −26.m76± 0.m03
and the distance modulus V⊙ − MV⊙ = −31.m572. For a compar-
ison with evolutionary models, it is therefore necessary to adopt
Mbol⊙ = MV⊙ + BC⊙ = 4.m742.

To obtain reasonable estimates of the masses and bolometric
magnitudes of the calibration stars, we used the stellar-evolution
module MESAstar by Paxton et al. (2011)2. We took the optimal
values of Teff and logg (with their uncertainties) from the mod-
elling of synthetic spectra and we searched for the corresponding
initial mass m⋆ (range of masses) of the star for which evolution-
ary tracks are compatible with the parameters (log Teff, log g) in-
ferred above. We assumed initial helium abundance Y = 0.320,
metallicity Z = 0.040, and the mixing-length parameter α = 2.0.

As we shall see later, we usually obtain the values of log g =
4.0 to 4.5 which correspond to stars located at the main se-
quence. Note that main-sequence stars are neither very sensitive
to the value of α nor to the selected wind scheme. The major
source of uncertainty in m⋆ is thus the uncertainty of the effective
temperature Teff.

Given the values of m⋆ and evolutionary tracks in the HR di-
agram (Teff, log L) for all calibration stars, we can easily take
the luminosities log L or bolometric magnitudes Mbol = Mbol⊙ −
2.5 log L and determine the (spectroscopic) distances and their
uncertainties.

1 By the relative luminosity we understand as usually the ratio
L j/
∑N

j=1 L j ( j = 1...N) of the luminosities of individual compo-
nents measured in physical units (outside the eclipses for the eclipsing
systems).
2 The latest release 3918 from April 2012.

In case the calibration star is a binary (as HD 31894) we can
use the secondary as an independent check, with the mass ratio
inferred from the RV curve being a strong additional constraint.

For the B9 Iab supegiant BD+43◦1168, we adopted the
unreddened (B−V)0 index from the Johnson (1958) study. To
obtain the dereddened V0 magnitudes of all considered stars, we
adopted the formula from Chap. 15 of Cox (2000)

V0 = V − E(B−V) · (3.30 + 0.28(B− V)0 + 0.04E(B− V)) . (1)

This way, our distance scale can contain a small systematic error
but it should be internally consistent for all considered stars.

In the following sections, we first discuss the new observa-
tions and our detailed analyses of the individual calibration stars,
then we establish the d(EW), d(Ic) and d(E(B − V)) calibra-
tions, we derive appropriate 6613 Å line strengths and a range
of E(B−V) values for ε Aur and finally apply them to ε Aur.

3. The B type binary HD 31894

HD 31894 (BD+43◦1164, HIP 23375) was classified B2IV-V
by Walborn (1971). Danziger et al. (1967) included HD 31894
in their study of stars in the neighbourhood of the hydrogen-
poor star HD 30353 in an effort to derive the distance to it. They
studied the RVs and equivalent widths of the interstellar Na 
and also interstellar polarization as a function of the distance.
For HD 31894, they obtained E(B−V) = 0.m27 and adopted the
distance modulus m − M = 10.8, but from their mean curve
through the dependence of interstellar polarization on the dis-
tance modulus, the modulus of HD 31894 should be less than 9,
while from their mean curve distance vs. equivalent width of the
sodium D1 and D2 lines, the modulus should be about 9.3.

The absolute visual magnitude of HD 31894 was estimated
from the measured equivalent width of the Hγ line in two stud-
ies: Petrie & Lee (1966) obtained MV = −1.m7 while Walborn
(1971) found MV = −2.m9. Carnochan (1986) studied the inter-
stellar 2200 Å feature for a number of stars including HD 31894,
adopting the following UBV values from Deutschman et al.
(1976):

V = 8.m41, B−V = 0.m04, U−B = −0.m66, and E(B−V) = 0.m28.

To derive the fundamental properties of HD 31894 more pre-
cisely, we began observing the star spectroscopically with the
Ondřejov 2-m telescope and photometrically with the 0.65-m
reflector at Hvar and later also with the 0.75-m Four-College
Automatic Photoelectric Telescope (APT). One echelle spec-
trogram was kindly obtained and preliminarily reduced for us
by Dr. Holger Lehmann with the Tautenburg Observatory 2-m
reflector on JD 2 455 670.3.

To our surprise, already the first spectrum showed that the
object is a double-lined spectroscopic binary and the second
spectrum revealed a RV separation of 300 km s−1 between the B2
primary and a secondary of some later B spectral subclass.

3.1. The orbital period and orbital solution

After accumulating some 12 spectra, we were able to find
out that the correct orbital period must be slightly longer
than 11 days. It also turned out that the orbit has a high eccen-
tricity. We then used the program PHOEBE (Prša & Zwitter 2005,
2006) to derive the orbital solution which is presented in Table 4.

Dr. Alan H. Batten kindly found and communicated to us
the mid-exposure times of the old DAO spectrograms, for which
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Table 4. Orbital solution for HD 31894 derived in PHOEBE.

Element Unit Value with error
P (d) 11.0459± 0.0051
Tperiastr. (RJD) 55 601.864± 0.022
Tsuper.c. (RJD) 55 601.431± 0.022
e 0.6183± 0.0089
ω (◦) 154.10± 0.73
a sin i (R⊙) 39.68± 0.39
γ (km s−1) −1.82± 0.47
K1 (km s−1) 85.6± 1.5
K1/K2 0.5879± 0.0093
K2 (km s−1) 145.6± 2.6
M1 sin3 i (M⊙) 4.33± 0.13
M2 sin3 i (M⊙) 2.55± 0.08
χ2 37.60
No. of RVs 19+19

Notes. The epochs are in RJD = HJD – 2 400 000.

Table 5. Orbital solution for the old DAO spectra of HD 31894 derived
in PHOEBE.

Element Unit Value with error
P (d) 11.0459 fixed
Tperiatr. (RJD) 31 743.29± 0.10
γ (km s−1) −8.8± 3.9
χ2 1.842
No. of RVs 4

Notes. All elements, besides the epoch and systemic velocity, were kept
fixed from the solution for the new data – see Table 4. The epochs are
in RJD = HJD – 2 400 000.

the RVs were derived by Petrie & Pearce (1961). We calcu-
lated the corresponding heliocentric Julian dates and reproduce
these RVs also in Table A.2.

Keeping the orbital elements fixed from the solution for our
new RVs, we derived a separate solution for the old RVs, deriv-
ing only the epoch of periastron and the systemic velocity. The
result is in Table 5 and the corresponding RV curve is shown in
the lower panel of Fig. 2. Assuming that 2159, 2160 or 2161 or-
bital cycles elapsed between the old and new periastron epoch,
we obtain the following possible values of the orbital period:
11.d0508, 11.d0456, and 11.d0405, respectively3. It is seen that af-
ter another season of observations, the accuracy of the orbital
period derived from the new data would be sufficient to discrimi-
nate safely between the above three possible values of the orbital
period. It is not clear, however, how significant the difference in
the systemic velocity between the old and new RVs is. It is con-
ceivable that some of the old RVs are actually slightly affected by
the blending of the spectral lines of the primary and secondary.
For the purpose of this study, we have not combined the old and
new RVs to obtain a joint orbital solution. All subsequent dis-
cussion will be based on the orbital elements derived from the
new spectra only – cf. Table 4 – and on the following ephemeris

Tsuper.conj. = HJD 2 455 601.431+ 11.d0459 × E. (2)

3.2. Properties of the binary system and its components

Our photometric observations safely excluded the possibility
of binary eclipses. This means that we are not able to obtain

3 Note that propagating the errors of both epochs does alter the quoted
period values only on the fourth decimal digit.

Fig. 2. Orbital radial-velocity curves of HD 31894 for the orbital pe-
riod of 11.d0459. Phase zero corresponds to the superior conjunction.
Upper panel: RV curves of the primary (filled circles) and secondary
(open circles) and the PHOEBE solution calculated curves. Bottom panel:
the RV curve based on the old DAO RVs.

a unique solution and that some assumptions must be made.
Nevertheless, the observational data we accumulated allow us
to obtain reasonable estimates.

In spite of a limited number of available spectra, we ten-
tatively disentangled them, using the KOREL program (Hadrava
1995, 1997, 2004b, 2005). It converged to a solution closely sim-
ilar to that of Table 4 and provided the disentangled spectra of
both binary components. For the final disentangling, we kept the
orbital elements of Table 4 fixed and obtained the disentangled
spectra in the following three spectral regions: 6327−6422 Å,
6422−6645 Å, and 6630−6750 Å. For the second region con-
taining Hα, we also allowed KOREL to disentagle and remove
the telluric lines.

Comparing the disentagled spectra of the primary and sec-
ondary normalized to the joint continuum of both stars with syn-
thetic spectra from the Bstar grid using the program by JN, dis-
cussed above, we obtained the formally best fit for the following
values:

Teff = 23 490 K, log g = 4.30, v sin i = 74.4 km s−1, L1 = 0.809,

and

Teff = 17 810 K, log g = 4.52, v sin i = 26.9 km s−1, L2 = 0.191

for the primary and secondary, respectively. A comparison of
the disentangled spectra with the interpolated synthetic ones is
shown in Fig. 3 for the primary and in Fig. 4 for the secondary.
The value of log g of 4.5 [cgs] is too high even for the zero-age
main sequences stars. We verified that fixing log g = 4.25 for
both stars increases the χ2 of the fit by only 2 per cent, leading
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Fig. 3. A comparison of the disentangled line spectrum of the HD 31894
primary with a synthetic spectrum interpolated from the Bstar grid for
Teff = 23 490 K, log g = 4.30 [cgs] and v sin i = 74.4 km s−1 in three
spectral segments containing stronger stellar lines. In all cases, dots de-
note the observed spectrum, while the synthetic spectra, shifted for the
systemic velocity of −2 km s−1, are shown as thin lines. A relative lu-
minosity of the primary of L1 = 0.809 was adopted for the comparison.

to lower Teff of 22 800 and 17 000 K for the binary components.
This confirms our estimate of typical uncertainties mentioned
earlier.

In the next step we used the stellar-evolution module
MESAstar by Paxton et al. (2011) to reproduce the observed Teff
and log g of the HD 31894 primary. Using the mass ratio from
our orbital solution, we then estimated the range of masses
for the secondary and calculated also its evolution to see how
consistent the model and observed properties of the secondary
will be for the same evolutionary age as for the primary. The
evolutionary tracks are shown in Fig. 5.

Fig. 4. A comparison of the disentangled line spectrum of the HD 31894
secondary with a synthetic spectrum interpolated from the Bstar grid for
Teff = 17 810 K, log g = 4.52 [cgs] and v sin i = 26.9 km s−1 in three
spectral segments containing stronger stellar lines. In all cases, dots de-
note the observed spectrum, while the synthetic spectra, shifted for the
systemic velocity of −2 km s−1, are shown as thin lines. A relative lumi-
nosity of the secondary of L2 = 0.191 was adopted for the comparison.

We again used PHOEBE and, keeping the orbital elements
fixed at the values of Table 4 but setting i = 50.◦0, we in-
cluded our UBV photometry and tuned the radii within rea-
sonable limits to obtain the relative luminosity of the primary
L1 = 0.81 in the V band. The fit with PHOEBE led to the
following UBV magnitudes at maximum light

V1+2 = 8.m499, B1+2 = 8.m543, and U1+2 = 7.m898.

Using these values and the relative luminosities in all three pass-
bands derived with PHOEBE (0.81, 0.82, and 0.84 in V , B, and U,
respectively), we obtained the UBV magnitudes of both stars,
and their standard dereddening led to the values presented in

A123, page 5 of 15

197



A&A 546, A123 (2012)
lo

g 
g
 [

cm
 s

-2
]

log [Teff]K

primary (M1 = 9.2-10.1 MS, Z = 0.04)

secondary (M2 = 5.323-6.032 MS, Z = 0.04)

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 4 4.1 4.2 4.3 4.4 4.5

 T1  T2 

  g1  

  g2  

lo
g 

L
/L

S
u
n

log [Teff]K

primary (M1 = 9.2-10.1 MS, Z = 0.04)

secondary (M2 = 5.323-6.032 MS, Z = 0.04)

 2.5

 3

 3.5

 4

 4.5

 4 4.1 4.2 4.3 4.4 4.5

 T1  T2  R1  R2 

 L1  

 L2  

Fig. 5. Computed evolutionary tracks of both binary components
of HD 31894 in a log g vs. Teff diagram and in the HR diagram. See the
text for details.

Table 6. Dereddened magnitudes of both binary components based on
the PHOEBE fit.

Star E(B − V) E(U − B) V0 (B − V)0 (U − B)0

prim. 0.268 0.196 7.854 –0.233 –0.874
sec. 0.270 0.198 9.443 –0.183 –0.685

Notes. See the text for details.

Table 6. For illustration, the V-band light curve is shown in
Fig. 6.

For the adopted range of effective temperatures of the
primary from 23 000 to 24 000 K and of the secondary:
17 000−18 000 K, and estimating the range of bolometric mag-
nitudes from the evolutionary calculations, one gets the ranges
of the absolute visual magnitudes from −2.m23 to −2.m55 for the
primary, and from −0.m70 to −1.m32 for the secondary. Combined
with the dereddened V0 magnitudes from Table 6 this gives
the range of distances 1037−1202 pc for the primary, and
1066−1420 pc for the secondary. Weighting more the values for
the primary, we adopt d = 1150 ± 150 pc for the distance of the
HD 31894 binary.

The radii we used in PHOEBE to fit the relative luminosities
in the V band are

R1 = 5.14 R⊙ and R2 = 3.12 R⊙.

4. The B star HD 31617

A relatively little studied B star HD 31617 (BD+43◦1147,
HIP 23186) is another object close to ε Aur in the sky. It was

Fig. 6. Orbital V-band light curve of HD 31894 for the orbital period
of 11.d0459, based on a slightly more accurate APT individual observa-
tions. Phase zero corresponds to the superior conjunction. The PHOEBE
solution, shown as a solid line, clearly exhibits the proximity effects
near the periastron passage.

classified as B2IV by Hiltner (1956), who also obtained the
following UBV values

V = 7.m42, B−V = 0.m00, U−B = −0.m77,

while Bouigue (1959) obtained

V = 7.m35, and B−V = 0.m00

as a mean of 3 individual observations. Plaskett & Pearce (1931)
obtained 4 RVs at the Dominion Astrophysical Observatory
(DAO) in 1924−1929 with a mean value of +3.5 km s−1 and a
range over 10 km s−1. The new reduction of the H data
by van Leeuwen (2007a,b) resulted in a negative value of the
parallax. Therefore, no reliable trigonometrically measured dis-
tance to HD 31617 is available. However, Danziger et al. (1967)
studied several stars near the hydrogen-poor star HD 30353 in
an effort to derive its distance modulus via polarization mesure-
ments by Hiltner and via the strength of the Na  interstellar
line. For HD 31617, they obtained a modulus of 9.6 mag from
polarimetry, and 10.0 mag from the strength of the interstellar
lines, which implies distances of 832 and 1000 pc, respectively.
Savage et al. (1985) investigated excess ultraviolet extinction for
a number of B stars and did not find any for HD 31617.

We obtained 13 individual standard UBV observations at
Hvar. The star was also used as a check star for observations of
HD 31894 at Villanova and 34 UBV observations were secured.
There are also 97 Hp observations secured by the H
satellite (Perryman & ESA 1997). None of these datasets show
any significant light variability of this star. The mean standard
Hvar values are in Table 9.

We succeded to secure 10 red Ondřejov spectra. The RV
measurements of four good and sharp lines in SPEFO soon
showed that the object is another single-line spectroscopic bi-
nary, for which we tentatively estimate an orbital period of
about 60 d and a highly eccentric orbit. We use the inverse
square of the rms errors of the mean RV of the four measured
lines (Hα, He  6678 Å and the C  doublet at 6578 & 6582 Å)
for each measured spectrum to derive the weights of individ-
ual mean RVs. Our RV measurements, together with the low
rms errors (mostly below 0.5 km s−1) are reproduced in detail
in Table A.3. We also tabulate there the old DAO RVs, for which
we derived the heliocentric Julian dates. Regrettably, their phase
distribution does not allow to improve the value of the orbital
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Table 7. Orbital solution for HD 31617 derived in FOTEL.

Element Unit Value with error
P (d) 59.2± 2.5
Tperiastr. (RJD) 56 015.39± 0.50
Tsuper.c. (RJD) 56 028.45
e 0.759± 0.043
ω (◦) 295± 12
γ (km s−1) −4.79± 0.81
K1 (km s−1) 16.9± 4.9
f (M) (M⊙) 0.00815
rms (km s−1) 0.680
No. of RVs 10

Notes. The epochs are in RJD = HJD – 2 400 000 and the rms is the
standard error of 1 observation of unit weight.

Fig. 7. Orbital radial-velocity curves of HD 31617 for the orbital period
of 59.d2. Phase zero corresponds to the superior conjunction.

period. A preliminary orbital solution derived with the program
FOTEL (Hadrava 1990, 2004a) are presented in Table 7.

We disentangled the spectrum of the primary with KOREL
and the comparison with the Bstar grid returned the following
values:

Teff = 24 519 K, log g = 3.863 [cgs], and v sin i = 32.3 km s−1.

A comparison of the disentangled spectrum with the synthetic
one is in Fig. C.1 in Appendix C. Evolutionary tracks bracketing
the above values are shown in Fig. C.4 in Appendix C. They
imply the mass of the HD 31617 primary in the range of 9.5
to 15 M⊙, the bolometric magnitude between −4.m36 and −7.m36
and the absolute visual magnitude between −2.m06 and −4.m88.
Together with V0 = 6.m61 (see Table 9) this implies a distance in
the range from 540 to 1990 pc.

5. The B star HD 32328

Also rather neglected, HD 32328 (BD+43◦1177, HIP 23603)
is another object close to ε Aur in the sky. It was classified
as B8V in an objective prism survey by Duflot et al. (1957)
and its only measured RV = +21 km s−1 also comes from
such a survey (Fehrenbach et al. 1996). It has a rather accu-
rate parallax of 0.′′00612± 0.′′00159 from the H mis-
sion (van Leeuwen 2007a,b). Deutschman et al. (1976) obtained
the following standard UBV values

V = 7.m57, B−V = −0.m04, U−B = −0.m35,

Table 8. Radiative parameters and projected rotational velocity
of HD 32328 resulting from the fit of the three Ondřejov spectra with
the highest S/N by interpolated synthetic spectra.

RJD Teff log g v sin i

(K) [cgs] (km s−1)
56 011.4508 12 891 4.426 44.2
56 013.4003 12 882 4.349 43.8
56 015.2794 12 861 4.278 43.4

Notes. Individual spectra are identified by their reduced Julian dates.

derived E(B−V) = 0.m10 and estimated a distance of 336 pc. For
comparison, the measured H parallax implies a range
of distances from 130 to 207 pc.

We obtained 10 red Ondřejov spectra and 10 individual UBV
observations at Hvar. The Hvar photometry agrees well with that
by Deutschman et al. (1976, see Table 9) and our value of the
reddening is E(B−V) = 0.m056. The dereddened colours indicate
a normal main-sequence object between B7 and B8.

Radial-velocity measurements of the sharp Hα absorption
core in our spectra (see Table A.4) show small variations with
a full range of 8 km s−1 and a possible timescale of 6.8 days.
This means that also this object could be a single-line spectro-
scopic binary seen nearly pole-on (unless the component masses
are strongly peculiar), but it is also conceivable that it is a rotat-
ing star with uneven brightness distribution or even an unusual
pulsating star. The time distribution of our spectral, as well as
photometric, observations is unsufficient to test such hypotheses,
however. We can only state that no trace of a secondary spectrum
is visible, therefore a comparison of the observed and synthetic
spectra seems justified.

Since HD 32328 is cooler than the lower Teff limit of
the B star grid of synthetic spectra by Lanz & Hubeny (2007),
we had to interpolate in the grid of synthetic spectra from the
POLLUX database (Palacios et al. 2010), based on Kurucz’s
models. For the comparison we selected three spectra with the
highest signal-to-noise ratios (S/N). The results are summarized
in Table 8 and characterize the uncertainty of the fit. The com-
parison of model fits with these three spectra is shown in Fig. C.2
in Appendix C. Note that without being able to apply KOREL
in this case, we could not remove the telluric lines from the
observed spectra.

The corresponding evolutionary tracks are shown in Fig. C.5
in Appendix C. They imply a mass between 3.4 and 4.5 M⊙,
Mbol = −0.m49 to −1.m98, MV = 0.m31 to −1.m18, which with V0 =
7.m475 (Table 9) implies a distance between 270 and 540 pc.
In contrast to it, the range of the distance following directly
from the H parallax is (175± 45) pc. The question is
whether HD 32328 is not indeed a binary composed from two
similarly bright stars observed pole-on. In any case, we use the
lower limit of the Hmeasurements and the upper limit
of the spectroscopic distance as the range of possible distances
to HD 32328.

6. The B star HD 277197

HD 277197 (BD+43◦1161; V = 9.m5) is a little studied B star. It
is classified as B1 IV by Bouigue (1959) and B5 by McCuskey
(1959) but no MKK classification was published. The only B−V
photometry was published by Bouigue (1959), who obtained

V = 9.m51, and B−V = +0.m06.
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Table 9. UBV photometry of calibration stars and their dereddened values.

Star V B−V U−B V0 (B−V)0 (U−B)0

(mag) (mag) (mag) (mag) (mag) (mag)
HD 31617 7.429± 0.004 +0.003± 0.002 −0.748± 0.002 6.612 −0.249 −0.933
HD 32328 7.657± 0.004 −0.047± 0.003 −0.343± 0.002 7.475 −0.103 −0.383
HD 277197 9.495± 0.003 +0.063± 0.002 −0.547± 0.003 8.649 −0.197 −0.737
BD+43◦1168 9.395± 0.006 +0.918± 0.007 +0.276± 0.004 6.425 +0.02 −0.56

We secured three red spectra of it with the Onřejov 2-m reflector
and 31 individual UBV observations during 2011 and 2012 at
Hvar.

Since the clouds interrupted the exposure of the first spec-
trum, it has a S/N = 42 only. However, the remaining two are
well exposed and permit a comparison with the synthetic spec-
tra. The mean RV of the Hα and He  6678 Å lines from all
three spectra is −3.4 ± 0.7 km s−1, rather similar to both ε Aur
and the HD 31894 binary. When comparing the second and third
spectra to the synthetic spectra from the B star grid of Lanz &
Hubeny (2007, see Fig. C.3 in Appendix C), we found that the
best fit is obtained for

Teff = 17 750 K, log g = 4.459 [cgs], and v sin s = 44.7 km s−1.

The differential Hvar UBV photometry did not reveal any vari-
ability during two seasons. We therefore derived robust mean
values from all 31 individual observations to obtain V = 9.m495±
0.003, B−V = 0.m063± 0.002, and U−B = −0.m547± 0.003.

A standard dereddening gives

(B−V)0 = −0.m197, (U−B)0 = −0.m737, and E(B−V) = 0.m260.

Both the derredened magnitudes and the Teff deduced from the
observed spectra agree with a spectral type near B3.

Evolutionary tracks modelling the results of the compari-
son of the observed and synthetic spectra are shown in Fig. C.6
in Appendix C and imply a mass of 5.5 to 6.7 M⊙, Mbol be-
tween −2.m49 and −3.m50, MV between −0.m92 and −1.m81 and
for V0 = 8.m649 the spectroscopic distance from 820 to 1230 pc.

7. The field star BD+43◦1168

The B9 Iab supergiant BD+43◦1168 (ADS 3605E) is the clos-
est to ε Aur in the sky from the stars considered here. The
spectral classification was derived by Morgan et al. (1955),
while its RV = −22 km s−1 was measured by Münch (1957).
The UBV photometry was derived by Hiltner (1956) as

V = 9.m39, B−V = 0.m92, U−B = 0.m20,

while Fernie (1983) obtained

V = 9.m48, B−V = 0.m95, U−B = 0.m12

as a mean of 3 individual observations.
The mean of 9 UBV observations secured at Hvar is

V = 9.m395 ± 0.m006,

B−V = 0.m918 ± 0.m007,

U−B = 0.m276 ± 0.m004.

The above three determinations of UBV magnitudes differ a bit
more than what one would expect. In Fig. 8 we reproduce a part
of the better exposed spectrum of the star. From a comparison
with a spectrum of another B9Iab starσ Cyg taken with the same

Fig. 8. A comparison of the Ondřejov red spectrum of BD+43◦1168
taken on HJD 2 456 008.3159 with a spectrum of another
B9Iab star σ Cyg, taken with the same instrumentation and kindly put
at our disposal by Dr. M. Kraus. Note the strong 6613.56 Å interstellar
line in the spectrum of BD+43◦1168 and its faint Hα profile, obviously
partly filled by emission.

instrumentation, one can suspect the presence of a weak emis-
sion in the Hα line of BD+43◦1168. From analogy with other
emission-line stars, a slight secular variability of BD+43◦1168
cannot therefore be excluded.

According to Johnson (1958), the intrinsic colours of a B9Iab
supergiant are B−V = +0.m02 and U−B = −0.m52. This im-
plies E(B−V) = 0.m90 for Hiltner’s and our Hvar values, and
E(B−V) = 0.m93 for the values published by Fernie. From this,
one then obtains the derredened V0 magnitude from formula (1)
to be 6.m39 and 6.m37, repectively. The absolute visual magni-
tude of a B9Iab supergiant is expected to be −6.m2 (Cox 2000)
to −6.m4 (Straizys & Kuriliene 1981), which with the above esti-
mated V0 range implies a distance to BD+43◦1168 between 3.27
and 3.61 kpc.

Our measured value of EW(6613) = 0.230 ± 0.020 Å is in
good agreement with a published value of 0.20 Å (Bromage &
Nandy 1973).

8. Inferred calibration relations

We plot the distance calibrations based on the data for calibration
stars in the neighbourhood of ε Aur in the sky (see Table 10)
in Fig. 9. One can see that all three calibrations d(EW), d(Ic),
d(E(B − V)) are well-defined and they are consistent with each
other:

d(EW) = (1.474 ± 0.028) × 104 EW, (3)

d (Ic) = (−2.027 ± 0.171) × 104 (1 − Ic) , (4)

d(E(B − V)) = (3.888± 0.089) × 103 E(B − V). (5)

Also note that these calibrations are not dependent on any
outliers. For example, if we drop the most distant star
(BD+43 1168) and extrapolate linearly from the remaining data
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Fig. 9. Calibrations of the distance and a function of the strength of the
diffuse interstellar 6613.56 Å line and of the E(B−V) reddening. The
solid gray lines show the mean EW, Ic, and E(B−V) values of ε Aur
and the corresponding distance, the dotted lines indicate the range of
uncertainties.

we would obtain equivalent results for the distances in the 1000
to 2000 pc range.

9. Measured and deduced properties of ε Aur

It is not quite straightforward to derive a reliable reddening
of ε Aur since its brightness and colours undergo cyclic physical
variations on a time scale of some 50 to 120 days (cf., e.g.
Chadima et al. 2011). An inspection of the existing 107 indi-
vidual Hvar standard UBV observations secured prior and af-
ter the recent eclipse of ε Aur shows that the observed B−V
is in the range between 0.m51 and 0.m57. Since the true nature of
the physical variations is not known, we consider the mean value
of B−V = 0.m54 as well as both extremes. There is also some un-
certainty regarding the effective temperature of the ε Aur F pri-
mary. From a rather detailed line-profile modelling, Bennett
et al. (2005) derived 7000 K, while Sadakane et al. (2010) and
Chadima et al. (2011) arrived at 8000 K. Modelling the energy
distribution, Hoard et al. (2010) used 7750 K for the F primary.

Fig. 10. Time plots of the equivalent width (EW) and central intensity
(Ic) of the 6613.56 Å diffuse interstellar line measured on a repre-
sentative sample of the Ondřejov CCD spectra over the time inter-
val from 2006 to 2012. No significant change during the 2009−2011
primary eclipse (RJD 55 050 to 55 800) is observed, which corrobo-
rates the conclusion that the line is of a truly interstellar (not partly
cirmcumstellar) origin.

Using again the calibration between the effective temperature
and intrinsic B−V colour, one arrives at (B−V)0 between +0.m16
and +0.m30 for the calibration by Flower (1996), while Johnson
(1958) gives (B−V)0 = +0.23 for F0I stars. So the total range
of E(B−V) to be considered as appropriate for ε Aur is 0.m25
to 0.m44. It should be noted that a small contribution to the ob-
served reddening could arise from circumbinary dust. However,
the large grain size indicated by the models (cf., e.g. Budaj 2011)
and lack of variations in the diffuse interstellar band indicate that
this contribution is probably insignificant.

We measured the equivalent width (EW) and central inten-
sity (Ic) of the 6613.56 Å diffuse interstellar line in a repre-
sentative selection of the Ondřejov spectra secured from 2006
to 2012, including the spectra taken during the 2009−2011
eclipse. Both these measured quantities are plotted vs. time in
Fig. 10. One can see that there is no noticeable difference in the
strength of the line between the eclipse and out-of-eclipse data.
This indicates in our opinion that the line is of truly interstel-
lar, not partly circumstellar origin and can be used as a distance
indicator.

In Fig. 9 we can see that all three distance calibrations
are consistent and put ε Aur very clearly at a distance larger
than about 900 pc. Considering the calibration results, we esti-
mate the most probable distance to ε Aur to be about (1500 ±
500) pc. Its uncertainty is mostly caused by the dispersion of Ic
and E(B − V) observed for ε Aur.
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Table 10. Estimated distances, strength of the 6613.56 Å interstellar line and the E(B−V) reddening for all calibration stars.

Distance EW 6613 Å Ic 6613 Å E(B−V) Object
(pc)

0 0 1 0 zero distance
335± 205 0.029± 0.003 0.9778± 0.0023 0.056 HD 32328
1030± 210 0.075± 0.011 0.9229± 0.0036 0.260 HD 277197
1035± 420 0.068± 0.003 0.9469± 0.0021 0.252 HD 31617
1150± 150 0.082± 0.003 0.9386± 0.0014 0.268 HD 31894
? 0.131± 0.002 0.9012± 0.0009 0.25–0.44 ε Aur
3440± 170 0.230± 0.020 0.847± 0.021 0.90 BD+43 1168
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Fig. 11. Evolutionary tracks computed for ε Aur in the HR diagram.
We show the evolution from the zero-age main sequence. The thin lines
correspond to the observed effective temperatures, radii and luminosi-
ties of ε Aur. The range of masses are indicated in the legend. We also
plot the evolutionary track for a lower-mass star (mini = 7 M⊙) for com-
parison as a dotted line. It never reaches the observed luminosity, even
in the post-AGB phase. The post-AGB evolution track (not shown in
the plot) is nearly horizontal (at nearly a constant log L/L⊙ ∼ 4.4) as
the star moves to the hotter (left) in the diagram.

Stencel et al. (2008) derived the angular diameter of
the F primary of ε Aur out of eclipse to be between 2.16
and 2.38 mas. For the distance of (1500 ± 500) pc this im-
plies the F star radius of 232 to 512 R⊙. The corresponding
range of absolute visual magnitudes of ε Aur is then MV =
−7.m9 to − 10.m2 mag. This seems to speak in favour of the high-
mass model for ε Aur and identifies its primary as a relatively
young object.

Indeed, the evolutionary tracks computed by the MESAstar
module show that the allowed range of masses is 20 to 50 M⊙
(see Fig. 11). We assumed initial helium abundance Y = 0.320
and metallicity Z = 0.040, the mixing-length parameter α = 2.0,
scheme for the wind by Reimers (1975) in the red giant branch
(RGB) and by Blöcker (1995) in the AGB phase, respectively,
with the efficiencies η = 1.0. We used Z = 0.04 for consis-
tency with all investigated calibration (supposedly young) stars
since the true evolutionary stage of ε Aur is still not clear. We
have verified, however, that the inferred mass range is not sen-
sitive to the selected value of metallicity. Even with solar-like
values Z = 0.016−0.020 and Y = 0.28, the evolutionary tracks
are not significantly different, only the timescale is prolonged
by approximately 6%. In this model, the star has evolved away
from the main sequence and is in the evolutionary stage when the
central hydrogen abundance dropped to zero and the star conse-
quently moves to lower effective temperatures. For the 20 M⊙
star, the star has already ignited the helium in the core so that the

change in Teff is much slower than for the 50 M⊙ model. For this
reason, we consider the lower mass of 20 M⊙ as more probable
than the higher one. Note that the total mass loss is not impor-
tant yet (less than 1% of the initial mass) and the selected wind
parametrisation thus does not affect results significantly.

This is to be compared to the previous results of van Winckel
(2003) who estimated the maximum luminosity for post-AGB
supergiants, i.e. stars with initial masses lower than ∼7 M⊙,
to be log L/L⊙ ≈ 4.4 (Mbol = −6.m2 mag) which is well be-
low the value estimated in this work. We thus conclude that
the lower-mass model of ε Aur does not fulfill observational
constraints.

Formally, it is also possible to reproduce the observed prop-
erties of ε Aur assuming that it is a pre-main sequence star with
mass from 30 to 70 M⊙ but this interpretation seems improbable
since the evolution is so fast that the changes should be seen in
the recorded history of the star, which is not the case (cf., e.g.
Johnston et al. 2012).

If the high-mass model is confirmed, the future works should
clarify whether the dark disk around the secondary could be
formed by a strong wind from the F-supergiant primary. Since
the current wind of the F supergiant appears too weak to sus-
tain such a disk, one viable possibility is that prior to becoming
an F supergiant, the star could have undergone a luminous blue
variable (LBV) phase, in which a carbon rich super-wind was ac-
creted by the secondary star. Note that the revision of the ε Aur
distance can have far reaching consequences also on some other
results. For instance, the energy distributions derived by Hoard
et al. (2010) and Hoard et al. (2012) need to be reconsidered (as
also pointed to us by Bennett 2012, priv. comm.).

10. Prospects for future work

Note also that ε Aur is catalogued as a little studied multiple star
system (ADS 3605 ABCDE). The components ADS 3605B, C,
and D are relatively faint and are located at 23, 45, and 47 arcsec
from ADS 3605A = ε Aur and have the V magnitudes of +14.m0,
+11.m26, and +12.m0, respectively (Aitken & Doolittle 1932).
Because ε Aur lies very close to the galactic plane (b = +1.18◦),
it is possible that at least one or all of these putative faint compo-
nents are field stars. For example ADS 3605C = BD+43◦1166C
has a published B−V = +1.m83 (Lutz & Lutz 1977), which in-
dicates that it may be a dM foreground star4. It would be im-
portant to secure spectroscopy and UBV photometry of these
companions to determine if any of them is a physical com-
panion to ε Aur. This would provide a more definite distance
check. No doubt the observations of these close companions

4 The differential UBV observations of this star secured at Hvar (12 in-
dividual observations in 5 nights) give V = (10.m927± 0.m090), B−V =
0.m714± 0.m021, and U−B = 0.m319± 0.m012. However, these observa-
tions were challenging and strongly require independent verification.
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to ε Aur will be challenging due to the brightness of ε Aur itself
(V ≃ +3.m0). (In the field of the 2-m telescope, these stars have
always been outshone by ε Aur itself and obtaining their spectra
there is out of the question.) But their observations could read-
ily be accomplished with current equipment using adaptive op-
tics, coronagraph-equipped telescopes or interferometric nulling
methods used for exoplanets. It would be worth the effort to learn
more about the distance to εAur and, consequently about its true
nature.

In conclusion, the present study offers strong (but circum-
stantial) evidence that ε Aur is at a distance of 1.0−2.0 kpc.
This favours a high luminosity and radius for the F-supergiant
and therefore supports ε Aur as being a massive binary sys-
tem, younger than about 7 × 106 yr. Note that additional argu-
ments supporting this interpretation were recently provided by
Johnston et al. (2012). But nothing seems to come easy in the
study of ε Aur. And as the concluding remarks of many previous
papers on ε Aur typically state: More work is needed to finally
unravel numerous mysteries and puzzles of this fascinating and
intriguing eclipsing binary.
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Appendix A: Details of spectroscopic observations

and their analyses

With one exception, all spectra used in this study were secured
in the coudé focus of the Ondřejov 2.0-m reflector and a 702-mm
focal length camera with a SITe-005 800 × 2000 CCD detector
covering the wavelength region 6260−6760 Å. The spectra have
a linear dispersion 17.2 Å mm−1 and a 2-pixel resolution R ∼
12 600 (∼11−12 km s−1 per pixel). With one exception, their S/N
is at least 100 or better. The journal of observations of all stars
is in Table A.1.

Table A.1. Journal of spectral observations of ε Aur and the calibration
stars in its neighbourhood.

Star No. of. Time interval
spectra (RJD)

ε Aur 280 54 049.4–55 913.3
HD 31617 10 55 959.4–56 043.3
HD 31894 19 55 578.4–55 692.3
HD 32328 10 55 960.3–56 043.3
HD 277197 3 55 821.4–55 837.5
BD+43◦1168 2 55 976.4–56 008.3

Table A.2. Individual RVs of HD 31894 for the primary from the old
photographic spectra and the RVs of the primary and secondary from
the new electronic spectra measured via Gaussian fits.

RJD RV1 RV2 Obs.
(km s−1) (km s−1)

26 276.9788 –44.0 – DAO
31 749.0048 13.0 – DAO
34 297.9639 –5.0 – DAO
34 735.7704 1.0 – DAO
55 578.4268 19.6 –35.9 OND
55 602.3073 –116.2 191.4 OND
55 618.3613 31.1 –46.1 OND
55 618.4995 28.7 –48.4 OND
55 619.5146 29.8 –65.1 OND
55 622.4573 22.3 –47.5 OND
55 623.4108 –29.2 53.6 OND
55 631.2495 36.1 –68.0 OND
55 635.2864 –131.6 213.9 OND
55 642.2977 34.7 –68.5 OND
55 642.4187 37.5 –68.4 OND
55 644.3406 30.1 –53.6 OND
55 651.2891 26.0 –44.3 OND
55 661.3810 17.3 –34.3 OND
55 662.3785 21.4 –52.7 OND
55 670.3250 –13.8 22.9 TLS
55 671.3145 +6.3 –16.9 OND
55 672.2947 +13.4 –34.2 OND
55 692.3364 –14.7 25.7 OND

Notes. The reduced heliocentric Julian dates RJD = HJD – 2 400 000
are tabulated.

For HD 31894, one echelle spectrogram (4700−7085 Å,
2-pixel resolution of 63 000) was kindly obtained for us by
Dr. Holger Lehmann with the Tautenburg Observatory 2-m re-
flector on JD 2 455 670.3. Dr. Lehmann also kindly carried
out the initial reductions of that spectrogram (bias subtraction,

Table A.3. Individual DAO and Ondřejov RVs of HD 31617.

RJD RV rms
(km s−1) (km s−1)

24 064.9953 4.80 –
25 614.8008 3.40 –
25 621.6945 8.30 –
25 642.7182 –2.40 –
55 959.4293 12.64 0.23
55 970.5035 –0.88 0.34
55 976.3167 –1.91 0.31
56 008.3733 –15.47 0.21
56 009.3183 –15.14 0.47
56 012.3213 –15.29 0.30
56 013.3368 –14.86 0.19
56 015.3163 6.50 0.42
56 041.3434 –5.57 0.12
56 043.3126 –3.60 0.33

Notes. The RVs on the Ondřejov CCD spectra were measured
in SPEFO and each value is the mean of the RVs of the follow-
ing four lines: Hα 6562.817 Å, He  6678.151 Å, C  6578.052 Å,
and C  6582.882 Å. The reduced heliocentric Julian dates RJD =
HJD – 2 400 000 are tabulated.

Table A.4. Individual Ondřejov RVs of HD 32328 measured in SPEFO
on the sharp core of Hα.

RJD RV
(km s−1)

55 960.3317 10.68
55 970.2849 7.73
56 008.4007 12.02
56 009.2846 9.18
56 011.4508 12.24
56 012.4020 14.91
56 013.4003 14.28
56 015.2794 10.85
56 041.3848 13.05
56 043.3463 13.54

Notes. The reduced heliocentric Julian dates RJD = HJD – 2 400 000
are tabulated.

flat-fielding, order merging and wavelength calibration) in IRAF.
Similar initial reductions of all Ondřejov spectrograms were car-
ried out by MŠ, also in IRAF. The final reductions and RV mea-
surements were carried out by PH in the program SPEFO, written
by the late Dr. J. Horn and further developed by Dr. P. Škoda and
Mr. J. Krpata (Horn et al. 1996; Škoda 1996). In SPEFO, one de-
rives the RVs via sliding the direct and flipped image of a line
profile until a perfect match is obtained. We also measured a
selection of good telluric lines to use them to a fine correction
of the RV zero point for each spectrogram. After these correc-
tions, the final RVs for HD 31894 were derived via a Gaussian
fit of the He  6678 Å line profile by PM. All individual RVs of
HD 31894 are in Table A.2.

Appendix B: Photometry

The calibrated Hvar UBV observations of ε Aur and all calibra-
tion stars were obtained differentially relative to the comparison
star λ Aur, used as the primary comparison by most observers
of ε Aur. HR 1644 served as the check star. All observations
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Table B.1. Journal of UBV observations of ε Aur and the calibration
stars in its neighbourhood.

Star No. of. Time interval Note
obs. (RJD)

ε Aur 334 45 307.5–56 015.3 1
HD 31617 13 56 001.3–56 015.3 1
HD 31894 87 55 574.3–55 858.7 1

120 55 629.7–55 665.6 2
HD 32328 10 56 001.3–56 015.3 1
HD 277197 31 55 791.6–56 015.3 1
BD+43◦1168 9 56 001.3–56 013.3 1

Notes. 1... Hvar; 2... Villanova APT.

were carefully reduced to the standard Johnson system via non-
linear transformation formulae (Harmanec et al. 1994) using the
latest rel.17 of the program HEC225. The more recent versions
of HEC22 allow monitoring and modelling the variations of the
atmospheric extinction during observing nights. The following
mean Hvar all-sky values for λ Aur were added to the respective
magnitude differences var-comp and check-comp:

V = 4.m706, B−V = 0.m619, U−B = 0.m143.

The Villanova APT differential UBV observations of HD 31894
were secured relative to HR 1644 and reduced via a standard
APT pipeline. The standard Hvar all-sky values for HR 1644

V = 6.m224, B−V = 0.m451, U−B = 0.m334.

were added to the magnitude differences var-comp. The journal
of photometric observations is in Table B.1.

Appendix C: Model fits

Here, we present a comparison of the disentangled spec-
trum of HD 31617 and the observed spectra of HD 32328
and HD 277197 with the best-fit interpolated synthetic spec-
tra in Figs. C.1−C.3, respectively. For the same stars, we also
show the evolutionary tracks calculated in such a way to fit
the Teff and log g deduced from the observed spectra – see
Figs. C.4−C.6, respectively.

5 The whole package containing the program HEC22 and other pro-
grams for complete photometric reductions, sorting and archiving the
data, together with a very detailed User manual, is freely available at
http://astro.troja.mff.cuni.cz/ftp/hec/PHOT.

Fig. C.1. A comparison of the disentangled red spectrum of HD 31617
(black lines) with the model spectrum (red lines).
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Fig. C.2. A comparison of three individual Ondřejov spectra
of HD 32328 (black lines) having the highest S/N with the model
spectra (red lines). From top to bottom, the spectra were taken on
RJD 56 011.4508, 56 013.4003, and 56 015.2794, respectively. Note
that we could not remove the telluric lines from the observed spectra
in this case.

Fig. C.3. A comparison of two individual Ondřejov spectra
of HD 277197 (black lines) with the model spectra (red lines).
From top to bottom, the spectra were taken on RJD 55 833.4303 (top
two plots) and RJD 55 837.4985 (bottom two plots). Note that the
telluric and interstellar lines were not removed from the observed
spectra in this case.
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Fig. C.4. Computed evolutionary tracks of the primary of HD 31617 in
a log g vs. Teff diagram and in the HR diagram. See the text for details.
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Fig. C.5. Computed evolutionary tracks of HD 32328 in a log g vs. Teff

diagram and in the HR diagram. See the text for details.
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Fig. C.6. Computed evolutionary tracks of HD 277197 in a log g vs.
Teff diagram and in the HR diagram. See the text for details.
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B Abstracts of bachelor and diploma theses

Abstracts of bachelor and diploma theses serve as a more detailed information on topics which were
discussed with students in some depth. We list them in temporal order here:

1. Rozehnal, J.: Pozdní fáze formování velkých planet sluneční soustavy (Late phases of the formation
of the giant planets in the Solar System), Bachelor thesis, Charles University, Praha, 2009.

Abstract: In this work we study the processes in the Solar System, namely during the phases, which
occurred after dissolution of the gaseous protoplanetary disk. At first we describe a standard accre-
tion model of giant planets, which is not able to explain formation of Uranus and Neptune at large
heliocentric distances. Secondly, we discuss migration of planets, which seems to be an inevitable
process, both to explain current orbits of planets and distribution of small-body populations, like
Plutinos. Last part of the thesis is devoted to our numerical simulations, which aim to explain some
of the aspects of planetary migration.

2. Trojanová, L.: Spektrální vlastnosti rodin planetek podle přehlídky Sloan Digital Sky Survey
(Spectral properties of asteroid families based on the Sloan Digital Sky Survey), Bachelor thesis,
Hradec Králové University, Hradec Králové, 2010.

Abstract: In this work we apply a principal component analysis (PCA) to photometric data of
asteroids. The basic input for this work is a general mathematical PCA method and a catalogue of
photometric data for 471,569 asteroids, which were observed by the Sloan Digital Sky Survey. We
describe the calculation of pricipal components and we prepare algorithms, which enable practi-
cal computations. According to our results, we recommend to use three principle components, for
which we inferred a specific physical interpretation, in studies of asteroids. We finally display prin-
cipal components in the space of orbital elements of asteroids (most importantly semimajor axis,
eccentricity and inclination) and verified a close relation between orbital and photometric data.

3. Cibulková, H.: Vývoj hvězd r̊uzných hmotností (The evolution of stars with various masses), Ba-
chelor thesis, Charles University, Praha, 2011.

Abstract: In the present work we study changes of the structure of a star that occur during stellar
evolution and the dependence of these changes on the initial mass of the star. Internal changes affect
also characteristics of the star which are observable from the outside like the effective temperature or
luminosity. At first we briefly derive basic equations of the stellar structure which describe the most
important processes inside the star. We assume the star is nonrotating and spherically symmetric.
For a detailed description of the stellar evolution, we plot individual quantities for different initial
masses (from 0,1 to 100M�). We use the program EZ2 for numerical calculations which enables
to model the stellar evolution as long as the condition of the hydrostatistic equilibrium is satisfied.
Finally, we use the theory of the stellar evolution to determine the ages of two open clusters NGC
188 and M 45 using the method of isochrones.

4. Řehák, M.: Dynamické procesy v prstencích Jupiteru a Saturnu (Dynamical processes in Jupiter’s
and Saturn’s ring systems), Bachelor thesis, Charles University, Praha, 2011.

Abstract: The main subject of this thesis is a review of dynamical processes acting in Jupiter’s
and Saturn’s rings. The thesis is divided into three chapters. Observed orbital and physical cha-
racteristics of the rings are described in the first one. In Chapter 2, we discuss physical processes
forming the rings. Tidal disruptions, mutual collisions of ring particles, meteoroid bombardment
and ballistic transport are among them. Various electromagnetic effects are analyzed too e.g. the
Poynting–Robertson effect, the Lorentz resonaces, plasma drag and radiation pressure. Yet another
types of phenomena are resonant gravitational influence of satellites, shepherding moons and also
collective dynamics of ring particles which results in formation of spiral waves. Finally, there is a
review of theories concerning the origin of Saturn’s rings in Chapter 3. We can distinguish three
types of models a disruption of a moon, a disruption of an external body and a formation from
protolunar matter. At present, a tidal disruption of large differentiated moon seems to be the most
probable theory.

5. Pohl, L.: Heat diffusion equation in the physics of asteroids and meteoroids, Bachelor thesis, Charles
University, Praha, 2011.

Abstract: Non-gravitational forces caused by thermal emission of photons can significantly change
orbits and spin states of asteroids in the long term. A solution of the Heat Conduction Equation
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(HCE) in an asteroid is necessary to evaluate the forces. Finite Difference Methods (FDMs) are
implemented in a Fortran numerical HCE solver to calculate a temperature distribution within
a system of 1-dimensional slabs which approximate the asteroid. We compare the methods w.r.t.
convergence, accuracy and computational efficiency. The numerical results are compared with a
simplified steady-state analytical solution. We calculate the non-gravitational accelerations and
resulting semimajor axis drift from the numerical results. The implemented FDMs are shown to
be convergent with denser grids and the best method has been selected. The analytical solution
provides a good first-guess estimate of the temperature amplitude. The drift in semimajor axis of
the tested asteroids, which is due to the non-gravitational forces, is in order-of-magnitude agreement
with more accurate models and observational data.

6. Zajaček, M.: The Late Heavy Bombardment at various places of the Solar System, Bachelor thesis,
Charles University, Praha, 2012.

Abstract: In this work, we study the Late Heavy Bombardment (LHB) in the Solar System which
took place from 4.1 to 3.8 billion years ago, and represents a period of intense collisions whose
traces are observed on the Moon and other bodies mainly in the form of craters or impact melts.
The first part of the thesis is a review on the LHB with the focus on observational evidence and
recent dynamical models. In the second part, we test a particular dynamical model of the LHB using
the observed cratering records on various Solar-System bodies, which was not done previously to
such an extent. For this purpose, we use the symplectic integrator SyMBA, the collisional code
Boulder, and various projectile–crater scaling laws. We discuss the sources of uncertainties of the
observations as well as that of the models. Furthermore, we use our results to constrain the size-
frequency distribution of the primordial cometary population.

7. Rozehnal, J.: Rodiny planetek a jejich vztah k migraci planet (Asteroid families and their relation
to the planetary migration), Diploma thesis, Charles University, Praha, 2012.

Abstract: In this thesis, we study how the planetary migration acts asteroid families. We identify the
families among the Trojans of Jupiter by analysing their properties in the space of resonant elements,
the size-frequency distribution and the colour indices. The previously reported number of families
(10) seems to be overestimated, our analysis indicates that there is only one collisional family among
Trojans with the parent-body size DPB ¿ 100 km. We also performed a simulation of the long-term
orbital evolution of the Trojan families. We used a modified version of the SWIFT symplectic
integrator where the migration is set analytically. We found that the families are unstable even in
the late stages of the migration, when Jupiter and Saturn recede from their mutual 1:2 resonance.
Hence, the families observed today must have been created after the planetary migration ended.
In the last part of the work, we study a formation of asteroid families in the Main Belt during
the Late Heavy Bombardement. We simulate perturbations induced by migrating planets in the
”jumping Jupiter” scenario (Morbidelli et al., 2010) and we conclude that big families (DPB ¿ 200
km) created during the bombardement should be observable today.

8. Cibulková, H.: Kolizní vývoj hlavního pásu asteroid̊u po dobu čtyř miliard let (Collisional evolution
of the main asteroid belt over 4 billion years), Diploma thesis, Charles University, Praha, 2013.

Abstract: In this work, we constructed a new model for the collisional evolution of the Main Asteroid
Belt. Our goals are to test the scaling law from the work of Benz & Asphaug (1999) and ascertain if
it can be used for the whole belt. We want to find initial size-frequency distributions (SFDs) for the
considered six parts of the belt, and to verify if the number of asteroid families created during the
simulation matches the number of observed families as well. We used new observational data from
the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulated mutual
collisions of asteroids with a modified Boulder code (Morbidelli et al., 2009), in which the results
of hydrodynamic (SPH) simulations from the work of Durda et al. (2007) are included. Because
material characteristics can act breakups, we created two models — for monolithic asteroids and
for rubble-piles (Benavidez et al., 2012). The results for monolithic and rubble-pile asteroids are
comparable and in both cases the number of created families is, within uncertainties, consistent
with the observations. A disagreement of the SFDs for a limited size range D ’ 1 to 5 km a is a
good motivation to conduct new SPH simulations with relatively small targets.

9. Chrenko, O.: Původ asteroid̊u ve 2:1 rezonanci středního pohybu s Jupiterem (Origin of asteroids
in the 2:1 mean-motion resonance with Jupiter), Bachelor thesis, Charles University, Praha, 2013.
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Abstract: Asteroids located in the 2:1 mean-motion resonance with Jupiter are classified as stable
(called Zhongguos), marginally stable (called Griquas) and unstable (called Zulus) according to
their dynamical lifetime. The stable asteroids reside in two separate stable islands in the pseudo-
proper element space. In this thesis, we update the resonant population on the basis of up-to-date
observational data and we determine orbital and physical properties of the resonant population.
Using collisional models, we demonstrate that the observed Zhongguos and Griquas might be up
to 4 Gyr old, thus their origin might be related to the planetary migration. Performing dynamical
N-body simulations, we test two hypotheses of the origin of the long-lived population: the primor-
dial population scenario, and the asteroidal capture scenario. Our results imply that the resonant
population is not primordial but it was rather formed by the asteroids captured from an asteroidal
family located in outer main belt.

10. Sváda, P.: Aplikace dalekohledu LSST ve fyzice malých těles sluneční soustavy (Applications of the
LSST telescope in physics of small solar-system bodies), Bachelor thesis, Charles University, Praha,
2013.

Abstract: This thesis is devoted to the description of the Large Synoptics Survey Telescope (LSST)
and its use in the physics of small solar-system bodies. Based on the telescope optics parameters
and the theory of signal and noise we calculate limiting magnitude of the LSST (24.9 ± 0.4) mag
(in the V band). This value, together with data from MPC and WISE databases, serve as an
input parameter for the calculation of the minimum diameter (273± 55) m of a main-belt asteroid,
that LSST will be able to observe. We also estimated that (160 ± 118) million asteroids could be
observable by the LSST. Taking into account the planned observational strategy and cadence, we
calculated that a sufficiently bright asteroid will be observed approximately 370 times. Finally, the
possible applications of the LSST are discussed: e.g. a development of collisional models, explanation
of orbital and rotational dynamics of sub- kilometer objects.

11. Ševeček, P.: Vliv tepelné emise topografických útvar̊u na rotační dynamiku planetek (Rotational
dynamics of asteroids affected by thermal emission from topographic features), Bachelor thesis,
Charles University, Praha, 2014.

Abstract: Infrared radiation emitted from an asteroid surface causes a torque that can significantly
affect rotational state of the asteroid. The influence of small topographic features on this phenome-
non, called the YORP effect, hasn’t been studied yet in detail. In this work, we show that lateral
heat diffusion in surface features of suitable sizes leads to the emergence of a local YORP effect
which magnitude is comparable to the YORP effect due to the global shape. We solve a three-
dimensional heat diffusion equation in a boulder and its surroundings by the finite element method
using the FreeFem++ code. The contribution to the total torque is then inferred from the com-
puted temperature distribution. We compare the torque for various boulder shapes and material
properties. For an idealized boulder our result is consistent with an existing one-dimensional model.
Topographic features may cause a spherical asteroid of radius 1 km on a circular orbit at 2.5 AU
to undergo a rotational acceleration of about (2.2± 1.1) · 10−9 rad/day2, which corresponds to the
spin-up timescale of the order τ = (32±16) Myr. We estimated a size distribution of boulders based
on close-up images of (25143) Itokawa surface. Finally, we realized that topographic features of
Itokawa can induce a rotational acceleration of the order 10−7 rad/day2 and can therefore explain
the observed phase shift in light curves.

12. Řehák, M.: Asteroidální rodiny versus velké pozdní bombardování (Asteroid families versus the
Late Heavy Bombardment), Diploma thesis, Charles University, Praha, 2014.

Abstract: The aim of this thesis is to ascertain if main-belt asteroid families are compatible with
the existence of the Late Heavy Bombardment (LHB), which occurred in the Solar System approxi-
mately 4.1 to 3.8 billion years ago (Hartmann et al., 2000). At rst, we have newly identied families
in the pristine zone between 2.83 and 2.96 AU, using data from catalogues AstDyS and WISE. We
found clumps of bodies (19 in total) in the orbital data and calculated their statistical signicance
by a MonteCarlo method. We selected members of 918 Itha, 709 Fringilla and 15477 families using
the hierarchical clustering method. These three families form a representative sample in the proper
element space and with respect to their taxonomic type.

We performed simulations of the long-term orbital evolution using the numerical integrator Swift
(Levison and Duncan, 2013). We used the KolmogorovSmirnov test to compare the distributions of
proper elements of the simulated and observed families. We also compared the numbers of bodies
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scattered by gravitational resonances to determine likely ages of the families: Itha t > 2.5 Gyr,
Fringilla t > 3.0 Gyr and 15477 t ' 0.8 Gyr.

We simulated also their collisional evolution using the Boulder code (Morbidelli et al., 2009). The
initial size-frequency distributions were selected according to the results of SPH simulations of
disruptions (Durda et al., 2007). By comparing the simulated distributions with the observed ones
we obtained independent estimates of the ages: Itha t > 2.3 Gyr, Fringilla t > 3.3 Gyr and 15477
approximately t ∈ [0.47, 0.61] Gyr. The results of our simulations indicate that the Itha and Fringilla
families are indeed very old and their origin during the LHB is still possible.
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