Miroslav Brož

HYDRODYNAMIKA V ASTRONOMII

VYDAL MATFYZPRESS ???

PRAHA 2018???

Obsah

Slov	Slovo úvodem 7			
Ozn	ačení v	reličin	9	
1	Hydro	odynamika protoplanetárního disku	17	
	1.1	Magnetohydrodynamika s přenosem záření, Eulerův popis	17	
	1.2	Vliv částic a dalších fyzikálních jevů	20	
	1.3	Vztah Eulerova a Lagrangeova formalismu	22	
	1.4	Kelvinova–Helmholtzova nestabilita	22	
		Vertikální střihová nestabilita.		
	1.5	Rayleighova–Taylorova nestabilitaBaroklinická nestabilita.	23	
	1.6	Magneto–rotační nestabilita	25	
	1.7	Nestabilita dvou proudění	26	
	1.8	Gravitační nestabilita	27	
	1.9	Počáteční a okrajové podmínky	28	
	1.10	Formalismus v programu Pluto	29	
	1.11	Metoda konečných objemů (FVM)Škálované jednotky.	30	
	1.12	Adaptivní zjemňování sítě a víceprocesorové výpočty AMR. MPI.	31	
	1.13	Migrace planet v plynném disku Typ II. Typ I. Turbulentní viskozita.	34	
2	Hydro	odynamika srážek asteroidů	39	
	2.1	Lagrangeův popis	39	
	2.2	Elasticita, plasticita a praskliny	40	
	2.3	Metoda hlazená částicová (SPH)	42	
	2.4	Alternativní vyjádření prostorových derivací	44	
	2.5	Kernel čili hladící funkce	45	
	2.6	Umělá viskozita	46	
	2.7	Metoda k-d stromu	46	
	2.8	Multipólový rozvoj	49	
	2.9	Počáteční a okrajové podmínky	50	
	2.10	Fragmentační fáze	51	

Obsah	
-------	--

	2.11	Reakumulační fáze	51		
	2.12	Skálovací zákon pro terče	54		
3	Rovn	ice vedení tepla	57		
	3.1	Fourierovský rozvoj zářivého toku	57		
	3.2	Analytické jednorozměrné řešení	58		
	3.3	Metoda konečných diferencí (FDM)	60		
		Explicitní schéma. Implicitní schéma. Hybridní schéma.			
	3.4	Slabá formulace problému	63		
	3.5	Metoda konečných prvků (FEM)	65		
	3.6	Implementace v programu FreeFem++	66		
		Triangulace. Radiační síla.			
	3.7	Nekonvexní stínění, tepelný a rozptýlený tok	68		
		Balvany na Itokawě.			
4	Elasti	icita	73		
	4.1	Rovnice rovnováhy, Hookeův zákon a Lamého rovnice	73		
	4.2	Metoda konečných prvků (FEM)	74		
	4.3	Implementace v programu FreeFem++	75		
	4.4	Testovací příklad s jednoduchým nosníkem	76		
	4.5	Výpočet deformace montáže	78		
5	Atmosféry a oceány 81				
	5.1	Hydrostatická rovnováha	82		
	5.2	Cyklostrofické proudění	83		
	5.3	Geostrofické proudění	84		
	5.4	Rossbyho vlny	86		
	5.5	Termální vítr ve výšce	88		
	5.6	Ekmanova spirála v hloubce	88		
	5.7	Semiempirická konvekce	90		
		Adiabatický gradient teploty. Bruntova–Väisäläova frekvence.			
	5.8	Kolmogorovovo spektrum turbulence	93		
6	Přeno	os záření	97		
	6.1	Elementární procesy	98		
	6.2	Elementární přenosy LTE. Non-LTE.	100		
	6.3	Opacita plynu Dvouhladinový atom. Profil čáry.	104		
	6.4	Opacita prachu	105		

		Geometrická absorpce. Geometrický rozptyl. Rayleighova absorpce. Rayleighův rozptyl.
	6.5	Rovnice přenosu a statistické rovnováhy
	6.6	Metoda Monte Carlo 108
		Λ iterace. Akcelerovaná Λ iterace. Úniková metoda. Sobolevova metoda.
	6.7	Příklady interpretace spektra 112
	6.8	Mezihvězdná extinkce 113
	6.9	Monochromatický a integrální popis
7	Kosr	nologie homogenního izotropního vesmíru 119
	7.1	Kosmologický princip 119
	7.2	Einsteinovy rovnice pole 119
	7.3	Metrika FLRW 121
	7.4	Fridmannovy rovnice 122
	7.5	Kosmologické parametry 127
	7.6	Teplota záření
	7.7	Co je zdrojem temné látky? 132
	7.8	Co je zdrojem temné energie? 134
8	Prvn	ú hvězdy 137
	8.1	Způsob pozorování 137
	8.2	Simulace popisující vznik 139
	8.3	Reionizace vesmíru 143
	8.4	Simulace explozí supernov 144
	8.5	Párově nestabilní supernovy 147
9	Druł	né hvězdy 151
	9.1	Rovnice kontinuity 151
	9.2	Hydrostatická rovnováha 152
	9.3	Energetická rovnováha 153
	9.4	Přenos energie
		Přenos zářením. Adiabatická konvekce. Semiempirická konvekce. Semikonvekce. Termohalinní cirkulace. Konvektivní přestřelování.
	9.5	Stavová rovnice a Sahovy rovnice
	9.6	Okrajové podmínky v centru 159
	9.7	Okrajové podmínky na povrchu 159 Šedá atmosféra. Hydrostatická rovnováha.
	9.8	Vývojové rovnice stavby 163
	9.9	Počáteční podmínky 163

	9.10 9.11 9.12 9.13	Numerické řešení metodou FVM Značení vývojových stadií Vývojové procesy Vývoj hvězd různých hmotností	163 165 166 168
\mathbf{A}	Skalár	y, vektory a operátory	177
		Skalární součin. Vektorový součin. Operátor gradientu.	
		Operátor divergence. Operátor rotace. Křivočaré souřadnice. Sférické souřadnice.	
в	Tenzor	rový počet	181
		Diáda. Elipsoid. Operátor divergence. Další příklady.	
		Kontravariantní a kovariantní složky. Inverzní tenzor.	
		Kovariantní derivace.	
\mathbf{C}	Lagran	ngeovy planetární rovnice	187
	C.14	Lagrangeovy závorky	187
	C.15	Časová invariance Lagrangeových závorek	188
	C.16	Transformace při otočeních	189
	C.17	Vyčíslení v pericentru	190
	C.18	Lagrangeovy planetární rovnice	191
Rejstřík			193
Literatura 20			

Slovo úvodem

Hydrodynamika má v astronomii výsadní postavení. Dovoluje nám fyzikálně popisovat jevy v jejich složitosti a úplnosti, a umožňuje nám tak proniknout k podstatě věci. Pokud nás jako nejzazší cíl zajímá vznik planety Země — který ovšem úzce souvisí se vznikem a vývojem centrální hvězdy, ostatních planet, asteroidů i komet, jejich vzájemnými srážkami, interakcemi s meziplanetárním plynem, prachem, zářením, atd. — bez hydrodynamiky se prostě neobejdeme.

Učebnice Hydrodynamika v astronomii je určitým pokračováním Fyziky sluneční soustavy (vydané v roce 2013), ale zde se zabýváme obtížnějšími problémy a pokročilejšími metodami. Základem jsou pojednání o protoplanetárním disku, srážkách asteroidů nebo vedení tepla, což jsou úlohy, na nichž se můžeme dobře naučit eulerovskému i lagrangeovskému popisu, a také vícero numerickým metodám (FDM, FVM, FEM nebo SPH).

Zároveň rozšiřujeme učebnici Stavba a vývoj hvězd (vydanou v roce 2011). Nejenže o hvězdách pojednáváme jiným, obecnějším způsobem — diskutujeme vítr v atmosféře, přenos záření — ale pro popis prvních hvězd ve vesmíru potřebujeme znát i kosmologický kontext, abychom mohli hydrodynamiku aplikovat na těch největších měřítkách.

Uvědomme si již nyní, že nás čekají opravdu zásadní obtíže. Vyjádřeno čtyřmi slovy: i) turbulence, ii) nevratnost, iii) chaos a iv) stochasticita. Vícero slovy: hydrodynamické rovnice vykazují několik nevyhnutelných nestabilit, které se projevují jako turbulence. Procesy jako srážky těles jsou termodynamicky nevratné, čili rovnice nelze integrovat zpět v čase; měření počátečních podmínek v čase t = 0— který ani neznáme a priori— je zhola nemožné. I v jednoduchých systémech N těles vzniká deterministický chaos, ovlivňující vývoj celého systému. A konečně, některé události jsou zřídkavé a buď nastanou, nebo ne; uvážit ovšem musíme obě možnosti.

Poděkování za spolupráci v posledních letech patří přinejmenším: Ondřeji Chrenko, Pavlovi Ševečkovi, Jakubovi Rozehnalovi, Davidovi Vokrouhlickému, Tomášovi Zemanovi, Tomášovi Turkovi, Martinovi Cholastovi, Václavu Špačkovi, Zdenku Bardonovi, Josefu Ďurechovi, Josefu Hanušovi, Martinovi Lehkému. V této učebnici jsme uplatnili poznatky získané při řešení projektů Grantové agentury ČR (P209/13/01308S, P209/18/06083S) a Technologické agentury ČR (TA 03011171).

Označení veličin

Vzhledem k velikému počtu fyzikálních veličin, které jsou v knize použité, není jejich označení bohužel unikátní. V jednotlivých kapitolách je ovšem význam patrný z kontextu. Kromě veličiny je v tabulce uvedena jednotka v soustavě SI, i když v praxi může být obvyklá jednotka jiná (cgs, arcsec, pc, apod.).

α	1	parametr konvekce
α	1	viskózní parametr
α	$ m Jkg^{-1}$	měrná energie
$\alpha_{\rm av}$	1	parametr umělé viskozity
$\alpha_{\rm sc}$	1	parametr semikonvekce
α_{th}	1	parametr termohalinní cirkulace
α_V	1	koeficient teplotní roztažnosti
β	$ m rads^{-1}m^{-1}$	derivace Coriolisova parametru
$\beta_{\rm av}$	1	parametr umělé viskozity
γ	${ m ms^{-1}}$	systemická rychlost
Γ	1	adiabatický index
Γ	1	hranice oblasti
$\Gamma^{i}_{\ kl}$	m^{-1}	Christoffelův symbol
δ	1	Diracova distribuce
δ_{ij}	1	Kroneckerovo delta
Δt	S	časový krok
Δx	m	prostorový krok
ϵ	1	deformace
ϵ	1	emisivita
ϵ	Pa	aktivační mez
ϵ	$\rm W kg^{-1}$	měrný výkon
ϵ_{ν}	$W kg^{-1}$	měrný výkon neutrin
$\epsilon_{ m nuc}$	$\rm W kg^{-1}$	měrný výkon termonukleárních reakcí
ϵ_{ij}	s^{-1}	tenzor rychlosti deformace
ϵ_{rs}	1	tenzor deformace
ϵ_{ijk}	1	Leviho–Civitův symbol
η	1	parametr excentricity
η_{ik}		Minkowskiho tenzor
θ	rad	úhel od osy
κ	$\mathrm{m}^2\mathrm{kg}^{-1}$	integrální opacita
$\kappa_{ u}$	$\mathrm{m}^2\mathrm{kg}^{-1}$	monochromatická opacita
κ_{λ}	$\mathrm{m}^2\mathrm{kg}^{-1}$	monochromatická opacita
$\kappa_{\lambda}^{\mathrm{abs}}$	$\mathrm{m}^2\mathrm{kg}^{-1}$	monochromatická opacita pro absorpci
$\kappa_{\lambda}^{ m sca}$	$\mathrm{m}^2\mathrm{kg}^{-1}$	monochromatická opacita pro rozptyl

КD	$m^2 k \sigma^{-1}$	Planckova opacita
Кр Кр	$m^2 kg^{-1}$	Rosselandova opacita
λ	m	vlnová délka
λ	rad	pravá délka
λ	Pa	Laméova konstanta
$\frac{1}{\overline{\lambda}}$	rad	střední délka epochy
λ_1	1	limiter toku
Λ	m^{-2}	kosmologická konstanta
Λ	111	operátor A iterací
	1	střední molekulová hmotnost
μ μ	1	směrový kosinus
р~ Ц	1	funkce stínění
μ.	Pa	Laméova konstanta
р~ Ц	$m^{3} s^{-2}$	součin <i>Gm</i>
μ ₁	$kg m^{-1} s^{-1}$	dvnamická viskozita
142	$kg m^{-1} s^{-1}$	dynamická objemová viskozita
llwoc	NA^{-2}	permeabilita vakua
ν ν	Hz	frekvence
ν	${\rm m}^2{\rm s}^{-1}$	kinematická viskozita
ν	1	funkce viditelnosti
ν	1	Poissonův poměr
π	1	Ludolfovo číslo
$\overline{\omega}$	rad	délka pericentra
Π_{ij}	${ m m}^{5}{ m s}^{-2}{ m kg}^{-1}$	umělá viskozita
ρ	${ m kg}{ m m}^{-3}$	hustota
$ ho_{ m c}$	${ m kgm^{-3}}$	kritická hustota
$ ho_{ m d}$	${ m kg}{ m m}^{-3}$	hustota prachu
$ ho_{ m m}$	${ m kgm^{-3}}$	hustota hmoty
$\rho_{\rm rel}$	${ m kg}{ m m}^{-3}$	hustota záření a neutrin
$ ho_{\Lambda}$	${ m kg}{ m m}^{-3}$	hustota temné energie
$ ho_{ m S}$	${ m kg}{ m m}^{-3}$	hustota částic
$ ho_Q$	$ m Cm^{-3}$	nábojová hustota
σ	Pa	napětí
σ	${ m kg}{ m m}^{-3}$	plošná hustota
σ_0	$\Omega^{-1} \mathrm{m}^{-1}$	elektrická vodivost
$\sigma_{\rm SB}$	${ m W}{ m m}^{-2}{ m K}^{-4}$	Stefanova–Boltzmannova konstanta
σ_{ij}	Pa	tenzor napětí
au	S	časová škála
au	1	optická tloušťka
$ au_{ u}$	1	monochromatická optická tloušťka
ϕ	rad	azimutální úhel
ϕ	1	konformní faktor
ϕ_{12}	1	normalizovaný profil čáry
$\phi_{ m G}$	1	Gaussův profil

$\phi_{ m L}$	1	Lorentzův profil
φ	rad	zeměpisná šířka
Φ	${ m Wm^{-2}}$	zářivý tok
Φ	Jkg^{-1}	gravitační potenciál
Φ_{\star}	Wm^{-2}	tok od hvězdy
$\hat{\Phi}_{somi}$	$ m Wm^{-2}$	tok dle semiempirické teorie
$\vec{\Phi}_{hoat}$	$W m^{-2}$	tepelný tok
$\vec{\Phi}_{rad}$	$W m^{-2}$	zářivý tok
- Tau V	$m^2 s^{-1}$	tepelná difuzivita
$\frac{\lambda}{\gamma}$	J	ionizační energie
$\frac{\lambda}{\psi}$	$J kg^{-1} s^{-1}$	rychlost disipace energie na jednotku hmoty
φ	$rad s^{-1}$	úhlová frekvence
<i>w</i>	rad	argument pericentra
$\tilde{\Omega}$	sr	prostorový úhel
0	1	oblast
0	1	rolativní hustota
0	rad	délles výstupného uzlu
<u>,</u>	rad a ⁻¹	úhlové zvehlost
22	Taus	uniova rychiost
a	m	poloměr
a	m	velká poloosa
a	${ m J}{ m m}^{-3}{ m K}^{-4}$	zářivá konstanta
a	1	expanzní funkce
a_{J}	m	veľká poloosa Jupiteru
a _{vz}	${ m ms^{-2}}$	vztlakové zrychlení
A	1	albedo
A_{λ}	mag	extinkce
A_{21}	s^{-1}	Einsteinův koeficient pro spontánní emisi
a	ms^{-2}	zrvchlení
ac	ms^{-2}	Coriolisovo zrvchlení
a _a	$m s^{-2}$	gravitační zrvchlení
B_{μ}	$W m^{-2} sr Hz^{-1}$	Planckova funkce (pro intenzitu)
B_{12}	$J^{-1} m^3 sr$	Einsteinův koeficient pro absorpci
B_{21}	$J^{-1} m^3 sr$	Einsteinův koeficient pro stimulovanou emisi
B	T [tes]a]	magnetická indukce
<u>с</u>	$m s^{-1}$	rychlost světla ve vakuu
C D	J kg K ⁻¹	měrná tepelná kapacita při konstantním tlaku
C_{F}	JkgK ⁻¹	měrná tepelná kapacita při konstantním obiemu
C _∞	$m s^{-1}$	rychlost zyuku
C	$J k \sigma^{-1} K^{-1}$	měrná tepelná kapacita
\widetilde{C}	1	součinitel odporu
C_{12}	s ⁻¹	srážkový koeficient
\mathcal{O}_{12}	m	luminozitní vzdálenost
uL d	m	souhubná uzdálonost
$u_{\rm comoving}$	111	sounyona vzualenost

$d_{\rm proper}$	m	vlastní vzdálenost
ds	m	element vzdálenosti
$\mathrm{d}N$	1	diferenciální rozdělení
D	m	průměr
\mathcal{D}	1	poškození
e	1	excentricita
е	1	bázový vektor
E	J	energie
E	Pa	Youngův modul pružnosti
E	rad	excentrická anomálie
$E_{\rm rad}$	$ m Jkg^{-1}$	měrná zářivá energie
${\mathcal E}$	$ m Jkg^{-1}$	měrná energie (vírů)
Ek	1	Ekmanovo číslo
Ε	${ m Vm^{-1}}$	intenzita elektrického pole
f	rad	pravá anomálie
f	1	extinkční funkce
f_{12}	1	síla oscilátoru
$f_{\rm ov}$	1	parametr přestřelování
$f_{\rm C}$	$\rm rads^{-1}$	Coriolisův parametr
f_r	${ m ms^{-2}}$	objemové zrychlení
F_{i}		<i>j</i> -tá rovnice stavby
\mathcal{F}	${ m Wm^{-2}}$	ozáření
\mathcal{F}_n	${ m Wm^{-2}}$	Fourierova transformace ozáření
F	Ν	síla
g	1	statistická váha
g	${ m ms^{-2}}$	tíhové zrychlení
g_{ik}		kovariantní metrický tenzor
g^{ik}		kontravariantní metrický tenzor
G	${ m m}^3{ m s}^{-2}{ m kg}^{-1}$	gravitační konstanta
${\mathcal G}$	${\rm m}^2{\rm s}^{-1}$	složka z měrného momentu hybnosti
Gr	1	Grashofovo číslo
h	m	hladící délka
h	$\mathrm{Js^{-1}}$	Planckova konstanta
\hbar	$\mathrm{Js^{-1}}$	redukovaná Planckova konstanta
H	m	výšková škála
H	1	Heavisidova skoková funkce
H	${ m Wm^{-2}}$	první moment intenzity
H	s^{-1}	Hubblův parametr
H_P	m	tlaková škála
Н	${ m Wm^{-2}}$	první vektorový moment intenzity
\mathcal{H}	$\mathrm{m}^2\mathrm{s}^{-1}$	měrný moment hybnosti
i		komplexní jednotka
i		prostorový index
Ι	$\mathrm{Wm^{-2}sr^{-1}}$	integrální intenzita

I_{λ}	${ m Wm^{-2}sr^{-1}m^{-1}}$	monochromatická intenzita
I_{ν}	${ m Wm^{-2}sr^{-1}Hz^{-1}}$	monochromatická intenzita
I _a	m^4	kvadratický modul průřezu
Ĩ	1	jednotková matice
i		prostorový index
j j.,	$W sr^{-1} Hz^{-1} kg^{-1}$	emisní koeficient
<i>i</i>	$A m^{-2}$	proudová hustota
.7	$W m^{-2}$	nultý moment intenzity
Ja	Pa^2	druhý moment deviátoru tenzoru napětí
	$W m^{-2} H z^{-1}$	nultý moment intenzity
J^{μ}	1	čtyřproud hmoty
Jen	-	jakobián
k	$cvklů m^{-1}$	vlnové číslo
\hat{k}	1	směr
k k	IK^{-1}	Boltzmannova konstanta
K	$W m^{-1} K^{-1}$	tepelná vodivost
K	$W m^{-2}$	druhý moment intenzity
K	m^{-2}	křivost
K	Wm^{-2}	druhý tonzorový moment intenzity
K k	r^{-1}	vlnový veltor
K		dálla
l	1	úblový stupoř
K Q	1	umovy stupen střední volné drého
K O	III	stredili voina drana
l T		
	W XX7	
L_R	VV	tok kouli o polomeru R
L	2 -1	diferencialmi operator
L	$m^{-}s^{-1}$	merny moment nybnosti krunove drany
L	kg m² s ¹	moment hybnosti
m	kg	hmotnost
m_{e}	kg	hmotnost elektronu
$m_{ m p}$	kg	hmotnost protonu
$m_{\rm H}$	kg	hmotnost atomu vodiku
M	rad	stredni anomalie
M_R	kg	hmotnost koule o polomeru R
n	m ^o	koncentrace
n	$rad s^{-1}$	střední pohyb
n	m	normálová souřadnice
$n_{\rm e}$	m ⁻³	koncentrace elektronů
n	1	normála
N	1	počet
N	Hz	Bruntova–Väisäläova frekvence
N_j	1	bázové funkce

N(>x)	1	kumulativní rozdělení
∇	m^{-1}	operátor gradientu (nabla)
∇_{ad}	1	adiabatický gradient
∇_{rad}	1	zářivý gradient
∇_{B}	1	Bruntův gradient
∇_{L}	1	Ledouxův gradient
0	m	obvod
p	1	pravděpodobnost
$p_{\rm esc}$	1	pravděpodobnost úniku
P	S	perioda
Р	Pa	tlak
P_{σ}	Pa	tlak plynu
Prad	Pa	tlak záření
Pr	1	Prandtlovo číslo
р	${\rm kg}{\rm m}^{-2}{\rm s}^{-1}$	hustota hybnosti
q	Č	náboj
q	1	decelerační parametr
\hat{Q}	$\mathrm{Jm^{-3}}$	měrné teplo
\hat{Q}	1	počet volných elektronů na jeden atom
\hat{Q}_D^{\star}	Jkg^{-1}	měrná energie pro rozpad
r	m	polohový vektor
R	m	poloměr
R	m^{-2}	Ricciho skalár
$R_{\rm J}$	m	Jeansova délka
R_V	1	limita extinkční funkce
\mathcal{R}	$\mathrm{m}^2\mathrm{s}^{-2}$	poruchová funkce
R_{ik}	m^{-2}	Ricciho tenzor
$R^i_{\ klm}$	m^{-2}	Riemannův tenzor
Ra	1	Rayleighovo číslo
Re	1	Reynoldsovo číslo
Ri	1	Richardsonovo číslo
Ro	1	Rossbyho číslo
s	m	tangenciální souřadnice
s	1	směr ke Slunci
S	m^{-2}	plocha
S_{ν}	${ m Wm^{-2}sr^{-1}Hz^{-1}}$	zdrojová funkce
S	Pa	deviátor tenzoru napětí
t	S	čas
T	К	termodynamická teplota
$T_{\rm d}$	К	teplota prachu
$T_{\rm eff}$	Κ	efektivní teplota
\mathcal{T}	${ m ms^{-2}}$	transverzální složka zrychlení
Τ	Nm	moment síly
T_{ij}		obecný tenzor

T_{ik}	$\mathrm{Jm^{-3}}$	kovariantní tenzor energie a hybnosti
T^{ik}	$\mathrm{Jm^{-3}}$	kontravariantní tenzor energie a hybnosti
u	Κ	teplota
u	m	posunutí
u	${ m ms^{-1}}$	rychlost v tečné rovině
u	$\mathrm{Jm^{-3}}$	hustota energie záření
u_{eq}	Κ	rovnovážná teplota
$u_{\rm G}$	${ m ms^{-1}}$	rychlost geostrofického proudění
น้	${ m ms^{-1}}$	rychlost (částic)
u^{ν}	${ m ms^{-1}}$	čtyřrychlost
U	$ m Jkg^{-1}$	vnitřní energie na jednotku hmoty
U	$\mathrm{Jm^{-3}}$	vnitřní energie na jednotku objemu
U	${ m ms^{-1}}$	očekávaná rychlosť
$U_{\rm cv}$	$ m Jkg^{-1}$	měrná energie po úplném vypaření
$U_{\rm iv}$	$J kg^{-1}$	měrná energie na počátku vypařování
v	$m s^{-1}$	rychlost v tečné rovině
$v_{\rm esc}$	${ m ms^{-1}}$	úniková rychlost
$v_{\rm G}$	${ m ms^{-1}}$	rychlost geostrofického proudění
$v_{\rm imp}$	${ m ms^{-1}}$	impaktní rychlost
$v_{\rm kepl}$	${ m ms^{-1}}$	keplerovská rychlost
v_n	${ m ms^{-1}}$	normálová rychlost
v_s	${ m ms^{-1}}$	tangenciální rychlost
v_T	${ m ms^{-1}}$	termální rychlost
$v_{\rm turb}$	${ m ms^{-1}}$	turbulentní rychlost
V	${ m ms^{-1}}$	rychlost
V	m^3	objem
\mathcal{V}	${ m ms^{-1}}$	komplexní rychlost
w	${ m ms^{-1}}$	rychlost v tečné rovině
W	$\mathrm{Jm^{-3}}$	práce
W	m^{-3}	kernel
W_i	1	testovací funkce
x_{i}^{r}	1	stupeň ionizace
Ň	1	abundance vodíku
X_j	1	abundance prvku j
$X_{\rm i}$	1	stupeň ionizace
Y	1	abundance helia
Y	Pa	mez pevnosti
z	1	rudý posuv
$z_{ m ion}$	1	rudý posuv reionizace
Ζ	1	metalicita
Z_j^r	1	partiční suma
-		
\oplus		Země
\odot		Slunce

C Měsíc * hvězda

1 Hydrodynamika protoplanetárního disku

Majíc určitou představu, že ve vesmíru existují hvězdy a okolo nich plynoprachové disky (Brož a Šolc 2013), zkonstruujeme zde poměrně úplný fyzikální model tohoto disku. Budeme přitom postupovat "opačně než kolega Komenský", čili od složitého k jednoduchému. Sepíšeme nejprve všechny relevatní rovnice, abychom je viděli v celé kráse, a teprve poté budeme diskutovat jednoduché situace.

Disk si budeme představovat jako *spojité prostředí*, což je velmi významné, nicméně obvyklé zjednodušení plynu, respektive plazmatu (obsahujícího ionty, elektrony i neutrální atomy a molekuly). Umožní nám to pro fyzikální veličiny používat diferencovatelné spojité funkce.

1.1 Magnetohydrodynamika s přenosem záření, Eulerův popis

Pro popis zvolíme Eulerův formalismus, tzn. statického pozorovatele, který sleduje proudění plynu okolo. Fyzikální zákony, které nám popisují vývoj hustoty ρ disku, rychlosti **v** atd. od nějakého — zatím neznámého — počátečního stavu, jsou následující. Rovnice kontinuity (neboli zákon zachování hmoty, např. v jednotkách kg m⁻³ s⁻¹):¹

$$\underbrace{\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho}_{\text{derivace}} \underbrace{f(\mathbf{r}, t)}_{-\rho \nabla \cdot \mathbf{v}}, \qquad (1)$$

Navierova–Stokesova rovnice pro tekutiny (též pohybová, $m s^{-2}$):

$$\frac{\partial \boldsymbol{v}}{\partial t} + \overbrace{\boldsymbol{v} \cdot \nabla \boldsymbol{v}}^{\text{konvekce}} = -\frac{1}{\rho} \nabla P - \overbrace{\nabla \Phi}^{\text{gravitace}} + \frac{1}{\rho} \overbrace{\mu_{\text{vac}}}^{\text{Lorentz}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \frac{1}{\rho} \overbrace{[\nabla \cdot \mu_1 \nabla \boldsymbol{v} + \nabla (\mu_2 + \frac{1}{3}\mu_1) \nabla \cdot \boldsymbol{v}]}^{\text{viskozita}},$$
(2)

rovnice tepelné rovnováhy (1. věta termodynamická, $J m^{-3} s^{-1}$):

$$\frac{\partial U}{\partial t} + \overbrace{\mathbf{v} \cdot \nabla U}^{\text{konvekce}} = -\overbrace{U\nabla \cdot \mathbf{v}}^{\text{expanze}} - \overbrace{P\nabla \cdot \mathbf{v}}^{\text{práce}} - \overbrace{\kappa_{\mathrm{P}}\rho caT^{4}}^{\text{emise}} + \overbrace{\kappa_{\mathrm{P}}\rho cE_{\mathrm{rad}}}^{\text{absorpce}} - \overbrace{\nabla \cdot F_{\star}\hat{r}}^{\text{ozáření}} + \overbrace{\nabla \cdot K\nabla T}^{\text{difuze}},$$
(3)

¹ pro připomenutí, operátor gradientu jest $\nabla \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$, divergence ∇ · (tj. skalární součin), rotace $\nabla \times$ (vektorový součin); mějme na paměti jejich české významy: stoupání, rozbíhavost a stáčení, jež mohou pochopení rovnic napomoci; viz též dodatek A

rovnice přenosu záření $({\rm J\,m^{-3}\,s^{-1}}){:}^2$

$$\frac{\partial E_{\rm rad}}{\partial t} = \overbrace{\nabla \cdot \frac{c\lambda_{\rm lim}}{\kappa_{\rm R}\rho} \nabla E_{\rm rad}}^{\rm difuze} + \overbrace{\kappa_{\rm P}\rho caT^4}^{\rm emise} - \overbrace{\kappa_{\rm P}\rho cE_{\rm rad}}^{\rm absorpce}, \tag{4}$$

indukční rovnice $(T s^{-1})$:³

$$\frac{\partial \boldsymbol{B}}{\partial t} = \overbrace{\nabla \times (\boldsymbol{v} \times \boldsymbol{B})}^{\text{advecce}} + \overbrace{\nabla \cdot \eta_{\text{mag}} \nabla \boldsymbol{B}}^{\text{difuze}}, \qquad (5)$$

Poissonova rovnice $(J kg^{-1} m^{-2})$:

$$\nabla \cdot \nabla \Phi_{\text{disk}} = 4\pi G\rho \,, \quad \Phi = -\frac{GM_{\star}}{r} + \Phi_{\text{planet}} + \Phi_{\text{disk}} \,, \tag{6}$$

stavová rovnice pro ideální plyn (Pa):

$$P = (\Gamma - 1)U = \frac{\rho}{\mu m_{\rm H}} kT, \qquad (7)$$

rovnice pro tok záření od hvězdy (včetně zeslabování opacitou prachu a plynu; $\rm J\,s^{-1}\,m^{-2}):$

$$F_{\star} = \int_{\omega} \int_{\nu} B_{\nu}(T_{\star}) \left(\frac{R_{\star}}{r}\right)^2 \mathrm{e}^{-\tau_{\nu}} \,\mathrm{d}\nu \mathrm{d}\omega \,, \quad \tau_{\nu} = \int_{R_{\star}}^{r} \kappa_{\nu} \rho \,\mathrm{d}r \,. \tag{8}$$

Značení veličin je standardní: t čas, \mathbf{r} polohový vektor, ρ hustota, \mathbf{v} rychlost, U vnitřní energie plynu (na jednotku objemu), $E_{\rm rad}$ hustota energie záření, \mathbf{B} magnetické pole, Φ gravitační potenciál, P tlak, T termodynamická teplota, F_{\star} zářivý tok (od hvězdy), μ_1 dynamická (první) viskozita, μ_2 dynamická objemová viskozita, $\kappa_{\rm P}$ Planckova opacita, $\kappa_{\rm R}$ Rosselandova opacita, a radiační konstanta, c rychlost světla, K tepelná vodivost, $\lambda_{\rm lim}$ limiter toku (číslo $\frac{1}{3}$ až 0), $\eta_{\rm mag}$ magnetická difuzivita (nepřímo úměrná vodivosti σ_0 a magnetické permeabilitě $\mu_{\rm vac}$), G gravitační konstanta, Γ adiabatický index, μ střední molekulová hmotnost plynu, $m_{\rm H}$ hmotnost atomu vodíku, k Boltzmannova konstanta, B_{ν} Planckova funkce (pro intenzitu), ν frekvence, ω prostorový úhel, T_{\star} efektivní teplota hvězdy, R_{\star} její poloměr, τ_{ν} optická tloušťka, κ_{ν} monochromatická opacita.

Jedná se o soustavu 10 nelineárních parciálních diferenciálních rovnic druhého řádu (plus 3 algebraických), jež obsahují 13 neznámých funkcí (skalárních): $\rho(\mathbf{r}, t)$, $\mathbf{v}(\mathbf{r}, t), U(\mathbf{r}, t), E_{rad}(\mathbf{r}, t), \mathbf{B}(\mathbf{r}, t), \Phi(\mathbf{r}, t), P(\mathbf{r}, t), T(\mathbf{r}, t), F_{\star}(\mathbf{r}, t)$; které jsou závislé

 $^{^2\,}$ v difuzní aproximaci omezené tokem záření (FLD; Levermore a Pomraning 1981)

 $^{^3}$ zahrnující Maxwellovy rovnice a Ohmův zákon pro kvazine
utrální plazma

na 4 nezávislých veličinách: \mathbf{r} , t. Dále zde máme volné parametry: M_{\star} , R_{\star} , T_{\star} , M_{planet} , μ_1 , μ_2 , η_{mag} , μ , Γ ; a dané funkce (složité, ale dané): $\kappa_{\text{P}}(\rho, T)$, $\kappa_{\text{R}}(\rho, T)$, $\kappa_{\nu}(\rho, T)$, $\lambda_{\text{lim}}(E_{\text{rad}}, \nabla E_{\text{rad}})$, $\tau_{\nu}(\mathbf{r}, \kappa_{\nu}, \rho)$. Soustavu je obvyklé označovat zkratkou MHD.

K jednotlivým rovnicím si dovolíme několik praktických poznámek. Rovnici (1) je možno rozumět intuitivně: mějme vlevo hustotu velkou a vpravo nulovou. Pokud vektory rychlosti směřují zleva doprava, budeme mít za chvíli vpravo nějakou látku (a vlevo nic, respektive to, co bylo vlevo od leva). Kladná rozbíhavost rychlostí $\nabla \cdot \mathbf{v}$ by přitom odpovídala růstu (elementárního) objemu dV, čili zředění a poklesu hustoty ρ .

V rovnici (2) vystupuje na pravé straně zejména gradient tlaku ∇P , neboli makroskopický projev elektromagnetických sil mezi mikroskopickými částicemi plynu. Představme si například, že vlevo máme vyšší tlak, vpravo nižší, tudíž na ploše rozhraní jsou dvě různě velké tlakové síly opačného směru, které způsobují zrychlení $-\frac{1}{\rho}\nabla P$.

Lorentzův člen odpovídá klasickému vztahu $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$, kde ovšem obecně $\mathbf{v} = \mathbf{v}_{\text{nábojů}} \neq \mathbf{v}_{\text{plynu}}$! V plazmatu je makroskopické elektrické pole $\mathbf{E} = \mathbf{0}$ a hustotu proudu $\mathbf{j} = \rho_Q \mathbf{v}$ lze vyjádřit z Ampérova zákona $\mu_{\text{vac}} \mathbf{j} \doteq \nabla \times \mathbf{B}$.

Viskózní člen se zde objevuje proto, že mezi vrstvami tekutiny proudícími různými rychlostmi vznikají třecí síly; síla na jednotku plochy se označuje jako *napě*ti (s jednotkou Pascal). Pro obvyklé (newtonovské) tekutiny je přitom tření úměrné rozdílu rychlostí, čili $\mu_1 \nabla \mathbf{v}$. Napětí od vrstvy horní má však opačný směr než od dolní; teprve když se jejich velikost mění (tzn. nenulovou 2. derivaci rychlosti), vzniká zrychlení $\frac{1}{a} \nabla \cdot \mu_1 \nabla \mathbf{v}$.

Rovnice (3) jest obdobou (1), jen zde namísto hustoty hmoty ρ vystupuje hustota energie U. Pak jsme museli dle 1. věty termodynamické (dU = -dW + dQ) připsat mechanickou práci vykonanou plynem (-PdV) a všechny zdroje tepla.

Rovnice (4) Skutečnost, že při emisi záření hraje roli opacita, se může zdát podezřelá, ale to je způsobeno skutečností, že emisní koeficient je za předpokladu lokální termodynamické rovnováhy dán Kirchhoffovým zákonem, $j_{\nu} = \kappa_{\nu} B_{\nu}$. V popisu středovaném přes všechny frekvence se používá opacita buď Planckova, tzn. středovaná přes hustotu zářivé energie, nebo Rosselandova, středovaná přes zářivý tok, podle toho, jaký jev právě popisujeme.

Tok tepla je podle Fourierova zákona úměrný gradientu teploty, $\overline{\Phi}_{\text{heat}} = -K\nabla T$, neboť teplo teče z místa s vyšší teplotou do místa s nižší teplotou. Pokud se tok navíc rozbíhá ($\nabla \cdot \overline{\Phi}_{\text{heat}}$ je kladná), děje se tak na úkor vnitřní energie U, proto je výsledné znaménko členu v (3) +. Toto platí obecněji pro difuzi čehokoliv, nejen tepla, ale též záření, částic, magnetického pole. Kdybychom chtěli, lze ze (3) odvodit klasickou rovnici vedení tepla. Pro statickou pevnou látku by totiž bylo $\mathbf{v} = \mathbf{0}$, $\rho = \text{konst.}$ (jde pak o parametr), též V = konst. Stačilo by psát $\frac{\partial U}{\partial t} = K\nabla^2 T$ a použít jinou stavovou rovnici, $U = \rho c_V T$. V rovnici (4) není advekce, protože záření není přenášeno plynem v podobě $E_{\rm rad}$, nýbrž prostřednictvím U. Emise a absorpce jsou zde pochopitelně s opačným znaménkem než v rovnici (3), která se týká plynu.

Gravitační potenciál v rovnici (6) je zaveden tak, že zrychlení $\boldsymbol{a}_{g} = -\nabla \Phi$.

Uvědomme si, že výše uvedené rovnice jsou *velmi obecné*! S výjimkou kvantovky a relativity v sobě zahrnují (téměř) celou klasickou fyziku, popisující většinu jevů v našem okolí i ve vesmíru. Nicméně i tak musíme být obezřetní, protože některé členy jsou platné pouze ve stavu (lokální) termodynamické rovnováhy.

1.2 Vliv částic a dalších fyzikálních jevů

Při numerickém řešení rovnic máme vždy omezené rozlišení, což si obvykle vynucuje odlišení "malých" pevných částic (prachu, balvanů, planetesimál, planet) od plynu (tzn. spojitého prostředí).

Občas musíme přidat další rovnice, respektive členy v rovnicích, abychom postihli "méně důležité" fyzikální jevy, které však mohou být v dané situaci (pro vysvětlení určitého pozorování) zcela zásadní, například:

0. neinerciální členy, pokud bychom pracovali nějaké v neinerciální souřadnicové soustavě, například rotující úhlovou rychlostí $\vec{\Omega}$:

$$\boldsymbol{\sigma}_{\text{neinerciální}} = - \underbrace{\vec{\Omega} \times (\vec{\Omega} \times \boldsymbol{r})}_{\text{Oriolis}} - \underbrace{\vec{2}\vec{\Omega} \times \boldsymbol{v}}_{\text{Oriolis}}, \qquad (9)$$

kde první člen je opravdu $-\vec{\Omega} \times (\vec{\Omega} \times \boldsymbol{r}) = \vec{\Omega} \times (\boldsymbol{r} \times \vec{\Omega}) = \boldsymbol{r} \vec{\Omega} \cdot \vec{\Omega} - \vec{\Omega} \vec{\Omega} \cdot \boldsymbol{r} = \Omega^2 \boldsymbol{r}_{\perp}$ podle vektorové identity "bác mínus cáb" (256);

1. pohyb částic, jejich vzájemná gravitace:

$$\boldsymbol{a}_{j} = \sum_{i \neq j} -\frac{GM_{i}}{r_{ij}^{3}} \boldsymbol{r}_{ij} , \qquad (10)$$

pro jejíž řešení je dobré použít symplektický integrátor. Pokud by částic bylo obrovské množství, zavádějí se sledovací částice, reprezentující vždy učitou skupinu částic na podobných trajektoriích;

2. vazba částice \leftrightarrow plyn, skrzevá gravitaci $\boldsymbol{a}_{\check{c}\check{a}stice} \doteq \int_{\mathrm{disk}} -\frac{G\mathrm{d}M}{r^3}\boldsymbol{r}$, a aerodynamické tření dle Epsteinova nebo Stokesova zákona:

$$\boldsymbol{a}_{\text{Epstein}} = -S\rho v_T(\boldsymbol{u} - \boldsymbol{v}) \qquad \text{pro } D \ll \ell \,, \tag{11}$$

$$\boldsymbol{a}_{\text{Stokes}} = -\frac{1}{2}CS\rho|\boldsymbol{u}-\boldsymbol{v}|(\boldsymbol{u}-\boldsymbol{v}) \text{ pro } D \gg \ell, \qquad (12)$$

kde *S* označuje průřez částice, *D* průměr, *C* koeficient odporu, v_T termální rychlost (plynu), **u** rychlost částice, **v** rychlost plynu a ℓ střední volnou dráhu molekul (plynu);

- 3. vzájemné srážky částic, příslušná fragmentace nebo akrece, popsané relacemi $\frac{\mathrm{d}M}{\mathrm{d}t}(M), \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}(M),$ používají se simulace Monte–Carlo nebo samostatná hydrodynamika;
- 4. tlak záření $P_{\rm rad} = \frac{1}{3}aT^4$, $P = P_{\rm gas} + P_{\rm rad}$;
- 5. radiační zrychlení, $\boldsymbol{a}_{rad} \doteq \frac{\kappa_{R}}{c} \vec{\Phi}_{rad}$, přičemž tok už známe, $\vec{\Phi}_{rad} = \frac{c\lambda_{lim}}{\kappa_{R}\rho} \nabla E_{rad}$;
- 6. viskózní ohřev, čili $\mathbf{S} \cdot \frac{1}{2} [\nabla \mathbf{v} + (\nabla \mathbf{v})^T]$, kde tenzor napětí \mathbf{S} je týž jako ve viskóznímu členu $\frac{1}{\rho} \nabla \cdot \boldsymbol{S};$
- 7. rezistivní ohřev, $\boldsymbol{j} \cdot \boldsymbol{E} \doteq \frac{1}{\sigma} \boldsymbol{j} \cdot \boldsymbol{j} \doteq \frac{\mu_{\text{vac}}^2}{\sigma} (\nabla \times \boldsymbol{B})^2$, dle Ohmova a Ampérova zákona, kde **j** označuje hustotu proudu a **E** elektrické pole;
- 8. anizotropní vedení tepla a jeho saturace, $\nabla \cdot \mathbf{F}_{heat}$, $\mathbf{F}_{heat} = \frac{F_{sat}}{F_{sat} + |\mathbf{F}|} \mathbf{F}$, $\mathbf{F} = K_{\parallel} \mathbf{b} (\mathbf{b} \cdot \mathbf{b})$ ∇T) + $K_{\perp}[\nabla T - \mathbf{b}(\mathbf{b} \cdot \nabla T)]$, $F_{\text{sat}} = 5\phi\rho c_{\text{s}}^3$, kde $\mathbf{b} \equiv \frac{\mathbf{B}}{|\mathbf{B}|}$, $c_{\text{s}} = \sqrt{\Gamma \frac{\partial P}{\partial \rho}}$ označuje rychlost zvuku a $\phi < 1$ je volný parametr;
- 9. radiaktivní rozpad, $\rho \epsilon_{\text{decay}}(X, Y, Z)$, se změnami abundancí $\frac{\partial Z}{\partial t} = \sum_k \frac{\epsilon_k}{\alpha_k}$;
- 10. částicová difuze, $\frac{\partial n}{\partial t} = \nabla \cdot D \nabla n$, $D = \frac{1}{3} \ell v_T$, kde *n* označuje koncentraci, *D* difuzní koeficient, ℓ střední volnou dráhu, v_T termální rychlost;
- 11. fázové přeměny, depozice plynu a sublimace pevných částic;
- chemické reakce, případně jejich katalyzace zářením nebo povrchy;
- 13. Hallův jev, čili člen ∇ × (¹/_{en_e} **j** × **B**) v indukční rovnici (5) (Armitage 2010);
 14. ambipolární difuze, +∇ × (¹/_{γρiρ} (**j** × **B**) × **B**) tamtéž, v řidším prostředí, tj. při nižší frekvenci srážek, se neutrální částice mohou pohybovat systematicky jinak než ionty, což se projeví jako tření, skrze koeficient $\gamma \equiv \langle \sigma v_i \rangle / (m_i + m_n)$.
- 15. změny ionizace a rekombinace, popsané rovnovážnou Sahovou rovnicí:

$$\frac{X_{\rm i}^2}{1 - X_{\rm i}} n_{\rm e} = \left(\frac{2\pi m_{\rm e} kT}{h^2}\right)^{\frac{3}{2}} {\rm e}^{-\frac{\chi}{kT}}, \qquad (13)$$

kde X_i označuje stupeň ionizace, a χ ionizační energii atomu. Nepřímo je ovlivněna i stavová rovnice prostřednictvím $\mu(\rho, T, X, Y, Z)$ a tamtéž bychom měli správně zohlednit *degeneraci* elektronového plynu faktorem $\lambda_{deg}(\rho, T)$;

16. termonukleární reakce včetně ztrát energie neutriny, $\rho \epsilon_{\rm nuc}(\rho, T, X, Y, Z) - \rho \epsilon_{\nu}$, a odpovídající rovnice pro změny chemického složení (abundancí X vodíku, Y helia a Z těžších prvků, resp. jednotlivých izotopů):⁴

$$\frac{\partial X}{\partial t} = \sum_{i} \frac{\epsilon_i}{\alpha_i}, \quad \frac{\partial Y}{\partial t} = \sum_{j} \frac{\epsilon_j}{\alpha_j}, \quad \frac{\partial Z}{\partial t} = \sum_{k} \frac{\epsilon_k}{\alpha_k}.$$
 (14)

 $^{^4}$ Po zahrnutí posledně jmenovaných jevů již můžeme počítat $\mathit{celý}$ vývoj hvězd, včetně jednorozměrné hydrostatické aproximace, konvekce, hvězdného větru, trojrozměrné struktury, rotace, magnetického dynama, případných vnějších vlivů ($\Phi_{
m dvoj*}, F_{
m dvoj*}$). Na druhou stranu je nutné připustit, že některé jevy, například erupce, rekonexe, výboje, resp. pohyb svazků částic, jsou natolik nerovnovážné, že předpoklad LTE bychom museli opusit a mj. bychom nesměli vůbec používat teplotu T, nýbrž "divoké" distribuční funkce jednotlivých veličin.

Čtenář se přečtením tohoto řádku vzdává jakéhokoliv nároku na úplnost výčtu...

1.3 Vztah Eulerova a Lagrangeova formalismu

Alternativně bychom mohli použít Lagrangeův formalismus, tzn. souhybného pozorovatele, který se líně nechává unášet proudící tekutinou. Neznámé jsou pak *trajektorie* (nekonečného množství) bodů kontinua $\mathbf{r}(\mathbf{r}_0, t)$, respektive $\rho(\mathbf{r}_0, t)$, $\mathbf{v}(\mathbf{r}_0, t)$, apod. pro další veličiny, všechny závislé na čase t a "indexované" například počátečními polohami \mathbf{r}_0 (v čase t = 0).

Namísto parciálních derivací $\frac{\partial}{\partial t}$ a vlastně celých levých stran bychom užili totálních $\frac{d}{dt}$, jejichž vztah plyne z derivace funkce $\phi(\mathbf{r}, t)$ dvou proměnných:

Lagrange
$$\underbrace{\frac{\mathrm{d}\phi}{\mathrm{d}t}}_{i} = \frac{\partial\phi}{\partial t} + \frac{\partial\phi}{\partial x_{i}} \underbrace{\frac{\partial v_{i}}{\partial t}}_{i} = \underbrace{\frac{\partial\phi}{\partial t} + \mathbf{v} \cdot \nabla\phi}_{i} . \tag{15}$$

Polohy \boldsymbol{r} lze posléze spočíst z \boldsymbol{v} jako:

$$\boldsymbol{r}(\boldsymbol{r}_0, t) = \boldsymbol{r}_0 + \int_{t_0}^t \boldsymbol{v}(\boldsymbol{r}_0, t) \mathrm{d}t$$
(16)

V dalším zůstaneme u našeho Eulera, nicméně je dobré tušit, že existují kódy využívající Lagrange.⁵ Výhodou Lagrangeova popisu mj. je, že nemusíme předem konstruovat (zbytečně rozlehlou) fixní síť bodů, zvlášť když předem nevíme, kam se body kontinua dostanou. Opačně řečeno, výhodou Eulerova popisu je, pokud nás eminentně zajímá jen omezená oblast prostoru, nepočítáme zbytečně trajektorie, které stejně skončí mimo ni.

1.4 Kelvinova–Helmholtzova nestabilita

Řešení hydrodynamických rovnic vykazují několik zásadních nestabilit, z nichž nejzákladnější je Kelvinova–Helmholtzova. Vzniká již ve velmi jednoduché situaci⁶: dvě vrstvy nestlačitelné kapaliny, jedna proudící tam a druhá zpět, bez gravitace. Z celé soustavy (1) až (6) nám zůstanou jen dvě "očesané" rovnice:

$$0 = \nabla \cdot \boldsymbol{v} \,, \tag{17}$$

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\frac{1}{\rho} \nabla P \,. \tag{18}$$

Jak vidíme z numerického řešení (obr. 1), jedná se o významný zdroj turbulence neboli vírů. Kvalitativně je možno říci, že sledujeme-li proudnice ve směru -x, tak

 $^{^5}$ Aby se Euler a Lagrange nepletli, je potřeba se podívat na jejich podobizny. Lagrange se zdá hubenější a asketičtější, nebude mu tedy dělat problém jít sledovat trajektorie. Naopak Euler je na první pohled "tlustší a línější", ten se za žádnou cenu nikam se nepohne.

 $^{^{6}}$ Pozor na implikaci! Neznamená to, že nevzniká ve složitějších situacích.

nadkaždou vlnkou jsou zhuštené (jako nad křídlem), kvůli kontinuitě je rychlost v_x zápornější a tlak Pmenší, neboť jediné, co mohlo tekutinu urychlit, je $\frac{\partial P}{\partial x} > 0$ (tj. ostatně v naprostém souladu s Bernoulliho rovnicí). Pod vlnkou je to přesně naopak, čímž vzniká $\frac{\partial P}{\partial y} < 0, v_y$ kladné a vlnka roste. Není možno nevědět, že vlny na moři jsou způsobené právě tímto jevem.

U každé nestability bychom si měli také uvědomit, co omezuje její růst. V tomto případě je samoomezující, velikost největšího víru je dána počátečními podmínkami a případnými dalšími parametry problému (viskozitou, povrchovým napětím); zároveň těžko může být větší než okraj výpočetní domény.

Obr. 1 — Vývoj Kelvinovy–Helmholtzovy nestability z počáteční malé perturbace rozhraní. Počáteční podmínky (v bezrozměrných jednotkách): $\rho_1 = 1$, $\rho_2 = 2$, $P_1 = P_2 = 10$, $\mathbf{v}_1 = (-1,0)$, $\mathbf{v}_2 = (+1,0)$. Okrajové podmínky: vlevo a vpravo periodické, nahoře a dole $\frac{\partial \rho}{\partial t} = 0$, $\frac{\partial \mathbf{v}}{\partial \mathbf{t}} = \mathbf{0}$, $\frac{\partial P}{\partial t} = 0$. Stavová rovnice v tomto případě odpovídala ideálnímu plynu. Výpočet byl proveden programem Pluto (Mignone aj. 2007) ve dvou rozměrech, v síti 100 × 200 bodů.

Vertikální střihová nestabilita. V protoplanetárním disku se rozvíjí zejména ve svislém směru, neboť větší z znamená trochu větší $r = \sqrt{x^2 + y^2 + z^2}$ od Slunce, čili menší keplerovskou rychlost $v_{\text{kepl}} = \sqrt{GM_{\star}/r}$ než v základní rovině, což vede ke střihu; proto se jinými slovy nazývá vertikální střihová nestabilita (angl. VSI).

1.5 Rayleighova–Taylorova nestabilita

Pro vznik druhé, Rayleighovy–Taylorovy nestability je třeba: hustší nestlačitelná kapalina nahoře, řidší dole, to vše v gravitačním poli. Příslušné rovnice jsou:

$$0 = \nabla \cdot \mathbf{v} \,, \tag{19}$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla P - \nabla \Phi \,. \tag{20}$$

23

Obr. 2 — Vývoj Rayleighovy–Taylorovy nestability z počáteční malé perturbace rozhraní. Protože dochází ke vzájemným pohybům tekutiny, nevyhnutelně se objeví i nestability Kelvinovy–Helmholtzovy. Počáteční podmínky: $\rho_1 = 2, \rho_2 = 1, \Phi = y$, resp. $\boldsymbol{g} = -\nabla\Phi = (0, -1), P(y)$ odpovídá hydrostatické rovnováze, $\boldsymbol{v}_1 = \boldsymbol{v}_2 = (0, 0)$. Okrajové podmínky: vlevo a vpravo periodické, nahoře a dole $\frac{\partial \rho}{\partial t} = 0, \frac{\partial \boldsymbol{v}}{\partial t} = \boldsymbol{0}, \frac{\partial P}{\partial t} = \boldsymbol{0}$. Stavová rovnice odpovídá ideálnímu plynu. Výpočet programem Pluto ve dvou rozměrech, v síti 100 × 200 bodů.

Vývoji (obr. 2) je možno rozumět následovně: jde o stav s vyšší energií, který samovolně přejde do stavu s nižší energií a vyšší neuspořádaností (entropií). S ohledem na Archimédův zákon se tato nestabilita nazývá též *vztlaková*. Pokud bychom řešili zároveň tepelnou rovnováhu (3) a viděli bychom transport vnitřní energie, hovořili bychom o *konvekci*.

Při vývoji nestability RT vždy dochází ke vzájemným pohybům tekutin, čili se nevyhnutelně objeví i nestabilita KH. Obě nestability (kouřící komín) běžně kreslí děti v mateřské školce, rodiče jim pouze zatajili, oč se jedná.

Nestabilitu obvykle omezuje až hranice (resp. okraj domény). V atmosféře bývá vytvářena přirozeně teplotním zvrstvením či zvratem.

Baroklinická nestabilita. Jen trochu složitější variantou RT je nestabilita baroklinická (Klahr a Bodenheimer 2003, Lesur a Papaloizou 2010), ve které máme kromě kompresibilní rovnice kontinuity i difuzi vnitřní energie a nějaký ohřev:

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = -\rho \nabla \cdot \mathbf{v} \,, \tag{21}$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla P - \nabla \Phi \,. \tag{22}$$

$$\frac{\partial U}{\partial t} + \mathbf{v} \cdot \nabla U = -U\nabla \cdot \mathbf{v} - P\nabla \cdot \mathbf{v} + \nabla \cdot K\nabla T - \nabla \cdot \Phi_{\star} \hat{r}; \qquad (23)$$

jedná se evidentně o termodynamický tepelný stroj, neustále pohánějící víření. V protoplanetárním disku je podkritická (lokální) baroklinická nestabilita (angl. SBI) patrně hlavním zdrojem turbulence.

Kvalitativně funguje takto: fluktuace posune bublinu plynu "nahoru" (radiálně, proti $\boldsymbol{a}_{\rm g}$), v okolí je (obvykle) nižší $P_{\rm o}$, v bublině se vždy udržuje totéž $P_{\rm b} = P_{\rm o}$, nastává víceméně adiabatická expanze, při níž jak $\rho_{\rm b}$, tak $T_{\rm b}$ klesají ($P \propto \rho T$). Pokud ale teplotní profil $T_{\rm o}(r)$ klesá dostatečně strmě, například proto, že prostředí je mizerně průhledné (κ_{ν} velké), bývá $T_{\rm b} > T_{\rm o}$, $\rho_{\rm b} < \rho_{\rm o}$; profil je konvektivně nestabilní. Bublina je balón.

Nahoře se ovšem okolí pohybuje jinou rychlostí v_{kepl} , bublina se proto posouvá "horizontálně", ve směru $-\hat{\phi}$. Zde je čas na difuzi vnitřní energie bubliny, která se odevzdá okolí, ρ_{b} , T_{b} klesnou na úroveň ρ_{o} , T_{o} . Protože si kontinuita a tlakový člen vynucují další pohyb, bublina padá zpět "dolu", dochází k adiabatické kompresi, pohybu ve směru $\hat{\phi}$, a přijímání tepla z okolí, čímž se cyklus uzavírá.

V meteorologii se setkáváme s týmiž situacemi. V cyklónách nebo anticyklónách, roztočených díky spolupůsobení gradientu tlaku a Coriolisova zrychlení (viz Brož a Šolc 2013, str. 177), se chladný a teplý vzduch vyskytují takříkajíc vedle sebe (rozhraní nazýváme fronty), přičemž jejich rozpad bývá způsoben právě baroklinickou nestabilitou, když chladný vzduch nateče pod teplý (říkáme, že nastala okluze).

1.6 Magneto-rotační nestabilita

Třetí nestabilita, magneto–rotační (Balbus a Hawley 1991, angl. MRI) vyžaduje přinejmenším toto nastavení: nestlačitelná kapalina, bez gravitace, diferenciální rotace, magnetické pole, bez difuze. Čili:

$$0 = \nabla \cdot \mathbf{v} \,, \tag{24}$$

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\frac{1}{\rho} \nabla P - \nabla \Phi_{\star} + \frac{1}{\rho \mu_{\text{vac}}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}, \qquad (25)$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}).$$
(26)

Základním principem je zamrznutí siločar v plazmatu a jejich navíjení v diferenciálně rotujícím prostředí (se střihem rychlostí), čili zesilování slabých perturbací magnetického pole. Ostatně magnetické dynamo v nitru Slunce nebo Země je totéž. Rozvoj nestability je znázorněn na obr. 3. Podotkněme, že předpoklad "bez difuze" nutně znamená nemalý stupeň ionizace látky, jinak by Lorentzův člen byl irelevantní. Dostatečný stupeň ionizace je v blízkosti Slunce, daleko od Slunce (i díky kosmickému záření), též na povrchu disku ozařovaného UV, ale není jisté, zda uprostřed. Tam může existovat *mrtvá zóna*, v níž MRI nefunguje a disk není (tak) turbulentní.

Nestabilitu rozvíjející se za výše uvedených podmínek omezuje až hranice (zde tloušťka disku) nebo difúzní člen, kdybychom ho měli. Pokud však dochází k am-

Obr. 3 — Vývoj magneto–rotační nestability z počáteční malé perturbace magnetického pole **B**. Počáteční podmínky: $\rho = 1$, $\mathbf{v} = (0, -0.5x)$, $\mathbf{B} = (B_0 \sin(\pi y), 0)$, $\Phi = 0$. Okrajové podmínky: vlevo a vpravo je jednoduše předepsán střih rychlosti (proto nepotřebujeme $\Phi \neq 0$), nahoře a dole periodické. Stavová rovnice odpovídá ideálnímu plynu. Výpočet programem Pluto ve dvou rozměrech, v síti 100 × 200 bodů. V časech t > 30 se již projevuje numerická viskozita, tzn. špatné rozlišení zejména ve směru x; celistvost 1 buňky je poměrně silnou vazbou ($\nu \to \infty$).

bipolární difuzi, čili ionty se pohybují beze srážek s neutrálními atomy, nestabilita se rozvíjí pouze v plazmatu a její celkový vliv je víceméně zanedbatelný.

1.7 Nestabilita dvou proudění

Pozoruhodná nestabilita vzniká pro dvě proudění s určitou vazbou (Youdin a Johansen 2007, angl. streaming instability). V našem kontextu jde o plyn a prach a vazbou jest aerodynamické tření, obojí pod vlivem gravitace centra.

Příslušná nestabilita se nazývá též "dvoutekutinová", popisujeme-li prach jako tekutinu (s hustotou $\rho_{\rm S}$ a rychlostí **u**).⁷ Plyn nemusí být nutně stlačitelný, ale prach ano, což zní podezřele, ale nejedná se samozřejmě o stlačování zrn, nýbrž o jejich soustřeďování v prostoru:

$$\frac{\partial \rho_{\rm S}}{\partial t} + \boldsymbol{u} \cdot \nabla \rho_{\rm S} = -\rho_{\rm S} \nabla \cdot \boldsymbol{u} \,, \tag{27}$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \Phi_{\star} - S\rho v_T (\boldsymbol{u} - \boldsymbol{v}), \qquad (28)$$

$$0 = \nabla \cdot \boldsymbol{\nu} \,, \tag{29}$$

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\frac{1}{\rho} \nabla P - \nabla \Phi_{\star} + S \rho_{\rm S} v_T (\boldsymbol{u} - \boldsymbol{v}) \,. \tag{30}$$

 $^{^{7}}$ Nestabilita ovšem přetrvává i případě, když prach popíšeme jako částice.

V Navierově–Stokesově rovnici pro prach jsme použili Epsteinův zákon a v rovnici pro plyn totéž s faktorem $-\frac{\rho_{\rm S}}{\rho}$, kvůli zachování hybnosti. Často se namísto globálních simulací provádějí lokální, v korotujícím systému, s diferenciální rotací.

Oscilace $\rho_{\rm S}$ (i ρ) vytvářejí tak vysoká lokální maxima, že v nich gravitační nestabilita (kolaps) prachu nebo balvanů může vést ke vzniku planetesimál nebo rovnou planetárních embryí (viz obr. 4).

Je tu i jistá analogie s Tour de France — cyklista na čele cítí odpor vzduchu o ostatní "lenoši" v závětří ho snadno dojedou. V tomto specifickém případě nestabilitu omezuje cíl.

Obr. 4 — Nestabilita dvou proudění (plynu a prachu). Znázorněna je plošná hustota σ části disku Převzato z Johansen aj. (2007).

1.8 Gravitační nestabilita

Pro kolaps jsou třeba dvě věci: stlačitelný plyn, vlastní gravitace. Dále potřebujeme rovnice:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{v} \cdot \nabla \rho = -\rho \nabla \cdot \boldsymbol{v} , \qquad (31)$$

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\frac{1}{\rho} \nabla P - \nabla \Phi , \qquad (32)$$

$$\nabla^2 \Phi = 4\pi G\rho \,, \tag{33}$$

ze kterých je možné odvodit ještě jednu (podstatnou) podmínku, neboli *Toomreho kritérium* pro nestabilitu (Toomre 1964):

$$Q \equiv \frac{c_{\rm s}n}{\pi G\sigma_0} < 1\,,\tag{34}$$

kde $c_{\rm s}$ označuje rychlost zvuku, $n = \sqrt{GM_{\star}/r^3}$ střední pohyb na daném poloměru, σ_0 počáteční plošnou hustotu disku (odvození viz Armitage 2010, str. 135).

Růst ρ , P, Φ nade všechny meze je sice teoreticky možný, pak bychom všichni skončili v černé díře, ale obvykle se nakonec ($\boldsymbol{v} = \boldsymbol{0}$) ustaví dosti velký hydrostatický ∇P .

1.9 Počáteční a okrajové podmínky

Výše uvedené rovnice však neobsahují jednu veledůležitou věc: počáteční podmínky! Navíc čelíme třem takřka neřešitelným problémům: (i) rovnice *nelze* integrovat zpět v čase kvůli termodynamicky nevratným dějům (například difuzi, srážkám, unikajícímu infračervenému záření) a deterministickému chaosu, čili nemůžeme volit čas $t_0 = \text{dnes}$, kdy by bylo možné něco měřit; (ii) sluneční soustava vznikla v apriori neznámém čase t_7 ; (iii) v čase t_7 dávno minulém beztak nelze měřit nic.

Naštěstí je možno využít skutečnosti, že: (i) chemické složení Slunce, planet a meteoritů je totožné, až na těkavé prvky (zejména H, He); (ii) radiometrické stáří primitivních meteoritů je okolo $t = -(4,56 \pm 0,01)$ Gyr; (iii) minimální počáteční plošnou hustotu disku lze odhadnou podle pozorovaných planet, rozprostřených podél jejich drah a doplněných o zmiňované těkavé prvky. Pak již lze rozumně volit počáteční podmínky v čase $t_0 = -4,56$ Gyr, integrovat rovnice dopředu (dodnes) a nakonec posoudit model dle souladu s pozorovanou sluneční soustavou (obr. 5).

Obr. 5 — Pozorovaný stav sluneční soustavy znázorněný na grafu velká poloosa *a*, excentricita *e*. Symboly a barvami jsou rozlišeny planety a jednotlivé populace malých těles: asteroidy jsou označeny kroužky, transneptunické objekty čtverečky a komety křížky. Tečkovaná linie (nahoře) odpovídá perihelové vzdálenosti rovné poloměru Slunce, $q = a(1 - e) = R_{\odot}$.

Poznámka na okraj: vnitřní okraj disku (ve sférických souřadnicích) obvykle volíme $r_1 \simeq 0,1$ AU kvůli působení magnetického pole rotující hvězdy. Hvězda totiž UV zářením ionizuje plyn, který by pod korotační orbitou obíhal rychleji, $\omega_{\text{kepl}} > \omega_{\text{rot}}$, ale je zde brzděn magnetickým polem, padá na hvězdu, čímž se vytváří mezera v disku. Vnější okraj $r_2 \simeq 40$ AU musí být dostatečně daleko, aby (příliš) neovlivňoval pohyb ve studované oblasti. Ve sférických souřadnicích by okrajové podmínky mohly být voleny takto:

- 1. $r = r_1$ (vnitřní okraj): $v_r = v_{\vartheta} = 0, v_{\phi} = \sqrt{GM_{\star}/r_1}$, tj. keplerovská rychlost;
- 2. $r = r_2$ (vnější okraj): $v_r = v_{\vartheta} = 0, v_{\phi} = \sqrt{GM_{\star}/r_2};$
- 3. $\vartheta = 0^{\circ} (u \text{ pólu})^{8}$ zrcadlové podmínky, tzn. skaláry zůstávají totožné, normálové složky vektorů mění znaménko: $\rho \to \rho, v_{n} \to -v_{n}, B_{n} \to -B_{n}, v_{t} \to v_{t}, B_{t} \to B_{t};$
- 4. $\vartheta = 90^{\circ}$ (na rovníku) symetrické podle roviny: $\rho \to \rho, v_{\rm n} \to -v_{\rm n}, B_{\rm n} \to B_{\rm n}, v_{\rm t} \to v_{\rm t}, B_{\rm t} \to -B_{\rm t};$
- 5. $\varphi = 0^{\circ} = 360^{\circ}$ periodické.

1.10 Formalismus v programu Pluto

Pro výpočetní účely se rovnice optimalizují následovně (Mignone aj. 2007). Maximum členů vyjádříme pomocí divergence, abychom se vyhnuli výpočtům rotace, které jsou náročné a při kterých hrozí větší zaokrouhlovací chyby. Pro přehlednost zde také předpokládáme $\mu_1 = \mu_2 = 0$, $\Phi_* = 0$ (tj. bez přenosu záření), K = 0, $\eta_{\text{mag}} = 0$, $\Phi_{\text{disk}} = 0$ (beztak převažuje Φ_*):⁹

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \boldsymbol{p} \\ E + \rho \Phi \\ \boldsymbol{B} \end{pmatrix} + \nabla \cdot \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{p} \boldsymbol{v} - \boldsymbol{B} \boldsymbol{B} + \boldsymbol{I} P \\ (E + \rho \Phi + P) \boldsymbol{v} - \boldsymbol{B} \boldsymbol{v} \cdot \boldsymbol{B} \\ \boldsymbol{v} \boldsymbol{B} - \boldsymbol{B} \boldsymbol{v} \end{pmatrix} = \begin{pmatrix} 0 \\ -\rho \nabla \Phi \\ 0 \\ \boldsymbol{0} \end{pmatrix}, \quad (35)$$

kde $\boldsymbol{\rho} = \rho \boldsymbol{v}$ označuje hustotu hybnosti, $E = U + \frac{1}{2}\rho \boldsymbol{v}^2 + \frac{1}{2\mu_{\text{vac}}}\boldsymbol{B}^2$ hustotu energie a $P = P_{\text{gas}} + \frac{1}{2\mu_{\text{vac}}}\boldsymbol{B}^2$ celkový tlak.

Identita (35) s(1) je zřejmá:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} = \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho + \rho \nabla \cdot \mathbf{v} = 0.$$

Druhý řádek odpovídá rovnici (2) (bez μ_{vac} , které je zahrnuto v **B**):

$$\begin{split} &\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \left(\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B} + \mathbf{I} P_{\text{gas}} + \mathbf{I} \frac{1}{2} \mathbf{B}^2\right) = \\ &= \mathbf{v} \frac{\partial \rho}{\partial t} + \rho \frac{\partial \mathbf{v}}{\partial t} + \dot{\nabla} \cdot \dot{\rho} \mathbf{v} \mathbf{v} + \dot{\nabla} \cdot \rho \mathbf{v} \dot{\mathbf{v}} - \dot{\nabla} \cdot \dot{\mathbf{B}} \mathbf{B} - \dot{\nabla} \cdot \mathbf{B} \dot{\mathbf{B}} + \nabla P_{\text{gas}} + \frac{1}{2} \mathbf{2} \mathbf{B} \cdot \nabla \mathbf{B} = \\ &\mathbf{v} \text{ krát } (1) = 0 \quad \text{bác} \quad -\text{cáb} \\ &= \overbrace{\mathbf{v} \frac{\partial \rho}{\partial t}} + \rho \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \mathbf{v} \cdot \nabla \rho + \rho \mathbf{v} \nabla \mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} - \mathbf{B} \overleftarrow{\nabla} \cdot \mathbf{B} - \overrightarrow{\mathbf{B}} \cdot \nabla \mathbf{B} + \nabla P_{\text{gas}} + \overrightarrow{\mathbf{B}} \cdot \nabla \mathbf{B} = \\ &= \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) + \nabla P_{\text{gas}} - (\nabla \times \mathbf{B}) \times \mathbf{B} = -\rho \nabla \Phi \quad \text{c.b.d.} \end{split}$$

 $^8\,$ pro plochý disk je zřejmě možno volit větší hodnotu, např. $\vartheta=85^\circ$

⁹ Symboly typu **vB** (nebo **Bv**, **BB**) jsou diády, čili tenzory druhého řádu (matice 3×3) se složkami $v_i B_j$. Někdy bývají označované **v** \otimes **B**.

Vezmeme nyní raději 4. řádek a rovnici (5):

$$\begin{aligned} \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v}\mathbf{B} - \mathbf{B}\mathbf{v}) &= \frac{\partial \mathbf{B}}{\partial t} + \dot{\nabla} \cdot \dot{\mathbf{v}}\mathbf{B} + \dot{\nabla} \cdot \mathbf{v}\dot{\mathbf{B}} - \dot{\nabla} \cdot \dot{\mathbf{B}}\mathbf{v} - \dot{\nabla} \cdot \mathbf{B}\dot{\mathbf{v}} = \\ &= \frac{\partial \mathbf{B}}{\partial t} + \mathbf{B}\nabla \cdot \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{B} - \mathbf{v}\nabla \cdot \mathbf{B} - \mathbf{B} \cdot \nabla \mathbf{v} = \\ &= \frac{\partial \mathbf{B}}{\partial t} - \dot{\nabla} \times (\dot{\mathbf{v}} \times \mathbf{B}) - \dot{\nabla} \times (\mathbf{v} \times \dot{\mathbf{B}}) = \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) \quad \text{c.b.d.} \end{aligned}$$

Nakonec rychle porovnáme 3. řádek a rovnici (3):

$$\begin{split} &\frac{\partial}{\partial t}\left(U + \frac{1}{2}\rho\mathbf{v}^2 + \frac{1}{2}\mathbf{B}^2 + \rho\Phi\right) + \nabla\cdot\left(U\mathbf{v} + \frac{1}{2}\rho\mathbf{v}^2\mathbf{v} + \frac{1}{2}\mathbf{B}^2\mathbf{v} + \rho\Phi\mathbf{v} + P_{\text{gas}}\mathbf{v} + \frac{1}{2}\mathbf{B}^2\mathbf{v} - \mathbf{B}\mathbf{v}\cdot\mathbf{B}\right) = \\ &= \frac{\partial U}{\partial t} + \nabla\cdot U\mathbf{v} + P_{\text{gas}}\nabla\cdot\mathbf{v} + \rho\mathbf{v}\cdot\text{Navier-Stokes} + \mathbf{B}\cdot\text{indukční rce} + \Phi\text{ krát rce kontinuity} = \\ &= 0\,, \end{split}$$

což bylo dokázati.

1.11 Metoda konečných objemů (FVM)

Jednou z metod používaných pro numerické řešení hydrodynamických rovnic je metoda konečných objemů (FVM, angl. finite volume method). Budeme ji zde demonstrovat na rovnici kontinuity, ale samozřejmě ji lze použít na celou soustavu rovnic (35):

$$rac{\partial
ho}{\partial t} +
abla \cdot oldsymbol{p} = 0$$
 .

Provedeme integraci přes nějaký objem V:

$$\int_{V} \frac{\partial \rho}{\partial t} \mathrm{d}V + \int_{V} \nabla \cdot \boldsymbol{\rho} \, \mathrm{d}V = \int_{V} 0 \, \mathrm{d}V,$$

a použijeme Gaussovu větu:

$$\frac{\partial \bar{\rho}}{\partial t} + \frac{1}{V} \int_{S} \boldsymbol{\rho} \cdot \mathrm{d} \boldsymbol{S} = \bar{0}$$

kde na levé straně jsme napsali průměrnou hodnotu hustoty $\bar{\rho}$ v onom V a na pravé straně jsme z výukových důvodů ponechali "průměrnou nulu".

Diskretizace v prostoru spočívá ve vyjádření integrálu přes hranici V, resp. sumy přes příslušné plošky S:

$$\frac{1}{V} \int_{S} \boldsymbol{\rho} \cdot d\boldsymbol{S} \doteq \frac{S_{i+1/2,j,k}}{V_{i,j,k}} p_{i+1/2,j,k} - \frac{S_{i-1/2,j,k}}{V_{i,j,k}} p_{i-1/2,j,k} \\
+ \frac{S_{i,j+1/2,k}}{V_{i,j,k}} p_{i,j+1/2,k} - \frac{S_{i,j-1/2,k}}{V_{i,j,k}} p_{i,j-1/2,k} \\
+ \frac{S_{i,j,k+1/2}}{V_{i,j,k}} p_{i,j,k+1/2} - \frac{S_{i,j,k-1/2}}{V_{i,j,k}} p_{i,j,k-1/2},$$
(36)

1

kde indexy i, j, k příslušejí jednotlivým kartézským souřadnicím a mění se od 0 do počtu bodů sítě. Hodnoty $p_{i,j,k}$ v polovinách prostorového kroku (na hranicích mezi sousedními objemy) určujeme interpolací.

Diskretizace v čase je v nejjednodušším případě:

$$\frac{\partial \rho}{\partial t} \doteq \frac{\rho^{n+1} - \rho^n}{\Delta t} \,. \tag{37}$$

Schéma explicitní vnikne tak, že v (36) použijeme staré $\rho_{i,j,k}^n$ a $p_{i,j,k}^n$ (tj. z minulého časového kroku). Explicitní se jmenuje proto, že můžeme obratem vyjádřit nové $\rho_{i,j,k}^{n+1}$.

Ve schématu implicitním bychom všude použili nové (avšak neznámé!) $p_{i,j,k}^{n+1}$. Rovnice proto spolu s ostatními tvoří soustavu rovnic, kterou je třeba vyřešit. Z matematického hlediska tedy musíme provést inverzi (velké) matice. Výhodou je ovšem větší stabilita a možnost použití většího Δt .

V programu PLUTO jsou implementovány metody přesně nebo přibližně řešící Riemannův problém, který spočívá v nalezení časového vývoje nespojitosti hustoty a rychlosti pro linearizované rovnice (1) a (2). Vybírat můžeme z vícero postupů (např. Roe, HLLE, HLLC).

Škálované jednotky. Abychom částečně předešli numerickým problémům a zaokrouhlovacím chybám, případně ušetřili numerické operace, je dobré používat vhodně škálované jednotky. Například pro simulace protoplanetárního disku je můžeme volit následovně: $[r] = a_{\rm J}$, $[\rho] = M_{\odot}/a_{\rm J}^3$, $[v] = \sqrt{GM_{\star}/a_{\rm J}}/(2\pi)$, odkud plyne $[m] = M_{\odot}, [t] = 2\pi/\sqrt{GM_{\star}/a_{\rm J}^3}, [P] = M_{\odot}GM_{\star}/a_{\rm J}^4/(4\pi^2)$.

1.12 Adaptivní zjemňování sítě a víceprocesorové výpočty

Když se při simulacích je nutné simulovat turbulenci, rázové vlny nebo obojí, bývá použití jednolité sítě výpočetně natolik náročné, že by se problém stal prakticky neřešitelný. Naštěstí existují technologie, které řešení umožňují, ovšem za cenu určitého přizpůsobení algoritmů.

AMR. První pomůckou, kterou zmíníme, je adaptivní zjemňování sítě (angl. adaptive mesh refinement, AMR). Na začátku výpočtu použijeme síť hrubou a v ní identifikujeme oblasti, kde jsou velké (malé) derivace a je tedy třeba zjemnění (příp. zhrubení). Tuto identifikaci je možné provést v několika úrovních, čímž se problém stane numericky řešitelný (obr. 6). Zároveň se drasticky omezí množství ukládaných dat. Přizpůsobení sítě je možné provést jako její deformaci, zjemnění v jednotlivých buňkách nebo zjemnění v celistvých oblastech. Vzniká pak obvyklá stromová struktura (oct-tree), s pořadím oblastí ve tvaru "Z" (Mortonovo).

Kromě samotné oblasti jsou potřeba *duchařské oblasti* okolo, a to kvůli výpočtu derivací (1. nebo 2.). Tyto se vyplňují před vlastní integrací, buď dle okrajové podmínky, nebo ze sousední oblasti stejné úrovně, případně z vyšší nebo nižší úrovně, ale pak musíme použít interpolace nebo středování a dbát zachování toku (obr. 7)

Obr. 6 — Adaptivní zjemňování sítě (AMR) při výpočtu Kelvinovy–Helmholtzovy nestabilita ve dvou rozměrech; zobrazena je (plošná) hustota ρ . Výpočet by proveden programem PLUTO s knihovnou Chombo. Hrubá síť má rozměry pouhých 64 × 128 bodů, ale při 4 úrovních zjemňování je rozlišení větší faktorem 2⁴, tzn. 1024 × 2048 bodů. Obdélníky různých barev označují různé úrovně.

Pro AMR existují hotové knihovny (např. Chombo) i vhodné formáty pro ukládání stromových dat (HDF5).

MPI. Nestačí-li pro výpočet procesor jeden a musíme jich použít více, využijeme rozhraní MPI (angl. message-passing interface), umožňující spouštět paralelní výpočty na počítačích propojených rychlou počítačovou sítí. Struktura programu ale musí zahrnovat přinejmenším následující: inicializaci MPI, rozdělení si práce, vlastní práci, redukci a finalizaci MPI. V primitivním příkladu uvedeném níže spočívá rozdělení pouze v pečlivém určení mezí cyklů pro výpočty na jednotlivých strojích, procesorech, jádrech nebo vláknech. Jinak bývá potřeba kopírovat hodnoty ze sousedních oblastí do duchařských oblastí. Redukcí se rozumí provedení nějaké operace s výsledky výpočtů na jednotlivých procesorech (zde součet mezisoučtů):

```
#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv) {
    int myrank, nprocs;
    int i, n, n1, i1, i2;
    float sum, sumsum;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
    printf("Hello from node/cpu/core/thread %d out of %d\n", myrank, nprocs);
```


Obr. 7 — Duchařská oblast v okolí zjemnělé sítě, která se vyplňuje z okrajové podmínky (modře), z jednoho sousedního bloku se stejným rozlišením (zeleně) a z dvou sousedních bloků s odlišným rozlišením (žlutě). Převzato z [6].

```
n = 1000;
n1 = (int)(n/nprocs);
if (n1*nprocs < n) { n1 += 1; }
i1 = myrank * n1;
i2 = i1 + n1;
if (i2 > n) { i2 = n; }
sum = 0.0;
for (i = i1; i < i2; i++) {</pre>
  sum += i;
}
printf("sum = %f\n", sum);
MPI_Reduce(&sum, &sumsum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
if (myrank == 0) {
  printf("sumsum = %f\n", sumsum);
}
MPI_Finalize();
return 0;
```

}

Pro kompilaci programu musíme používat speciální kompilátor: mpicc hello.c -o hello. Před spuštěním programu na více procesorech si musíme připravit hostfile, v němž jednotlivé řádky popisují, kolik procesů má být spuštěno na kterých strojích: hilda20 slots=4, hilda21 slots=4, atd. Při spuštění pak volíme počet procesorů: mpiexec -np 8 -hostfile hostfile ./hello. Zásadní otázkou je, jak se výpočet škáluje s rostoucím počtem procesorů. Počítáme-li například vývoj protoplanetárního disku ve dvourozměrné aproximaci a máme přitom 1024 buněk v radiálním směru, asi nemá cenu dělit výpočet na víc než 64 procesorů, protože pak na 1 procesor připadá pouhých 16 buněk a komunikace MPI začíná již převažovat.

1.13 Migrace planet v plynném disku

Je třeba především rozlišovat, zda se jedná o migraci v disku tvořeném plynem nebo planetesimálami; obojí se pochopitelně chová jinak. Zde se budeme soustředit pouze na plyn a v něm vnořenou planetu. Pak lze rozlišovat tři základní typy ustálené migrace: I, II a III — tzn. bez mezery, s mezerou a s částečnou mezerou.

Typ II. Asi nejsnadněji lze popsat typ II. Značná část plynu v okolí dráhy již spadla na planetu, čímž se vytvořila mezera. Zároveň vznikla spirální ramena neboli hustotní vlny, které jsou vlastně přímou gravitační vazbou mezi planetou a diskem. Třecí neboli viskózní síly mezi rameny a zbytkem disku mají transverzální složku, která způsobuje spirálování planety dle první Gaussovy rovnice (viz též dodatek B, resp. (299)):

$$\frac{\mathrm{d}a}{\mathrm{d}t} = -\frac{2\mathcal{T}}{n} + \mathcal{O}(e)\,,\tag{38}$$

kde *a* označuje velkou poloosu planety, \mathcal{T} transverzální složku zrychlení (tj. v rovině dráhy, kolmo k radiusvektoru), $n = \sqrt{GM_{\odot}}a^{-\frac{3}{2}}$ střední keplerovský pohyb neboli úhlovou rychlost, přičemž předpokládáme kruhovou dráhu (e = 0). Transverzální složka je vytvářena viskózním členem v rovnici (2):

$$\mathcal{T} = \frac{1}{\rho} \frac{\partial}{\partial r} \mu_1 \frac{\partial}{\partial r} v_{\text{kepl}} = \frac{\mu_1}{\rho} \frac{\partial^2}{\partial r^2} \sqrt{GM_{\odot}} r^{-\frac{1}{2}} = \frac{\mu_1}{\rho} \sqrt{GM_{\odot}} \frac{3}{4} r^{-\frac{5}{2}} \,,$$

což po dosazení (a obvyklé náhradě $r \rightarrow a$) dává:

$$\left(\frac{\mathrm{d}a}{\mathrm{d}t}\right)_{\mathrm{II}} = -\frac{3\nu}{2a}\,,\tag{39}$$

kde $\nu \equiv \mu_1/\rho$ je kinematická viskozita. Znaménko je zde záporné, neboť k planetě je blíže vnější spirální rameno, disk tam obíhá (keplerovsky) pomaleji, čili dochází k brzdění.

Situaci pro jednu planetu ukazuje obr. 8, spočtený programem Fargo (Masset 2000). Po vytvoření mezery se vývoj ustálí a změna velké poloosy odpovídá vztahu (39). Pro dvě interagující planety (obr. 9) je situace obecně složitější. Pokud se vytvoří dvě mezery a překryjí se, vnější spirální rameno je od vnitřní planety mnohem dál, takže převažuje vliv vnitřního, kde ale disk obíhá rychleji, a zmiňovaná planeta se tedy nutně také urychluje a vzdaluje od Slunce.

Obr. 9 — Disk a dvě planety. Obdobné nastavení parametrů jako u obr. 8, s výjimkou $r \in (0,4;3,5)$, 1-rozměrná síť sahající do r' = 20, planety $a_1 = 1$, $m_1 = 10^{-4}$, $a_2 = 2$, $m_2 = 2,9 \cdot 10^{-5}$. Simulace programem Fargo.

Obr. 8 — Plynný disk a jedna vnořená planeta, vlevo plošná hustota disku $\sigma(x, y)$, vpravo časový vývoj velké poloosy a(t) (znázorněn červeně) a hmotnosti m(t) planety (tečkovaně). Pro porovnání je znázorněn i pokles a dle rovnice (39), která platí poté, co se v disku vytvoří mezera. Parametry simulace byly voleny takto: hmotnost centra M = 1, poměr H/r = 0.05, plošná hustota $\sigma = 6.37 \cdot 10^{-5} r^{-1.5}$, kinematická viskozita $\nu = 10^{-5}$, planeta s počáteční velkou poloosou a = 1, orbitální periodou $P_{\rm orb} = 2\pi$ a hmotností m = 0.001. Rozsah poloměrů byl $r \in (0.4; 1.6)$, dvourozměrnou síť (r, ϕ) tvořilo 128 krát 384 bodů a časový krok $\Delta t \doteq 0.31416$. Simulace programem Fargo (Masset 2000).

Typ I. V případě málo hmotných planet nebo embryií se mezera neotevře, ale to neznamená, že nic nepůsobí, naopak. Můžeme odlišit čtyři příspěvky: (i) spirální ramena, (ii) korotační oblast, (iii) studený prst a (iv) akreční ohřev. Spirální ramena jsou stejná jako předtím, dokonce sahají blíž k planetě. Protože orbity s $a < a_J$ jsou rychlejší, je vnitřní rameno před planetou (a naopak). Vnější rameno je ale obvykle

blíž, jeho gravitační přitažlivost proto převažuje a samo o sobě by způsobovalo brzdění a $\frac{da}{dt} < 0$.

Korotační oblast podél dráhy planety se vyznačuje podkovovitými orbitami (plynu). Orbita s $a < a_J$ je opět rychlejší, za planetou planetu dohání, pak se ovšem náhle přesune na $a > a_J$. Plyn se tak z míst s vyšší teplotou T a tlakem P dostává ven, kde je okolí s nižší T, P, a proto se rozpíná. Před planetou je situace opačná, čímž vzniká hustotní asymetrie, která by (sama o sobě) způsobovala $\frac{da}{dt} > 0$.

Při pohybu v korotační oblasti navíc v potenciálové jámě u planety dochází ke stlačení plynu, zářivé difuzi tepelné energie (skrz vazbu rovnic tepelné rovnováhy a přenosu záření), dodatečnému ochlazení plynu, čímž vzniká "studený prst", po-silující výše uvedený jev (Lega aj. 2014).

Zároveň se planeta, na níž padá okolní materiál, touto akrecí zahřívá, a stává se tak významným zdrojem záření. Přispívají k tomu zejména balvany, které se v Hillově sféře mohou aerodynamicky brzdit, spirálovat a padat na planetu (Lambrechts a Johansen 2012). Plyn prolétávající kolem planety se namísto zářivého ochlazení zářivě ohřeje, asymetrie se obrátí a výsledkem může být opět $\frac{da}{dt} < 0$ (Benítez–Llambay aj. 2015). Tímto mechanismem se dokonce vytvářejí nenulové excentricity protoplanet (Chrenko aj. 2017).

Turbulentní viskozita. Otázkou je, jaká je *hodnota* viskozity? Obvyklá molekulární viskozita řídkého plynu se zdá nepatrná a planety by vlastně nemigrovaly vůbec. Turbulence ovšem efektivně způsobuje viskozitu také; i když bychom ji nebyli schopni detailně rozlišit v numerickém modelu, mohli bychom ji zahrnout jako zvýšenou hodnotu ν .

Vzhledem k tomu, jaké má ν jednotky (m² s⁻¹), je logické ji vztáhnout k nějaké rychlosti a nějakému rozměru. Je podruhé logické zvolit buď rychlost obíhání v_{kepl} , nebo zvuku c_{s} , a jako rozměr výšku H disku, neboť tato omezuje maximální velikost vírů. Shakura a Sunyaev (1973) navrhli parametrizaci vztahem:

$$\nu = \alpha c_{\rm s} H \,, \tag{40}$$

kde α je bezrozměrný parametr, nabývající hodnot od 0 do řádově 1. Ze stacionárního modelu disku (Brož a Šolc 2013, str. 206) můžeme případně dosadit za $H \simeq c_{\rm s}/n_{\rm kepl}$. Pokud bychom měli onu detailní simulaci s víry (jako na obr. 10), lze ekvivalentní hodnotu α počítat jako (Flock aj. 2013):

$$\left\langle \alpha \right\rangle = \left\langle \frac{\int \rho \left(\frac{\rho v_{\phi}' v_{r}'}{P} - \frac{B_{\phi} B_{r}}{P} \right) \mathrm{d}V}{\int \rho \, \mathrm{d}V} \right\rangle \,,$$

kde čárkované rychlosti $v_{\phi}',\,v_r'$ označují fluktu
ace okolo středních hodnot.

Kromě zmiňovaných nestabilit SBI, VSI, MRI, které jsou potenciálně důležitým zdrojem turbulence, a tudíž zvýšené makroskopické viskozity, může hrát roli i fotoevaporace a hvězdný vítr, který strhává ionty, odnáší tak moment hybnosti
ven a zbývající hmota disku se proto sune dovnitř (a pak bychom nepotřebovali velkou hodnotu α). Jsou to ostatně tytéž procesy, jaké ve vesmíru nutí akreční disky akretovat.

Obr. 10 — Rozvinutá magneto–rotační nestabilita v protoplanetárním disku, projevující se jako turbulence rychlosti $|\mathbf{v}|$ (v jednotkách m/s, vlevo) a složitá struktura magnetického pole $|\mathbf{B}|$ (v jednotkách Gauss = 10^{-5} T, vpravo). Převzato z Flock aj. (2013).

- ARMITAGE, P. J. Astrophysics of planet formation. New York: Cambridge Unviersity Press, 2010. ISBN 9780511691362.
- [2] BALBUS, S. A., HAWLEY, J. F. A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys. J., 376, 214–233, 1991.
- [3] BENÍTEZ-LLAMBAY, P., MASSET, F., KOENIGSBERGER, G., SZULÁGYI, J. Planet heating prevents inward migration of planetary cores. Nature, 520, 63–65, 2015.
- BROŽ, M., ŠOLC, M. Fyzika sluneční soustavy. Praha: MatfyzPress, 2013. ISBN 978807378-2368. (http://sirrah.troja.mff.cuni.cz/~mira/fyzika_malych_teles/).
- [5] FLOCK, M., FROMANG, S., GONZÁLES, M., COMMERÇON, B. Radiation hydrodynamics in global simulations of protoplanetary discs Astron. Astrophys., 560, A43, 2013.
- [6] GUARRASI, M. An introduction to Adaptive Mesh Refinement. [online] [cit. 2016-01-13]. (http://www.training.prace-ri.eu/uploads/tx_pracetmo/AMRIntroHNDSCi15.pdf)
- [7] CHRENKO, O., BROŽ, M., LAMBRECHTS, M. Eccentricity excitation and merging of planetary embryos heated by pebble accretion. Astron. Astrophys., submitted, 2017.
- [8] JOHANSEN, A., OISHI, J. S., MAC LOW, M.-M., KLAHR, H., HENNING, T., YOUDIN, A. Rapid planetesimal formation in turbulent circumstellar discs. Nature, 448, 1022–1025, 2007.
- KLAHR, H. H., BODENHEIMER, P. Turbulence in accretion disks: Vorticity generation and angular momentum transport via the global baroclinic instability Astrophys. J., 582, 869–, 2003.
- [10] LAMBRACHTS, M. JONHANSEN, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys., 544, A32, 2012.
- [11] LEGA, E., CRIDA, A., BITCH, B., MORBIDELLI, A. Migration of Earth-sized planets in 3D radiative discs. Mon. Not. R. Ast. Soc., 440, 683–695, 2014.
- [12] LESUR, G., PAPALOIZOU, J. C. B. The subcritical baroclinic instability in local accretion disc models. Astron. Astrophys., 513, A60, 2010.
- [13] MASSET, F. FARGO: A fast eulerian transport algorithm for differentially rotating disks. Astron. Astrophys. Suppl. S., 141, 165–173, 2000.
- [14] MIGNONE, A., BODO, G., MASSAGLIA, S. AJ. PLUTO: A numerical code for computational astrophysics Astron. J. Suppl. S., 170, 228, 2007.
- [15] SHAKURA, N. I., SUNYAEV, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys., 24, 337–355, 1973.

- [16] SHORE, S. N. Astrophysical hydrodynamics. Weinheim: Wiley-Vch, 2007. ISBN 978352740-6692.
- [17] TOOMRE, A. On the gravitational stability of a disk of stars. Astrophys. J., **139**, 1217–1238, 1964.
- [18] Wikipedia. Accretion disc [online]. [cit. 2015-03-10]. (http://en.wikipedia.org/wiki/Accretion_disc)
- [19] YOUDIN, A., JOHANSEN, A. Protoplanetary disk turbulence driven by the streaming instability: linear evolution and numerical methods. Astrophys. J., 662, 613–626, 2007.
- [20] LEVERMORE, C. D., POMRANING, G. C. A flux-limited diffusion theory. Astrophys. J., 248, 321–334, 1981.

2 Hydrodynamika srážek asteroidů

Při srážkách pevných těles se potýkáme s následujícím problémem: tělesa na začátku zabírají jen omezený prostor a okolo je vakuum. Po srážce se však rozpadnou na úlomky, které odlétají vysokou rychlostí. Výpočetní doména by tak musela být zbytečně veliká a kdyby se ukázalo, že úlomky letí "do Prčic", byli bychom tamtéž. Proto je mnohem výhodnější pro srážky použít popis *lagrangeovský*, při kterém se pozorovatel pohybuje s prouděním kamkoliv.

2.1 Lagrangeův popis

Sepišme nejprve potřebné rovnice. Říkali jsme, že sledujeme pohyb, čili na levé straně používáme zásadně totální časové derivace. Jde o obdobu pohybových rovnic, jak je známe pro hmotné body, $\boldsymbol{a} = \frac{\boldsymbol{F}}{m}$. Rovnice kontinuity je tedy (v jednotkách kg m⁻³ s⁻¹):

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho\nabla\cdot\boldsymbol{v}\,,\tag{41}$$

Navierova–Stokesova rovnice $(m s^{-2})$:

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\frac{1}{\rho}\nabla P - \nabla\Phi + \frac{1}{\rho}\nabla\cdot\boldsymbol{S}\,,\tag{42}$$

— c.,

1. věta termodynamická $(J kg^{-1} s^{-1})$:¹⁰

$$\frac{\mathrm{d}U}{\mathrm{d}t} = -\frac{1}{\rho}P\nabla\cdot\mathbf{v} + \frac{1}{\rho}\mathbf{S}:\underbrace{\frac{1}{2}\left[\nabla\mathbf{v} + (\nabla\mathbf{v})^{T}\right]}_{2},\tag{43}$$

Poissonova rovnice $(J kg^{-1} m^{-2})$:

$$\nabla^2 \Phi = 4\pi G\rho \,, \tag{44}$$

stavová rovnice pro pevnou látku (Tillotson 1962; Pa)¹¹:

$$P = \begin{cases} A\left(\frac{\rho}{\rho_{0}} - 1\right) + B\left(\frac{\rho}{\rho_{0}} - 1\right)^{2} + a\rho U + \frac{b\rho U}{\frac{U}{U_{0}}\frac{\rho_{0}^{2}}{\rho^{2}} + 1} & \text{pro } U < U_{\text{iv}} ,\\ a\rho U + \left[\frac{b\rho U}{\frac{U}{U_{0}}\frac{\rho_{0}^{2}}{\rho^{2}} + 1} + A\left(\frac{\rho}{\rho_{0}} - 1\right) e^{-\beta\left(\frac{\rho_{0}}{\rho} - 1\right)} \right] e^{-\alpha\left(\frac{\rho_{0}}{\rho} - 1\right)} & \text{pro } U > U_{\text{cv}} , \end{cases}$$
(45)

¹⁰ Dvoutečkový součin tenzorů $\mathbf{S} : \varepsilon_{ij}$ je skalár $\sum_i \sum_j S_{ij} \varepsilon_{ij}$, kde přes opakující se indexy *i* a *j* sčítáme, i kdybychom sumy zapomněli; zde zavedené ε_{ij} se jinak nazývá tenzor malých deformací. ¹¹ Přibližně zohledňuje i fázové přechody, ostatně člen ρU odpovídá ideálnímu plynu; dokonalejší stavovou rovnicí by byla ANEOS (Melosh 2000) nebo SESAME (Plesko aj. 2014), ale tyto nejsou volně dostupné.

konstituční rovnice pro pevnou látku (Hookeův zákon; Pas^{-1}):

$$\frac{\mathrm{d}\boldsymbol{S}}{\mathrm{d}t} = 2\mu_1 \, \frac{1}{2} \left[\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T \right] + \left(\mu_2 - \frac{2}{3}\mu_1 \right) \nabla \cdot \boldsymbol{v} \, \boldsymbol{I} \,. \tag{46}$$

Značení jest následující: ρ hustota, \mathbf{v} rychlost, P tlak (izotropní část), \mathbf{S} tenzor napětí (deviatorická část), U měrná vnitřní tepelná energie (tentokrát na kg), ρ_0 hustota při nulovém tlaku, U_0 vnitřní energie při nulovém tlaku, U_{iv} při počínajícím vypařování, U_{cv} při úplném vypaření, $A, B, a, b, \alpha, \beta$ další parametry stavové rovnice, μ_1 dynamická (první) viskozita, μ_2 objemová viskozita, \mathbf{I} jednotkový tenzor.^{12,13}

Kdybychom chtěli konstituční rovnici rozepsat maticově, viděli bychom, že:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} S_{11} & S_{21} & S_{31} \\ S_{12} & S_{22} & S_{32} \\ S_{13} & S_{23} & S_{33} \end{pmatrix} = 2\mu_1 \begin{pmatrix} \frac{\partial v_1}{\partial x_1} & \frac{1}{2} \left(\frac{\partial v_2}{\partial x_1} + \frac{\partial v_1}{\partial x_2} \right) & \frac{1}{2} \left(\frac{\partial v_3}{\partial x_1} + \frac{\partial v_1}{\partial x_3} \right) \\ \frac{1}{2} \left(\frac{\partial v_2}{\partial x_1} + \frac{\partial v_1}{\partial x_2} \right) & \frac{\partial v_2}{\partial x_2} & \frac{1}{2} \left(\frac{\partial v_3}{\partial x_2} + \frac{\partial v_2}{\partial x_3} \right) \\ \frac{1}{2} \left(\frac{\partial v_3}{\partial x_1} + \frac{\partial v_1}{\partial x_3} \right) & \frac{1}{2} \left(\frac{\partial v_3}{\partial x_2} + \frac{\partial v_2}{\partial x_3} \right) & \frac{\partial v_3}{\partial x_3} \end{pmatrix} +$$

$$\left. + \left(\mu_2 - \frac{2}{3}\mu_1\right) \begin{pmatrix} \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3} & 0 & 0\\ 0 & \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3} & 0\\ 0 & 0 & \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3} \end{pmatrix} \right) \,.$$

Všimněme si, že se zde tenzor napětí **S** velmi liší od tekutin! Napětí je v pevné látce přítomno, i když pohyb ustane. V tekutinách by napětí existovalo pouze při vzájemných pohybech; konstituční rovnice by proto byla bez časové derivace vlevo, tzn. $\mathbf{S} = \mu_1 \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right] + \left(\mu_2 - \frac{2}{3} \mu_1 \right) \nabla \cdot \mathbf{v} \mathbf{I}.$

Kolik je zde neznámých funkcí? Jde o $\rho(t)$, $\mathbf{v}(t)$, U(t), $\Phi(t)$, P(t), $\mathbf{S}(t)$, tzn. 13, počítáme-li 1 vektor jako 3 skaláry a symetrický tenzor jako 6 skalárů. Uvědomme si, že se jedná výhradně o funkce času, nikoli souřadnic! Někdy se pouze setkáváme s tím, že se body kontinua "indexují" pomocí *počátečních* souřadnic (\mathbf{r}_0), ale to jsou pouhé značky, nikoli nezávislé proměnné.

2.2 Elasticita, plasticita a praskliny

U pevných látek musíme být obezřetní, neboť platnost Hookeova zákona je omezena. Platí pouze v *elastické oblasti* (viz obr. 11), ve které je vztah mezi deformací (tj. relativní změnou délky) a napětím lineární, schematicky $\varepsilon = E\sigma$; kde E označuje Youngův modul pružnosti.

Pak ovšem následuje *plastická oblast*, kde deformace rostou i při takřka konstantním (velkém) napětí. Toto popisují poddajné vztahy (angl. yielding), například von

¹² Symboly $\nabla \mathbf{v}, (\nabla \mathbf{v})^T$ jsou tenzory druhého řádu se složkami $\nabla_i \mathbf{v}_j$, resp. $\nabla_j \mathbf{v}_i$.

¹³ Faktor $-\frac{2}{3}\mu_1$ je před $\nabla \cdot \mathbf{v}$ proto, že izotropní působení již bylo vyčleněno jako tlak, resp. ∇P , čili zde ho musíme odečíst! V Navierově–Stokesově rovnici, tzn. po provedení $\nabla \cdot \mathbf{S}$, by odpovídal faktoru $+\frac{1}{3}\mu_1$.

Misesovo kritérium. Jde o horní mez pro tenzor napětí, resp. jeho neizotropickou část:

$$\boldsymbol{S} = f \boldsymbol{S}, \quad f = \min\left[\frac{Y^2}{3J_2}, 1\right], \quad J_2 = \frac{1}{2}S^{\alpha\beta}S^{\alpha\beta}, \quad (47)$$

kde Y označuje mez pružnosti.

Obr. 11 — Typická závislost mezi napětím σ a deformací ε pro pevné látky. První oblast, elastická, je přibližně lineární, $\sigma = E\varepsilon$. Druhá oblast je plastická, ve které ε roste i při stálém (velkém) $\sigma \simeq Y$. Nakonec je při určitém ε překročena mez pevnosti. Podle Maindl (2013).

Nakonec musíme uvážit *mez pevnosti*, po jejímž překročení se nepatrné poruchy v materiálu rozvíjejí jako praskliny, rostoucí řádově poloviční rychlostí zvuku. Grady a Kipp (1980) pro popis těchto jevů zavedli parametr *poškození* \mathcal{D} (angl. damage), $0 \leq \mathcal{D} \leq 1$, a provádějí logickou úpravu celkového tenzoru napětí pro případ stlačování nebo roztahování:

$$\sigma_{\alpha\beta} = \begin{cases} -P\delta_{\alpha\beta} + (1-\mathcal{D})S_{\alpha\beta} & \text{pro } P \ge 0, \\ -(1-\mathcal{D})P\delta_{\alpha\beta} + (1-\mathcal{D})S_{\alpha\beta} & \text{pro } P < 0. \end{cases}$$
(48)

Zcela zničený materiál (rozuměj rozdrcený na prach) s $\mathcal{D} = 1$ nevykazuje žádná nediagonální napětí ani se nijak nebrání roztahování.

Související a neméně důležitou vlastností materiálu je koncentrace poruch, respektive její rozdělení (Weibull 1939):

$$n(\epsilon) = k\epsilon^m \tag{49}$$

dle aktivační meze ϵ , nad kterou se začnou poruchy rozvíjet v praskliny; k, m jsou materiálové parametry. Rovnice pro vývoj poškození je:

$$\frac{\mathrm{d}\mathcal{D}^{\frac{1}{3}}}{\mathrm{d}t} = \left[\left(\frac{c_g}{R_\mathrm{s}}\right)^3 + \left(\frac{m+3}{3}\alpha^{\frac{1}{3}}\epsilon^{\frac{m}{3}}\right)^3 \right]^{\frac{1}{3}},\tag{50}$$

kde $c_{\rm g}$ je rychlost růstu poruch (řádově polovina rychlosti zvuku $c_{\rm s}$), $R_{\rm s}$ poloměr příslušný objemu, v němž poruchy studujeme, a parametr $\alpha \equiv 8\pi c_{\rm g}^3 k / [(m+1)$

(m+2)(m+3)]. Podrobný popis této složité problematiky je uveden v Benz a Asphaug (1994).

2.3 Metoda hlazená částicová (SPH)

Pro numerické výpočty se často používá metoda SPH (z angl. smoothed particle hydrodynamics), čili metoda hlazená částicová. Namísto kontinua uvažujeme množinu vzájemně interagujících částic (obr. 12). Hustota je prostě daná jejich počtem v daném objemu. Pohybují se jako by šlo hmotné body (dle lagrangeovských rovnic), ale mají samozřejmě přisouzeno vícero vlastností ($\boldsymbol{v}, U, P, \boldsymbol{S}$). Možná bychom jim proto neměli říkat částice, ale raději "numerická vozidla".

Obr. 12 — Grafické znázornění rozlehlých částic v metodě . Poloměr zde odpovídá hladící délce h, interakce (gradienty) se počítají pro částice vzdálené méně než 2h.

Vezměme nejprve rovnici kontinuity (41). Využijeme následující integrální reprezentaci funkce pomocí konvoluce s Diracovou distribucí δ :

$$\mathbf{v}(\mathbf{r}) = \int_{\Omega} \mathbf{v}(\mathbf{r}') \delta(|\mathbf{r} - \mathbf{r}'|, h) \mathrm{d}\Omega$$

K čemu nám to vůbec je, vyjádřit hodnotu v bodě \mathbf{r} pomocí hodnot "někde jinde"?! Genialita postupu (Gingold a Monaghan 1977, Lucy 1977) spočívá v tom, že δ nahradíme vhodnou diferencovatelnou funkcí W, zvanou kernel, a následně se elegantně zbavíme všech prostorových derivací, konkrétně $\nabla \cdot \mathbf{v}$. Čili:

$$\boldsymbol{v}(\boldsymbol{r}) \doteq \int_{\Omega} \boldsymbol{v}(\boldsymbol{r}') W(|\boldsymbol{r} - \boldsymbol{r}'|, h) \mathrm{d}\Omega, \qquad (51)$$

kde Ω označuje oblast prostoru, *h* hladící délku; jde o aproximaci s přesností $\mathcal{O}(h^2)$. Pak vyjádříme divergenci:

$$\nabla \cdot \boldsymbol{v}(\boldsymbol{r}) = \int_{\Omega} [\nabla_{r'} \cdot \boldsymbol{v}(\boldsymbol{r}')] W(|\boldsymbol{r} - \boldsymbol{r}'|, h) \mathrm{d}\Omega =$$

$$= \int_{\Omega} \nabla_{\mathbf{r}'} \cdot [\mathbf{r}(\mathbf{r}')W(|\mathbf{r}-\mathbf{r}'|,h)] d\Omega - \int_{\Omega} \mathbf{r}(\mathbf{r}') \cdot \nabla_{\mathbf{r}'}W(|\mathbf{r}-\mathbf{r}'|,h) d\Omega =$$

$$= \int_{\partial\Omega} \mathbf{r}(\mathbf{r}') \underbrace{W(|\mathbf{r}-\mathbf{r}'|,h)}_{W(|\mathbf{r}-\mathbf{r}'|,h)} d\vec{\Gamma} - \dots =$$

$$= -\int_{\Omega} \mathbf{r}(\mathbf{r}') \cdot \nabla_{\mathbf{r}'}W(|\mathbf{r}-\mathbf{r}'|,h) d\Omega = \int_{\Omega} \mathbf{r}(\mathbf{r}') \cdot \nabla_{\mathbf{r}}W(|\mathbf{r}-\mathbf{r}'|,h) d\Omega, \quad (52)$$

kde jsme využili derivaci součinu, Gaussovu větu a skutečnost, že na hranici je kernel W roven nule. Poznamenejme, že operátor ∇ nejprve působí na r', ale na konci jsme uplatnili antisymetrii ∇W . Derivace samozřejmě nezmizely úplně; zůstal nám zde ale jakýsi vážený průměr gradientu W, který lze při zvoleném W předpočítat.

Diskretizace v prostoru spočívá v nahrazení integrálu sumou:

$$\nabla \cdot \boldsymbol{v}_i \doteq \sum_{j=1}^{N_{\text{okolo}}} \boldsymbol{v}_j \cdot \nabla W(|\boldsymbol{r}_i - \boldsymbol{r}_j|, h) \frac{m_j}{\rho_j}, \qquad (53)$$

přičemž sčítáme pouze přes částice nacházející se v okolí $|\mathbf{r}_i - \mathbf{r}_j| < h$.

Nejjednodušší diskretizace v čase by zřejmě byla:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} \doteq \frac{\rho_i^{n+1} - \rho_i^n}{\Delta t}; \tag{54}$$

výsledné explicitní integrační schéma je pak:

$$\rho_i^{n+1} = \rho_i^n - \Delta t \rho_i^n \sum_j \mathbf{v}_j^n \cdot \nabla W(|\mathbf{r}_i - \mathbf{r}_j|, h) \frac{m_j}{\rho_j^n}.$$

Pro Navierovu–Stokesovu rovnici (42) bychom potřebovali ∇P :

$$\nabla P(\mathbf{r}) = \int_{\Omega} [\nabla_{\mathbf{r}'} P(\mathbf{r}')] W(|\mathbf{r} - \mathbf{r}'|, h) \mathrm{d}\Omega = \int_{\Omega} P(\mathbf{r}') \nabla_{\mathbf{r}} W(|\mathbf{r} - \mathbf{r}'|, h) \mathrm{d}\Omega,$$

což po diskretizaci vede na:

$$\nabla P_i \doteq \sum_j P_j \nabla W(|\mathbf{r}_i - \mathbf{r}_j|, h) \frac{m_j}{\rho_j} \,. \tag{55}$$

Tento výraz však není symetrický vzhledem k $i,\,j,$ což se ukazuje jako nebezpečné z hlediska numerického. Obdobně musíme vyjádřit $\nabla\cdot \pmb{S}$:

$$\nabla \cdot \boldsymbol{S}(\boldsymbol{r}) = \int_{\Omega} [\nabla_{r'} \cdot \boldsymbol{S}(\boldsymbol{r'})] W(|\boldsymbol{r} - \boldsymbol{r'}|, h) d\Omega = \int_{\Omega} \boldsymbol{S}(\boldsymbol{r'}) \cdot \nabla_{r} W(|\boldsymbol{r} - \boldsymbol{r'}|, h) d\Omega,$$

čili:

$$\nabla \cdot \boldsymbol{S}_{i} \doteq \sum_{j} \boldsymbol{S}_{j} \cdot \nabla W(|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}|, h) \frac{m_{j}}{\rho_{j}}, \qquad (56)$$

s touž poznámkou.

Pro energetickou rovnici (43) bychom potřebovali ještě znát diskretizaci tenzoru (psáno raději ve složkách):

$$\nabla_{\alpha} v_{\beta} = \int_{\Omega} [\nabla_{\alpha} v_{\beta}] W(|\mathbf{r} - \mathbf{r}'|, h) \mathrm{d}\Omega = \sum_{j} v_{\beta j} \nabla_{\alpha} W(|\mathbf{r}_{i} - \mathbf{r}_{j}|, h) \frac{m_{j}}{\rho_{j}} \,.$$

Celá metoda SPH by tedy mohla vypadat takto (píšeme ovšem stručněji $W_{ij}(h)$ namísto $W(|\mathbf{r}_i - \mathbf{r}_j|, h)$):

$$\rho_i^{n+1} = \rho_i^n - \Delta t \rho_i^n \sum_j \mathbf{v}_j^n \cdot \nabla W_{ij}(h) \frac{m_j}{\rho_j^n} , \qquad (57)$$

$$\mathbf{v}_{i}^{n+1} = \mathbf{v}_{i}^{n} - \frac{\Delta t}{\rho_{i}^{n}} \sum_{j} P_{j}^{n} \nabla W_{ij}(h) \frac{m_{j}}{\rho_{j}^{n}} + \frac{\Delta t}{\rho_{i}^{n}} \sum_{j} \mathbf{S}_{j}^{n} \cdot \nabla W_{ij}(h) \frac{m_{j}}{\rho_{j}^{n}}, \qquad (58)$$

$$U_{i}^{n+1} = U_{i}^{n} - \Delta t P_{i}^{n} \sum_{j} \mathbf{v}_{j}^{n} \cdot \nabla W_{ij}(h) \frac{m_{j}}{\rho_{j}^{n}} + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} S_{\alpha\beta}^{n} \frac{1}{2} \sum_{j} \left[v_{\beta j}^{n} \frac{\partial}{\partial x_{\alpha}} W_{ij}(h) + v_{\alpha j}^{n} \frac{\partial}{\partial x_{\beta}} W_{ij}(h) \frac{m_{j}}{\rho_{j}^{n}} \right].$$
(59)

Pro jednoduchost jsme si dovolili vynechat gravitační zrychlení $(-\nabla \Phi)$, abychom nemuseli řešit Poissonovu rovnici, nicméně viz níže.

2.4 Alternativní vyjádření prostorových derivací

Existují ovšem i alternativní lepší formulace (ekvivalentní až na $\mathcal{O}(h^2)$), které jsou numericky stabilnější (Cossins 2010, Price 2008). Vycházejí z lagrangiánu nebo z následující vektorové identity, resp. gradientu součinu:

$$\nabla P \rho^a = \rho^a \nabla P + P a \rho^{a-1} \nabla \rho \,,$$

odkud:

$$\nabla P = \frac{1}{\rho^a} \left[\nabla P \rho^a - P a \rho^{a-1} \nabla \rho \right] \,.$$

Speciálně pro a = 1:

$$\nabla P = \frac{1}{\rho} \left[\nabla P \rho - P \rho^{-1} \nabla \rho \right] \,,$$

což by mimochodem přesně řešilo konstantní P. Pro a = -1 bychom obdrželi:

$$\nabla P = \rho \nabla P \rho^{-1} + P \rho^{-1} \nabla \rho \,,$$

což by naopak zachovávalo celkovou hybnost. Tlakový člen by měl po provedení příslušných diskretizací podobu buď:

$$\nabla P_i = \frac{1}{\rho_i} \sum_j \left(P_i - P_j \right) \nabla W_{ij}(h) m_j \,,$$

nebo:

$$\nabla P_i = \rho_i \sum_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} \right) \nabla W_{ij}(h) m_j$$

obzvláště poslední je krásně symetrický.

2.5 Kernel čili hladící funkce

Ideálně by měl kernel W splňovat tyto požadavky: i) normalita, ii) kompaktnost, iii) limita pro $h \to 0$ je δ funkce, iv) pozitivita, v) být ryze klesající, vi) symetrie, vii) hladkost. Splnit všech sedm najednou je takřka nemožné, například Gaussova funkce postrádá ii). Nicméně nejpoužívanější kubický spline na tom není špatně, lze mu vytýkat jen vii) (obr. 13, $R \equiv r/h$):

$$W(R,h) = \frac{3}{2\pi h^3} \begin{cases} \frac{2}{3} - 4R^2 + 4R^3 & \text{pro } 0 \le R < \frac{1}{2} \\ \frac{4}{3} - 4R + 4R^2 - \frac{4}{3}R^3 & \text{pro } \frac{1}{2} \le R < 1 \\ 0 & \text{pro } R \ge 1 . \end{cases}$$
(60)

Jeho první derivace je:

$$W'(R,h) = \frac{3}{2\pi h^3} \begin{cases} -8R + 12R^2 & \text{pro } 0 \le R < \frac{1}{2}, \\ -4 + 8R - 4R^2 & \text{pro } \frac{1}{2} \le R < 1, \\ 0 & \text{pro } R \ge 1, \end{cases}$$
(61)

druhá je lomená a třetí nespojitá. Volba hladící funkce může ovlivnit přesnost řešení a je nutné jí věnovat zvýšenou pozornost, obzvláště v případech derivací vyšších řádů.

Obr. 13 — Kubický spline W(R, h) dle rovnice (60).

2.6 Umělá viskozita

V případě nadzvukových srážek se setkáváme s rázovými vlnami, což při omezeném rozlišení znamená skokovou změnu, čili nekonečné gradienty. Rovnice (57) až (59) pak bohužel divergují. Řeší se to "rozmazáním" průběhu veličin pomocí uměle zvýšené viskozity¹⁴ (Monaghan 1989):

$$\Pi_{ij} = \begin{cases} \frac{\alpha_{\rm av} c_{{\rm s},ij} \mu_{ij} + \beta_{\rm av} \mu_{ij}^2}{\rho_{ij}} & \text{pro } \mathbf{v}_{ij} \cdot \mathbf{r}_{ij} < 0\\ 0 & \text{jinak} \,, \end{cases}$$

kde

$$\mu_{ij} = \frac{h \mathbf{v}_{ij} \cdot \mathbf{r}_{ij}}{|\mathbf{r}_{ij}|^2 + \check{c}h^2}$$

a parametry jsou obvykle $\alpha_{av} = 1,5$, $\beta_{av} = 3$; $\varepsilon = 0,01$ je malé číslo. Získáme tak konvergenci, ovšem za cenu ztráty rozlišení. Obvyklým testem je porovnání s analytickým řešením rázové trubice (Sod 1978).

Členy, které musíme doplnit, jsou jednak $-\sum_j m_j \Pi_{ij} \nabla_j W_{ij}$ do rovnice (58) a jednak $+\sum_j m_j \Pi_{ij} \mathbf{v}_{ij} \cdot \nabla_j W_{ij}$ do (59), protože to, co se viskózně zbrzdí, se v zájmu zachování celkové energie trochu zahřeje.

2.7 Metoda k-d stromu

Nyní je třeba přiznat, že v metodě SPH je skryt zádrhel, vlastně dva: i) musíme hledat, které částice jsou v okolí všech částic, ii) gravitace je dalekodosahová síla, tudíž musíme beztak sčítat přes všechny pro všechny. Obojí by vedlo k "brutálnímu" algoritmu o složitosti $\mathcal{O}(N^2)$, což je zásadní omezení pro $N \gg 10^3$.

Naštěstí existuje algoritmus se složitostí $\mathcal{O}(N \log_2 N)$, nazývaný k-d strom, neboli k-rozměrný strom. V našem případě bude třírozměrný, ale kvůli názornosti je zde dvourozměrný. Namísto zdlouhavého slovního popisu jej rovnou implementujeme v objektovém jazyce Python. Nejprve si vytvoříme tři třídy — pro částici, uzel a strom, dle nichž se budou vytvářet jednotlivé objekty:

```
class Particle(object):
    def __init__(self, r):
        self.r = r
class Node(object):
    def __init__(self, particle, left, right):
        self.particle = particle
        self.left = left
        self.right = right
class Kdtree(object):
    def __init__(self, k, particles):
        self.k = k
```

¹⁴ Alternativně bychom museli použít riemannovský algoritmus, přesně nebo přibližně řešící Rankinovy–Hugoniotovy rovnice (Godunov 1959, Roe 1981).

```
def build_tree(particles, depth=0):
            if len(particles) == 0:
                return None
            axis = depth % self.k
            particles.sort(key=lambda particle: particle.r[axis])
            i = len(particles) // 2 # median index
            return Node( \
                particles[i], \
                build_tree(particles[:i], depth+1), \
                build_tree(particles[i+1:], depth+1), \
            )
        self.root = build_tree(particles)
def main():
   r = [(2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2)]
   particles = []
   for i in xrange(0, len(r)):
       particles.append(Particle(r[i]))
   kdtree = Kdtree(2, particles)
if __name__ == "__main__":
   main()
```

Co vidíme: na konci v hlavním programu se prostě zavolá hlavní funkce. V ní si připravíme seznam částic. Voláním Particle se vždy vytváří objekt částice. Objekty zde používáme proto, abychom později částicím mohli snadno připsat další vlastnosti, např. hmotnost, že. Voláním Kdtree vzniká objekt strom, přičemž se spouští příslušná metoda __init__, kde se definuje rekurzivní funkce build_tree. Ta třídí částice při prvním volání podle jejich souřadnice x, nalezne index mediánu i a voláním Node tvoří jeden uzel, sestávající z částice, levé větve (s částicemi majícími $x < x_i$) a pravé větve ($x > x_i$), kterýžto obratem vrátí. Při druhém volání třídí podle y, pak znovu dle x, y, atd. až nezbude nic. Výsledný strom je nakreslen na obr. 14 a 15.

Pro hledání nejbližšího souseda bychom do třídy Kdtree doplnili vhodnou metodu, opět s jistou rekurzivní funkcí:

```
def nearest_neighbor(self, destination):
    best = [None, float('inf')] # particle & squared distance
    def recursive_search(node, depth=0):
        if node is None:
            return
        particle, left, right = node.particle, node.left, node.right
        node_sqdist = square_distance(particle.r, destination)
        if node_sqdist < best[1]:
            best[:] = particle, node_sqdist # in-place!
        axis = depth % self.k
        diff = destination[axis] - particle.r[axis]</pre>
```


Obr. 14 — Dvourozměrný strom vytvořený ze šesti (žlutých) částic. Svislé a vodorovné linie vyznačují, kde se strom rozvětvil podle souřadnice x (červeně) nebo y (modře). Jako první proběhlo větvení v bodě se souřadnicí $x_i = 7$.

Obr. 15 — Jiné znázornění téhož stromu, na kterém je patrné větvení. Uzel v úrovni 0 se nazývá kořen, kdežto uzly bez větví v nejnižších úrovních (zde 2) se nazývají listy.

```
close, away = (left, right) if diff <= 0.0 else (right, left)
recursive_search(close, depth+1)
if diff**2 < best[1]:
    recursive_search(away, depth+1)
recursive_search(self.root)
return best[0], math.sqrt(best[1])</pre>
```

a volali ji jako particle, dist = kdtree.nearest_neighbor((8, 5)). Vrátila by pochopitelně (9, 6) a 1.4242...¹⁵. Vidíme, že doslova na pár řádcích lze dosáhnout kýžené složitosti, respektive jednoduchosti. Úprava pro hledání $N_{\rm okolo}$ nejbližších částic jest triviální.

S výhodou můžeme strom použít i pro rychlý, ale jen *přibližný* výpočet gravitačního zrychlení. Prerekvizitou je, že si pro všechny uzly (rekurzivně) spočteme jejich celkovou hmotnost node.tm, polohu těžiště node.cm a kvadrát celkového rozměru node.sqsize. Pak si zvolíme *otevírací úhel* φ_{open} v radiánech a zrychlení spočteme (rekurzivně):

 $^{^{15}\,}$ Alternativně se místo stromu používá lineární seznam (angl. linked list).

```
def compute_gravity(self, destination, phi=0.5):
   phi2 = phi*phi
   eps = 1.e-16
   def recursive_gravity(node):
       dist2 = square_distance(node.cm, destination)
       ag = [0.0] * self.k
        if node.sqsize/(dist2+eps) < phi2: # do NOT open this node
            if dist2 > eps:
                tmp = node.tm/(dist2*math.sqrt(dist2))
                for i in xrange(0, self.k):
                    ag[i] = tmp*(node.cm[i]-destination[i])
       else:
            dist2 = square_distance(node.particle.r, destination)
            if dist2 > eps:
                tmp = node.particle.m/(dist2*math.sqrt(dist2))
                for i in xrange(0, self.k):
                    ag[i] = tmp*(node.particle.r[i]-destination[i])
            for branch in node.left, node.right:
               if branch is not None:
                  accel = recursive_gravity(branch)
                  for i in xrange(0, self.k):
                     ag[i] += accel[i]
       return ag
```

```
return recursive_gravity(self.root)
```

Když je uzel (se svými větvemi) malý nebo daleko, takže vytnutý úhel $\varphi < \varphi_{\text{open}}$, počítáme pouze gravitaci těžiště. V opačném případě uzel otevřeme a sčítáme gravitaci částice a obou větví. Čím menší φ_{open} , tím přesnější výsledek, ale při $\varphi_{\text{open}} \rightarrow 0$ skončíme samozřejmě s $\mathcal{O}(N^2)$.

2.8 Multipólový rozvoj

Existuje ovšem možnost, jak výpočet gravitace zpřesnit i při zachování složitosti $\mathcal{O}(N \log_2 N)$. Namísto pouhého těžiště spočteme pro soubor N hmotných bodů vícero gravitačních momentů neboli *multipólů* (Stadel 2001, str. 8). Využijeme přitom *řádovou* notaci, kdy se podtržením označuje nikoli index nýbrž *počet* indexů:

$$M^{\underline{n}} \equiv \sum_{i}^{N} m_{i} x_{i}^{\underline{n}}.$$
(62)

Pak $M^{\underline{0}} \equiv M = \sum_{i} m_{i}$ je monopól, tj. skalár známý jako celková hmotnost, $M^{\underline{1}} \equiv M^{j} = \sum_{i} m_{i} x_{i}^{j}$ dipól, vektor odpovídající těžišti (který bude nulový, budeme-li \mathbf{x}_{i} k těžišti $\mathbf{r}_{\rm cm}$ vztahovat, ale spočteme si jej pro kontrolu), $M^{\underline{2}} \equiv M^{jk} = \sum_{i} m_{i} x_{i}^{j} x_{i}^{k}$ kvadrupól, $M^{\underline{3}} \equiv M^{jkl}$ oktupól, $M^{\underline{4}} \equiv M^{jklm}$ hexadekupól, příp. tenzory řádů ještě vyšších.

Gravitační potenciál souboru hmotných bodů posléze můžeme vyjádřit pomocí Taylorova rozvoje okolo těžiště (viz obr. 16):

$$\Phi = \sum_{i} \overbrace{-\frac{G}{|\mathbf{r}_{i}|}}^{\gamma(r_{i})} m_{i} = \sum_{i} m_{i} \gamma(|\mathbf{r}_{\rm cm} + \mathbf{x}_{i}|) = \sum_{n=0}^{\infty} \frac{1}{n!} [\partial_{\underline{n}} \gamma(r_{\rm cm})] M^{\underline{n}}, \qquad (63)$$

kde jsme promptně využili definice (62) a zkráceného zápisu $\partial_{\underline{n}} \equiv \partial/\partial r^{\underline{n}}$. Aproximace pochopitelně spočívá ve sčítání jen do $n < \infty$, např. 4.

Obr. 16 — K výpočtu gravitačního potenciálu Φ v bodě P, způsobovaného soustavou N hmotných bodů. Bod T označuje polohu těžiště této soustavy. Podle Stadel (2001).

Abychom nepočítali spočtené, měli bychom multipóly spočtené pro větve využít pro výpočet multipólu uzlu. Nejedná se ovšem o triviální součet, protože se posunuje poloha těžiště! Musíme proto použít Steinerovu větu, respektive její zobecnění v "šílené" závorkové notaci, kdy závorky uzavřené přes <u>podtržené</u> indexy značí sčítání přes všechny unikátní permutace (Stadel 2001, str. 17):

$$M_{\text{posunuto}}^{\underline{n}} = \sum_{m=0}^{n} M^{(\underline{n-m}} d^{\underline{m}}) , \qquad (64)$$

kde vektor d^{j} je onen posun. Při implementaci je však vše nutné rozepisovat...

2.9 Počáteční a okrajové podmínky

Vytvoření počátečních podmínek pro simulace srážek je jednoduché — spočívá generování požadovaného počtu částic SPH, jejich rozmístění uvnitř koule, resp. simulovaného tělesa, přiřazení počátečních ρ_0 , \mathbf{v}_0 , U_0 . Často se používá rovnoměrné rozmístění částic; nelze použít zcela náhodné, protože by vznikaly nereálně velké gradienty. Možná je optimální něco mezi tím (viz Diehl aj. 2012).

Okrajové podmínky jsou ještě jednodušší, neboť okolo je vakuum, čili nemusíme dělat nic. Ostatně metoda SPH je pro tento případ zvláště vhodná.

V opačném (horším) případě bychom museli vytvářet *virtuální částice* s vhodnými vlastnostmi, které by vymezovaly hranici. Připisuje se jim odpudivá síla, která brání unikání normálních částic z daného prostoru. Druhou možností je použití

duchařských částic, které aktuální stav částic uvnitř prostoru zrcadlí vně, pouze rychlosti jsou opačné.

2.10 Fragmentační fáze

Po kontaktu projektilu a terče začíná první fáze srážky, a to hydrodynamická fragmentace terče. Pro terče o velikosti planetek ($D \leq 100 \text{ km}$) lze simulaci provádět metodou SPH (Benz a Asphaug 1994) bez vlivu gravitace, tzn. bez řešení Poissonovy rovnice.¹⁶ Požadujeme ale, aby její trvání odpovídalo přinejmenším době průchodu rázové vlny terčem tam a zpět:

$$\Delta t_{\rm min} = \frac{2D}{v_{\rm imp}} \simeq 40 \, {\rm s} \, .$$

Naopak nejdelší přípustná doba je dána poměrem typické rychlosti výhozu $v_{\rm ej}$, což přirozeně bývá $v_{\rm esc} = \sqrt{2GM/R}$, a gravitačního zrychlení $a_{\rm g} = GM/R^2$, čili:

$$\Delta t_{\rm max} = \frac{v_{\rm esc}}{a_{\rm g}} = \sqrt{\frac{3}{2\pi G\rho}} \simeq 10^3 \,\mathrm{s}\,.$$

Průběh jedné takové simulace zachycuje obr. 17.

2.11 Reakumulační fáze

Druhou navazující fází je gravitační reakumulace. Tu je možno v prvním přiblížení počítat naopak *bez* jakékoliv hydrodynamiky, jako čistě gravitační interakci fragmentů počítanou *N*-částicově (Richardson et al. 2000). Výsledek hydrodynamického výpočtu se ovšem musí nějak transformovat do podoby počátečních podmínek pro pevné částice. Dalšími obvyklými zjednodušujícími předpoklady jsou: i) všechno jsou koule; ii) při prvním dotyku se koule spojují do větší koule. Ztrácíme tím samozřejmě jakékoliv informace o rotaci nebo tvaru fragmentů. Počáteční poloměry koulí mohou být vypočteny z vlastností částic SPH jako:

$$R_i = \frac{3m_i}{4\pi\rho_i} \,,$$

přičemž částice zplyněné $(U_i \gtrsim U_{cv})$ se zahazují. Navíc, aby byla úloha výpočetně zvládnutelná, používá se výše uvedená přibližná metoda k-d stromu, čili působení vzdálených částic se nepočítá jednotlivě, ale hromadně.

Výsledek celé simulace (obr. 19) lze porovnávat například s pozorovaným rozdělením velikostí členů dané rodiny asteroidů (Durda aj. 2007, Benavidez aj. 2012), případně s pozorovaným rychlostním polem (Nesvorný aj. 2006). Musíme samozřejmě uvážit, že obojí mohlo být změněno při dlouhodobém orbitálním vývoji rodiny a sekundárních srážkách.

 $^{^{16}}$ Pro impakty planetárních rozměrů si to ovšem dovolit nemůžeme (Canup 2004).

Obr. 17 — Simulace srážky mezi terčem o průměru $D = 100 \,\mathrm{km}$ a projektilem s $D = 10 \,\mathrm{km}$, s impaktní rychlostí $v_{\mathrm{imp}} = 5 \,\mathrm{km/s}$ a úhlem $\varphi_{\mathrm{imp}} = 45^{\circ}$. Graf ukazuje polohy (x, y) přibližně 1,42·10⁵ SPH částic; jejich barvy odpovídají logaritmu rychlosti v (v jednotkách cm s⁻¹). Integrace byla řízena Courantovým číslem C = 1,0, typický časový krok byl tedy $\Delta t \simeq 10^{-4} \,\mathrm{s}$, trvání $t_{\mathrm{stop}} = 100 \,\mathrm{s}$. Materiálové parametry pro bazalt (Benz and Asphaug 1999): hustota při nulovém tlaku $\rho_0 = 2,7 \,\mathrm{g\,cm^{-3}}$, objemový modul $A = 2,67 \cdot 10^{11} \,\mathrm{erg\,cm^{-3}}$, nelineární tlakový člen $B = 2,67 \cdot 10^{11} \,\mathrm{erg\,cm^{-3}}$, nelineární tlakový člen $B = 2,67 \cdot 10^{11} \,\mathrm{erg\,cm^{-3}}$, Tillotsonovy parametery $U_0 = 4,87 \cdot 10^{12} \,\mathrm{erg\,g^{-1}}$, a = 0,5, b = 1,5, $\alpha = 5,0$, a $\beta = 5,0$, počínající vypařování $U_{\mathrm{iv}} = 4,72 \cdot 10^{10} \,\mathrm{erg\,g^{-1}}$, úplné vypaření $U_{\mathrm{cv}} = 1,82 \cdot 10^{11} \,\mathrm{erg\,g^{-1}}$, modul pružnosti ve smyku $\mu = 2,27 \cdot 10^{11} \,\mathrm{erg\,cm^{-3}}$, mez pružnosti $Y = 3,5 \cdot 10^{10} \,\mathrm{erg\,g^{-1}}$, měrná energie tavení $U_{\mathrm{melt}} = 3,4 \cdot 10^{10} \,\mathrm{erg\,g^{-1}}$, parametry Weibullova rozdělení poruch $k = 4,0 \cdot 10^{29} \,\mathrm{cm^{-3}}$, a m = 9,0. Počítáno programem SPH5 (Benz and Asphaug 1994).

Obr. 18 — Kumulativní rozdělení velikostí N(>D) pro podmnožinu 30 různých simulací srážek monolitických asteroidů s průměrem terče D = 100 km a impaktním úhlem $\phi_{\text{imp}} = 45^{\circ}$. Jednotlivé simulace se liší rozměrem projektilu d = 10, 14, 18, 25, 34 a 46 km (směrem shora dolů) a impaktní rychlostí $v_{\text{imp}} = 3$, 4, 5, 6 a 7 km/s (zleva doprava). To odpovídá rozsahu od pouhého kráterování po katastrofický rozpad, což se projevuje i zřetelně odlišnými histogramy N(>D). Převzato z Durda aj. (2007).

Obr. 19 — Vlevo konečné rychlosti těles po simulaci srážky terče D = 100 km a projektilu d = 25 km, s rychlostí $v_{\text{imp}} = 5 \text{ km s}^{-1}$ a úhlem $\phi_{\text{imp}} = 45^{\circ}$. Velikosti symbolů odpovídají hmotnostem.

Vpravo odpovídající diferenciální histogram rychlostí výhozu d $N(v_{\rm ej})$, v porovnání s jednoduchým modelem Farinelly aj. (1994). Vidíme, že vrchol histogramu je na hodnotě srovnatelné s únikovou rychlostí $v_{\rm esc}$ původního mateřského tělesa. Počítáno programem Pkdgrav (Richardson aj. 2000).

2.12 Škálovací zákon pro terče

Z celé sady simulací lze odvodit škálovací zákon $Q_{\rm D}^{\star}(r)$ (Benz a Asphaug 1999), čili závislost pevnosti (v jednotkách J kg⁻¹) na poloměru r, která je nejdůležitějším vstupem pro statistické modely srážek (viz kap. ??). Stačí pomocí interpolace zjistit, při jaké kinetické energii $E_{\rm k}$ projektilu dochází k rozptýlení poloviny hmotnosti terče. Průběh funkce lze vystihnout polynomem:

$$Q_{\rm D}^{\star} = \frac{1}{q_{\rm fact}} (Q_0 r^a + B\rho r^b), \qquad (65)$$

kde hodnoty parametrů pro různé materiály shrnuje tab. 1 a funkci obr. 20. Faktor q_{fact} se užívá pouze tehdy, chceme-li vyjádřit, že pevnost je q krát menší než nějaký standardní materiál; jinak nemá smyslu. Všimněme si, že a je záporné a b kladné. Důvodem prvého je skutečnost, že v malých balvanech je málo poruch (prasklin), a tudíž jsou pevnější. Tato část škálovacího zákona je ostatně ověřena laboratorními experimenty. Důvodem druhého je rostoucí gravitační vazebná energie E_v , ale závislost nebývá tak strmá jako b = -2, neboť nerozptylujeme celý terč, nýbrž pouze nějakou polovinu.

	$v_{\rm imp}$	Q_0	B	a	b
	$\rm kms$	$\rm ergg^{-1}$	$\rm erg cm^3 g^{-2}$		
basalt	5	$9,0 \cdot 10^{7}$	0,5	-0,36	1,36
led	3	$1,\!6\!\cdot\!10^{7}$	1,2	-0,39	1,26

Tab. 1 — Parametry škálovacího zákona (65) pro basaltický a ledový materiál s monolitickou strukturou. Převzato z Benz a Asphaug (1999).

- [21] BENAVIDEZ, P. G., DURDA, D. D., ENKE, B. L., BOTTKE, W. F., NESVORNÝ, D., RICHARD-SON, D. C., ASPHAUG, E., MERLINE, W. J. A comparison between rubble-pile and monolithic targets in impact simulations: Application to asteroid satellites and family size distributions. Icarus, 219, 57, 2012.
- [22] BENZ, W., ASPHAUG, E. Impact simulations with fracture. I. Method and tests. Icarus, 107, s. 98–116, 1994.
- [23] BENZ, W., ASPHAUG, E. Catastrophic disruptions revisited. Icarus, 142, s. 5–20, 1999.
- [24] CANUP, R. M. Simulations of a late lunar-forming impact. Icarus, 168, 433, 2004.
- [25] COSSINS, P. Smoothed particle hydrodynamics. ArXiv, 1007.1245v2, 2010.
- [26] DIEHL, S., ROCKEFELLER, G., FRYER, C. L., RIETHMILLER, R., STATLER, T.S Generating optimal initial conditions for Smooth Particle Hydrodynamics simulations. ArXiv, 1211.-0525, 2012.
- [27] DURDA, D. D., BOTTKE, W. F., NESVORNÝ, D., ENKE, B. L., MERLINE, W. J., ASPHAUG, E., RICHARDSON, D. C. Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families. Icarus, 186, 498, 2007.

Obr. 20 — Škálovací zákon $Q_{\rm D}^{\star}$, neboli závislost pevnosti na průměru *D*, pro monolitický basalt a led a různé hodnoty impaktní rychlosti $v_{\rm imp}$. Podle Benz a Asphaug (1999).

- [28] FARINELLA, P., FROESCHLÉ, C., GONCZI, R. Meteorite delivery and transport. IAUS Conf., 160, 205, 1994.
- [29] GINGOLD, R. A., MONAGHAN, J. J. Smoothed particle hydrodynamics Theory and application to non-spherical stars. Mon. Not. R. Astr. Soc., 181, s. 375–389, 1977.
- [30] GODUNOV, S. K. A difference scheme for numerical computation of discontinuous solution of hyperbolic equation. Math. Sbornik, 47, s. 271–306, 1959.
- [31] LUCY, L. B. A numerical approach to the testing of the fission hypothesis. Astron. J., 82, s. 1013–1024, 1977.
- [32] MAINDL, T. I., SCHÄRFER, CH., SPEITH, R. SPH for simulating impacts and collisions [online]. [cit. 2014-08-12], (http://www.univie.ac.at/adg/Teaching/Planetformation2012/NF-NSPH2013-01-22.pdf), 2013.
- [33] MELOSH, H. J. A new and improved equation of state for impact computations. LPI Conf., 31, 1903, 2000.
- [34] MONAGHAN, J. On the problem of penetration in particle methods. J. Comput. Phys., 82, 1, s. 1–15, 1989.
- [35] NESVORNÝ, D., ENKE, B. L., BOTTKE, W. F., DURDA, D. D., ASPHAUG, E., RICHARDSON, D. C. Karin cluster formation by asteroid impact. Icarus, 183, s. 296–311, 2006.
- [36] NIEDOBA, P. Bezsítové metody ve výpočetní dynamice tekutin. Diplomová práce, VUT Brno, 2012.
- [37] PRICE, D. J. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comp. Phys., 231, 759, 2012.
- [38] RICHARDSON, D. C., QUINN, T., STADEL, J., LAKE, G. Direct large-scale N-Body simulations of planetesimal dynamics. Icarus, 143, 45, 2000.
- [39] ROE, P. L. Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys., 43, s. 357–372, 1981.
- [40] SOD, G. A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys., 27, s 1–31, 1978.
- [41] STADEL, J. G. Cosmological N-body simulations and their analysis. Ph.D. Thesis, Univ. of Washingthon, 2001.
- [42] TILLOTSON, J. H. Metallic equations of state for hypervelocity impact. General Atomic Report, GA-3216, 1962.

3 Rovnice vedení tepla

Ač by se vedení tepla v asteroidech mohlo zdát pouhou kuriozitou, jde o základní problém ve fyzice malých těles. Anizotropie tepelného vyzařování s povrchu asteroidu je příčinou *disipace* (nebo i růstu) mechanické energie; zatímco samotné gravitační působení by bylo konzervativní. Trajektorie proto nejsou přibližně eliptické, nýbrž přibližně spirálové, což se zřetelně projevuje na struktuře celého hlavního pásu asteroidů i počtu blízkozemních objektů.

3.1 Fourierovský rozvoj zářivého toku

Předtím, než budeme analyticky řešit rovnici vedení tepla uvnitř, se musíme zabývat jednou okrajovou záležitostí — ozářením. Pro určité místo na rovníku rotujícího asteroidu je tok dán periodickou funkcí ($P = 2\pi/\omega$):

$$\mathcal{F}(t) = (1 - A)\Phi \Xi(\cos \omega t), \qquad (66)$$

kde $\Xi(x) \equiv xH(x), H(x) = 0$ pro x < 0 a H(x) = 1 pro $x \ge 0$ je Heavisidova skoková funkce; $\Phi = L/(4\pi r^2)$ zářivý tok od Slunce v dané vzdálenosti r a A Bondovo albedo. Neboť je po částech spojitě diferencovatelná, lze počítat jí příslušnou Fourierovu řadu:

$$\mathcal{F}(t) = \sum_{n = -\infty}^{\infty} \mathcal{F}_n \,\mathrm{e}^{\mathrm{i}n\omega t} \,, \tag{67}$$

jejíž koeficienty:

$$\mathcal{F}_n = \frac{1}{P} \int_0^P \mathcal{F}(t) \,\mathrm{e}^{\mathrm{i}n\omega t} \,\mathrm{d}t \,. \tag{68}$$

Konkrétně člen \mathcal{F}_0 :

$$\frac{1}{P} \int_0^P \Xi(\cos \omega t) dt = \frac{2}{P} \int_0^{\frac{P}{4}} \cos \omega t dt = \frac{2}{P} \left[\frac{\sin \omega t}{\omega} \right]_0^{\frac{P}{4}} = \frac{1}{\pi}$$

a člen $\mathcal{F}_{\pm 1}$:

$$\frac{2}{P} \int_0^{\frac{P}{4}} \cos^2 \omega t dt = \frac{1}{P} \int_0^{\frac{P}{4}} (\cos 2\omega t + 1) dt = \frac{2}{P} \left[\frac{\sin 2\omega t}{2\omega} + t \right]_0^{\frac{P}{4}} = \frac{1}{4},$$

atd.

Do 6. řádu ($\mathcal{F}_{\pm 6}$) pak vypadá řada následovně (viz obr. 21):

$$\mathcal{F}(t) \doteq (1-A)\Phi\left(\frac{1}{\pi} + \frac{1}{2}\cos\omega t + \frac{2}{3\pi}\cos 2\omega t - \frac{2}{15\pi}\cos 4\omega t + \frac{2}{35\pi}\cos 6\omega t\right).$$
 (69)

Obr. 21 — Zářivý tok $\mathcal{F}(t)$ od Slunce na rovníku rotujícího asteroidu a jeho postupná aproximace několika členy fourierovské řady, \mathcal{F}_0 až \mathcal{F}_6 . Hodnoty vynesené v grafu jsou v jednotkách $(1-A)\Phi$, kde A označuje Bondovo albedo a Φ tok záření (ve W m⁻²) v dané vzdálenosti od Slunce.

3.2 Analytické jednorozměrné řešení

Existují-li (alespoň přibližná) analytická řešení, lze pomocí nich ověřovat správnost (obdobně zjednodušených) numerických řešení. Proto se budeme zprvu zabývat rovnicí vedení tepla v nejjednodušším jednorozměrném případě. Neznamená to pochopitelně, že celý asteroid je jednorozměrný, nýbrž se představujeme sloupec materiálu s Neumannovou okrajovou podmínkou na povrchu a Dirichletovou v hloubce:

$$\rho C \partial_t u - \partial_x K \partial_x u = 0, \qquad (70)$$

$$K\partial_x u + \epsilon \sigma u^4 = \mathcal{F}(t) \quad \text{pro } x = 0,$$
 (71)

$$u = \text{konst.} \quad \text{pro } x \to -\infty \,, \tag{72}$$

kde u(x,t) označuje teplotu, jakožto neznámou funkci souřadnice a času, ρ hustotu, C měrnou tepelnou kapacitu, K tepelnou vodivost, ϵ infračervenou emisivitu, σ Stefanovu–Boltzmannovu konstantu a $\mathcal{F}(t)$ zářivý tok dle (66). Jakékoliv laterální vedení tepla zanedbáváme.

Vzhledem k charakteru (69) zkusíme nalézt $ustálené^{17}$ řešení ve tvaru Fourierovy řady:

$$u(x,t) = \sum_{n=-\infty}^{\infty} u_n(x) e^{in\omega t} .$$
(73)

Je-li K = konst., zavedeme tepelnou difuzivitu $\chi \equiv \frac{K}{\rho C}$. Dosadíme-li řadu do (70), obdržíme:

$$\sum_{n} u_n \mathrm{i} n \omega \,\mathrm{e}^{\mathrm{i} n \omega t} - \chi \sum_{n} \partial_{xx} u_n \,\mathrm{e}^{\mathrm{i} n \omega t} = 0 \,,$$

¹⁷ Samozřejmě se tím připravujeme o možnost popisovat přechodové stavy, jež nejsou periodické, např. postupný ohřev z nějaké konstantní teploty.

čili pro každé n musí platit:

$$\partial_{xx}u_n = \frac{\mathrm{i}n\omega}{\chi}u_n\,.\tag{74}$$

Obecná řešení se evidentně liší pron=0,~n>0an<0.Neboť víme, že $\sqrt{\mathrm{i}}=\pm\frac{1}{\sqrt{2}}(1+\mathrm{i}),~\sqrt{-\mathrm{i}}=\pm\frac{1}{\sqrt{2}}(1-\mathrm{i}),$ vycházejí:

$$u_0(x) = a_0 + b_0 x,$$

$$u_n(x) = a_n e^{-(1+i)\beta_n x} + b_n e^{(1+i)\beta_n x},$$

$$u_{-n}(x) = a_{-n} e^{-(1-i)\beta_n x} + b_{-n} e^{(1-i)\beta_n x},$$

kde jsme kromě integračních konstant a_n , b_n byli nuceni pro zkrácení zápisu zavést $\beta_n \equiv \sqrt{\frac{1}{2} \frac{|n|\omega}{\chi}}$; shodou okolností je $1/\beta_n$ hloubka proniku tepelné vlny. Neboť nás vesměs zajímají řešení nedivergující, je $b_n = 0$, a tedy $u_0 = \text{konst.}$

Zatím neznámá a_n určíme jako obvykle z konkrétní okrajové podmínky (71). Povrchová teplota je zřejmě:

$$u(0,t) = \sum_{n} a_n \,\mathrm{e}^{\mathrm{i}n\omega t}$$

a její derivace:

$$\partial_x u(0,t) = -\sum_{n>0} a_n (1+i) \beta_n e^{in\omega t} - \sum_{n>0} a_{-n} (1-i) \beta_n e^{-in\omega t}$$

Abychom nemuseli umocňovat do nekonečna, budeme předpokládat (a později ověřovat) malé změny teploty $u_n \ll u_0$, což by umožnilo provést linearizaci:

$$u^{4} = \left(u_{0} + \sum_{n \neq 0} u_{n} e^{in\omega t}\right)^{4} \doteq u_{0}^{4} + 4u_{0}^{3} \sum_{n \neq 0} u_{n} e^{in\omega t}$$

Po dosazení do (71):

$$-K\sum_{n>0} a_n(1+i)\beta_n e^{in\omega t} - K\sum_{n>0} a_{-n}(1-i)\beta_n e^{-in\omega t} + \epsilon \sigma u_0^4 + 4\epsilon \sigma u_0^3 \sum_{n\neq 0} a_n e^{in\omega t} = \sum_n \mathcal{F}_n e^{in\omega t}$$

vidíme, že se musejí rovnat koeficienty u všech $e^{in\omega t}$, odkud:

$$u_0 = \sqrt[4]{\frac{\mathcal{F}_0}{\epsilon\sigma}},\tag{75}$$

$$a_n = \frac{\mathcal{F}_n}{4\epsilon\sigma u_0^3 + K(1+\mathrm{i})\beta_n}\,,\tag{76}$$

$$a_{-n} = \frac{\mathcal{F}_{-n}}{4\epsilon\sigma u_0^3 + K(1-\mathbf{i})\beta_n} \,. \tag{77}$$

Obr. 22 — Povrchová teplota u(0, t) daného místa na asteroidu, získaná řešením jednorozměrné rovnice vedení tepla, respektive její postupné aproximace několika fourierovskými členy u_0 až u_6 . Volené parametry jsou: rotační perioda P = 1 h, vzdálenost od Slunce r = 2,5 au, Bondovo albedo A = 0,1, infračervená emisivita $\epsilon = 0,9$, hustota $\rho = 2500 \text{ kg m}^{-3}$, měrná tepelná kapacita $C = 480 \text{ J kg}^{-1}$ a tepelná vodivost $K = 1 \text{ W m}^{-1} \text{ K}^{-1}$.

Výsledná funkce u(0,t) je zobrazena na obr. 22. Zřetelný je fázový posun oproti $\mathcal{F}(t)$. Pohledem na něj zároveň ověřme náš předpoklad $u_n \ll u_0$; o.k.

3.3 Metoda konečných diferencí (FDM)

Když podmínky pro linearizaci nejsou splněny, uchýlíme se k řešení numerickému. Navíc lze studovat i stavy přechodové. Všechny derivace (operátory) proto převedeme na konečné diference, což je obzvláště snadné, když je geometrie jednoduchá (jednorozměrná).

Explicitní schéma. Převeďme nejprve 1. derivaci podle času:

$$\frac{\partial u}{\partial t} \simeq \frac{u^n - u^{n-1}}{\Delta t} \,,$$

kde jsme zavedli horní indexy $n \ge n-1$, odpovídající času novému $(t + \Delta t)$ a starému (t). Vyjádření 2. derivace podle souřadnice je prostým rozdílem prvních:

$$\frac{\partial^2 u}{\partial x^2} \simeq \frac{\frac{u_{j+1} - u_j}{\Delta x} - \frac{u_j - u_{j-1}}{\Delta x}}{\Delta x} = \frac{u_{j+1} - 2u_j + u_{j-1}}{\Delta x^2} \,,$$

kde jsme zavedli dolní indexy j + 1, j a j - 1 pro tři sousedící body. Při dosazování do (70) se musíme především rozhodnout, v jakém čase vyčíslíme prostorové derivace! Pokud ve starém:

$$\frac{u_j^n - u_j^{n-1}}{\Delta t} - \chi \frac{u_{j+1}^{n-1} - 2u_j^{n-1} + u_{j-1}^{n-1}}{\Delta x^2} = 0,$$

tak nám to umožňuje explicitně vyjádřit nové teploty:

$$u_j^n = u_j^{n-1} + \frac{\chi \Delta t}{\Delta x^2} \left(u_{j+1}^{n-1} - 2u_j^{n-1} + u_{j-1}^{n-1} \right) \quad \text{pro } j = 1 \dots M - 1 \,.$$

Toto numerické schéma se nazývá explicitní dopředný Euler, často angl. forward time centered space nebo zkr. FTCS.

Je sice nejjednodušší, ale před jeho použitím musíme zkontrolovat splnění *von* Neumannova kritéria:

$$\frac{2\chi\Delta t}{\Delta x^2} < 1\,,$$

bez kterého není zaručena stabilita, resp. je zaručena nestabilita. Je však třeba důsledně rozlišovat — stabilita v žádném případě není konvergence k neznámému řešení! Tu musíme jako vždy ověřovat např. sledováním změn u(x,t) při dalším zmenšování kroku časového Δt i prostorového Δx .

Na povrchu j = 0 ani v hloubce j = M nelze vyčíslovat druhou derivaci, neboť nemáme třetí bod. Právě proto potřebujeme (diskretizované) okrajové podmínky (71) a (72). Konkrétně je:

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} \simeq \frac{u_0 - u_1}{\Delta t} \,,$$

čili:

$$K\frac{u_0^n - u_1^n}{\Delta t} + \epsilon \sigma(u_0^n)^4 = \mathcal{F}(t) \,,$$

což představuje polynom 4. stupně pro u_0^n (u_1^n již známe):

$$\epsilon\sigma(u_0^n)^4 + \frac{K}{\Delta t}u_0^n - \frac{K}{\Delta t}u_1^n - \mathcal{F}(t) = 0;$$

řeší se numericky (např. Laguerrovou metodou).

Okrajová podmínka v (konečné) hloubce $x_M \gg \beta$ je o dost jednodušší:

$$u_M = u_{\rm eq}$$
,

ale rovnovážnou teplotu musíme volit obezřetně, abychom si nevynutili řešení ne-smyslné.

Implicitní schéma. Použijeme-li namísto starých teplot nové:

$$\frac{u_j^n - u_j^{n-1}}{\Delta t} - \chi \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} = 0 \,,$$

jedná se o poněkud jiný problém:

$$-\frac{\widehat{\chi\Delta t}}{\Delta x^2}u_{j+1}^n + \left(1 + \frac{2\chi\Delta t}{\Delta x^2}\right)u_j^n - \frac{\chi\Delta t}{\Delta x^2}u_{j-1}^n = u_j^{n-1} \quad \text{pro } j = 1\dots M - 1\,,$$

neboli:

$$u_j^n A_{ij} = B_i \,,$$

kde matice je tridiagonální řídká:

$$A_{ij} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -a & 1+2a & -a & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -a & 1+2a & -a \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$
(78)

a pravá strana:

$$B = \begin{pmatrix} u_0^n \\ u_1^{n-1} \\ \vdots \\ \vdots \\ u_{M-1}^{n-1} \\ u_M^n \end{pmatrix}.$$
 (79)

V každém kroku tedy musíme invertovat matici (společně s neustále se měnící pravou stranou)! Takové schéma se nazývá implicitní zpětný Euler, angl. backward time centered space, zkr. BTCS.

Aby matice nezůstala singulární, je naprosto nezbytné v B_i dosadit za u_0^n , u_M^n z okrajových podmínek:

$$\epsilon\sigma(u_0^n)^4 + \frac{K}{\Delta t}u_0^n - \frac{K}{\Delta t}u_1^{n-1} - \mathcal{F}(t) = 0, \qquad (80)$$

$$u_M = u_{\rm eq} \,, \tag{81}$$

kde j
sme si pomohli "faulem", neboť jsme použili starou hodnotu podpovrchové teplot
y u_1^{n-1} namísto nové u_1^n , kterou zatím nikdo nezná; "za trest" provedeme několik i
terací. 18

Hybridní schéma. Jako výhodná se ukazuje být kombinace schémat explicitního a implicitního, parametrizovaná parametrem θ :

$$\frac{u_j^n - u_j^{n-1}}{\Delta t} - \theta \chi \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} - (1-\theta) \chi \frac{u_{j+1}^{n-1} - 2u_j^{n-1} + u_{j-1}^{n-1}}{\Delta x^2} = 0 \,,$$

což opět vede na soustavu:

$$u_j^n A_{ij}' = B_i'.$$

 $^{^{18}}$ Druhou možností by byla linearizace 4. mocniny v (80), použití u_1^n a této rovnice namísto 1. řádku matice A_{ij} , ale linearizace se musí taktéž odčinit iteracemi.

θ	schéma	přesnost	stabilita
0	explicitní dopředný Euler	$\Delta x^2, \Delta t$	von Neumannovo kritérium
1/2	implicitní Crank–Nicolson	$\Delta x^2, \Delta t^2$	stabilní
1	implicitní zpětný Euler	$\Delta x^2, \Delta t$	stabilní

Tab. 2 — Hodnoty parametru $\theta,$ určující konkrétní schéma numerické metody FDM, přesnost
schématu a případná podmínka stability.

Obr. 23 — Numerické řešení rovnice vedení tepla metodou FDM, schématem BTCS, zobrazené na grafu čas t, hloubka x; teplota u je znázorněna barevně. Počáteční podmínka byla $u(x, t = 0) = u_{eq}$, okrajová podmínka na povrchu je zářivá (odpovídá obr. 21) a v hloubce $u(x = -0.2 \text{ m}, t) = u_{eq}$. Výpočet byl proveden včetně přechodového stavu. Tepelné parametry jsou tytéž jako na obr. 22, stejně jako průběh u(x = 0, t).

Výhodou hybridního schématu s $\theta = 1/2$, nazývaného Crankovo–Nicholsonovo, je kromě bezpodmínečné stability také vyšší přesnost integrace, neboť pro výpočet 2. derivací využíváme 6 bodů (viz tab. 2; Langtangen 2003).

3.4 Slabá formulace problému

Přejděme nyní k obecnému trojrozměrnému numerickému řešení, které je možné použít v libovolné nepravidelné geometrii, tzn. i pro celý šišatý asteroid. Rovnici vedení tepla si nejprve zapíšeme pomocí operátoru:

$$\mathcal{L} \equiv \rho C \partial_t - \nabla \cdot K \nabla \,, \tag{82}$$

abychom její zápis maximálně zjednodušili:

$$\mathcal{L}(u) = 0; \tag{83}$$

okrajovou podmínku už máme jen jednu:

$$K\partial_n u + \epsilon \sigma u^4 = (1 - A)\Phi \Xi(\boldsymbol{s} \cdot \boldsymbol{n}) \text{ na } \Gamma, \qquad (84)$$

přičemž tentokrát je hranice domény v podstatě libovolná uzavřená, prozatím konvexní, takže v argumentu zářivého toku vystupuje směr ke Slunci $\boldsymbol{s}(t)$ a normály $\boldsymbol{n}(\boldsymbol{r})$.

Obr. 24 — Dole nejjednodušší jednorozměrné lineární bázové funkce $N_j(x)$; zvýrazněná je pro j = 4. Nahoře je odpovídající funkce \hat{u} pro případ, kdyby koeficienty byly číselně rovny: $u_1 = 20$, $u_2 = 100$, $u_3 = 80$, $u_4 = 150$, $u_5 = 66$, $u_6 = 33$. Ve dvou rozměrech by $N_j(x, y)$ měly podobu čtyřbokých jehlanů. Ve třech rozměrech bychom $N_j(\mathbf{r})$ kreslit nechtěli.

Slabá formulace problému spočívá v nahrazení (neznámé) funkce $u(\mathbf{r})$ za její přibližný rozvoj:

$$u \doteq \hat{u} = \sum_{j=1}^{M} u_j N_j , \qquad (85)$$

kde u_j jsou neznámé číselné koeficienty a $N_j(\mathbf{r})$ známé bázové funkce (též "konečné prvky"). Nejjednodušší funkce jsou obyčejné střechovité, které jsou nenulové jen mezi několika nejbližšími body sítě; schematicky jednorozměrně (obr. 24):

$$N_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}} & \text{pro } x \in (x_{j-1}, x_{j}), \\ \frac{x - x_{j+1}}{x_{j} - x_{j+1}} & \text{pro } x \in (x_{j}, x_{j+1}), \\ 0 & \text{jinak}. \end{cases}$$
(86)

Samozřejmě lze volit též funkce kvadratické, kubické, harmonické, pokrývající celou oblast Ω , vlastní funkce operátoru \mathcal{L} , jsou-li známy, různé speciální atd. Volba vhodné báze se podobá umění.

Právě provedená diskretizace v prostoru převádí problém spojitý (hledání $u(\mathbf{r}, t)$) na diskrétní konečný (hledání u_j). Pak ale nemůže všude přesně platit (83)! Obecně je tedy:

$$\mathcal{L}(\hat{u}) \neq 0 \,,$$

s čímž nelze být spokojen.

3.5 Metoda konečných prvků (FEM)

V metodě konečných prvků se s tím smíříme. Avšak požadujeme, aby součet *reziduí* byl nula. Nelze ovšem napsat bez rozmyslu:

$$\int_{\Omega} \mathcal{L}(\hat{u}) \mathrm{d}\Omega = 0$$

protože to bychom mohli mít v levé části domény Ω kladné odchylky a v pravé záporné. Ba co hůř, s jednou rovnicí pro M neznámých u_j nenaděláme nic. Proto musíme splnění podmínky požadovat mnohokrát, vždy v omezené části Ω , kterou si vymezíme pomocí *testovací funkce* (váhy) $W_i(\mathbf{r})$:

$$\int_{\Omega} \mathcal{L}(\hat{u}) W_i \mathrm{d}\Omega = 0 \quad \text{pro } i = 1 \dots M \,.$$
(87)

Zvolíme-li jednoduše $W_i \equiv N_i$, hovoříme o tradiční *Galerkinově metodě*:

$$\int_{\Omega} \mathcal{L}(\hat{u}) N_i \mathrm{d}\Omega = 0 \quad \text{opět pro } i = 1 \dots M \,.$$
(88)

Rozepsáním ${\mathcal L}$ pro náš problém pak obdržíme:

$$\int_{\Omega} \rho C \partial_t \hat{u} N_i \mathrm{d}\Omega - \int_{\Omega} \nabla \cdot (K \nabla \hat{u}) N_i \mathrm{d}\Omega = 0$$

Protože divergence všeho (součinu):

$$\int_{\Omega} \nabla \cdot (K\partial_n \hat{u} N_i) \mathrm{d}\Omega = \int_{\Omega} \nabla \cdot (K\nabla \hat{u}) N_i \mathrm{d}\Omega + \int_{\Omega} K\nabla \hat{u} \cdot \nabla N_i \mathrm{d}\Omega$$

a protože zároveň platí Gaussova věta:

$$\int_{\Omega} \nabla \cdot (K \partial_n \hat{u} N_i) \mathrm{d}\Omega = \int_{\Gamma} K \partial_n \hat{u} N_i \mathrm{d}\Gamma, \tag{89}$$

plyne odtud Greenovo lemma:

$$\int_{\Omega} \nabla \cdot (K\nabla \hat{u}) N_i \mathrm{d}\Omega = -\int_{\Omega} K\nabla \hat{u} \cdot \nabla N_i \mathrm{d}\Omega + \int_{\Gamma} K\partial_n \hat{u} N_i \mathrm{d}\Gamma, \qquad (90)$$

které se využívá pro elegantní dosazení za $K\partial_n \hat{u} = -\epsilon \sigma \hat{u}^4 + (1 - A)\Phi \Xi(\mathbf{s} \cdot \mathbf{n})$ z okrajové podmínky (84), čímž ji automaticky splňujeme a nemusíme se jí dále zabývat.

Musíme ještě provést diskretizaci v čase:

$$\partial_t \hat{u} \simeq \frac{\hat{u}^n - \hat{u}^{n-1}}{\Delta t} \,, \tag{91}$$

kde jsme opět horními indexy n a n-1 označili hodnoty nové a staré.

Aby výsledná soustava rovnic byla a zůstala lineární, aproximujeme novou teplotu jako:

$$\hat{u}^4 \simeq (\hat{u}^{n-1})^3 \hat{u}^n;$$
(92)

případnou nelinearitu budeme řešit *ex post* iteracemi.

Shrneme-li naše dosavadní snažení:

$$\int_{\Omega} \frac{\rho C}{\Delta t} \hat{u}^{n} N_{i} \mathrm{d}\Omega - \int_{\Omega} \frac{\rho C}{\Delta t} \hat{u}^{n-1} N_{i} \mathrm{d}\Omega + \int_{\Omega} K \nabla \hat{u}^{n} \cdot \nabla N_{i} \mathrm{d}\Omega + \int_{\Gamma} \epsilon \sigma (\hat{u}^{n-1})^{3} \hat{u}^{n} N_{i} \mathrm{d}\Gamma - \int_{\Gamma} (1-A) \Phi \Xi (\mathbf{s} \cdot \mathbf{n}) N_{i} \mathrm{d}\Gamma = 0 \quad \text{pro } i = 1 \dots M; \quad (93)$$

kde to jen šlo, použili jsme nové hodnoty \hat{u}^n , jak je obvyklé v implicitních metodách. Evidentně jde o soustavu M lineárních rovnic pro M neznámých u_j , kterou zbývá vyřešit.

Kdybychom to vyjádřili otrocky:

$$\begin{split} \int_{\Omega} \frac{\rho C}{\Delta t} \sum_{j} u_{j}^{n} N_{j} N_{i} \mathrm{d}\Omega &- \int_{\Omega} \frac{\rho C}{\Delta t} \sum_{j} u_{j}^{n-1} N_{j} N_{i} \mathrm{d}\Omega + \int_{\Omega} K \nabla \sum_{j} u_{j}^{n} N_{j} \cdot \nabla N_{i} \mathrm{d}\Omega + \\ &+ \int_{\Gamma} \epsilon \sigma \left(\sum_{j} u_{j}^{n-1} N_{j} \right)^{3} \sum_{j} u_{j}^{n} N_{j} N_{i} \mathrm{d}\Gamma - \int_{\Gamma} (1 - A) \Phi \Xi(\mathbf{s} \cdot \mathbf{n}) N_{i} \mathrm{d}\Gamma = 0 \end{split}$$

a přeuspořádali:

už by bylo nad slunce jasné, že jde o soustavu typu:

$$u_j^n A_{ij} = B_i \,,$$

kde prvky matice jsou buď integrály, které lze pro danou síť bodů předpočítat předem (1. a 2. člen), nebo jednoduché integrály známých funkcí (3. člen). Totéž platí pro pravou stranu. Při jemné diskretizaci (velkém M) je matice A_{ij} nebezpečně velká a její inverze obtížná, nicméně bývá řídká.

3.6 Implementace v programu FreeFem++

Prakticky lze pro řešení použít program FreeFem++ (Hecht 2012), který dovoluje symbolický zápis integrálů ve stejné podobě jako rovnice (104):

```
real C = 680;
                                         // specific heat capacity [J/kg/K]
real K = 2.5;
                                         // thermal conductivity [W/m/K]
real rho = 2500:
                                         // bulk density [kg/m^3]
real epsil = 1.0;
                                         // infrared emissivity []
real sigma = 5.66962e-8;
                                         // Stefan-Boltzmann constant [W/m<sup>2</sup>/K-4]
                                         // Bond albedo []
real A = 0.0;
real SO = 1371.;
                                         // solar constant [W/m^2]
real r = 2.5:
                                         // distance [AU]
real Phi = S0/r^2;
                                         // solar flux [W/m^2]
                                         // Sun direction []
real sx, sy, sz;
real phi;
                                        // corresponding longitude [rad]
real theta = pi/2.;
                                        // co-latitude [rad], 0 deg ... north pole
                                         // rotation period [s]
real P = 7200.;
real t;
                                         // time [s]
                                        // time step [s]
real dt = 72.0;
                                        // time to stop [s]
real tstop = 100.*P;
int iterations = 3;
                                         // number of iterations
real chi = K/(rho*C);
                                         // thermal diffusivity [m<sup>2</sup> s<sup>-1</sup>]
cout << "chi = " << chi << " m^2 s^-1" << endl;
func u0 = ((1.-A)*Phi/(4*epsil*sigma))^(1./4.); // equilibrium temperature [K]
cout << "u0 = " << u0 << " K" << endl;
load "msh3";
mesh3 Th = readmesh3("file.1.msh");
                                        // read the mesh produced by tetgen
mesh3 Thirr;
                                         // a copy of the mesh (for shadowing)
fespace Vh(Th, P1);
                                         // the space of (linear) finite elements
Vh u, uold, v, b;
                                         // definitions of functions on this space
problem HDE(u,v)
                                         // the PDE definition, weak formulation
  = int3d(Th) (rho*C/dt * u*v) // linear term
- int3d(Th) (rho*C/dt * uold*v) // from time discretization, implicit Euler
  + int3d(Th) (K * (dx(u)*dx(v) + dy(u)*dy(v) + dz(u)*dz(v))) // bilinear part
  + int2d(Th) (b * u*v)
                                                               // Neumann BC
                                                              // zero on night side
// simple irradiation
  - int2d(Thirr,1) ( ((sx*N.x + sy*N.y + sz*N.z) > 0) *
    (1-A)*Phi * (sx*N.x + sy*N.y + sz*N.z) * v);
include "savedat.edp";
include "shadowxm.edp";
u = uold = u0;
                                         // initial condition
for (t=dt; t <= tstop; t+=dt) {</pre>
                                       // cycle in time
  phi = t/P*2*pi;
                                         // change solar unitvector
  sx = cos(phi)*sin(theta);
  sy = sin(phi)*sin(theta);
  sz = cos(theta);
                                         // determine non-shadowed facets (Thirr)
  shadowxm(sx, sy, sz);
  for (int k=0; k < iterations; k++) { // iterations due to non-linearity of BC
   b = epsilon*sigma * u^3;
                                         // semi-linearization of the u^4 term
                                         // solution of the PDE
    HDE;
  }
  uold = u:
                                         // time step
  savedat("output.dat", t, sx, sy, sz); // data output
}
```

Jediným rozdílem je drobná změna notace \hat{u} na u, N_i na v. Navíc je zde naznačeno volání výpočtu stínění pro nekonvexní tvary, kde nestačí použít jen skalární součin $\boldsymbol{s} \cdot \boldsymbol{n}$.

Triangulace. Důležitá otázka: "Jak zkonstruovat síť?" Tzn. nejen seznam bodů, ale i jejich spojnic, podle nichž se vyčíslují bázové funkce N_j . Závisí na ní nejen přesnost numerického řešení, ale i samotná možnost inverze matice A_{ij} , protože nevhodná síť může vést k singularitě. Často užívanou metodou je *Delaunayho triangulace*. V *k*-rozměrném prostoru zajišťuje, že pro každý útvar s k + 1 body (trojúhelník, čtyřstěn) jemu opsaná kružnice neobsahuje žádný další vrchol. Prakticky je možné triangulaci provést programem TetGen (Si 2006; viz obr. 25).

Obr. 25 — Různé diskretizace v prostoru, tzn. sítě čtyřstěnů vytvořené programem TetGen (Si 2006), které byly použity pro numerické řešení rovnice vedení tepla ve sférickém tělese. Číslo M označuje počet vrcholů sítě.

Radiační síla. Známe-li již povrchovou teplotu $u(\mathbf{r}, t)$, můžeme vypočítat i příslušné dynamické působení. Element radiační síly za předpokladu Lambertova rozpylu je:

$$\mathrm{d}\boldsymbol{F} = -\frac{2}{3}\frac{\epsilon\sigma}{c}u^4\boldsymbol{n}\,\mathrm{d}\Gamma\,.\tag{94}$$

Celkové zrychlení je zřejmě $\mathbf{a} = \frac{1}{m} \int_{\Gamma} d\mathbf{F}$ a moment síly $\mathbf{T} = \int_{\Gamma} \mathbf{r} \times d\mathbf{F}$. Kromě toho musíme počkat na ustálení a provést středování přes periodu rotační, v horším případě i orbitální. Z historických důvodů se působení nazývají Jarkovského jev a YORP. Pro ověření přesnosti numerického výpočtu jej můžeme porovnat s analytickou teorií pro koule (Vokrouhlický 1998; obr. 26). Příklad pro nepravidelný meteoroid je na obr. 27.

3.7 Nekonvexní stínění, tepelný a rozptýlený tok

Dokonalejší modely mívají úplnější popis zářivého toku. Jednak je v zářivém toku od Slunce zohledněno stínění od jiných míst povrchu (Ševeček aj. 2015):

$$\mathcal{F} = (1 - A)\Phi\mu(\mathbf{s}, \mathbf{r})\Xi(\mathbf{s} \cdot \mathbf{n}), \qquad (95)$$

kde μ je funkce stínění, nabývající hodnoty 0 nebo 1. Protože je třeba pro každou plošku kontrolovat všechny plošky s $\Xi > 0$, šlo by o problém složitosti $\mathcal{O}(N^2)$. Pro daný nekonvexní tvar je ale možné jí předpočítat s určitým krokem v úhlech; pro konvexní by bylo všude $\mu = 1$.

Obr. 26 — Podíl Jarkovského driftu velké poloosy d $a/dt = 2\mathcal{T}/n$ spočteného numericky a analyticky, pro různé diskretizace v prostoru (počet *M* vrcholů sítě) a diskretizace v čase (časový krok Δt). Předpokládali jsme zde sférické těleso, poloměr R = 0,1 m, rotační periodu $P_{\rm rot} = 2$ h. Pro $M > 10^3$ a $\Delta t/P_{\rm rot} < 0.02$ je rozdíl mezi numerickým a analytickým řešením menší než 3 %. Drift je úměrný $2\mathcal{T}/n'$ (dle (299)), kde \mathcal{T} označuje transverzální složku zrychlení **a** a n' střední pohyb.

Obr. 27 — Rozložení teploty $u(\mathbf{r}, t)$ na povrchu meteoroidu o efektivním poloměru $R \simeq 10$ cm, spočtené metodou FEM. Osy $\hat{x}, \hat{y}, \hat{z}$ jsou fixní v tělese, zatímco vektor **s** směřuje ke Slunci. Zohledněno je i nekonvexní stínění. Maximum teploty i vyzařování jsou posunuté oproti **s**, což vede k nenulovému transverzálnímu zrychlení měnícímu orbitální pohyb (Jarkovského jevu). Anizotropie vyzařování také vytváří nenulový moment síly měnící rotaci tělesa (jev YORP).

Další je tepelné záření přicházející od jiných míst povrchu:

$$\mathcal{F}_{\rm th} = (1 - A_{\rm th}) \int_{\Gamma} \epsilon' \sigma u'^4 \frac{\cos \alpha \cos \alpha'}{\pi (\mathbf{r} - \mathbf{r}')^2} \nu(\mathbf{r}, \mathbf{r}') \mathrm{d}\Gamma' , \qquad (96)$$

kde $\nu(\mathbf{r}, \mathbf{r}')$ je funkce viditelnosti, opět nabývající hodnoty 0 nebo 1, v závislosti na tom, zda se plošky \mathbf{r} a \mathbf{r}' mohou ozařovat; pro konvexní tvar by bylo všude $\nu = 0$. Pro vyzařování předpokládáme také Lambertův kosínový zákon. Zde musíme pro každou plošku počítat integrál přes povrch, jde tedy o problém složitosti $\mathcal{O}(N^2)$. Navíc zde v integrálu vystupuje hledaná funkce u, tzn. že se problém formálně stává integrodiferenciální; buď bychom se museli smířit s použitím starých teplot u^{n-1} , anebo provést iterování, abychom v okrajové podmínce měli skutečně u^n .

Konečně jde o rozptýlené záření od jiných míst povrchu:

$$\mathcal{F}_{\rm sc} = (1-A) \int_{\Gamma} A' \Phi \mu' \boldsymbol{s} \cdot \boldsymbol{n}' \frac{\cos \alpha \cos \alpha'}{\pi (\boldsymbol{r} - \boldsymbol{r}')^2} \nu(\boldsymbol{r}, \boldsymbol{r}') \mathrm{d}\Gamma' \,. \tag{97}$$

Platí obdobná tvrzení jako v předchozím případě.

Při výpočtu radiační síly bychom pak měli zohlednit, že záření z dané plošky nemůže vždy nerušeně uniknout, ale může zapůsobit na tytéž plošky, které ji ozařují:

$$d\mathbf{F}' = +\frac{\epsilon\sigma}{c} u^4 \int_{\Gamma} \frac{\cos\alpha \cos\alpha'}{\pi(\mathbf{r} - \mathbf{r}')^2} \frac{\mathbf{r}' - \mathbf{r}}{|\mathbf{r}' - \mathbf{r}|} \nu(\mathbf{r}, \mathbf{r}') d\Gamma', \qquad (98)$$

i účinek rozptylování sama o sobě:

$$\mathrm{d} {\pmb{F}}_{\mathrm{sc}} = -rac{2}{3} rac{A \Phi}{c} \mu({\pmb{s}}, {\pmb{n}}) {\pmb{n}} \, \mathrm{d} \Gamma$$

Balvany na Itokawě. Kromě celkového tvaru je u malých planetek nutné zohledňovat i vedení tepla v malých útvarech v transverzálním směru. Například planetka (25143) Itokawa má rozměr zhruba 0,5 km, ale na detailních fotografiích je poseta balvany o rozměrech řádově $1/\beta_1 \simeq 10$ cm, což je mnohem méně než rozlišení modelu tvaru.

Slunce přitom každé ráno svítí na východní stranu balvanů, teplo je vedeno skrz od východu k západu, odpoledne je západní strana navíc osvětlená Sluncem, její teplota je tedy v průměru vyšší, což vytváří značnou asymetrii tepelného vyzařování a radiační sílu d**F** ve směru východním. Moment síly **T** od všech balvanů působí ve směru osy rotace $\vec{\omega}$ a tudíž způsobuje zrychlování dle momentové věty $\frac{dL}{dt} = \mathbf{T}$, které klidně může převažovat nad zpomalováním od celkového tvaru. Pro pozorované rozdělení velikostí balvanů ze sondy Hayabusa (Saito aj. 2010) vychází řádově $d\Omega/dt \simeq 10^{-7}$ rad d^{-2} (Ševeček aj. 2015).

Obr. 28 — Celkový snímek planetky (25143) Itokawa ze sondy Hayabusa. Rozměr planetky dosahuje $0.54 \times 0.31 \times 0.25$ km. Pozorovaná rotační perioda P = 12.1 h není konstantní, úhlové zrychlení dosahuje $d\Omega/dt = (0.35 \pm 0.04) \cdot 10^{-7}$ rad d⁻². Z dálky jsou viditelné jednotlivé velké balvany. © JAXA.

- [43] ČAPEK, D. Thermal effects in the physics and dynamics of the small Solar System bodies. PhD. Thesis, Charles Univ., 2007.
- [44] HECHT, F. New development in FreeFem++. J. Numer. Math., 20, 251, 2012.
- [45] LANGTANGEN, H. P. Computational partial differential equations. Numerical methods and Diffpack programming. Berlin: Springer-Verlag, 2003.
- [46] SAITO, J. AJ. Hayabusa AMICA V1.0. NASA Planetary Data System 90, 2010.
- [47] SI, H. TetGen A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. 2006. (http://tetgen.berlios.de).
- [48] ŠEVEČEK, P. Vliv tepelné emise topografických útvarů na rotační dynamiku planetek. Bc. Thesis, Charles Univ., 2014.
- [49] ŠEVEČEK, P., BROŽ, M., ČAPEK, D., ĎURECH, J. The thermal emission from boulders on (25143) Itokawa and general implications for the YORP effect. Mon. Not. R. Astron. Soc., 450, 2104–2115, 2015.
- [50] VOKROUHLICKÝ, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys., 335, 1093–1100, 1998.
4 Elasticita

Jednou z praktických úloh, se kterou se často setkáváme, je výpočet deformace při určitém zatížení. V porovnání se srážkami asteroidů se zdá problém poněkud "nudnější", protože se nikde nic nehýbe, hledáme jen finální rovnovážný stav, ale uvědomme si, že většina věcí v našem okolí je dosti *blízko* rovnováhy.

4.1 Rovnice rovnováhy, Hookeův zákon a Lamého rovnice

Pohybová rovnice pro pevnou látku, zapsaná v indexové notaci, je:¹⁹

$$\rho u_{r,tt} = \sigma_{rs,s} + \rho f_r$$

kde u_r označuje *posunutí*, index r = 1..3, resp. do počtu dimenzí, označuje složky souřadnic, ρ hustotu, σ_{rs} tenzor napětí (čili vnitřní síly působící na jednotku plochy, $[\sigma_{rs}] = Pa$), f_r zrychlení působící uvnitř tělesa (čili síly na jednotku objemu, $[\rho f_r] =$ N/m³), například by se mohlo jednat o gravitaci.

Vynecháním časových derivací získáme rovnici rovnováhy:

$$\sigma_{rs,s} + \rho f_r = 0 \quad \mathbf{v} \ \Omega \,, \tag{99}$$

která musí platit v celém objemu Ω tělesa.

Tuto parciální diferenciální rovnici musíme doplnit o konkrétní *okrajovou podmínku*, aby řešení bylo jednoznačné:

$$\sigma_{rs} n_s = g_r \quad \text{na } \Gamma \,, \tag{100}$$

platící na hranici Γ objemu Ω , kde působí povrchové síly g_r (vyjádřené na jednotku plochy, $[g_r] = Pa$); n_s zde označuje normálu k ploše. Pro volný povrch by bylo samozřejmě $g_r = 0$.

Hookeův zákon v nejjednodušší podobě je $\sigma = E\varepsilon$, kde σ označuje napětí (sílu na jednotku plochy, resp. průřezu), E Youngův modul pružnosti (též elastický modul, [E] = Pa) a ε je deformace (bezrozměrná, změna délky lomená délkou). Pro popis deformací ve třech rozměrech však potřebujeme jeho složitější podobu:

$$\sigma_{rs} = \lambda \varepsilon_{qq} \delta_{rs} + 2\mu \varepsilon_{rs} \,, \tag{101}$$

kde δ_{rs} je Kroneckerovo delta (pro r = s je $\delta_{rr} = 1$ jinak $\delta_{rs} = 0$) a λ a μ jsou Laméovy konstanty, mající určitý vztah k modulu pružnosti E a Poissonově poměru ν , jež jsou obvykle udávanými charakteristikami materiálů:

$$\mu = \frac{E}{2(1+\nu)}, \qquad \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$$

¹⁹ Indexy za čárkou označují v této notaci derivace , $t \equiv \frac{\partial}{\partial t}$, $s \equiv \frac{\partial}{\partial x_s}$, při totožných indexech platí sumační pravidlo $_{qq} \equiv \sum_{q}$.

Tenzor malých deformací je zaveden jako:

$$\varepsilon_{rs} \equiv \frac{1}{2} (u_{r,s} + u_{s,r}).$$

Dosazením Hookova zákona do rovnice pro rovnováhu obdržíme Laméovu rovnici, čili parciální diferenciální rovnici pro posunutí u_r ("skrytá" v tenzoru deformace):

$$(\lambda \varepsilon_{qq} \delta_{rs})_{,s} + (2\mu \varepsilon_{rs})_{,s} + \rho f_r = 0, \qquad (102)$$

neboli:

$$(\lambda u_{q,q}\delta_{rs})_{,s} + [\mu(u_{r,s} + u_{s,r})]_{,s} + \rho f_r = 0$$

Tuto rovnici zapíšeme abstraktněji pomocí diferenciálního operátoru:

$$\mathcal{L}(u_r) = 0. \tag{103}$$

4.2 Metoda konečných prvků (FEM)

Namísto (zatím neznámého) řešení u_r rovnice (103) hledáme jeho aproximaci (Langtangen 2003):

$$u \doteq \hat{u}_r = \sum_{j=1}^M u_{jr} N_{jr} \,,$$

kde N_{jr} jsou bázové funkce a u_{jr} hledané koeficienty; M je počet bodů sítě, kterou triangulujeme objem Ω . Pro aproximaci však nebude rovnice (103) platit přesně, nýbrž:

$$\mathcal{L}(\hat{u}_r) \neq 0$$
.

Požadujeme alespoň, aby součet všech reziduí byl nulový:

$$\int_{\Omega} \sum_{r=1}^{3} \mathcal{L}(\hat{u}_r) W_{ir} \mathrm{d}\Omega = 0 \,,$$

kde W_{ir} jsou vhodné váhy, neboli *testovací funkce*. Tato rovnice je tedy slabou formulací, neboť nepožadujeme přesnou platnost rovnice všude. Integrace přes objem Ω zde odpovídá sumaci $\sum_{i=1}^{M}$. Sumy přes body sítě *i* a přes dimenze *r* lze sdružit do jedné, abychom tu druhou nemuseli stále vypisovat.

V Galerkinově metodě bereme za váhy přímo bázové funkce, $W_{ir} \equiv N_{ir}$, takže:

$$\int_{\Omega} \mathcal{L}(\hat{u}_r) N_{ir} \mathrm{d}\Omega = 0$$

Pro naši rovnici rovnováhy (99) pak máme:

$$\int_{\Omega} \sigma_{rs,s} N_{ir} \mathrm{d}\Omega + \int_{\Omega} \rho f_r N_{ir} \mathrm{d}\Omega = 0 \,.$$

Pro její úpravu využijeme Greenovo lemma:

$$\int_{\Omega} \sigma_{rs,s} N_{ir} \mathrm{d}\Omega = -\int_{\Omega} \sigma_{rs} N_{ir,s} \mathrm{d}\Omega + \int_{\Gamma} \overbrace{\sigma_{rs} n_s}^{\sigma_{rs}} \mathrm{d}\Gamma$$

a zároveň dosadíme z Hookova zákona (101) a šikovně z okrajové podmínky (100):

$$-\int_{\Omega} (\lambda \varepsilon_{qq} \delta_{rs} + 2\mu \varepsilon_{rs}) N_{ir,s} d\Omega + \int_{\Gamma} g_r N_{ir} d\Gamma + \int_{\Omega} \rho f_r N_{ir} d\Omega = 0, \qquad (104)$$

 q_r

čímž získáme základní rovnici pro metodu konečných prvků.

4.3 Implementace v programu FreeFem++

V programu FreeFem++ (Hecht 2012) je implementace velmi snadná, protože umožňuje symbolický zápis integrálů přes Ω a Γ. Aby bylo zápisu dobře rozumět, některé členy rovnice (104) rozepíšeme:

$$\begin{split} \sum_{q} \varepsilon_{qq} &= \sum_{q} \frac{1}{2} \left(\frac{\partial u_{q}}{\partial x_{q}} + \frac{\partial u_{q}}{\partial x_{q}} \right) = \frac{\partial u_{1}}{\partial x} + \frac{\partial u_{2}}{\partial y} + \frac{\partial u_{3}}{\partial z} \,, \\ \sum_{r} \sum_{s} \delta_{rs} N_{ir,s} &= \sum_{r} \frac{\partial N_{ir}}{\partial x_{r}} = \frac{\partial v_{1}}{\partial x} + \frac{\partial v_{2}}{\partial y} + \frac{\partial v_{3}}{\partial z} \,, \\ \sum_{r} \sum_{s} \varepsilon_{rs} N_{ir,s} &= \sum_{r} \sum_{s} \frac{1}{2} \left(\frac{\partial u_{r}}{\partial x_{s}} + \frac{\partial u_{s}}{\partial x_{r}} \right) \frac{\partial N_{ir}}{\partial x_{s}} = \\ &= \frac{1}{2} \left(\frac{\partial u_{1}}{\partial x_{1}} + \frac{\partial u_{1}}{\partial x_{1}} \right) \frac{\partial v_{1}}{\partial x_{1}} + \frac{1}{2} \left(\frac{\partial u_{2}}{\partial x_{2}} + \frac{\partial u_{2}}{\partial x_{1}} \right) \frac{\partial v_{1}}{\partial x_{2}} + \frac{1}{2} \left(\frac{\partial u_{3}}{\partial x_{3}} + \frac{\partial u_{3}}{\partial x_{1}} \right) \frac{\partial v_{2}}{\partial x_{1}} + \\ &+ \frac{1}{2} \left(\frac{\partial u_{2}}{\partial x_{1}} + \frac{\partial u_{1}}{\partial x_{3}} \right) \frac{\partial v_{3}}{\partial x_{1}} + \frac{1}{2} \left(\frac{\partial u_{2}}{\partial x_{2}} + \frac{\partial u_{2}}{\partial x_{2}} \right) \frac{\partial v_{2}}{\partial x_{2}} + \frac{1}{2} \left(\frac{\partial u_{3}}{\partial x_{3}} + \frac{\partial u_{3}}{\partial x_{2}} \right) \frac{\partial v_{2}}{\partial x_{3}} + \\ &+ \frac{1}{2} \left(\frac{\partial u_{3}}{\partial x_{1}} + \frac{\partial u_{1}}{\partial x_{3}} \right) \frac{\partial v_{3}}{\partial x_{1}} + \frac{1}{2} \left(\frac{\partial u_{3}}{\partial x_{2}} + \frac{\partial u_{2}}{\partial x_{3}} \right) \frac{\partial v_{3}}{\partial x_{2}} + \frac{1}{2} \left(\frac{\partial u_{3}}{\partial x_{3}} + \frac{\partial u_{3}}{\partial x_{3}} \right) \frac{\partial v_{3}}{\partial x_{3}} = \\ &= \left[\frac{\partial u_{1}}{\partial x} , \frac{\partial u_{2}}{\partial y} , \frac{\partial u_{3}}{\partial z} , \frac{1}{\sqrt{2}} \left(\frac{\partial u_{2}}{\partial z} + \frac{\partial u_{3}}{\partial y} \right) , \frac{1}{\sqrt{2}} \left(\frac{\partial u_{1}}{\partial z} + \frac{\partial u_{3}}{\partial x} \right) , \frac{1}{\sqrt{2}} \left(\frac{\partial v_{1}}{\partial y} + \frac{\partial v_{2}}{\partial x} \right) \right] \,. \end{split}$$

Vlastní implementace pak je:

```
load "msh3";
mesh3 Th = readmesh3("cube.1.msh");
                                                // read mesh from file
real ag = 9.81;
                                                // gravitational acceleration [m/s^2]
real a = 0.1;
                                                // cross section dimensions [m]
real b = 0.15;
real m = 1.0;
                                                // mass attached at the end [kg]
real E = 21.5e10;
                                                // Young modulus [Pa], steel
real nu = 0.29;
                                                // Poisson ratio [], steel
real rho = 7800.;
                                                // density [kg/m^3], steel
```

```
real f = rho * ag;
                                                // volumetric force [Pa/m = N/m<sup>3</sup>]
real g = m*ag / (a*b);
                                                // surface force [Pa = N/m^2]
real mu = E/(2*(1+nu));
                                                // Lame's constants
real lambda = E*nu/((1+nu)*(1-2*nu));
fespace Vh(Th, [P1,P1,P1]);
                                                // finite elements space (vectorial)
Vh [u1,u2,u3], [v1,v2,v3];
real sqrt2 = sqrt(2.);
macro epsilon(u1,u2,u3) [ dx(u1), dy(u2), dz(u3), (dz(u2)+dy(u3))/sqrt2,
  (dz(u1)+dx(u3))/sqrt2, (dy(u1)+dx(u2))/sqrt2 ] // end-of-macro
macro div(u1,u2,u3) ( dx(u1)+dy(u2)+dz(u3) )
                                                 // end-of-macro
                                                // weak formulation
solve Lame([u1,u2,u3], [v1,v2,v3]) =
  int3d(Th)(
    lambda * div(u1,u2,u3) * div(v1,v2,v3)
                                                               // divergence term
    + 2.*mu*( epsilon(u1,u2,u3) '* epsilon(v1,v2,v3) ) //' ) // dot product
    )
  - int3d(Th) (-f*v3)
                                                // volumetric forces
  - int2d(Th,3) (-g*v3)
                                                // surface forces
  + on(1, u1=0, u2=0, u3=0);
                                                // Dirichlet boundary condition
savemesh(Th, "output.sol.mesh");
                                                // save output
savesol("output.sol", Th, [u1,u2,u3], order=1);
real umax = max(abs(u1[].min), u1[].max);
                                                // plot amplified mesh
cout << "\numax = " << umax << " m" << endl;</pre>
real coef = 0.2*b/umax;
mesh3 Thamp = movemesh3(Th, transfo = [x+u1*coef, y+u2*coef, z+u3*coef]);
int[int] ref0 = [1,0, 2,0, 3,0, 4,0, 5,0, 6,0];
int[int] ref2 = [1,2, 2,2, 3,2, 4,2, 5,2, 6,2];
Th = change(Th, label=ref2);
Thamp = change(Thamp, label=ref0);
plot(Th, Thamp, wait=1, cmm = "coef = " + coef);
```

Složky vektorové funkce \hat{u}_r jsou v programu značeny u1, u2, u3, testovací funkce N_{ir} pak v1, v2, v3. Program lze spustit z příkazové řádky FreeFem++ lame.edp. Příklad výsledku výpočtu je na obr. 29.

4.4 Testovací příklad s jednoduchým nosníkem

Analytické řešení lze použít pro kontrolu implementace. Pro nosník na jednom konci upevněný a na druhém konci zatížený, je výchylka konce [53]:

$$x_l = \frac{Fl^3}{3EI_a}$$

kde $F = ma_g$ je síla působící svisle na konec nosníku, *m* hmotnost závaží, a_g tíhové zrychlení, *l* délka nosníku, *E* modul pružnosti a I_a kvadratický moment průřezu. Pro obdélníkový průřez o rozměrech *a*, *b* (měřených vodorovně a svisle) a pro osu procházející středem je:

$$I_a = \frac{ab^3}{12} \,.$$

Obr. 29 — Porovnání nedeformované a deformované sítě, kde posunutí spočtená programem Free-Fem++ byla zvětšena faktorem asi 10^5 . Maximální posunutí jinak dosahuje $u_{\text{max}} = -0.77 \,\mu\text{m}$. Vlevo síť hrubá a vpravo jemná, s počtem vrcholů $n_{\text{vertices}} = 255$, resp. 11484. Objem, vymezený povrchovou sítí ve formátu MESH byl triangulován čtyřstěny pomocí programu Tetgen (Si 2006), konkrétně příkazem tetgen -Vgpnq1.2a1.e-6 cube.mesh, kde parametr q = 1,2 omezuje poměr stran čtyřstěnů a $a = 10^{-6}$ jejich maximální objem. Pro import se osvědčilo použít formát MSH, jenž získáme použitím skriptu ./nodeeleface2msh.awk cube.1.node cube.1.ele cube.1.face > cube.1.msh.

Obr. 30 — Porovnání numerického a analytického modelu deformace jednoduchého nosníku pro různé počty vrcholů sítě n_{vertices} . Hodnoty parametrů byly v obou případech zvoleny následovně: $l = 1,5 \text{ m}, a = 0,1 \text{ m}, b = 0,15 \text{ m}, m = 1 \text{ kg}, a_{\text{g}} = 9,81 \text{ m} \cdot \text{s}^{-2}, E = 21,5 \cdot 10^4 \text{ MPa}, \nu = 0,29.$

Rozdíly mezi analytickým a numerickým modelem dosahují méně než 5% pro počet vrcholů $n_{\rm vertices} \gtrsim 10^3$ (viz obr. 30). Mohou být dány jednak diskretizací numerického modelu a jednak omezeními analytického modelu.

4.5 Výpočet deformace montáže

Jako praktickou aplikaci si ukážeme výpočet deformace montáže astronomického dalekohledu. Před exportem z programu CAD je ovšem vhodné její konstrukci zjednodušit, abychom nepočítali deformace jednotlivých šroubů a matiček. Pak stačí konvertovat příslušnou síť do formátu MESH, triangulovat a přitom zadat působení silou určitého směru na určitou plochu (označenou pomocí sloupce label v síti). Výsledek výpočtu je ukázán na obr. 31; celou observatoř pak vidíme na obr. 32.

Nakonec je třeba zdůraznit, že výše uvedená lineární teorie je platná pouze pro $mal\acute{e}$ (elastické) deformace. Velké (neřkuli plastické) deformace by bylo třeba popsat rigorózněji.

- [51] HECHT, F. New development in FreeFem++. J. Numer. Math., 20, 251, 2012.
- [52] LANGTANGEN, H. P. Computational partial differential equations. Numerical methods and Diffpack programming. Berlin: Springer-Verlag, 2003.
- [53] Ohyb vetknutého nosníku. [online] [cit. 2017-05-04]. (http://physics.mff.cuni.cz/kfpp/skripta/kurz_fyziky_pro_DS/display.php/kontinuum/3_5).
- [54] SI, H. TetGen A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. 2006. (http://tetgen.berlios.de).

 $\begin{array}{l} \textbf{Obr. 31} & - \text{Spočtené} \text{ deformace vidlice, respektive části alt-azimutální montáže, při působení síly 1300 N na horní část, kde budou umístěny domečky pro momentové motory. Maximální posunutí činí 20 <math display="inline">\mu\text{m}.$ Vpravo výsledná podoba montáže.

Obr. 32 — Autonomní observatoř BlueEye 600, vyrobená firmou Projectsoft v rámci grantu Technologické agentury ČR, byla umístěna v Ondřejově.

5 Atmosféry a oceány

Atmosféra má jednu zásadní výhodu: jsme v ní neustále ponořeni a máme s ní bezprostřední zkušenost. Jednou ze základních vlastností atmosféry je *vítr*, neboli rychlost proudění \mathbf{v} , kterou v této kapitole budeme studovat výhradně pomocí Navierovy–Stokesovy rovnice. Tato zapsána v inerciální soustavě zní:

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \frac{\partial\boldsymbol{v}}{\partial t} + \overbrace{\boldsymbol{v}\cdot\nabla\boldsymbol{v}}^{\mathrm{advekce}} = \underbrace{-\frac{1}{\rho}\nabla P}_{\rho} + \overbrace{\boldsymbol{g}}^{\mathrm{tihov\acute{e}}} + \overbrace{\nu\nabla\cdot\nabla\boldsymbol{v}}^{\mathrm{viskozita}}, \tag{105}$$

kde t označuje čas, ρ hustotu, P tlak, **g** tíhové zrychlení a ν kinematickou viskozitu; dovolili jsme si ji napsat před operátor, tzn. je uniformní.

Pokud bychom vítr studovali v neinerciální soustavě, rotující úhlovou rychlostí Ω , a provedli potřebnou transformaci souřadnic, pak by ovšem bylo:

$$\left(\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t}\right)' = -\frac{1}{\rho}\nabla P + \boldsymbol{g}' + \nu\nabla\cdot\nabla\boldsymbol{v}' + \widetilde{\Omega'^2\boldsymbol{r}'_{\perp}} - \widetilde{2\vec{\Omega}'\times\boldsymbol{v}'}, \qquad (106)$$

kde \mathbf{r}'_{\perp} označuje vzdálenost od osy. Zcela přirozeně se používají lokální kartézské souřadnice, $\mathbf{r}' = (x, y, z)$, kde x směřuje na východ, y na sever, z svisle nahoru a odpovídající rychlosti $\mathbf{v}' = (u, v, w)$. Zřejmě nemá cenu psát neustále čárky, protože prakticky celá kapitola je čárkovaná. Ve zmiňované lokální soustavě ovšem potřebujeme vyjádřit vektor $\vec{\Omega}' = (0, \Omega \cos \varphi, \Omega \sin \varphi)$, kde φ je zeměpisná šířka inkriminovaného místa.

V literatuře se setkáváme s nejrůznějšími přibližnými rovnicemi, čili musíme být neustále ve střehu, kdy co platí. Nejčastější aproximace jsou: aproximace tenké vrstvy ($w \ll u, v$), izotermální (T = konst., čili $P(\rho)$), neviskózní ($\nu = 0$), nedivergentní ($\nabla \cdot \mathbf{v} = 0$), zanedbatelné odstředivé zrychlení ($r_{\perp} \doteq 0$), příp. Coriolisovo ($\Omega \doteq 0$) nebo Boussinesqův vztah pro vztlak ($-q\delta\rho/\rho$).

Abychom mohli posoudit významnost jednotlivých členů v rovnici (105), případně (106), spočteme si několikero bezrozměrných čísel. Získáme je tak, že jednotlivé členy (značené svorkami) podělíme, přičemž operátory nahradíme za škály, $\nabla \rightarrow 1/L$, a neznámé rychlosti očekávanými rychlostmi U. Konkrétně jde o Reynoldsovo číslo:

$$Re = \frac{advekce}{viskozita} = \frac{U^2/L}{\nu U/L^2} = \frac{UL}{\nu}; \qquad (107)$$

pro Re $\ll 1$ bývá proudění laminární, kdežto pro Re $>10^3$ turbulentní. Mezi tím je přechodová oblast s pozoruhodným chováním. Dále Rossbyho číslo:

$$Ro = \frac{advekce}{Coriolis} = \frac{U^2/L}{2U\Omega\sin\varphi} = \frac{U}{2L\Omega\sin\varphi},$$
(108)

Ekmanovo číslo:

$$Ek = \frac{viskozita}{Coriolis} = \frac{Ro}{Re} = \frac{\nu U/L^2}{2U\Omega \sin\varphi} = \frac{\nu}{2L^2\Omega \sin\varphi},$$
(109)

Richardsonovo číslo:

$$\operatorname{Ri} = \frac{\operatorname{vztlak}}{\operatorname{st\check{r}ih}} = \frac{g\frac{\delta\rho}{\rho}}{(\delta U)^2/L} = \frac{g}{\rho} \frac{\nabla\rho}{(\nabla U)^2} \,. \tag{110}$$

V případě, kdy bychom byli nuceni použít i rovnici přenosu energie, zajímalo by nás Prandtlovo číslo:

$$\Pr = \frac{\text{viskozita}}{\text{veden}i} = \frac{\nu}{\chi}, \qquad (111)$$

kde χ označuje tepelnou difuzivitu; Grashofovo číslo:

$$Gr = \frac{\text{vztlak}}{\text{viskozita}} = \frac{g\frac{\delta\rho}{\rho}}{\nu U/L^2} = \frac{g\alpha_V \delta T L^3}{\nu^2 T}, \qquad (112)$$

kde jsme vzali typickou rychlost $U = \nu/L$ při Re = 1 a α_V je koeficient tepelné roztažnosti; potažmo Rayleighovo číslo:

$$Ra = \frac{\text{vztlak}}{\text{veden}\acute{n}} = \operatorname{Gr} \operatorname{Pr} = \frac{g\delta TL^3}{\chi\nu T} \,. \tag{113}$$

Některá čísla má smysl určovat zvlášť pro škálu velkou (L) a malou (l). Mějme také v patrnosti, že viskozita ν může být buď molekulární, kdy difuzi rychlosti způsobují molekuly letící v rámci své střední volné dráhy ℓ , nebo turbulentní (angl. eddy, bulk), tzn. včetně příspěvku vírů.

5.1 Hydrostatická rovnováha

Nejprve zanedbáme vše, dokonce i vítr, $\mathbf{v} = 0$, $d\mathbf{v}/dt = 0$, T = konst., $r_{\perp} = 0$, $\Omega = 0$. Pak nezbývá, než aby bylo P = P(z) a nulové horizontální gradienty. Rovnice (106) přejde na rovnici hydrostatické rovnováhy:

$$0 = -\frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}z} - g\,,\tag{114}$$

kam dosadíme ze stavové rovnice ideálního plynu:

$$P = \frac{\rho}{\mu m_{\rm u}} kT \,, \tag{115}$$

čili:

$$\frac{1}{P}\mathrm{d}P = -\frac{g\mu m_{\mathrm{u}}}{kT}\mathrm{d}z\,.$$

Provedeme-li integraci obou stran:

$$\int \frac{1}{P} \mathrm{d}P = \ln P = -\frac{g\mu m_{\mathrm{u}}}{kT} \int \mathrm{d}z + C = -\frac{g\mu m_{\mathrm{u}}}{kT} z + C,$$

odkud:

$$P = P_0 \exp\left(-\frac{\overbrace{g\mu m_{\rm u}}^{= 1/H_P}}{kT}z\right),\tag{116}$$

kde jsme si označili H_P jako tlakovou škálu, na které se podstatně mění tlak (na Zemi je řádově $H_P \simeq 7.5$ km). Na kulaté a ke všemu rotující planetě ozářené zboku to však nemůže dlouho vydržet, neboť $T \neq$ konst.

5.2 Cyklostrofické proudění

Zanedbáme-li skoro vše, w = 0, $\nu = 0$, $r_{\perp} = 0$, $\Omega = 0$, zůstanou nám rovnice pro horizontální rychlosti:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial x} \,, \tag{117}$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial y} \,. \tag{118}$$

Použijeme-li souřadnice tangenciální a normálové (s, n), tzn. ve směru \mathbf{v} a kolmé na \mathbf{v} , pak:

$$\frac{\mathrm{d}v_s}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial s} \,, \tag{119}$$

$$\frac{\mathrm{d}v_n}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial n} \,. \tag{120}$$

Lze samozřejmě ztotožnit složku v_s s velikostí rychlosti $|\mathbf{v}|$, neboť $v_n = 0$ z definice. Normálové zrychlení dv_n/dt způsobuje zakřivování trajektorie větru. Pokud si ji přiblížíme jako kružnici (část kružnice) o poloměru r, pak pro normálové alias dostředivé zrychlení musí platit známý geometrický vztah $dv_n/dt = v_s^2/r$, čili:

$$\frac{\mathrm{d}v_s}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial s} \,, \tag{121}$$

$$\frac{v_s^2}{r} = -\frac{1}{\rho} \frac{\partial P}{\partial n} \,. \tag{122}$$

V ustáleném stavu d $v_s/dt = 0$, kdy se již nic nemění, musí tedy být velikost rychlosti v souladu s normálovým gradientem tlaku:

$$v_s = \sqrt{-\frac{r}{\rho}\frac{\partial P}{\partial n}}\,.\tag{123}$$

Takové situaci říkáme cyklostrofické proudění. Vyskytovat se může pouze okolo tlakové níže, aby nám nevyšlo v_s imaginární. Točit se může libovolným směrem. Jde o dobré přiblížení proudění v tornádu (obr. 33), trombě, blízko rovníku nebo na pomalu rotující planetě, jako je Venuše. V řeči charakteristických čísel toto proudění může vzniknout za podmínek: $\text{Re} \to \infty$, $\text{Ro} \to \infty$, $\text{Ek} \to 0$.

Obr. 33 — Tornádo, v němž lze vířivé proudění popsat přibližně jako cyklostrofické. © OAR, ERL, NSSL.

5.3 Geostrofické proudění

Mějme $w = 0, \nu = 0, r_{\perp} = 0$. Po provedení vektorového součinu $\Omega(0, \cos \varphi, \sin \varphi) \times (u, v, 0)$ pak obdržíme:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + 2\Omega \sin \varphi \, v \,, \tag{124}$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{1}{\rho}\frac{\partial P}{\partial y} - 2\Omega\sin\varphi \,u\,,\tag{125}$$

kde jsme si označili $f_{\rm C} = 2\Omega \sin \varphi$ jako Coriolisův parametr.

Pro zcela ustálené proudění (du/dt = dv/dt = 0) bychom měli rovnost:

$$(u,v) = \frac{1}{\rho f_{\rm C}} \left(-\frac{\partial P}{\partial y}, \frac{\partial P}{\partial x} \right) , \qquad (126)$$

což ovšem znamená, že vítr stále vane podél izobar, nikoli ve směru gradientu tlaku! Složky (u, v) a (-y, x) jsou zde "přehozené"; při izobarách ve směru y je totiž $\frac{\partial P}{\partial x} \neq 0$, čili vítr ve směru y. Této rovnovážné situaci říkáme geostrofické proudění. Při uvážení křivosti trajektorie v souřadnicích (s, n):

$$\frac{\mathrm{d}v_s}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial s} \,, \tag{127}$$

$$\frac{v_s^2}{r} = -\frac{1}{\rho} \frac{\partial P}{\partial n} - f_{\rm C} v_s \,, \tag{128}$$

odkud plyne kvadratická rovnice pro $v_s,$ mající řešení:

$$v_s = -\frac{f_{\rm C}r}{2} \pm \sqrt{\frac{f_{\rm C}^2 r^2}{4} - \frac{r}{\rho} \frac{\partial P}{\partial s}}.$$
(129)

Toto drobné zobecnění se nazývá gradientové proudění. Charakteristická čísla přitom bývají: $\text{Re} \to \infty$, $\text{Ro} \to 0$, $\text{Ek} \to 0$.

Zopakujme nakonec naše poznatky jinými slovy: na rotující planetě zásadně *ne-vanou* větry z oblastí vysokého tlaku do nízkého! Když se totiž vzduch pohne rychlostí **v** proti směru gradientu tlaku ($\boldsymbol{a}_{\nabla P} = -\frac{1}{\rho} \nabla P$), je záhy odchýlen Coriolisovým zrychlením (\boldsymbol{a}_{C} , kolmým na **v**) tak, že nakonec jsou obě zrychlení antiparalelní a proudění sleduje izobary (**v** je kolmé i na $\boldsymbol{a}_{\nabla P}$) — viz obr. 34. Je to mimochodem důvod, proč se na Zemi gradienty tlaku vyrovnávají dosti obtížně.

Rychlost $|\mathbf{v}|$ proudění se ustaví přibližně tak velká, aby Coriolisova síla úměrná $|\mathbf{v}|$ byla dostatečná na vyrovnání gradientu tlaku. Velký gradient tlaku (husté izobary) tedy automaticky znamenají rychlý geostrofický vítr! Pointa je ale v tom, že $\mathbf{a}_{\nabla P}$ není přesně rovno $-\mathbf{a}_{C}$, takže se vzduch se může pohybovat po křivkách. Vzduch okolo oblasti nízkého tlaku (cyklóny) rotuje na severní polokouli *proti* směru hodinových ručiček; vysoký tlak (anticyklóna) znamená rotaci po směru.

Obr. 34 — Proudění vzduchu rychlostí **v** okolo tlakové níže (cyklóny), zpočátku ve směru zrychlení od gradientu tlaku $(-\frac{1}{\rho}\nabla P)$, ale záhy odchýlené Coriolisovým zrychlením $(-2\vec{\Omega} \times \mathbf{v}, \text{ kolmým na } \mathbf{v})$ tak, že nakonec sleduje izobary.

5.4 Rossbyho vlny

Velmi pozoruhodná situace (oscilace) nastává, když $w = 0, \nu = 0, r_{\perp} = 0, \vec{\Omega}' = \Omega(0, \cos \varphi, \sin \varphi)$, ale $\varphi \neq$ konst. Úhlovou rychlost proto rozvineme v Taylorovu řadu:

$$\vec{\Omega}' \doteq \vec{\Omega}'_0 + \frac{\partial \vec{\Omega}'}{\partial \varphi} \Big|_{\varphi = \varphi_0} \mathrm{d}\varphi \,, \tag{130}$$

kde $\frac{\mathrm{d}\vec{\Omega}'}{\mathrm{d}\varphi} = \Omega\left(0, -\sin\varphi, \cos\varphi\right), \,\mathrm{d}\varphi = \frac{y}{R_{\oplus}}$. Jde vlastně o aproximaci zakulaceného povrchu Země tečnou rovinou, označovanou též jako rovina β . Pak máme rovnice:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + 2\Omega \sin \varphi_0 v + 2\Omega \cos \varphi_0 \frac{1}{R_{\oplus}} y v, \qquad (131)$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{1}{\rho}\frac{\partial P}{\partial y} - 2\Omega\sin\varphi_0 \, u - 2\Omega\cos\varphi_0 \frac{1}{R_{\oplus}} y \, u \,. \tag{132}$$

V následujícím budeme dále předpokládat: $u = u_{\rm G} + u^*$, $v = v_{\rm G} + v^*$, tzn. že na pozadí geostrofického proudění probíhají nějaké další pohyby, $u_{\rm G} = \text{konst.}$, $v_{\rm G} = 0$ (proudění V \leftrightarrow Z), u^* , $v^* \ll u_{\rm G}$ a konec konců nedivergentní proudění $\frac{\partial u^*}{\partial x} + \frac{\partial v^*}{\partial y} = 0$. Není divu, že aproximací musí být celá řada (asi 10), jinak by nám nikdy nemohly vyjít jednoduché harmonické vlny! Po prvotním dosazení:

$$\frac{\mathrm{d}(u_{\mathrm{G}}+u^{*})}{\mathrm{d}t} = -\frac{1}{\rho}\frac{\partial P}{\partial x} + f_{\mathrm{C}}(v_{\mathrm{G}}+v^{*}) + \beta y(v_{\mathrm{G}}+v^{*}),$$
$$\frac{\mathrm{d}(v_{\mathrm{G}}+v^{*})}{\mathrm{d}t} = -\frac{1}{\rho}\frac{\partial P}{\partial y} - f_{\mathrm{C}}(u_{\mathrm{G}}+u^{*}) - \beta y(u_{\mathrm{G}}+u^{*}).$$

Všechny členy odpovídající geostrofickému proudění (124), (125) (tj. včetně ∇P) odečteme a zůstanou nám rovnice pro poruchy, kde jsme dočasně pedagogicky ponechali $v_{\rm G} \neq 0$:

$$\frac{\partial u^*}{\partial t} + u_{\rm G} \frac{\partial u^*}{\partial x} + v_{\rm G} \frac{\partial u^*}{\partial y} = +f_{\rm C} v^* + \beta y (v_{\rm G} + v^*), \qquad (133)$$

$$\frac{\partial v^*}{\partial t} + u_{\rm G} \frac{\partial v^*}{\partial x} + v_{\rm G} \frac{\partial v^*}{\partial y} = -f_{\rm C} u^* - \beta y (u_{\rm G} + u^*), \qquad (134)$$

ale jinak samozřejmě:

$$\frac{\partial u^*}{\partial t} + u_{\rm G} \frac{\partial u^*}{\partial x} = +f_{\rm C} v^* + \beta y v^* ,
\frac{\partial v^*}{\partial t} + u_{\rm G} \frac{\partial v^*}{\partial x} = -f_{\rm C} u^* - \beta y (u_{\rm G} + u^*) .$$

Derivujeme-li první rovnici parciálně dle y a druhou dle x:

$$\frac{\partial}{\partial y}\frac{\partial u^*}{\partial t} + u_{\rm G}\frac{\partial}{\partial y}\frac{\partial u^*}{\partial x} = +f_{\rm C}\frac{\partial v^*}{\partial y} + \beta v^* + \beta y\frac{\partial v^*}{\partial y},$$
$$\frac{\partial}{\partial x}\frac{\partial v^*}{\partial t} + u_{\rm G}\frac{\partial}{\partial x}\frac{\partial v^*}{\partial x} = -f_{\rm C}\frac{\partial u^*}{\partial x} - \beta y\frac{\partial u^*}{\partial x},$$

zmizí nám po odečtení 4 otravné členy (kvůli nedivergenci) a zůstane krásná rovnice:

$$\frac{\partial}{\partial t} \left(\frac{\partial u^*}{\partial y} - \frac{\partial v^*}{\partial x} \right) + u_{\rm G} \frac{\partial}{\partial x} \left(\frac{\partial u^*}{\partial y} - \frac{\partial v^*}{\partial x} \right) = \beta v^* , \qquad (135)$$

mající vlnový charakter. S jednou rovnicí pro dvě funkce pochopitelně nic nezmůžeme, nicméně bez velké újmy na obecnosti můžeme předpokládat řešení ve tvaru:

$$u^* = 0,$$
 (136)

$$v^* = C \operatorname{e}^{\operatorname{i}(kx - \omega t)},\tag{137}$$

odkud po dosazení:

$$-k\omega C e^{i(kx-\omega t)} + u_{\rm G}k^2 C e^{i(kx-\omega t)} = \beta C e^{i(kx-\omega t)}$$

a krácení vychází Rossbyho disperzní relace:

$$\omega = u_{\rm G}k - \frac{\beta}{k} \,. \tag{138}$$

Fázová rychlost, s níž vlny postupují tam, příp. zpět, by byla $c = \lambda f = \frac{\omega}{k}$. Při c = 0 by vznikla stacionární vlna, s $\omega = 0$ a $k^2 = \frac{\beta}{u_{\rm G}}$. Jedná se o nejvýznamnější vlny planetárního měřítka (obr. 35).

Obr. 35 — Rossbyho vlny velkého měřítka ($\lambda \gtrsim 10^3$ km) se nacházejí na rozhraní mezi mírným a polárním pásmem. V ose ve výšce se také vyskytuje tryskové proudění (angl. jet stream), vyvolané termálním větrem. Převzato z (http://www.geography.hunter.cuny.edu/tbw/wc.notes/7.circ.atm/rossby_waves.htm).

5.5 Termální vítr ve výšce

Je-li stále w = 0, $\nu = 0$, $r_{\perp} = 0$, du/dt = dv/dt = 0, můžeme zkombinovat naše znalosti horizontální (126) a vertikální (116) a pro *rozdíl* rychlostí ustáleného geostrofického větru ve dvou výškových hladinách psát:

$$u_2 - u_1 = -\frac{1}{f_{\rm C}} \left(\frac{1}{\rho_2} \frac{\partial P_2}{\partial y} - \frac{1}{\rho_1} \frac{\partial P_1}{\partial y} \right) , \qquad (139)$$

$$v_2 - v_1 = \frac{1}{f_{\rm C}} \left(\frac{1}{\rho_2} \frac{\partial P_2}{\partial x} - \frac{1}{\rho_1} \frac{\partial P_1}{\partial x} \right) , \qquad (140)$$

kde si při hydrostatické rovnováze, $z_2 - z_1 = \frac{k\bar{T}}{g\mu m_u} \ln \frac{P_1}{P_2}$, snadno spočteme horizontální derivace:

$$0 - 0 = \frac{k}{g\mu m_{\rm u}} \left(\frac{\partial \bar{T}}{\partial x} \ln \frac{P_1}{P_2} + \bar{T} \frac{P_2}{P_1} \frac{\partial P_1}{\partial x} \frac{1}{P_2} - \bar{T} \frac{P_2}{P_{\rm t}} \frac{P_1}{P_2^2} \frac{\partial P_2}{\partial x} \right) \,,$$

odkud vyjádříme:

$$\frac{\partial P_2}{\partial x} = \frac{P_2}{\bar{T}} \ln \frac{P_1}{P_2} \frac{\partial T}{\partial x} + \frac{P_2}{P_1} \frac{\partial P_1}{\partial x} = \frac{\frac{k}{\mu m_{\rm u}} \rho_2 T_2}{\bar{T}} \frac{g \mu m_{\rm u}}{k \bar{T}} (z_2 - z_1) \frac{\partial \bar{T}}{\partial x} + \frac{T_2}{T_1} \frac{\rho_2}{\rho_1} \frac{\partial P_1}{\partial x} \,,$$

což dosadíme do (140):

$$v_2 - v_1 = \frac{1}{f_{\rm C}} \left[\frac{T_2}{\bar{T}^2} g(z_2 - z_1) \frac{\partial \bar{T}}{\partial x} + \frac{T_2}{T_1} \underbrace{\frac{1}{\rho_1} \frac{\partial P_1}{\partial x}}_{-\frac{1}{\rho_1} \frac{\partial P_1}{\partial x}} - \frac{1}{\rho_1} \frac{\partial P_1}{\partial x} \right]$$

Zcela stejně bychom postupovali pro $\frac{\partial}{\partial y}$ a obdrželi bychom zásadní vztah:

$$(u_2 - u_1, v_2 - v_1) = \frac{T_2}{\bar{T}^2} \frac{g}{f_C} (z_2 - z_1) \left(-\frac{\partial \bar{T}}{\partial y}, \frac{\partial \bar{T}}{\partial x} \right) + \left(\frac{T_2}{T_1} - 1 \right) (u_1, v_1).$$
(141)

Popisuje totiž změny horizontálního větru s výškou, když jsou přítomné horizontální teplotní gradienty $\nabla_{xy} T$. Zejména $\frac{\partial T}{\partial y}$ (ve směru J \rightarrow S) bývá hodně záporný, tudíž rychlost u ve směru Z \rightarrow V roste se z, až se proudění nahoře (na rozhraní troposféry a stratosféry) stává tryskové.

Jinými slovy: nad místem, kde je vedro (větší T), je atmosféra více "nadýchaná" (má větší H_P), P(z) zde klesá relativně pomaleji, což v porovnání s místem, kde byla zima, naklání plochy konstantního tlaku víc a víc, a jakékoliv ∇P nutně vede k **v**. Původně barotropní atmosféra ($P = P(\rho)$) je nyní baroklinická ($P = P(\rho, T)$).

5.6 Ekmanova spirála v hloubce

Zkonstruujme nyní rovnice i pro vodu, nad kterou fouká vítr. Předpokládejme pro ni $w = 0, r_{\perp} = 0$ a pišme:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{1}{\rho}\frac{\partial P}{\partial x} + f_{\mathrm{C}}v + \nu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right),\qquad(142)$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{1}{\rho}\frac{\partial P}{\partial y} - f_{\mathrm{C}}u + \nu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right).$$
(143)

Dále si dovolíme předpokládat ustálený stav, $\frac{du}{dt} = 0$, $\frac{dv}{dt} = 0$, totéž proudění v blízkém okolí, tzn. $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$, $\frac{\partial P}{\partial x} = \frac{\partial P}{\partial y} = 0$; 2. derivace jsou také nulové, a nestlačitelnost (nedivergentnost), $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$, která je pro vodu více než přijatelná. Pak se nám rovnice redukují na:

$$0 = f_{\rm C}v + \nu \frac{\partial^2 u}{\partial z^2}, \qquad (144)$$

$$0 = -f_{\rm C}u + \nu \frac{\partial^2 v}{\partial z^2}.$$
(145)

Dále musíme specifikovat dvě okrajové podmínky (na dně a na hladině). Vítr charakterizujeme napětím na hladině, což v pohybové rovnici odpovídá zrychlení $\boldsymbol{a} = \nu \nabla \cdot \nabla \boldsymbol{v} = \frac{1}{\rho} \nabla \cdot \sigma$, odkud plyne vztah $\nabla \boldsymbol{v} = \frac{1}{\mu} \sigma$, kde $\mu = \nu \rho$ je dynamická viskozita. Při působení na plochu $\hat{x}\hat{y}$, kolmou na \hat{z} , a to ve směru osy \hat{y} , máme pouze jedinou složku tenzoru napětí σ_{zy} nenulovou, čili:²⁰

$$u, v \to 0 \quad \text{pro } z \to -\infty \,, \tag{146}$$

$$\frac{\partial u}{\partial z} = 0, \quad \frac{\partial v}{\partial z} = \frac{1}{\mu} \sigma_{zy} \quad \text{pro } z = 0.$$
 (147)

Provedeme substituci za komplexní rychlost $\mathcal{V} \equiv u + iv$, čímž získáme:

$$0 = -\mathrm{i}f_{\mathrm{C}}\mathcal{V} + \nu \frac{\partial^2 \mathcal{V}}{\partial z^2} \,. \tag{148}$$

Obecným řešením je exponenciála (s vědomím, že $\sqrt{i} = \pm \frac{1}{\sqrt{2}}(1+i)$ a $a \equiv \sqrt{\frac{f_{\rm C}}{2\nu}}$):

$$\mathcal{V} = C_1 \,\mathrm{e}^{(1+\mathrm{i})az} + C_2 \,\mathrm{e}^{-(1+\mathrm{i})az} \,. \tag{149}$$

Z (146) ihned plyne $C_2 = 0$. Abychom vyčíslili 1. integrační konstantu, potřebujeme 1. derivaci:

$$\left. \frac{\partial \mathcal{V}}{\partial z} \right|_{z=0} = C_1 (1+\mathrm{i}) a = \mathrm{i} \frac{1}{\mu} \sigma_{zy} \,,$$

odkud:

$$C_1 = \frac{\mathrm{i}}{1+\mathrm{i}} \frac{1}{a\mu} \sigma_{zy} = \frac{1+\mathrm{i}}{2} \sqrt{\frac{2}{f_{\mathrm{C}}\rho\mu}} \sigma_{zy} = \mathrm{e}^{\mathrm{i}\frac{\pi}{4}} \underbrace{\sigma_{zy}}{\sqrt{f_{\mathrm{C}}\rho\mu}}$$

²⁰ Obdobný model existuje pro přízemní vrstvu atmosféry, kde si proudění opět rozdělíme na geostrofické a ageostrofické (viskózní): $u = u_{\rm G} + u^*$, $v = v_{\rm G} + v^*$. Pozaďové geostrofické a gradienty tlaku se odečtou, zbudou nám rovnice: $0 = f_{\rm C}(v - v_{\rm G}) + \nu \frac{\partial^2 u}{\partial z^2}$, $0 = -f_{\rm C}(u - u_{\rm G}) + \nu \frac{\partial^2 v}{\partial z^2}$, spolu s vhodně upravenými okrajovými podmínkami: u = 0, v = 0 pro z = 0 a $u = u_{\rm G}$, $v = v_{\rm G}$ pro $z \to \infty$.

a tedy:

$$\mathcal{V} = u + iv = v_0 e^{az} e^{i(az + \frac{\pi}{4})} .$$
(150)

Závěr je zřejmý: slabý vánek mívá hluboký vliv! Navíc jako námořníci nebudeme překvapeni, že nás mořský proud unáší o 45° jinam než vítr (viz obr. 36).

Obr. 36 — Ekmanova spirála, vytvářená vektory rychlosti (u, v) ve směrech standardních souřadnicových os (x, y) pro rostoucí hloubky z. Vyznačen je i směr větru (napětí) **T**, odpovídající složce tenzoru napětí σ_{zy} . Povrchové proudění (z = 0) je odchýlené o úhel 45°, který se s hloubkou stáčí po směru hodinových ručiček. Převzato z Ekman (1902).

5.7 Semiempirická konvekce

Konvekci, neboli přenos energie prouděním, je možné posoudit tak, že budeme studovat pohyb jediné bubliny, která je trochu řidší (příp. hustší) než okolí. Využijeme přitom Boussinesqovy aproximace pro vztlak:

$$a_{\rm vz} = -\frac{1}{\rho} \frac{\partial P}{\partial z} - g \doteq -\frac{(\rho_{\rm b} - \rho_{\rm o})V_{\rm b}g}{m_{\rm b}} = -g \frac{\delta\rho}{\rho} = g\alpha_V \frac{\delta T}{T}, \qquad (151)$$

kde $\rho_{\rm b}, V_{\rm b}, m_{\rm b}$ označují hustotu, objem a hmotnost bubliny, $\rho_{\rm o}$ hustotu okolí, g tíhové zrychlení a α_V koeficient teplotní roztažnosti, jenž je pro ideální plyn roven 1. Tento vztah implicitně předpokládá tlak bubliny neustále vyrovnaný s okolím, neboli $P = \frac{k}{\mu m_u} \rho T$, $dP = \frac{k}{\mu m_u} (d\rho T + \rho dT) = 0$ při $\mu = \text{konst.}$ Druhou závažnou aproximací je, že všechny řídké bubliny se pohybují vzhůru po

stejné dráze, směšovací délce:

$$\ell = \alpha H_P \,, \tag{152}$$

která je vztažena k tlakové škále:

$$H_P = \frac{kT}{g\mu m_{\rm u}}\,,\tag{153}$$

přičemž parametr α se volí empiricky.

Bublina, která vystoupila vzhůru má obecně teplotu odlišnou o δT od okolí, a tedy měrnou tepelnou energii (v J m⁻³) odlišnou o dQ:

$$dQ = c_P \left(\frac{dT}{dz} \Big|_{\rm b} - \frac{dT}{dz} \Big|_{\rm o} \right) \ell \rho, \qquad (154)$$

jež se může přenést do okolí; c_P označuje měrnou tepelnou kapacitu při konstantním tlaku. Přitom vzniká tok tepla (ve W m⁻²):

$$\Phi_{\rm semi} = \mathrm{d}Q\bar{v}\,,$$

kde průměrnou rychlost \bar{v} odvodíme z průměrného zrychlení (na začátku je $a \doteq 0$):

$$\bar{a} = \frac{1}{2}g\frac{\delta T}{T} \,,$$

neboť práce konaná vztlakem se s určitou účinností
 β přemění v kinetickou energii bubliny:

$$\beta m_{\rm b} \bar{a} \ell = \frac{1}{2} m_{\rm b} \bar{v}^2 ,$$

$$\bar{v} = \sqrt{2\beta \bar{a} \ell} . \tag{155}$$

tudíž:

Poslední problém: kde vzít ∇T pro bublinu a okolí? Vždyť si ji pouze mlhavě představujeme! Nemáme zde sice žádnou informaci o rychlostním poli \mathbf{v} , ale snad je \bar{v} dost velké, abychom pro všechny bubliny mohli použít ∇T adiabatický (viz níže). S okolím nelze dělat nic, jen ho přeznačit na "semi". Výsledný tok tepla:

$$\Phi_{\rm semi} = c_P \delta T \rho \sqrt{\beta g \frac{\delta T}{T} \alpha \frac{kT}{g \mu m_{\rm u}}} = \alpha^2 \sqrt{\beta} \, c_P \rho \left(\frac{k}{\mu m_{\rm u}}\right)^2 \left[\frac{T}{g} \left(\frac{\mathrm{d}T}{\mathrm{d}z}\Big|_{\rm ad} - \frac{\mathrm{d}T}{\mathrm{d}z}\Big|_{\rm semi}\right)\right]^{\frac{3}{2}},\tag{156}$$

což je semiempirický vztah, který se musí pro danou aplikaci kalibrovat volbou α a β .²¹ Vizuálním příkladem konvektivního proudění je obr. 37.

Adiabatický gradient teploty. Pro adiabatické děje (bez zdroje nebo výměny tepla s okolím) platí zjednodušená stavová rovnice:

$$P = K \rho^{\Gamma} \,, \tag{157}$$

jejíž diferenciál:

$$\mathrm{d}P = K\Gamma\rho^{\Gamma-1}\mathrm{d}\rho = \frac{\Gamma P}{\rho}\mathrm{d}\rho\,.\tag{158}$$

²¹ Kdybychom potřebovali vyjádřit $\frac{dT}{dR}\Big|_{\text{semi}}$ pro účely stavění hvězd, předpokládejme, že veškerý tok $\Phi = \frac{L_R}{4\pi R^2}$ je přenášen konvektivně a invertujme (156).

Pro obecnější stavovou rovnici bychom měli $P = P(\mu, \rho, T)$:

$$\mathrm{d}P = \frac{\partial P}{\partial \mu} \mathrm{d}\mu + \frac{\partial P}{\partial \rho} \mathrm{d}\rho + \frac{\partial P}{\partial T} \mathrm{d}T \,.$$

Za předpokladu homegenního chemického složení ($d\mu = 0$) odtud lze vyjádřit dT, vypočítat parciální derivace pro ideální plyn (115) a dosadit za $d\rho z$ (158):

$$dT|_{ad} = \frac{\partial T}{\partial P} \left(dP - \frac{\partial P}{\partial \rho} d\rho \right) = \frac{T}{P} \left(dP - \frac{P}{\rho} d\rho \right) = \frac{T}{P} \left(1 - \frac{1}{\Gamma} \right) dP.$$
(159)

Vidíme, že ∇T je určen ∇P . Asi není divu, když se vlastně nic neděje (dQ = 0).

Bruntova–Väisäläova frekvence. Vztlakové zrychlení (151) můžeme ekvivalentně vyjádřit pomocí gradientů a dosadit za d ρ z (158):

$$a_{\rm vz} = -\frac{g}{\rho} \underbrace{\left(\frac{\mathrm{d}\rho}{\mathrm{d}z}\Big|_{\rm b} - \frac{\mathrm{d}\rho}{\mathrm{d}z}\Big|_{\rm o}\right)}_{z} = -\frac{g}{\rho} \left(\frac{\rho}{\Gamma P} \frac{\mathrm{d}P}{\mathrm{d}z} - \frac{\mathrm{d}\rho}{\mathrm{d}z}\right) z \equiv -N^2 z \,. \tag{160}$$

Z vertikální pohybové rovnice:

$$\frac{\mathrm{d}w}{\mathrm{d}z} = -N^2 z\,,$$

která je obdobou harmonického oscilátoru, je potom zřejmé, že pro $N^2 > 0$ dochází k oscilacím, neboli vztlakovým vlnám. Naopak pro $N^2 < 0$ (N imaginární) nastává vztlaková (konvektivní) nestabilita. N nazýváme Bruntova–Väisäläova frekvence, neboť vystupuje také v disperzní relaci pro vztlakové vlny (g-módy).

Obr. 37 — Stínová fotografie konvektivního proudění. Změny ρ a T způsobují změny indexu lomu $n(\rho, T)$, které se projevují ve vrženém stínu odkláněním paprsků a kaustikami. Převzato z (http://www.math.nyu.edu/aml/wetlab/projects/3d-convection.html).

5.8 Kolmogorovovo spektrum turbulence

Ovšemže víry (bubliny) nemají totožné rozměry. Rozměr víru L souvisí s jeho vlnovým číslem $k = 2\pi/L$ i úhlovou frekvencí ω jeho otáčení, skrz disperzní relaci typu $\omega \simeq kc_v$, kde c_v je typická rychlost otáčení. Může přitom docházet ke splývání vírů nebo k jejich rozpadání, přičemž z Navierovy–Stokesovy rovnice lze odvodit výběrové pravidlo $k_3 = k_1 + k_2$; nikoliv $L_3 = L_1 + L_2$! V limitním případě, kdy jsou víry stejně velké stejného směru, platí $k_3 \simeq 2k_1$, nebo naopak, je-li druhý mnohem větší než první, $k_3 \simeq k_1 + \delta$ (Salmon 1998). Maximální škála, tj. minimální k_{inj} , se nazývá vstřikovací a je určena vnějšími okolnostmi (např. rozměrem planety). Naopak nejmenší škála, maximální k_{ν} , je svou podstatou viskózní, daná molekulární viskozitou ν , způsobující definitivní disipaci vírů.

Splývání a rozpadání vírů lze relativně snadno popsat pro nedivergentní proudění. Nemusí se nutně jednat o nestlačitelnou kapalinu, jenom to prostě teď nediverguje. Mějme tedy:

$$\nabla \cdot \mathbf{v} = 0,$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla P + \nu \nabla \cdot \nabla \mathbf{v}.$$
 (161)

Aplikujme proto divergenci na posledně jmenovanou rovnici (s tím, že operátory působí výhradně doprava):

$$\frac{\partial}{\partial t} \overbrace{\nabla \cdot \mathbf{v}}^{0} + (\nabla \mathbf{v}) : \nabla \mathbf{v} + \overbrace{v_{j} \nabla_{i} \nabla_{i} v_{j}}^{0} = -\frac{1}{\rho} \nabla \cdot \nabla P + \nu \overbrace{\nabla_{j} \nabla_{i} \nabla_{i} v_{j}}^{0},$$

$$(\nabla \mathbf{v}) : \nabla \mathbf{v} = -\frac{1}{\rho} \nabla \cdot \nabla P.$$
(162)

čili:

Nyní si představme, že za rychlost i tlak dosadíme z jejich zpětné Fourierovy transformace:

$$\boldsymbol{v}(\boldsymbol{r},t) = \int \boldsymbol{u}(\boldsymbol{k},t) \,\mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}} \,\mathrm{d}\boldsymbol{k}\,, \qquad (163)$$

$$p(\mathbf{r},t) = \int q(\mathbf{k},t) \,\mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \,\mathrm{d}\mathbf{k} \,. \tag{164}$$

Pak člen vlevo:

$$\begin{split} \frac{\partial v_j}{\partial x_i} \frac{\partial v_i}{\partial x_j} &= \frac{\partial}{\partial x_i} \int u_j \,\mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \,\mathrm{d}\mathbf{k} \frac{\partial}{\partial x_i} \int u_i \,\mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \,\mathrm{d}\mathbf{k} = \int u_j \mathrm{i}k_i \,\mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \,\mathrm{d}\mathbf{k} \int u_i \mathrm{i}k_j \,\mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \,\mathrm{d}\mathbf{k} = \\ &= \iint u_j \mathrm{i}m_i \,\mathrm{e}^{\mathrm{i}\mathbf{m}\cdot\mathbf{r}} \,\mathrm{d}\mathbf{m} \,u_i \mathrm{i}n_j \,\mathrm{e}^{\mathrm{i}\mathbf{n}\cdot\mathbf{r}} \,\mathrm{d}\mathbf{n} \,, \end{split}$$

kde jsme zaměnili integrační proměnnou za dvě různé, abychom mohli integrovat *en bloc*; a člen vpravo:

$$-\frac{1}{\rho}\nabla\cdot\nabla P = \dots \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\int q \,\mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}\,\mathrm{d}\boldsymbol{k} = \dots \int q(-k^2)\,\mathrm{e}^{\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}\,\mathrm{d}\boldsymbol{k} = \frac{1}{\rho}k^2p\,.$$

Po dosazení proveďme ještě násobení $e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}$, integraci přes objem $\int d\boldsymbol{r}$ a využijme také dopřednou Fourierovu transformaci $q(\boldsymbol{k},t) = \frac{1}{(2\pi)^3} \int p(\boldsymbol{r},t) e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} d\boldsymbol{r}$:

$$-\int \int \int u_j u_i m_i n_j e^{i(\boldsymbol{m}\cdot\boldsymbol{r}+\boldsymbol{n}\cdot\boldsymbol{r}-\boldsymbol{k}\cdot\boldsymbol{r})} d\boldsymbol{m} d\boldsymbol{n} d\boldsymbol{r} = \frac{1}{\rho} k^2 \int p e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} d\boldsymbol{r} = \frac{1}{\rho} k^2 (2\pi)^3 q.$$
(165)

Jeden z integrálů vlevo lze ovšem spočítat:

$$\int e^{i(\boldsymbol{m}+\boldsymbol{n}-\boldsymbol{k})\cdot\boldsymbol{r}} d\boldsymbol{r} = (2\pi)^3 \delta(\boldsymbol{m}+\boldsymbol{n}-\boldsymbol{k})$$
(166)

pro jakoukoliv harmonickou funkci to je 0, jen pro $e^{i0} = 1$ to diverguje, což je právě vlastnost Diracovy distribuce δ . Musíme ovšem integrovat od $-\infty$ do $+\infty$, abychom náhodou neintegrovali přes "půlvíry".

Uvědomme si, co jsme tak získali:

$$-\int \int u_j u_i m_i n_j \delta(\mathbf{m} + \mathbf{n} + \mathbf{k}) \mathrm{d}\mathbf{m} \,\mathrm{d}\mathbf{n} = \frac{1}{\rho} k^2 q$$

tj. vztah pro fourierovský tlak q, vyjádřený pomocí fourierovských rychlostí u, v němž však vystupuje δ . Kdybychom ho dosadili do Fourierovy transformace (161), získali bychom rovnici, v níž existuje vazba mezi víry různých vlnových vektorů, pouze když:

$$\boldsymbol{m} + \boldsymbol{n} - \boldsymbol{k} = 0, \qquad (167)$$

což je ono výběrové pravidlo.

Veličina vhodná pro posouzení vírů je energie \mathcal{E}_k na jednotku hmoty a vlnové číslo, respektive její závislost na k. Bylo-li toto spektrum vírů vytvořeno pouze a jen splýváním, rozpadáním a disipací, pak by nemělo záviset na ničem jiném než na k a právě rychlosti ψ disipace energie na jednotku hmoty, která by zase měla být pouze a jen funkcí viskozity ν . Když tam žádné jiné procesy neprobíhají, tak to na nich logicky ani nezávisí. Předpokládejme proto nejjednodušší možnou mocninnou závislost (stejně jako Kolmogorov 1941):

$$\mathcal{E}_k(k,\psi) = Ck^{\alpha}\psi^{\beta} \,. \tag{168}$$

Jednotky výše zmiňovaných veličin jsou přitom $[k] = m^{-1}$, $[\mathcal{E}_k] = [mv^2m^{-1}k^{-1}] = m^3 s^{-2}$, $[\psi] = [mv^2m^{-1}t^{-1}] = m^2 s^{-3}$ a $[\nu] = [a\nabla^{-2}v^{-1}] = m^2 s^{-1}$. Proto nezbývá, než aby exponenty splňovaly podmínku:

$$m^3 s^{-2} = m^{-\alpha} m^{2\beta} s^{-3\beta}$$

tzn. 3 = $-\alpha + 2\beta$, $-2 = -3\beta$, $\beta = \frac{2}{3}$, $\alpha = -\frac{5}{3}$. Výsledné spektrum je nevyhnutelně:

$$\mathcal{E}_k(k,\psi) = Ck^{-\frac{5}{3}}\psi^{\frac{2}{3}}.$$
(169)

Vidíme, že pro velká k, malá L, je turbulence vskutku tlumena viskozitou. Není divu, že \mathcal{E}_k je klesající.

Obdobně lze argumentovat a odvodit úměrnost viskózní škály:

$$k_{\nu} = D\nu^{\gamma}\psi^{\delta}, \qquad (170)$$
$$\mathbf{m}^{-1} = \mathbf{m}^{2\gamma} \,\mathbf{s}^{-\gamma} \,\mathbf{m}^{2\delta} \,\mathbf{s}^{-3\delta}.$$

a proto:

$$k_{\nu} = D\nu^{-\frac{3}{4}}\psi^{\frac{1}{4}}.$$
(171)

Energie na jednotku hmoty a jednotku délky L by byla zřejmě:

$$\mathcal{E}_L(L,\psi) = \mathcal{E}_k \frac{\mathrm{d}k}{\mathrm{d}L} = C' L^{\frac{5}{3}} \psi^{\frac{2}{3}} \left(-\frac{2\pi}{L^2}\right) = C'' L^{-\frac{1}{3}} \psi^{\frac{2}{3}} \,. \tag{172}$$

Richardson (1922) podle této rovnice dokonce složil báseň: "Velké víry mají malé víry, dbající jejich rychlosti, malé víry mají menší víry, a tak dál až do vazkosti." :)

Reálné spektrum vírů může být pochopitelně ovlivněno i jinými procesy a odchylovat se od kolmogorovského. Konkrétně je možné, že turbulence ještě není plně rozvinutá. Začneme-li s jedním vírem, chvíli trvá, než vznikne celé spektrum. V tekutině mohou vznikat vlny postupné, odnášející určitou energii pryč, anebo vlny stojaté, buzené v dutinách. Často bývá spektrum omezeno nikoli viskozitou, nýbrž omezeným rozlišením. V každém případě je (172) v přímém rozporu s (152)...

Obr. 38 — Energetické spektrum \mathcal{E}_k odvozené z pozorování vývoje oblačnosti. Trojice grafů odpovídá třem složkám rychlosti u, v a w. V případě vertikály je velikost vírů omezena na asi 500 m, nad kterou již turbulence nemůže být kolmogorovská. Naopak malé velikosti jsou zde omezeny rozlišením pozorování, nikoli viskozitou. Převzato z Duynkerke (1998).

- [55] CARROL, B. W., OSTLIE, D. A. An Introduction to Modern Astrophysics. San Francisco: Pearson, Addison Wesley, 2007. ISBN 0321442849.
- [56] EKMAN, V. W. On the influence of the Earth's rotation on ocean-currents. Arkiv för matematik, astronomi o. fysik, 2, 11, 1905.
- [57] KOLMOGOROV A. N. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 1, 1941.
- [58] PECHALA, F., BEDNÁŘ, J. Příručka dynamické meteorologie Praha: Academia, 1991. ISBN 8020001980.
- [59] RICHARDSON, L. F. Weather prediction by numerical process. Cambridge: Cambridge Univ. Press, 1922.
- [60] ROSSBY, C. G. Planetary flow patterns in the atmosphere. Quart. J. Roy. Met. Soc., 66, 68, 1939.
- [61] SALMON, R. Lectures on geophysical fluid dynamics. Oxford: Oxford Univ. Press, 1998. ISBN 0195108086.
- [62] SHORE, S. N. Astrophysical hydrodynamics. Weinheim: Wiley-Vch, 2007. ISBN 978352740-6692.
- [63] WATKINS, T. Kolmogorov's theory of turbulence and the energy spectrum. [online] [cit. 2017-05-10]. (http://www.sjsu.edu/faculty/watkins/kolmo.htm).

6 Přenos záření

Přenosu záření zřejmě není vyhnutí, neboť každý hydrodynamický model konec konců budeme muset porovnat s pozorováním. Vzhledem k tomu, jaké úžasné přístroje jsou dnes k dispozici (ALMA, CHARA, VLBI a spol.), jistě budeme potřebovat co nejpodrobnější, to znamená monochromatický popis.

Než začneme, ujasněme si, jakou veličinu pro popis potřebujeme. Představme si, že ji měříme dalekohlídkem, s filtříkem a detektorkem, který má jen jeden pixelík. Jistě musí jít o energii (s jednotkou J), nesmí záviset na expoziční době (s⁻¹), na ploše čočky dalekohledu (nikoli detektoru!) (m⁻²), jeho natočení (podělíme faktorem cos ϑ , kde ϑ označuje úhel od osy detektoru), obecně však veličina může záviset na směru, ale nikoli na prostorovém úhlu vytnutém plochou detektoru (nikoli čočky!) neboli zorným polem (sr⁻¹), ani na šířce propustnosti filtru (nm⁻¹). Právě takovou veličinou je monochromatická intenzita:

$$I_{\lambda} = \frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}S\cos\vartheta\mathrm{d}\omega\mathrm{d}\lambda}$$

s jednotkou $J s^{-1} m^{-2} sr^{-1} nm^{-1}$.

Kdybychom měřili anténkou s heterodynkem, asi bychom místo vlnové délky λ užívali raději frekvenci ν a *jinou* monochromatickou intenzitu:

$$I_{\nu} = \frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}S\cos\vartheta\mathrm{d}\omega\mathrm{d}\nu}$$

s jinou jednotkou $J s^{-1} m^{-2} sr^{-1} Hz^{-1}$. Intenzitě připisujeme směr opačný, než jakým míří dalekohlídek, čili kam by mířilo záření, kdybychom mu do cesty nic nestrkali; prostorový úhel je ovšem tentýž.

Takto definovaná intenzita má velmi pozoruhodné vlastnosti, například pro ni neplatí zákon čtverců! Představme si, že měříme přímo na Slunci (hluboko ve fotosféře; obr. 39), zjistíme asi $I_{\lambda} \doteq 4 \cdot 10^4 \,\mathrm{W \,m^{-2} \, sr^{-1} \, nm^{-1}}$, a to téměř nezávisle na směru; intenzita je zde skoro izotropní. Když měříme u Země, můžeme bez újmy na obecnosti použít obří dalekohled s plochou $dS' = d\omega r^2$, zabírající malilinký prostorový úhel $d\omega' = dS/r^2$. Evidentně pak zachytáváme tutéž energii dE' = dEa i intenzita vychází stejná $I'_{\lambda} = I_{\lambda}$! Podstatný rozdíl je ovšem v jiných směrech než ke Slunci (resp. od Slunce), tam je $I'_{\lambda} = 0$, čili je velmi anizotropní; Slunce je malá světlá skvrna na jinak tmavé obloze.

Proč se tedy o hvězdách říká, že jsou slabé? Celý problém spočívá v rozdílu mezi rozlišeným a nerozlišeným zdrojem (obr. 40)! Nedokážeme-li²² dostatečně zmenšit $d\omega'$, mícháme světlo a tmu, tudíž vychází malé I_{λ} . Pro nerozlišené zdroje potom platí zákon čtverců.

²² mj. kvůli difrakci, aberacím, seeingu

Obr. 39 — Měření monochromatické intenzity I_{λ} těsně u Slunce (ve fotosféře) a u Země. V prvním případě máme plochu dS, což je plocha čočky dalekohledu, prostorový úhel d ω , který je vymezen plochou detektoru, a úhel $\vartheta = 0$. Intenzita je zde téměř izotropní, i kdybychom dalekohlídek natočili jiným směrem, naměříme téměř totéž. Ve druhém případě (ve vzdálenosti r) volíme bez újmy na obecnosti plochu d $S' = d\omega r^2$, prostorový úhel $\omega' = dS/r^2$, abychom zachytili všechno záření z plochy dS jdoucí do prostorového úhlu d ω . Pak je evidentní, že $I'_{\lambda} = I_{\lambda}$, nedochází-li mezitím k žádné absorpci, emisi nebo rozptylu. I kdybychom ale měli dalekohled jinačí, dělili bychom energii dE' jiným dS', d ω' a obdrželi totožné I'_{λ} .

Obr. 40 — Měření intenzity I_{λ} pro rozlišený a nerozlišený zdroj. V prvním případě jsme natolik blízko hvězdy, že ji jsme schopni s naším dalekohlídkem vytínajícím prostorový úhel d ω rozlišit, tzn. vidět pouze část jejího povrchu a změřit intenzitu I_{λ} . Při vzdálení za určitou hranici (čárkovanou) se ale do téhož prostorového úhlu d $\omega' = d\omega$ dostává nejen světlo, ale i tma, proto vychází nižší intenzita, $I'_{\lambda} < I_{\lambda}$.

Výše uvedené úvahy se týkají pouze záření ve vakuu. Pokud není prázdno, $I_{\lambda} \neq$ konst., protože může nastávat absorpce, emise nebo rozptyl, a to mnoha různými způsoby.

6.1 Elementární procesy

Procesů je celá řada (viz tab. 3). Při nejvyšších energiích (resp. teplotách; $E \simeq kT$) bývá látka v plně ionizovaném stavu, uplatňuje se výhradně rozptyl na volných elektronech, Comptonův se změnou energie fotonu, Thomsonův bez. Jde o volně– volné procesy, které jsou nekvantované, a ve spektru tedy vzniká kontinuum.

V silných magnetických polích nastává navíc synchrotronová (relativistická) emise, příp. cyklotronová (nerelativistická). Je sice monochromatická, ale je-li magnetické pole spojitě proměnné, vzniká opět kontinuum.

Comptonův rozptyl na elektronech	$e^- + \gamma \rightarrow e^- + \gamma$	$\sigma_{\rm C} N_{\rm e}$
Thomsonův rozptyl na elektronech	${\rm e}^- + \gamma \rightarrow {\rm e}^- + \gamma$	$\sigma_{\rm T} N_{\rm e}$
synchrotronová emise	${\rm e}^- \rightarrow {\rm e}^- + \gamma$	
cyklotronová emise	${\rm e}^- \rightarrow {\rm e}^- + \gamma$	$\sigma_{\rm T} B^2 v^2 / (\mu_0 c)$
volně–volná emise (brzdné záření)	$Z^+ + \mathrm{e}^- \to Z^+ + \mathrm{e}^- + \gamma$	$N_{\rm e}N_{\rm i}B_{\kappa\kappa'}$
volně–volná absorpce	$Z^+ + \mathrm{e}^- + \gamma \to Z^+ + \mathrm{e}^-$	$N_{\rm e} N_{\rm i} U_\nu B_{\kappa' \kappa}$
fotoionizace	$Z + \gamma \rightarrow Z^+ + e^-$	$N_m U_\nu B_{m\kappa}$
srážková ionizace	$Z+\mathrm{e^-} \to Z^++2\mathrm{e^-}$	$N_{\rm m}N_{\rm e}C_{m\kappa}$
autoionizace (Augerův jev)	$Z^{**} \to Z^+ + \mathrm{e}^-$	$N_{\nu}U_{\nu}\kappa_{\rm diel}$
rekombinace (2-částicová zářivá)	$Z^+ + e^- \rightarrow Z + \gamma$	$N_{\rm i} N_{\rm e} A_{\kappa m}$
3-částicová rekombinace	$Z^+ + 2\mathrm{e}^- \to Z + \mathrm{e}^-$	$N_{\rm i} N_{\rm e}^2 C_{\kappa m}$
dielektronická rekombinace	$Z^{*+} + \mathrm{e}^- \to Z^{**} \to Z + \gamma$	$N_{\rm i} N_{\rm e} \alpha_{\rm diel}$
absorpce, elektronový přechod	$Z+\gamma \to Z^*$	$N_m U_\nu B_{mn}$
spontánní emise	$Z^* \to Z + \gamma$	$N_n A_{nm}$
stimulovaná emise	$Z^* + \gamma \to Z + 2\gamma$	$N_n U_\nu B_{nm}$
srážková excitace	$Z+{\rm e}^-\to Z^*+{\rm e}^-$	$N_{\rm m}N_{\rm e}C_{mn}$
srážková deexcitace	$Z^* + \mathrm{e}^- \to Z + \mathrm{e}^-$	$N_{\rm n}N_{\rm e}C_{nm}$
fotoionizace iontu ${\rm H}^-$	${\rm H^-} + \gamma \rightarrow {\rm H} + {\rm e^-}$	$N_m U_\nu B_{m\kappa}$
absorpce, vibrační přechod	$M+\gamma \to M^*$	
absorpce, rotační přechod	$M+\gamma \to M^*$	
Rayleighův rozptyl na molekulách	$M+\gamma \to M+\gamma$	
Ramanův rozptyl (anelastický)	$M+\gamma \to M+\gamma$	
Mieho rozptyl na prachu	$\mathrm{pz} + \gamma \to \mathrm{pz} + \gamma$	
absorpce prachem	$\mathrm{pz} + \gamma \to \mathrm{pz}^*$	
emise prachem (tepelná)	$pz^* \rightarrow pz + \gamma$	

Tab. 3 — Elementární procesy ovlivňují přenos záření buď přímo, při interakci látky a záření, nebo nepřímo (srážkami). Jsou řazené sestupně podle energie (případně teploty T, je-li definována), při které se převážně uplatňují. Z zde označuje atom, M molekulu a pz prachové zrno. Podle Aschwanden (2005).

Při poklesu energií na úroveň $E \simeq 10^0 \text{ eV}$, je ionizace pouze částečná, neustále dochází k ionizaci atomů a rekombinaci iontů. Procesy jsou vázaně–volné, nekvantované, vznikají při nich hrany spektrálních sérií (mj. Balmerův skok v UV).

Zároveň se zmiňovanými ionizacemi nastávají elektronové přechody, přičemž může jít o absorpci, emisi nebo stimulovanou emisi. Jakožto vázaně–vázané procesy jsou kvantované a vznikají při nich spektrální série, zejména v oborech UV, V, IR. Zvláštním případem je iont H⁻, jehož ionizací vzniká HI. Díky jeho nízké ionizační energii (E = 0.75 eV) jsou jeho ionizace a rekombinace velmi častými procesy v atmosférách hvězd, projevující se spojitým zářením v oborech V, NIR.

Po poklesu energií na úroveň disociační energie molekul, vznikají nevyhnutelně molekuly a s nimi mnoho dalších energetických hladin. Vibrační přechody jsou obvyklé při $E \simeq 10^{-1} \,\mathrm{eV}$, a relevantní záření je tedy NIR, FIR. Opět lze očekávat absorpce, emise i stimulovaná emise. Rotační přechody mívají energie ještě nižší

 $E\simeq 10^{-3}\,{\rm eV},$ čemuž odpovídá obor FIR nebo sub-m
m. V obou případech jsou přechody kvantované.

Zároveň nastává rozp
tyl na molekulách (nebo prachových částicích), který lze při jejich rozměr
u $a\ll\lambda$ aproximovat jako Rayleighův.

Při nejnižších energiích $E \leq 10^{-1} \text{ eV}$ začíná depozice prachových zrn, čili sněžení²³, a to zprvu zrn silikátových a posléze zrn vodního ledu. Ve fyzice atmosféry se hovoří obecně o aerosolech. Pro popis jejich interakce se zářením je nutné použít obecnější Mieho rozptyl, neboť jejich rozměr může být $a \simeq \lambda$.

Ideálně bychom chtěli všechny výše uvedené procesy shrnout do dvou veličin: opacitního koeficientu κ_{ν} a emisního koeficientu j_{ν} .

6.2 Elementární přenosy

Nejjednodušší přenos je jednorozměrný (ve směru x), v homogenním prostředí, kde uvažujeme čistou absorpci. Intenzita se pak mění dle rovnice přenosu záření (RTE):

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}x} = -\kappa_{\nu}\rho I_{\nu} \,, \tag{173}$$

kde opacita κ_{ν} vyjadřuje *relativní* úbytek intenzity na jednotku délky a jednotku hustoty; ihned vidíme, že má jednotku m² kg⁻¹. Řešením této obyčejné diferenciální rovnice 1. řádu pro neznámou funkci $I_{\nu}(x)$ je exponenciála:²⁴

$$I_{\nu}(x) = I_{\nu}(0) \,\mathrm{e}^{-\kappa_{\nu}\rho x}$$

kde jsme integrační konstantu C obratem nahradili okrajovou podmínkou $I_{\nu}(0)$.

Uvažujeme-li čistou emisi, je příslušná rovnice:

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}x} = j_{\nu}\rho\,,\tag{174}$$

kde emisní koeficient j_{ν} vyjadřuje intenzitu na jednotku délky a jednotku hustoty, čili má jednotku J s⁻¹ sr⁻¹ Hz⁻¹ kg⁻¹. Řešením je zřejmě:

$$I_{\nu} = I_{\nu}(0) + j_{\nu}\rho x$$
.

Zajímavějším případem je absorpce plus emise:²⁵

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}x} = j_{\nu}\rho - \kappa_{\nu}\rho I_{\nu} \,. \tag{175}$$

 $^{^{23}}$ při vyšším tlaku kondenzace kapiček, čili déšť

²⁴ Alternativně lze rovnici zapsat pro optickou tloušťku τ , jejíž přírůstek $d\tau \equiv \kappa_{\nu}\rho dx$, $\frac{dI_{\nu}}{d\tau} = -I_{\nu}$, $I_{\nu}(\tau) = I_{\nu}(\tau_0) e^{-\tau}$. Prostředí, pro něž vychází $\tau \gg 1$, nazýváme opticky tlusté (čes. neprůhledné); naopak $\tau \ll 1$ opticky tenké.

²⁵ Alternativně $\frac{dI_{\nu}}{d\tau} = S_{\nu} - I_{\nu}$, kde $S_{\nu} \equiv \frac{j_{\nu}}{\kappa_{\nu}}$ je zdrojová funkce.

Zde využijeme znalosti řešení homogenní rovnice $\frac{dI_{\nu}}{dx} - \kappa_{\nu}\rho I_{\nu} = 0$, a nehomogenní rovnici $\frac{dI_{\nu}}{dx} - \kappa_{\nu}\rho I_{\nu} = j_{\nu}\rho$ vyřešíme metodou variace konstant:

$$I_{\nu}(x) = C(x) e^{-\kappa_{\nu} \rho x}$$

což po dosazení do (175) dá:

$$\frac{\mathrm{d}C}{\mathrm{d}x} \,\mathrm{e}^{-\kappa_{\nu}\rho x} + C \,\mathrm{e}^{-\kappa_{\nu}\rho x}(-\kappa_{\nu}\rho) = j_{\nu}\rho - \kappa_{\nu}\rho C \,\mathrm{e}^{-\kappa_{\nu}\rho x} \,,$$
$$\frac{\mathrm{d}C}{\mathrm{d}x} = j_{\nu}\rho \,\mathrm{e}^{\kappa_{\nu}\rho x} \,,$$

odkud:

$$C(x) = \frac{j_{\nu}}{\kappa_{\nu}} e^{\kappa_{\nu} \rho x} + D$$

Hodnotu integrační konstanty D zjistíme z okrajové podmínky v x = 0:

$$I_{\nu}(0) = \frac{j_{\nu}}{\kappa_{\nu}} + D \,,$$

tudíž výsledné formální řešení:

$$I_{\nu} = I_{\nu}(0) e^{-\kappa_{\nu}\rho x} + \frac{j_{\nu}}{\kappa_{\nu}} \left(1 - e^{-\kappa_{\nu}\rho x}\right) .$$
 (176)

LTE. Někdy se látka nachází ve stavu lokální termodynamické rovnováhy (LTE). Rozhodně to nenastává vždy; snad lze říci, že LTE je častější v hustém prostředí, jež jakoby mimochodem bývá opticky tlusté. Neznamená to samozřejmě, že veškeré záření je rovnováze s veškerou látkou! Například $I_{\nu}(0)$ takové být nemusí. Nicméně tepelné záření, které se z látky uvolňuje, ano. Pokud si představíme uzavřenou dutinu (s malým otvorem pro měření), dostatečně ustálenou, tam by bylo $I_{\nu}(0) = 0$, $I_{\nu} = \text{konst.}$, konkrétně by bylo rovno Planckově intenzitě, $I_{\nu} = B_{\nu}$. Odtud plyne:

$$0 = j_{\nu}\rho - \kappa_{\nu}\rho B_{\nu}$$

a pro poměr koeficientů zvaný zdrojová funkce:

$$\frac{j_{\nu}}{\kappa_{\nu}} \equiv S_{\nu} = B_{\nu} \,, \tag{177}$$

kde:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp\frac{h\nu}{kT} - 1};$$
(178)

T označuje termodynamickou teplotu (látky i plynu), c rychlost světla ve vakuu, h Planckovu konstantu, k Boltzmannovu konstantu. Mimochodem nám to umožňuje výpočet emise z absorpce. Máme tudíž formální řešení při LTE:

$$I_{\nu} = I_{\nu}(0) e^{-\kappa_{\nu} \rho x} + B_{\nu} \left(1 - e^{-\kappa_{\nu} \rho x}\right) .$$
(179)

Non-LTE. Pokud látka není v rovnováze (non-LTE), je problém složitější. Snad lze říci, že non-LTE je častější v řídkém prostředí (též opticky tenkém), kde je mezi atomy velmi málo srážek. Pak totiž převažují zářivé deexcitace, nízké hladiny atomů jsou populované hodně, vysoké málo oproti LTE. Nesmí nás ani napadnout používat rovnici $S_{\nu} = B_{\nu}$.

Jinou příčinou může být energetické záření přicházející odjinud, opět málo srážek, kdy převažují zářivé excitace (pumpování), nízké hladiny jsou populované málo, vysoké hodně oproti LTE.

Příklad: Je opacita atmosféry venku velká nebo malá?

 $\dot{R}e\check{s}eni$: Evidentně malá, neb vidíme do vesmíru! Směrem svisle vzhůru je řádově $\kappa_V = -\frac{\mathrm{d}I}{I}\frac{1}{\rho\mathrm{d}x} \simeq 0.3\frac{1}{1\cdot10^4}\,\mathrm{m}^2\,\mathrm{kg}^{-1} = 3\cdot10^{-4}\,\mathrm{cm}^2\,\mathrm{g}^{-1}$. Když je mlha, vidíme naopak mizerně a $\kappa_V \simeq 1.0\frac{1}{1\cdot10^2}\,\mathrm{m}^2\,\mathrm{kg}^{-1} = 10^{-2}\,\mathrm{cm}^2\,\mathrm{g}^{-1}$, i když zde jde spíše o rozptyl na kapičkách, pročež se v mlze nesetmí. A je záření v této místnosti v rovnováze se vzduchem? Rozhodně ne, neboť většina pochází ze Slunce, takže rovnovážná teplota by byla $T_\odot = 5\,780\,\mathrm{K}!$ Lze tedy předpokládat LTE nebo non-LTE? Kdybychom okna zatemnili, viděli bychom tepelné planckovské spektrum, odpovídající teplotě $T \simeq 300\,\mathrm{K}$, čili látka je ve stavu LTE.

Analytické řešení rovnice přenosu pro případ konstantní opacity ukazuje obr. 41. Počáteční $I_{\nu}(0)$ postupně přechází v S_{ν} .

Opačným případem by byl dvouhladinový atom, jehož opacita je vysoká pouze v úzkém rozmezí λ , jak ukazuje obr. 42. Na počátku je $I_{\nu}(0) = 0$, postupně se objevuje úzká emisní čára, roste I_{ν} , až dosáhne úrovně S_{ν} , pak se profil ovšem rozšiřuje, neboť právě v čáře samotné probíhá absorpce (samoabsorpce); křídla postupně vytvoří kontinuum. Poznamenejme, že bez Lorentzovy funkce by nevzniklo, neboť Gaussova klesá příliš rychle k 0.

Z rovnice (176) a výše uvedených úvah zároveň vyplývá, že kdybychom měli prostředí hustší teplejší dole (řidší chladnější nahoře), vzniklo by *absorpční spektrum*. Naopak prostředí řidší teplejší nahoře by způsobilo kontinuum s emisemi.

Ve skutečnosti je ale problém složitý, neboť opacita je obecně funkcí mnoha lokálních veličin, $\kappa_{\nu} = \kappa_{\nu}(\nu, \rho, T, X, Y, Z, \rho_{\rm d}, T_{\rm d}(a), \mathbf{v}, \mathbf{B}, n_i, \ldots)$, a naopak I_{ν} ovlivňuje ostatní veličiny. A složitý problém je ještě složitější kvůli rozptylu. Záření v jednom směru totiž závisí na záření ve všech ostatních směrech! Rovnici přenosu záření lze proto pokládat zároveň za nejjednodušší (1. řádu) i nejsložitější (nelokální).

Obr. 41 — Přenos záření, čili změny intenzity I_{ν} se vzdáleností x; spektrum je ovšem vynesené v závislosti na $\lambda = c/\nu$. Analytický výpočet za předpokladu konstantní opacity $\kappa_{\nu} = 10^{-2} \,\mathrm{m}^2 \,\mathrm{kg}^{-1}$, hustoty $\rho = 1 \,\mathrm{kg \,m}^{-3}$, a teploty $T = 300 \,\mathrm{K}$ (tzn. asi jako vzduch). Při lokální termodynamické rovnováze (LTE) je zdrojová funkce Planckova, $S_{\nu} = B_{\nu}(T)$. Okrajová podmínka byla $I_{\nu}(0) = B_{\nu}(T_{\odot}), T_{\odot} = 5\,780 \,\mathrm{K}$. Spektrum proto postupně přechází z planckovského pro vysoké T na planckovské pro nízké T.

Obr. 42 — Přenos záření $I_{\nu}(x)$ pro dvouhladinový atom, konkrétně přechod odpovídající čáře H_{α} , $\lambda_{12} = 656,3$ nm, $E_{12} = hc/\lambda_{12} = 1,8941 \text{ eV}$, Einsteinovy koeficienty $A_{21} = 6,4651 \cdot 10^7 \text{ s}^{-1}$, $B_{21} = B_{12} = 1,0968 \cdot 10^{21} \text{ J}^{-1} \text{ m}^2 \text{ sr}$. Teplota byla T = 5780 K, hustota $\rho = 10^{-9} \text{ kg m}^{-3}$ (tzn. asi jako fotosféra). Při LTE jsou populace hladin dány Boltzmannovým vztahem, $n_2/n_1 = \exp[-E_{12}/(kT)] = 0,02238$, celková koncentrace $n = n_1 + n_2 = \rho/(\mu m_{\text{H}})$. Použita byla aproximace Voigtova profilu $\phi_{12}(\nu)$, kde Gaussův profil pro termální rozšíření měl parametr $\sigma = 0,02$ nm a Lorentzův profil pro srážkové rozšíření $\gamma = 5 \cdot 10^{-10}$ nm. Okrajová podmínka byla $I_{\nu}(0) = 0$. Nejprve je čára emisní, postupně roste, ale maximálně do úrovně kontinua dané zdrojovou funkcí S_{ν} . Jádro čáry je kompaktní, teprve křídla způsobují postupné rozšířování profilu a přechod ke kontinuu.

6.3 Opacita plynu

Dvouhladinový atom. Opacita plynu je dána vlastnostmi atomů, z nichž je složen a možnými přechody mezi energetickými hladinami. Pro přehlednost uvedeme vztahy pro atom mající jen dvě hladiny (1, 2) ale mohli bychom je zapsat i obecněji (i, j). Emisní koeficient:

$$j_{\nu}\rho = \frac{h\nu_{12}}{4\pi}n_2A_{21}\phi_{12}(\nu)\,,$$

kde A_{21} označuje Einsteinův koeficient pro spontánní emisi (v s⁻¹)²⁶, n_2 koncentrace atomů ve stavu 2 (v m⁻³), $\phi_{12}(\nu)$ normalizovaný profil spektrální čáry. Absorpční koeficient:

$$\kappa_{\nu}\rho = \frac{h\nu_{12}}{4\pi}(n_1B_{12} - n_2B_{21})\phi_{12}(\nu) \,,$$

kde B_{12} je Einsteinův koeficient pro absorpci (v J⁻¹ m³ sr), B_{21} pro stimulovanou emisi (tj. záporná absorpce), která musí být zahrnuta v κ_{ν} , neboť je úměrná I_{ν} , n_1 je totéž jako předtím ve stavu 1,

Einsteinovy koeficienty jsou pro daný atom a přechod konstanty, nezávisejí na makroskopickém stavu plynu, neboť charakterizují jednotlivý atom. Vztahy mezi nimi lze odvodit při jakémkoliv stavu plynu, i při LTE, a ze stejného důvodu pak musejí platit i pro non-LTE. Z těchto úvah lze odvodit vztahy nazývané detailní vyrovnání:

$$B_{21} = \frac{c^3}{8\pi h \nu_{12}^3} A_{21} ,$$
$$B_{12} = \frac{g_2}{g_1} B_{21} .$$

Profil čáry. Normalizovaný profil čáry určuje, jaké frekvence bude moci soubor atomů vyzařovat. Jednak musíme uvážit Gaussovo termální rozšíření:

$$\phi_{\rm G}(\nu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(\nu-\nu_{12}-\frac{\hat{k}\cdot\boldsymbol{v}}{c}\nu)^2}{2\sigma^2}\right] \,,$$

kde parametr:

$$\sigma = \frac{v}{c}\nu_{12}$$

$$B_{12} = \frac{e^2}{4\epsilon_0 m_{\rm e} h \nu_{12}} f_{12} \,.$$

²⁶ Někdy se přechod charakterizuje sílou oscilátoru f_{12} , což je bezrozměrné číslo od 0 do 1 (příp. jiného celého čísla pro degenerované hladiny), odpovídající podílu pravděpodobnosti absorpce měřené (či počítané kvantověmechanicky) ku pravděpodobnosti absorpce klasického oscilátoru iont–elektron; pak

Rychlost je dána střední hodnotou jedné složky tepelné rychlosti, která se náhodně (v kvadrátu) sčítá s turbulentní rychlostí plynu:

$$v_T = \sqrt{\frac{kT_{\text{gas}}}{\mu m_{\text{H}}}}, \quad v = \sqrt{v_T^2 + v_{\text{turb}}^2}.$$

Zároveň ve vztahu uvažujeme Dopplerův posun, daný makroskopickou rychlostí \mathbf{v} plynu, resp. skalárním součinem se směrem \hat{k} , ve kterém právě počítáme přenos záření.

Dále máme Lorentzovo tlakové rozšíření:

$$\phi_{\rm L}(\nu,\gamma) = \frac{\gamma}{\pi} \frac{1}{(\nu - \nu_{12})^2 + \gamma^2},$$

kde parametr:

$$\gamma = 2N\sigma_{\rm col}v_T$$

souvisí s četností srážek atomů, jež ovlivňují hladiny.

Protože výše uvedené procesy probíhají zároveň, je společný profil konvolucí a nazývá se Voigtův:²⁷

$$\phi_{12}(\nu) = \int_{-\infty}^{\infty} \phi_{\mathrm{G}}(\nu')\phi_{\mathrm{L}}(\nu-\nu')\mathrm{d}\nu'\,.$$

To, zda bude čára emisní nebo absorpční, se teprve uvidí. Výsledný profil může být také zcela pozměněn, když se značně mění \boldsymbol{v} .

6.4 Opacita prachu

Geometrická absorpce. Jak závisí opacita prachu na λ ? Nejprve zkusme najít přibližný vztah pro případ $2\pi a \gg \lambda$, kdy je poloměr a zrn velký vzhledem k dané vlnové délce. V krychli o rozměru L mějme N zrn s geometrickým průřezem S, a albedem A. Pro čistou absorpci máme úbytek intenzity $dI_{\lambda} = -I_{\lambda}\kappa_{\lambda}\rho dx$; v našem konkrétním případě:

$$-\frac{\mathrm{d}I_{\lambda}}{I_{\lambda}} = \kappa_{\lambda}^{\mathrm{abs}} \rho L \simeq \frac{NS(1-A)}{L^2} \,.$$

$$\begin{split} f &= \left(f_{\rm G}^5 + 2,69269 f_{\rm G}^4 f_{\rm L} + 2,42843 f_{\rm G}^3 f_{\rm L}^2 + 4,47163 f_{\rm G}^2 f_{\rm L}^3 + 0,07842 f_{\rm G} f_{\rm L}^4 + f_{\rm L}^5\right)^{\frac{1}{5}} \\ \eta(\nu) &= 1,36603 \frac{f_{\rm L}}{f} - 0,47719 \left(\frac{f_{\rm L}}{f}\right)^2 + 0,11116 \left(\frac{f_{\rm L}}{f}\right)^3 \\ \phi_{12}(\nu) &\doteq \eta(\nu)\phi_{\rm L}(\nu,f) + (1 - \eta(\nu))\phi_{\rm G}(\nu,f) \end{split}$$

 $^{^{27}}$ Kdy
bychom nechtěli neustále počítat konvoluci, lze použít přibližný vzta
h $(f_{\rm G}=2\sigma\sqrt{2\log 2}, f_{\rm L}=2\gamma, [78]):$

Odtud snadno vyjádříme opacitu:

$$\kappa_{\lambda}^{\rm abs} \simeq \frac{NS}{\rho L^3} = \frac{\rho L^3}{\frac{4}{3}\pi a^3 \rho_{\rm d}} \pi a^2 \frac{(1-A)}{\rho L^3} = \frac{3(1-A)}{4a\rho_{\rm d}} \,, \tag{180}$$

kde $\rho_{\rm d}$ je hustota zrn samotných. Vidíme, že nezávisí na λ , jen na *a*. Submikronový prach s $a = 0.1 \,\mu{\rm m}, \,\rho_{\rm d} = 3\,000 \,{\rm kg}\,{\rm m}^{-3}$, by způsobil $\kappa_{\lambda}^{\rm abs} = 5\,000 \,{\rm m}^2 \,{\rm kg}^{-1}$.

Geometrický rozptyl. Na první pohled by se zdálo, že co se neabsorbuje, to se rozptýlí:

$$\kappa_{\lambda}^{\rm sca} \simeq \frac{3A}{4a\rho_{\rm d}} \,,$$

ale jevy jako odraz, lom, interní odraz v kapce vody, nebo difrakce na okraji způsobují *dodatečný* rozptyl, jemuž odpovídá dodatečný průřez $S' = \pi a^2$, navíc k S. To je sice divné, vždyť stín je stejně velký jako my, ale ve vzdáleném poli by to bylo patrné (viz gloriolu).

Rayleighova absorpce. Pro $2\pi a \ll \lambda$ elektromagnetická vlna se stejnou fází proniká celým zrnem a interaguje s jeho objemem, proto na konkrétních velikostech zrn již nezáleží. Proto $\kappa_{\lambda}^{abs} \neq f(a)$ navážeme na (180), předpokládáme $\kappa_{\lambda}^{abs} \propto \lambda^{x}$ takové, aby se *a* zkrátilo, odkud:

$$\kappa_{\lambda}^{\rm abs} \simeq \frac{3(1-A)}{4a\rho_{\rm d}} \left(\frac{\lambda}{2\pi a}\right)^{-1} = \frac{3\pi(1-A)}{2\rho_{\rm d}\lambda};$$

pokud by tedy na λ nezáviselo něco jiného, například optické konstanty n', k.

Rayleighův rozptyl. Rozptyl na malých zrnech vykazuje pokles jako λ^{-4} , a to od přechodové hodnoty, tzn. $S = \pi a^2 \left(\frac{2\pi a}{\lambda}\right)^4$, odkud odvodíme:

$$\kappa_{\lambda}^{\rm sca} \simeq \frac{12\pi^4 a^3}{\rho_{\rm d} \lambda^4} \,.$$

V přechodové oblasti lze očekávat oscilace, neboť vlna dopadá na zrno s nepříliš rozdílnou fází, takže může interferovat konstruktivně nebo destruktivně. Někde nastávají rezonance vln s vlastními frekvencemi krystalové mříže minerálů; foton může být pohlcen a energie odejde pevnou látkou pryč jako fonon. Má-li minerál více rovin symetrie, očekáváme více vlastních frekvencí. Odezva je obdobná jako u buzeného kyvadla. Při laboratorních měřeních se materiály charakterizují optickými konstantami, tzn. indexy lomu n' (reálným) a k (komplexním). Výpočet $\kappa_{\lambda}^{\text{abs}}$, $\kappa_{\lambda}^{\text{sca}}$ se poté provádí pomocí Mieho teorie (viz obr. 43).

Obr. 43 — Opacita $\kappa_{\lambda}^{\text{abs}}$ pro absorpci (vlevo) a $\kappa_{\lambda}^{\text{sca}}$ pro rozptyl (vpravo), v závislosti na vlnové délce λ . Výpočet byl proveden Mieho teorií pro dvě různé velikosti *a* prachových zrn, 0,1 a 1 µm. Jako materiál byl předpokládán pyroxen se 70% obsahem Mg, s optickými konstantami z databáze Jena (Jäger aj. 2003). Čárkovaně a tečkovaně je pro porovnání vyznačena geometrická a Rayleighovy aproximace.

6.5 Rovnice přenosu a statistické rovnováhy

Po dosavadní přípravě můžeme diskutovat případ dostatečně složitý, zahrnující plyn, prach, emisi, stimulovanou emisi, absorpci, izotropní rozptyl, non-LTE, nestacionární intenzitu (celá rovnice je v jednotce $J s^{-1} m^{-2} sr^{-1} Hz^{-1} s^{-1}$):

$$\frac{\partial I_{\nu}}{\partial t} + c\hat{k} \cdot \nabla I_{\nu} = c \sum_{i} \sum_{j>i} \frac{h\nu_{ij}}{4\pi} n_{j} A_{ji} \phi_{ij}(\nu) + c \sum_{a} \kappa_{\nu}^{abs} \rho_{d} B_{\nu}(T_{d}) - c \sum_{i} \sum_{j>i} \frac{h\nu_{ij}}{4\pi} (n_{i} B_{ij} - n_{j} B_{ji}) \phi_{ij}(\nu) I_{\nu} - c \sum_{a} \kappa_{\nu}^{abs} \rho_{d} I_{\nu} - c (\kappa_{\nu}^{sg} \rho + \sum_{a} \kappa_{\nu}^{sca} \rho_{d}) I_{\nu} + c (\kappa_{\nu}^{sg} \rho + \sum_{a} \kappa_{\nu}^{sca} \rho_{d}) \frac{1}{4\pi} \int I_{\nu} d\omega \operatorname{pro}(\mathfrak{A}) I_{\nu}$$

Případně dělíme vše c (takže jednotka je ... m⁻¹). Rovnice se musí řešit pro všechny možné směry \hat{k} , nikoli pouze pro tři \hat{x} , \hat{y} , \hat{z} . Protože populace hladin neznáme *a priori*, musíme výše uvedenou doplnit o soustavu rovnic statistické rovnováhy:

$$\sum_{j>i} \left[n_j A_{ji} - (n_i B_{ij} - n_j B_{ji}) \frac{1}{4\pi} \int I_{\nu} \phi_{ij}(\nu) d\nu \right] - \sum_{j+ \sum_{j\neq i} \left[n_i C_{ij} - n_j C_{ji} \right] = 0 \quad \text{pro } i = 1..N_{\text{levels}} \,.$$

Hledáme neznámou intenzitu $I_{\nu} = I_{\nu}(\nu, x, y, z, t, \vartheta, \varphi)$, jakožto sedmirozměrnou (!) funkci. Označení veličin je následující: ν_{ij} frekvence²⁸ odpovídající přechodu mezi hladinami $i \to j$, n_i koncentrace atomů ve stavu i (populace hladin), A_{ij} , B_{ij} , B_{ji} Einsteinovy koeficienty, ϕ_{ij} profil čáry, ρ hustota plynu, ρ_d hustota prachu o rozměru a, T_d teplota prachu, B_{ν} Planckova funkce, κ_{ν}^{abs} opacita prachu pro absorpci, κ_{ν}^{sca} totéž pro rozptyl, κ_{ν}^{sg} totéž pro plyn, C_{ij} srážkové koeficienty pro plyn (s⁻¹), závislé na jeho teplotě T a lišící se pro dvojice atomů, iontů nebo molekul.

Kde vzít teplotu plynu T? To bychom museli řešit úplné hydrodynamické rovnice. Kde vzít teplotu prachu T_d ? To bychom museli doplnit rovnici vedení tepla v prachových zrnech.

Pro získání atomárních nebo molekulárních dat lze využít databáze NIST, Chianti, HITRANS, Leiden nebo Kurucz, které udávají koeficienty A_{ji} pro určitou podmnožinu všech možných přechodů a kolizní frekvence C_{ij} pro různé teploty plynu T. Nelze zohlednit všechny přechody, to by byl problém neřešitelný (viz Grotrianův diagram na obr. 44). Pro prach existuje např. databáze Jena.

Obr. 44 — Grotrianův diagram pro železo Fe I, Fe II a Fe III. Na vodorovné ose jsou vyznačeny různé kvantové stavy atomů, na svislé jemu příslušná energie E_{ij} , každá spojnice vyznačuje možný energetický přechod. Převzato z Gehren aj. (2000).

6.6 Metoda Monte Carlo

Podstatou všech simulací Monte Carlo je výpočet nějaké pravděpodobnosti $p \in \langle 0; 1 \rangle$, její porovnání s náhodným (nebo alespoň pseudonáhodným) číslem $x \in \langle 0; 1 \rangle$ a nějaké rozhodnutí pro $x \leq p$, příp. x > p.

V našem případě jde o pravděpodobnost, že určitý soubor fotonů²⁹ bude v určité části prostoru absorbován, emitován nebo rozptýlen. Ekvivalentně si můžeme

 $^{^{28}}$ laboratorní ve vzduchu, měříme-li skutečně ve vzduchu, jinak vaku
ová

 $^{^{29}}$ nejde o jednotlivé fotony, kterých Slunce vysílá řádově $10^{45}\,{\rm s}^{-1}$
spočítat optickou tloušťku τ' , na níž bude rozptýlen, jako $\tau' = -\ln(x)$, a τ při integraci RTE nasčítávat, dokud $\tau \leq \tau'$. Posléze budeme obdobně počítat ještě pravděpodobnost, že soubor fotonů bude rozptýlen do určitého směru, což je obzvláště jednoduché při izotropním rozptylu, $p = d\omega/(4\pi)$.

Metoda vykazuje určitý šum, který je nevyhnutelný, protože generujeme náhodná čísla, ale očekávatelný. Při opakování nemusíme dostat totožné výsledky, je-li počet souborů fotonů nedostatečný. Řešením je zvětšení počtu.

Jak je obvyklé i u jiných metod, pro numerické řešení musíme provést diskretizaci prostoru. Síť definovaná třeba v kartézských (x_i, y_i, z_i) nebo sférických $(r_i, \vartheta_i, \phi_i)$ souřadnicích vymezuje konečné objemy. V jejich rámci předpokládáme konstantní hodnoty veličin. Zároveň si musíme definovat určité směry \hat{k} , pro něž budeme přenos řešit; nemusejí nutně procházet body sítě.

A **iterace.** Problém je, že před řešením RTE nevíme, co se má rozptylovat. Nemůžeme jen tak vyčíslit integrál (nultý moment intenzity, zvaný též střední intenzita):

$$J_{\nu} \equiv \frac{1}{4\pi} \int I_{\nu} \mathrm{d}\omega \,.$$

Proto na začátku provedeme odhad, např. $J_{\nu} = 0$, a posléze: (i) integraci rovnice přenosu, tzn. výpočet I_{ν} pro mnoho různých bodů a směrů; (ii) výpočet J_{ν} ve všech objemech; obojí opakujeme, dokud J_{ν} nezkonverguje. Postup se poněkud "záhadně" nazývá Λ iterace.

Abstraktněji lze postup zapsat pomocí operátoru Λ :³⁰

$$J_{\nu} = \Lambda[S_{\nu}] \,.$$

Při zadání zdrojové funkce S_{ν} všude (zahrnujíc ovšem rozptyl, čili starou J_{ν}), prostě vyčíslíme novou J_{ν} všude.

Ještě abstraktněji můžeme napsat matici Λ_{ij} , kde jsme zavedli globální prostorový index (psaný jiným písmem):

$$i \equiv i_x + (i_y - 1)N_x + (i_z - 1)N_xN_y$$

Pak maticové násobení:

$$J_{\mathbf{i}} = \sum_{\mathbf{j}} \Lambda_{\mathbf{i}\mathbf{j}} S_{\mathbf{j}}$$

vyjadřuje vazbu všech bodů sítě se všemi body sítě, zprostředkovanou právě řešením RTE.

Kdybychom měli zdrojovou funkci zapsanou takto (pro přehlednost bez rozlišení plynu a prachu):

$$S_{\nu} = \frac{j_{\nu}^{\text{em}} + j_{\nu}^{\text{sca}}}{\kappa_{\nu}^{\text{abs}} + \kappa_{\nu}^{\text{sca}}} = \frac{\kappa_{\nu}^{\text{abs}}}{\kappa_{\nu}^{\text{abs}} + \kappa_{\nu}^{\text{sca}}} \frac{j_{\nu}^{\text{em}}}{\kappa_{\nu}^{\text{abs}}} + \frac{\kappa_{\nu}^{\text{sca}}}{\kappa_{\nu}^{\text{abs}} + \kappa_{\nu}^{\text{sca}}} \frac{j_{\nu}^{\text{sca}}}{\kappa_{\nu}^{\text{sca}}} \doteq \epsilon_{\nu} B_{\nu}(T) + (1 - \epsilon_{\nu}) J_{\nu} ,$$

 $^{^{30}}$ implementovaný třeba jako funkce ve Fortranu

kde poslední přibližně rovno platí při $\rm LTE^{31}$ a izotropním rozp
tylu, mohli bychom psát:

$$S_{i} = \epsilon_{i}B_{i} + (1 - \epsilon_{i})\Lambda_{ij}S_{j}$$

a iterace formálně zapsat jako S_{i}^{n}, S_{i}^{n+1} . Teoreticky bychom S_{i} mohli získat inverzí:

$$(\delta_{ij} - (1 - \epsilon_i)\Lambda_{ij})S_j = \epsilon_i B_i,$$

$$S_j = (\delta_{ij} - (1 - \epsilon_i)\Lambda_{ij})^{-1}\epsilon_i B_i,$$

ale bohužel to není možné prakticky.

Setkáváme se totiž s vícero problémy. Jednak s problémem pomalé konvergence, když optická tloušťka $\tau \simeq 100$, počet rozptylů je řádově τ^2 , každá iterace je vlastně 1 rozptyl a potřebný počet iterací $N_{\text{iter}} \simeq \tau^2$. Převažuje-li absorpce, $N_{\text{iter}} \simeq (\kappa_{\nu}^{\text{abs}} + \kappa_{\nu}^{\text{sca}})/\kappa_{\nu}^{\text{abs}}$. Související je falešná konvergence, kdy řešení v jednom směru konverguje rychle, ale ve druhém velmi pomalu, což nás může mýlit.

Další je problém malého pozorovatele, jenž je schopen zachytit jen malý prostorový úhel, kdežto většina souborů fotonů uniká mimo. Řešením může být umělé zvětšení pozorovatele, sledování malých příspěvků pocházejících od souborů míjejících pozorovatele, nebo řešení RTE ve směru od pozorovatele, ale pak můžeme narazit na problém malého zdroje.

Další a nikoli poslední je problém velké matice. Už při $N_x = N_y = N_z = 100$ by počet prvků byl $(N_x N_y N_z)^2 = 10^{12}$, tudíž ji nelze prakticky uložit, natož invertovat!

Akcelerovaná Λ iterace. Podstatným zlepšením je akcelerovaná Λ iterace (ALI; Cannon 1973), která spočívá v rozdělení matice na dvě:

$$\Lambda_{ij} = (\Lambda_{ij} - \Lambda_{ij}^*) + \Lambda_{ij}^* \,,$$

takové, že Λ^* lze invertovat snadno a získat Λ^{*-1} . Nejjednodušší volbou bývá:

$$\Lambda_{ij}^* = \operatorname{diag} \Lambda = \delta_{ij} \Lambda_{ij},$$

neboť inverze diagonální matice je primitivní, $\Lambda_{ii}^{*-1} = 1/\Lambda_{ii}^*$. Nejjednodušším příkladem takové matice pro případ $\tau \gg 1$ je:

$$\Lambda_{ij}^* \doteq \delta_{ij} \left(1 - \frac{2}{\Delta \tau_{ij}^2} \right) \,,$$

kde $\Delta \tau_{ij}$ označuje optickou tloušťku mezi body i a j, resp. mezi i a i, tzn. že přenos záření v rámci jednotlivého konečného objemu se řeší inverzí, přenos mezi různými

 $\overline{{}^{31}}$ při non-LTE bychom měli $\frac{j_{\nu}^{\text{em}}}{\kappa_{\nu}^{\text{abs}}} = \frac{n_j A_{ji}}{n_i B_{ij} - n_j B_{ji}}$, kde pochopitelně $, i \neq i, j \neq j$ " v textu!

objemy iteracemi. V úvahu by přicházela i matice tridiagonální. Další řádové zrychlení je možné pomocí Ngovy akcelerace (Ng 1974), která spočívá v extrapolaci S_i^{n+1} z několika starých hodnot S_i^{n-3} až S_i^n .

Příklad výpočtu přenosu záření programem Radmc-3d (Dullemond 2012) je na obr. 45 a 46.

Úniková metoda. Zjednodušenou metodu řešení RTE získáme, pokud spočteme pravděpodobnost úniku souboru fotonů:

$$p_{\rm esc\,i} = \frac{1}{4\pi} \int \int \frac{1 - e^{-\tau}}{\tau} \phi_{ij}(\nu) d\nu d\omega \,,$$

kde optická tloušťka (pro různá místa, směry, frekvence) je sama o sobě integrálem:

$$\tau(\mathbf{i}, \hat{k}, \nu) = \int_0^\infty \kappa_\nu \rho \mathrm{d}s \,. \tag{182}$$

Pokud matici aproximujeme pouze jako diagonální:

$$\Lambda_{ij} \doteq \delta_{ij} (1 - p_{\text{esc } i}) \,,$$

je problém snadno řešitelný, neboť využijeme inverze. Vlastně tak vůbec nepřenášíme energii v rámci objemu, pouze ji necháváme unikat do nekonečna. Únik se realizuje zejména v křídlech čar, kde je $p_{\rm esc\,i}$ větší. Je ovšem otázkou, zda aproximaci v konkrétní situaci můžeme použít.

Sobolevova metoda. V případě velkého gradientu rychlosti nastává velký Dopplerův posun $\Delta \nu_{ij} = \nu_{ij} \hat{k} \cdot (\mathbf{v} - \mathbf{v}')/c$, takže se čára může dostat mimo čáru a opacita dramaticky poklesne. Optickou tloušťku pak lze vyčíslit jako:

$$au(\mathsf{i},\hat{k},
u) \doteq rac{A_{ij}c^3}{8\pi
u_{ij}^3}rac{n}{\left|rac{\mathrm{d}v}{\mathrm{d}s}
ight|}\left(rac{g_i}{g_j}n_j-n_i
ight)\,,$$

čili není dána globálním rozměrem, nýbrž lokálním ∇v , a proto není třeba vůbec integrovat (182). Jedná vlastně o smysluplné zjednodušení únikové metody. Obvyklou situací, kdy se aproximace používá, je hvězdný vítr.

Mezi důležité problémy, které jsme prozatím zamlčeli, patří zejména překrývající se čáry (blanketing), kdy se namísto jednotlivých čar vytváří malé kontinuum, nebo částečné přerozdělení, kdy se mezi absorpcí, emisí nebo rozptylem nezmění rychlost atomu náhodnou srážkou a události jsou do určité míry koherentní. Pak bychom ovšem byli nuceni řešit RTE i pro různé rychlosti \mathbf{v} , což by znamenalo další tři rozměry N_{vx} , N_{vy} , N_{vz} .

Obr. 45 — Syntetický obraz protoplanetárního disku s mezerou otevřenou planetou jupiterova typu. Vlevo je ideální obraz pro vlnovou délku $\lambda = 300 \,\mu\text{m} \,(\nu \doteq 1\,000\,\text{GHz})$, resp. monochromatický tok Φ_{ν} v jednotkách Jansky na pixel (1 Jy = $10^{-26} \,\text{W}\,\text{m}^{-2}\,\text{Hz}^{-1}$). Obraz byl vytvořen na základě hydrodynamické simulace programem Fargo, a řešení přenosu záření programem Radmc-3d (Dullemond 2012). Počet souborů fotonů byl 10^8 . Vpravo je syntetické pozorování interferometrem AL-MA v maximální konfiguraci, se základnami až $B/\lambda = 3,5 \cdot 10^6$ cyklů, šířkou pásma $\Delta \nu = 7,5 \,\text{GHz}$, trváním 3 hodiny, se začátkem na výšce 78°, sloupec vodní páry PWV = 0,475 mm; výsledné roz-

lišení dosahuje 0,012′. Výpočet pomocí služby ALMAOST (http://almaost.jb.man.ac.uk/).

Obr. 46 — Syntetické spektrum protoplanetárního disku z obr. 45. Monochromatický tok Φ_{ν} v závislosti na λ , pro nominální vzdálenost $d = 1 \text{ pc. První maximum na } \lambda \simeq 1 \,\mu\text{m}$ má původ vzniká díky záření od hvězdy, které je aproximované jako planckovské; okolo 10 μ m jsou zřetelné silikátové pásy, druhé maximum a většina FIR, sub-mm a rádiového záření pochází od disku. Otevření mezery se projevilo zejména jako pokles toku v rádiové oblasti.

6.7 Příklady interpretace spektra

Před jakoukoliv interpretací reálného spektra si musíme být vědomi *všech* signálů a šumů, musíme rozumět způsobu měření, zejména instrumentálním jevům, které mohou způsobovat systematické odchylky (viz Brož a Wolf 2017).

Je-li pozorované spektrum *přibližně planckovské*, lze očekávat, že pochází od hvězdy přesněji z její fotosféry, v níž se teplota T(R) příliš nemění a řádově je rovna efektivní teplotě hvězdy, $T_{\text{eff}} \equiv [L/(4\pi R^2 \sigma)]^{1/4}$. Očekáváme ovšem řadu charakteristických odchylek: absorpční čáry, mj. Balmerovu sérii vodíku; Balmerův skok, jakožto hranu série, a odpovídající pokles v NUV; nerovnovážné a proměnlivé záření v FUV a rádiu, o mnoho řádů větší než planckovské. Pro hvězdy horké se pozoruje značné přerozdělení energie, IR \rightarrow FUV. Pro hvězdy chladné se objevují tak výrazné molekulární pásy, že spektrum ani nelze nazvat planckovské. Pro hvězdy deformované rotací zase nelze počítat s $T_{\rm eff}$ = konst. Totéž platí pro hvězdy deformované přítomností sousední (např. Mourard aj. 2018).

Infračervený exces v NIR naznačuje přítomnost horkého disku; exces v FIR zase chladný disk. Jsou-li v disku značné mezery, otevřené planetami, bývá spektrum disku oddělené od hvězdy. Je opět přibližně planckovské, ale odpovídající nižší T; případně je rozšířené kvůli T(r).

Absorpční pásy (širší než čáry) v oboru FIR způsobují prachová zrna. Jedná se o projev jejich mineralogie a velikosti (viz obr. 46). Při určitém rozdělení velikostí se pásy jeví rozmazané.

Symetrické dvojité emise nebo absorpce naznačují rotující disk, většinou keplerovský, $v_{\text{kepl}}(r) = \sqrt{GM_{\star}/r}$. Při nenulovém sklonu vůči pozorovateli je záření od vnitřní části, rotující rychle, dopplerovsky posunuto více, od vnější méně. Jen málo plynu se nehýbe radiálně vůči pozorovateli. Je-li disk opticky tenký, vzniká emisní čára se dvěma vrcholy symetrickými kolem λ_0 , respektive okolo $\lambda_0 + \gamma/c$, kde γ je systemická rychlost. Pro opticky tlustý disk je čára absorpční.

Profil P Cygni, to znamená nesymetrická, příp. dvojitá emise, která má červené křídlo silnější, je zřetelným projevem hvězdného větru. Samotná emise z opticky tenké rozpínající se obálky je symetrická, ale absorpce viditelná oproti fotosféře hvězdy je dopplerovsky posunutá pouze do modra, čímž vzniká nesymetrie.

Inverzní profil P Cygni, kdy je modré křídlo silnější, by odpovídal kolabující obálce neboli akreci. Vzniká zcela obdobným mechanismem.

6.8 Mezihvězdná extinkce

Pohlcování záření mezihvězdným prostředím (ISM), případně cirkumstelárním prostředím (CSM), zásadně ovlivňuje pozorování. Protože je prostředí většinou velmi chladné, budeme počítat s čistou absorpcí, tzn.:

$$I_{\lambda} = I_0 \,\mathrm{e}^{-\tau_{\lambda}} \,,$$

kde optická tloušťka je integrálem podél zorného paprsku:

$$\tau_{\lambda} = \int_0^{r_1} \kappa_{\lambda} \rho(r) \mathrm{d}r \doteq \kappa_{\lambda} \int_0^{r_1} \rho(r) \mathrm{d}r \,,$$

kde doufáme, že opacita prostředí (normovaná na $\rho = 1 \text{ g cm}^{-3}$) se podél paprsku příliš nemění, pouze hustota ano. Zeslabení (extinkci) vyjádříme v magnitudách jako:

$$A_{\lambda} = m - m_0 = -2.5 \log_{10} \frac{I_{\lambda}}{I_0} = -2.5 \log e^{-\tau} = 2.5 \tau \log e \doteq 1.086 \tau$$
.

Vidíme, že A_{λ} závisí na směru, vzdálenosti, $\rho(r)$, složení ISM, čili κ_{λ} .

Provedeme-li normalizaci nulového bodu i sklonu funkce A_{λ} , získáme *extinkční funkci*:

$$f(\lambda) \equiv \frac{A_{\lambda} - A_V}{A_B - A_V} \tag{183}$$

takovou, že pro $\lambda = V$ je vždy f = 0 a pro B je 1, pak f závisí již jen na opacitě κ_{λ} , na ostatních veličinách jen velmi slabě. Jednotlivé hvězdy se však mohou odlišovat, mají-li ve svém okolí CSM s odlišným κ_{λ} než ISM.

Dle pozorování dále víme, že:

$$\lim_{\lambda \to \infty} f(\lambda) \equiv R_V \doteq 3.1 \pm 0.1$$

Protože zároveň $A_{\infty} = 0$, umožňuje nám to vypočítávat extinkci v oboru V:

$$A_V \doteq R_V (A_B - A_V) \,. \tag{184}$$

Princip určení extinkce pro neznámou * je následující: vezmeme jakoukoliv blízkou * stejného spektrálního typu i luminozitní třídy (ty jsou určeny nezávisle na A_{λ} z rektifikovaných spekter), pro ni změříme rovnou $(B - V)_0$, pro neznámou * změříme (B-V), prostě spočteme rozdíl $(B-V)-(B-V)_0 = (B-B_0)-(V-V_0) =$ $A_B - A_V$ a z (184) vypočteme A_V . Pro libovolnou λ ji vypočteme z (183):

$$A_{\lambda} = f(\lambda)(A_B - A_V) + A_V,$$

známe-li obvyklý průběh $f(\lambda)$.

Ověřme ještě souvislost $f(\lambda)$ s κ_{λ} . Pro dvojici různě vzdálených, ale jinak totožných hvězd by rozdíl jejich jasností bez extinkce byl:

$$m_1 - m_2 = -2.5 \log \frac{L_1/d_1^2}{L_2/d_2^2} = -2.5 \log \frac{L_1}{L_2} + 5 \log \frac{d_1}{d_2}.$$

S extinkcí by to bylo:

$$m_1 - m_2 = 5\log\frac{d_1}{d_2} + A_1 - A_2 = 5\log\frac{d_1}{d_2} + 1,086\kappa_\lambda \left[\int_0^{r_1} \rho(r)\mathrm{d}r - \int_0^{r_2} \rho(r)\mathrm{d}r\right].$$

Dosadíme-li do výrazu:

$$\frac{m_1 - m_2 - (V_1 - V_2)}{B_1 - B_2 - (V_1 - V_2)} = \frac{A_{\lambda 1} - A_{\lambda 2} - (A_{V1} - A_{V2})}{A_{B1} - A_{B2} - (A_{V1} - A_{V2})} = \frac{\kappa_\lambda - \kappa_V}{\kappa_B - \kappa_V},$$

uvidíme ihned souvislost. Pro blízkou hvězdu bychom dokonce měli $A_{\lambda 2} = A_{V2} = A_{B2} = 0$, takže po vynechání zbytečných jedniček nám zbývá právě:

$$f(\lambda) = \frac{\kappa_{\lambda} - \kappa_V}{\kappa_B - \kappa_V}$$

Průběh $f(\lambda)$ dobře vysvětluje přítomnost grafitových a silikátových zrn, které způsobují zvýšení extinkce v UV na 0,217 a 0,130 μ m, růst v FUV (obr. 47, Draine a Lee 1984) a zároveň absorpční pásy v IR. Diferenciální rozdělení velikostí zrn je mocninné, a = 0,005 až 1 μ m, a má sklon q = -3,3 až 3,6 (Mathis aj. 1977).

Obr. 47 — Průřez S normovaný na jeden atom vodíku, úměrný monochromatické opacitě κ_{λ} nebo též extinkční funkci $f(\lambda)$, vynesený v závislosti na reciproké vlnové délce λ^{-1} . Pozorování jsou vyznačena čtverečky, model mezihvězdného prachu čárami. Předpokládá se složení z grafitových a silikátových zrn, jejichž diferenciální rozdělení velikostí má exponent -3.5 (označované jako MRN; Mathis aj. 1977). Převzato z Draine a Lee (1984).

6.9 Monochromatický a integrální popis

V některých případech přece jen není únosné počítat přenos záření pro mnoho různých vlnových délek, ale jsme nuceni použít integrální popis:

$$I = \int_0^\infty I_\nu \mathrm{d}\nu \,.$$

Jakou ale použít opacitu? Když nezáleží na směru, hraje roli pouze teplota, hustota zářivé energie, nebo nás zajímá emisní koeficient, je žádoucí použít *Planckovu opacitu*:

$$\frac{1}{\kappa_{\rm P}} \equiv \frac{\int_0^\infty \frac{1}{\kappa_\nu} B_\nu d\nu}{\int_0^\infty B_\nu d\nu}$$

Všimněme si, že i kdyby κ_{ν} v určitém rozsahu T nebylo závislé na T, tak $\kappa_{\rm P}$ už na T závislé je, protože se mění zářivé pole!

Když naopak na směru záleží, hraje roli spád teploty, tok záření, je nutné použít Rosselandovu opacitu:

$$\frac{1}{\kappa_{\rm R}} \equiv \frac{\int_0^\infty \frac{1}{\kappa_\nu} \frac{\mathrm{d}B_\nu}{\mathrm{d}T} \mathrm{d}\nu}{\int_0^\infty \frac{\mathrm{d}B_\nu}{\mathrm{d}T} \mathrm{d}\nu} \,,$$

kde:

$$\frac{\mathrm{d}B_{\nu}}{\mathrm{d}T} = \frac{2h\nu^3}{c^2} \left(\exp\frac{h\nu}{kT} - 1\right)^{-2} \exp\frac{h\nu}{kT} \frac{h\nu}{kT^2}.$$

Průběh této funkce je samozřejmě odlišný od B_{ν} , čili se musejí lišit i integrální opacity.

U prachu je situace ještě komplikovanější, neboť s poklesem teploty nejprve dochází ke vzniku silikátových zrn, pak ledových zrn (sněžení), případně zrn jiných ledů. Opacity prachu jsou tedy samy o sobě velmi citlivě závislé na T. Potřebovali bychom i nějaký model sublimace a depozice. Pokud se předpokládá LTE, provede se příslušný výpočet a středování opacit (Bell a Lin 1994), získáme výsledek jako na obr. 48.

Ani tak ale nelze popsat jevy nerovnovážné a nelokální, které závisejí na T někde jinde, kupříkadu kroupy na zem spadlé.

Obr. 48 — Integrální opacita κ v závislosti na teplotě T, pro dvě hodnoty celkové hustoty ρ plynu plus prachu. Lze rozlišit intervaly, kde převažuje vliv ledových zrn, sublimace ledu, silikátových zrn, sublimace silikátů, molekul, rozptylu na atomech vodíku a nakonec pro nejvyšší T volně–vázané a volně–volné procesy v plynu, resp. plazmatu. Podle Bell a Lin (1994).

- [64] ASCHWANDEN, M. Physics of the solar corona. Heildeberg: Springer-Verlag, 2005. ISBN 9783540307655.
- [65] BELL, K. R., LIN, D. N. C. Using FU Orionis outbursts to constrain self-regulated protostellar disk models. Astrophys. J., 427, 2, 987–1004, 1984.
- [66] BROŽ, M., WOLF, M. Astronomická měření. Praha: MatfyzPress, 2017. ISBN 9788073783-549.
- [67] CANNON, C. J. Frequency-quadrature perturbations in radiative-transfer theory. Astrophys. J., 185, 621–630, 1973.
- [68] DRAINE, B. T., LEE, H. M. Optical properties of interstellar graphite and silicate grains. Astrophys. J., 285, 89–108, 1984.
- [69] DULLEMOND, C. P. Radiative transfer in astrophysics. [online] [cit. 2017-05-31]. (http://www.ita.uni-heidelberg.de/~dullemond/lectures/radtrans_2012/).
- [70] GEHREN, T., BUTLER, K., MASHONKINA, L., REETZ, J., SHI, J. Kinetic equilibrium of iron in the atmospheres of cool dwarf stars. Astron. Astrophys., 366, 981–1002, 2001.
- [71] JÄGER, C., DORSCHNER, J., MUTSCHKE, H. AJ. Steps toward interstellar silicate mineralogy. VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method. Astron. Astrophys., 408, 193–204, 2003.
- [72] MATHIS, J. S., RUMPL, W., NORDSIECK, K. H. The size distribution of interstellar grains. Astrophys. J., 217, 1, 425–433, 1977.

- [73] MIHALAS, D., MIHALAS, B. W. Foundations of radiation hydrodynamics. Oxford: Oxford Univ. Press, 1984.
- [74] MOURARD, D., BROŽ, M., NEMRAVOVÁ, J. AJ. Physical properties of β Lyr A and its opaque accretion disk. Astron. Astrophys., submitted, 2018.
- [75] NG, K.-C. Hypernetted chain solutions for the classical one-component plasma up to Γ = 7000. J. Chem. Phys., 61, 2680, 1974.
- [76] SHU, F. H. The physics of astrophysics: Radiation. Mill Valley: Univ. Science Books, 1991.
- [77] SOBOLEV, V. V. The diffusion of L_{α} radiation in nebulae and stellar envelopes. Soviet Astronomy, 1, 678–689, 1957.
- [78] Wikipedia. Voigt profile [online]. [cit. 2017-06-24]. (https://en.wikipedia.org/wiki/Voigt_profile).

7 Kosmologie homogenního izotropního vesmíru

Pokud bychom někdy chtěli aplikovat hydrodynamiku na největší měřítka, konkrétně celý vesmír, museli bychom především porozumět pozadí, na němž děje probíhají. Proto bylo zařezeno následující *intermezzo*, příhodně doplněné *preludiem* B.

7.1 Kosmologický princip

Základním východiskem pro náš nejjednodušší model vesmíru je pozorování, že na velkých měřítkách je vesmír *izotropní*. Ve všech směrech vidíme například téměř stejné množství galaxií (viz obr. 49) nebo kosmické mikrovlnné pozadí má na směru téměř nezávislou intenzitu.

Tato pozorovaná izotropie a *koperníkovský princip*, to jest víra, že nejsme na nijak význačném místě vesmíru, znamenají, že vesmír je *homogenní* (všude stejný).

Na druhou stranu musíme zmínit Keplerův-Olbersův paradox. Pokud by vesmír byl nekonečný a zároveň věčný, hvězdy v něm rozmístěné s koncentrací n a se zářivým výkonu L, by produkovaly celkově

$$\int_{0}^{\infty} \frac{L}{4\pi r^{2}} n \, 4\pi r^{2} \mathrm{d}r = Ln \int_{0}^{\infty} \mathrm{d}r = \infty \,, \tag{185}$$

ale v noci je tma. Znamená to tedy, že vesmír měl nějaký počátek a není statický.

Obr. 49 — Velkoškálová struktura vesmíru pozorovaná přehlídkou 2dF.

7.2 Einsteinovy rovnice pole

Abychom vystihli všechny podstatné vlastnosti vesmíru, musíme pracovat se zakřiveným čtyřrozměrným časoprostorem. Jde vlastně o zobecnění obvyklého třírozměrného Euklidova prostoru, v němž vzdálenosti mezi body měříme jednoduše pomocí Pythagorovy vět
y $\mathrm{d}s^2=(\mathrm{d}x^1)^2+(\mathrm{d}x^2)^2+(\mathrm{d}x^3)^2$. Infinetezimální vzdálenost mezi událostmi ("body") v časoprostoru je popisována obdobně metrickým tenzorem g_{ik} :

$$ds^{2} = g_{ik} dx^{i} dx^{k} = g_{00} (dx^{0})^{2} + g_{01} dx^{0} dx^{1} + \dots$$

přičemž přes opakující se indexy *i* a k = 0...3 podle sumačního pravidla sčítáme. Indexy ponechme arabské, i když jde o čtyři rozměry, a vynechme *j*, protože nemá obdobu v řecké abecedě (.. $\iota\kappa$..). Časoprostor je varieta, čili je *lokálně* plochý, obdobně jako povrch Zeměkoule viděný zblízka. Pro úplně plochý (Minkowského) časoprostor by matice g_{ik} byla jednoduchá:

$$g_{ik} \equiv \eta_{ik} = \begin{pmatrix} -c^2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ale v obecném případě je $g_{ik}(t, x, y, z)$ zde jiné než $g_{ik}(t', x', y', z')$ jinde. — potřebovali bychom zjistit $4 \times 4 = 16$ funkcí času a souřadnic (respektive jen 10, kvůli symetrii $g_{ik} = g_{ki}$).

Právě k tomu slouží Einsteinovy rovnice (EFE), které popisují vztah mezi křivostí časoprostoru (metrikou g_{ik}) a "obsahem" vesmíru, neboli tenzorem energie a hybnosti T_{ik} , který je zdrojem gravitace:

$$R_{ik} - \frac{1}{2}Rg_{ik} + \Lambda g_{ik} = \frac{8\pi G}{c^4} T_{ik} \,. \tag{186}$$

Přestože tyto rovnice vypadají "hrozivě", hned v následující kapitole je velmi zjednodušíme, protože náš vesmír je přece homogenní a izotropní (v g_{ik} nejsou funkce prostorových souřadnic ani význačné směry).

Ricciho tenzor R_{ik} a Ricciho skálar R jsou první a druhé parciální derivace metriky podle souřadnic:

$$R = g^{ik} R_{ik} ,$$
$$R_{ik} = R^l_{\ ilk} ,$$

přičemž Riemannův tenzor:

$$R^{i}_{\ klm} = \frac{\partial \Gamma^{i}_{\ km}}{\partial x^{l}} - \frac{\partial \Gamma^{i}_{\ kl}}{\partial x^{m}} + \Gamma^{i}_{\ nl} \Gamma^{n}_{\ km} - \Gamma^{i}_{\ nm} \Gamma^{n}_{\ kl}$$

a Christoffelovy symboly:

$$\Gamma^{i}{}_{kl} = \frac{1}{2}g^{im} \left(\frac{\partial g_{mk}}{\partial x^{l}} + \frac{\partial g_{ml}}{\partial x^{k}} - \frac{\partial g_{kl}}{\partial x^{m}}\right) \,.$$

A označuje kosmologickou konstantu (číslo), G gravitační konstantu, c rychlost světla ve vakuu. Složkami T_{ik} mohou být obecně opět funkce času, souřadnic nebo rychlostí, nicméně pro ideální kapalinu s hustotou ρ a tlakem p platí (v lokální inerciální soustavě):

$$T^i_{\ k} = \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & p/c^2 & 0 & 0 \\ 0 & 0 & p/c^2 & 0 \\ 0 & 0 & 0 & p/c^2 \end{pmatrix}$$

Z matematického hlediska jde o soustavu 10 (nezávislých) nelineárních parciálních diferenciálních rovnic. Není řešitelná analyticky, až na několik speciálních případů.

7.3 Metrika FLRW

Při hledání homogenní metriky si položme otázku: lze popsat křivost jedním číslem? Vezměme jako příklad povrch koule o poloměru R, na níž vyznačíme kružnici o poloměru r. Na rovné ploše bychom očekávali obvod $o_{\text{očekávaný}} = 2\pi r$, ale zde bychom naměřili:

$$o_{\mathrm{zm\check{e}\check{r}en\acute{y}}} = 2\pi R \sin \vartheta = 2\pi R \sin \frac{r}{R} \doteq 2\pi R \left[\frac{r}{R} - \frac{1}{3!} \left(\frac{r}{R} \right)^3 + \ldots \right] \,.$$

Křivost je pak definována pomocí těchto obvodů jako:

$$K \equiv \frac{3}{\pi} \lim_{r \to 0} \frac{o_{\text{očekávaný}} - o_{\text{změřený}}}{r^3} , \qquad (187)$$

což pro výše uvedenou kouli dává:

$$K_{\text{koule}} = \frac{1}{R^2}.$$

Nyní přejděme k měření vzdáleností. Ve dvourozměrné euklidovské geometrii a v polárních souřadnicích bychom měli prostě $(ds)^2 = (dr)^2 + (rd\phi)^2$. Avšak na kulové ploše je (viz obr. 50):

$$(\mathrm{d}s)^2 = (R\mathrm{d}\vartheta)^2 + (r\mathrm{d}\phi)^2 \,,$$

kde

$$Rd\vartheta = \frac{dr}{\cos\vartheta} = \frac{dr}{\frac{\sqrt{R^2 - r^2}}{R}} = \frac{dr}{\sqrt{1 - \frac{r^2}{R^2}}} = \frac{dr}{\sqrt{1 - Kr^2}}.$$

Zobecnění na třírozměrný prostor provedeme záměnou $rd\phi$ za $rd\theta$ a $r\sin\theta d\phi$.

Obr. 50 — Geometrie na ploše a na kouli. Převzato z [80]

Nyní jsme teoreticky připraveni napsat obecnou metriku pro zakřivený časoprostor:

$$ds^{2} = -c^{2}dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) \right], \qquad (188)$$

která se nazývá Fridmannova–Lemâitrova–Robertsonova–Walkerova, neboli zkráceně FLRW. Kromě (zatím neznámé) křivosti K jsme do ní doplnili i (zatím neznámou) funkci času a(t), zvanou *expanzní parametr*, jež umožní popisovat rozpínání nebo smršťování vesmíru. Pochopitelně v metrice nejsou žádné funkce prostorových souřadnic, protože náš vesmír je všude stejný. V maticovém zápisu je:

$$g_{ik} = \begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & \frac{a(t)^2}{1-Kr^2} & 0 & 0 \\ 0 & 0 & a(t)^2 r^2 \mathrm{d}\theta^2 & 0 \\ 0 & 0 & 0 & a(t)^2 r^2 \sin^2\theta \,\mathrm{d}\phi^2 \end{pmatrix}.$$
 (189)

Expanzní parametr lze libovolně škálovat, nicméně pro přehlednost se volí obvykle $a(t_0) = 1$ dnes, pak K je křivost, anebo K = -1, 0 nebo +1, pak a(t) je křivost.

7.4 Fridmannovy rovnice

Dosazením FLRW metriky (189) do Einsteinových rovnic (186) získáme rovnice pro expanzní parametr a(t) a křivost K. Namísto ručního výpočtu použijeme algebraický manipulátor Reduce (mat() deklaruje matici a df() provádí derivaci funkce podle parametru):

%% oznaceni souradnic (x^0,x^1,x^2,x^3) <=> (t,r,theta,phi)

```
matrix coords(1,4);
coords := mat((t,r,theta,phi));
procedure x(i); coords(1,i+1);
                                             % matice se indexuji od 1, nikoli od 0!
%% FLRW metrika g_ik
a(t); Y;
                                             % obecna fce t
g := mat(
  (-c^{2}, 0
                                    , 0
                               , 0
                                                         ),
  (
     0, (a(t))<sup>2</sup>/(1-K*r<sup>2</sup>), 0
                                    , 0
                                                         ),
                               , (a(t))^2 r^2, 0
  (
      0, 0
                                   , (a(t))<sup>2</sup> r<sup>2</sup> sin(theta)<sup>2</sup>)
  (
      0, 0
                               , 0
);
g_ := 1/g;
                              % kontravariantni metrika g^ik <=> inverzni matice
%% Christoffelovy symboly
procedure Christoffel(i,k,l); begin
  scalar Ch;
  Ch:=0;
  for m := 0:3 do begin
                                                    % opet indexace g_ik, g^ik od 1
     Ch:=Ch + 1/2 * g_(i+1,m+1) *
```

```
( df(g(m+1,k+1), x(l)) + df(g(m+1,l+1), x(k)) - df(g(k+1,l+1), x(m)) )
  end;
  return trigsimp(Ch);
                                               % zjednodusi goniometricke fce
end;
for i := 0:3 do begin
  for k := 0:3 do begin
    for 1 := 0:3 do begin
      Gamma(i,k,l) := Christoffel(i,k,l);
                                               % ulozeni do pole setri CPU time
      if (Gamma(i,k,l) neq 0) then begin
        write "Gamma^",i,"_",k,l," = ",Gamma(i,k,l);
      end:
    end;
  end;
end;
%% Riemannuv tenzor
procedure Riemann(i,k,l,m); begin
  scalar Ri,n;
  Ri := df(Gamma(i,k,m), x(l)) - df(Gamma(i,k,l), x(m));
  for n := 0:3 do begin
    Ri:=Ri + Gamma(i,n,1)*Gamma(n,k,m) - Gamma(i,n,m)*Gamma(n,k,1);
  end;
  return trigsimp(Ri);
end;
for i := 0:3 do begin
  for k := 0:3 do begin
    for 1 := 0:3 do begin
      for m := 0:3 do begin
        Ri := Riemann(i,k,l,m);
        if (Ri neq 0) then begin
          write "R<sup>^</sup>",i,"_",k,l,m," = ",Ri;
        end:
      end;
    end;
  end;
end;
%% Ricciho tenzor
procedure Ricci(i,k); begin
  scalar Rc,l;
  Rc:=0;
  for 1 := 0:3 do begin
    Rc:=Rc + Riemann(1,i,1,k);
  end:
  return trigsimp(Rc);
end;
matrix R_ik(4,4);
for i := 0:3 do begin
  for k := 0:3 do begin
    R_ik(i+1,k+1) := Ricci(i,k);
    write "R_",i,k," = ", R_ik(i+1,k+1);
  end;
```

```
end;
%% Ricciho skalar
procedure R(); begin
  scalar R,i,k;
  R := 0;
  for i := 0:3 do begin
    for k := 0:3 do begin
      R:=R + g_{(i+1,k+1)} * R_{ik(i+1,k+1)};
    end;
  end:
  return trigsimp(R);
end;
write "R = ", R();
%% tenzor energie a hybnosti T^i_k pro tekutinu
T__ik := mat(
  ( rho*c<sup>2</sup>, 0, 0, 0),
  (
         0, p, 0, 0),
  (
          0, 0, p, 0),
          0, 0, 0, p)
  (
);
T_{ik} := g * T_{ik};
                                             % kovariantni T_ik
%% Einsteinovy rce pole
write "EFE: ", R_ik - 1/2 * R() * g - Lambda_ * g, " = ", (8*pi*capG/c^4) * T_ik;
bye;
```

Výsledná složka 00 Einsteinových rovnic se nazývá Fridmannova rovnice:

$$\dot{a}^2 + Kc^2 = \frac{8\pi G}{3} \left(\rho + \overbrace{\frac{\Lambda c^2}{8\pi G}}^{\equiv \rho_\Lambda} \right) a^2 \,. \tag{190}$$

Ze stopy EFE vychází ještě druhá Fridmannova rovnice:

$$\ddot{a} + \dot{a}^2 + Kc^2 = -\frac{4\pi G}{3} \left(\rho + 3\frac{p}{c^2} + \frac{\Lambda c^2}{2\pi G}\right) a^2 \,. \label{eq:alpha}$$

Za předpokladu platnosti rovnice kontinuity:

$$\frac{\mathrm{d}(\rho a^3)}{\mathrm{d}t} = -\frac{p}{c^2} \frac{\mathrm{d}(a^3)}{\mathrm{d}t}$$

lze odvodit i jiný užívaný tvar Fridmannovy rovnice (190); nejprve ji násobíme a:

$$\dot{a}^2a + Kc^2a = \frac{8\pi G}{3}\rho a^3,$$

124

pak derivujeme podle času:

$$-\dot{a}^{2} + \frac{8\pi G}{3}\rho a^{2} - \frac{p}{c^{2}}\frac{\mathrm{d}(a^{3})}{\mathrm{d}t},$$

2 $\dot{a}\ddot{a}a + \dot{a}^{2}\dot{a} + Kc^{2}\dot{a} = \frac{8\pi G}{3}\frac{\mathrm{d}(\rho a^{3})}{\mathrm{d}t},$

odkud ihned plyne rovnice pro zrychlení:

$$\ddot{a} = -\frac{4\pi G}{3} \left(\rho + 3\frac{p}{c^2}\right) a \,.$$

Abychom mohli vypočítat konkrétní průběh a(t), potažmo $\rho(t)$, musíme znát ještě *stavové rovnice*, respektive závislosti $\rho(a)$ pro různé substance, což shrnuje následující tabulka:

látka (prach):
$$p_{\rm m} = 0$$
 $\rho_{\rm m} = \rho_{\rm m0} a^{-3}$ (191)

záření, neutrina:
$$p_{\rm rel} = \frac{1}{3}\rho_{\rm rel}c^2$$
 $\rho_{\rm rel} = \rho_{\rm rel0} a^{-4}$ (192)

 $\Lambda \text{ (temná energie):} \qquad p_{\Lambda} = -\rho_{\Lambda}c^2 \qquad \rho_{\Lambda} = \rho_{\Lambda 0} = \text{konst.} \tag{193}$

Látka (ať už ve formě hvězd/galaxií nebo jako temná látka) je strhávaná rozpínajícím se prostorem a její hustota přirozeně klesá jako $1/a^3$. Pro fotony se však kromě poklesu jejich koncentrace uplatňuje ještě prodlužování vlnové délky, které ovlivňuje energii podle vztahu $E = hc/\lambda$, takže výsledná úměra je $1/a^4$. Hustota odpovídající kosmologické konstantě naopak zůstává konstantní; pokud ji převedeme na pravou stranu EFE hovoříme též o *temné energii*. Mimochodem je evidentní, že v kosmologii neplatí zákon zachování energie. Nejenže by integrál přes celý prostor divergoval, ale ani celková hustota energie není konstatní.

Pro popis rozpínání se kromě expanzního parametru a(t) používá také Hubblův parametr:

$$H(t) \equiv \frac{\dot{a}}{a} \,. \tag{194}$$

Pro dnešek (z blízkých objektů) je změřena hodnota $H_0 \doteq 71 \,\mathrm{km \cdot s^{-1} \cdot Mpc^{-1}}$, což "numerologicky" zhruba odpovídá rychlosti vzdalování Měsíce od Země. Dále zavedeme *decelerační parametr*:

$$q(t) \equiv -\frac{\ddot{a}a}{\dot{a}^2} \tag{195}$$

pro posouzení toho, kdy se rozpínání zpomaluje (q > 0) a kdy zrychluje (q < 0). Měřitelnou veličinou je *rudý posuv* (angl. redshift), jeho definice a vztah k a(t) je:

$$z \equiv \frac{\lambda_{\text{dnes pozorované}} - \lambda_{\text{emitované}}}{\lambda_{\text{emitované}}}, \qquad 1 + z = \frac{a_0}{a}.$$
(196)

Z důvodů, které budou zřejmé záhy, zavedeme kritickou hustotu jako:

$$\rho_{\rm c} = \frac{3H^2}{8\pi G} \,. \tag{197}$$

Pro výpočetní účely Fridmannovu rovnici (190) upravíme s využitím stavových rovnic:

$$\dot{a}^{2} + Kc^{2} = \frac{8\pi G}{3} \left(\frac{\rho_{\rm m0}}{a^{3}} + \frac{\rho_{\rm rel0}}{a^{4}} + \rho_{\Lambda 0}\right) a^{2},$$

definujeme bezrozměrné veličiny Ω jako:

$$\Omega \equiv \frac{\rho}{\rho_{\rm c}} \,,$$

pak

$$\dot{a}^2 + Kc^2 = H_0^2 \left(\frac{\Omega_{\rm m0}}{a} + \frac{\Omega_{\rm rel0}}{a^2} + \Omega_{\Lambda 0} a^2\right)$$

a člen Kc^2 vyloučíme pomocí téže rovnice, ale napsané pro čas $t = t_0$, kdy je $a_0 = 1$, $\dot{a}_0 = H_0 a_0 = H_0$:

$$H_0^2 + Kc^2 = H_0^2 \left(\Omega_{\rm m0} + \Omega_{\rm rel0} + \Omega_{\Lambda 0} \right) \,,$$

čili:

$$\dot{a}^{2} = H_{0}^{2} \left(\frac{\Omega_{\rm m0}}{a} + \frac{\Omega_{\rm rel0}}{a^{2}} + \Omega_{\Lambda 0} a^{2} + 1 - \Omega_{\rm m0} - \Omega_{\rm rel0} - \Omega_{\Lambda 0} \right) , \qquad (198)$$

což je obyčejná diferenciální rovnice 1. řádu pro a(t), kterou můžeme snadno řešit numericky (viz podstatnou část kódu programu fridmann ve Fortranu 77):

```
c pocatecni podminky
     t = 0.d0
     a = a_0
     tout = t
c hlavni cyklus
     do while ((t.lt.tstop).and.(a.gt.0d0))
c stavove rovnice pro latku (prach), zareni a vakuum => skalovani hustot
        Omega_m = Omega_mO / a
        Omega_rel = Omega_rel0 / a**2
        Omega_lambda = Omega_lambdaO * a**2
c rudy posuv
       z = a_0/a - 1.d0
 standardni vystup
с
       if (t.ge.tout) then
         write(*,*) (t_0+sign*t)/Gyr, a, z, Omega_m, Omega_rel,
            Omega_lambda
     :
         tout = t + dtout
       endif
```

```
c Fridmannova rovnice
    da_dt = sqrt(H_0**2 * (Omega_m + Omega_rel + Omega_lambda
    :    + 1.d0 - Omega_m0 - Omega_rel0 - Omega_lambda0))
c jednoduchy Euleruv integrator
    a = a + da_dt*dt*sign
    t = t + dt
```

enddo

Některé hypotetické vesmíry pochopíme i bez programu:

- 1. pro prázdný vesmír ($T_{ik} = 0$, bez Λ) vychází $\dot{a}^2 = 0$, a = konst., H = 0, K = 0, čili je v něm statický Minkowského plochý časoprostor ($g_{\mu\nu} = \eta_{\mu\nu}$).
- 2. de Sitterův vesmír ($T_{ik} = 0$, pouze $\Lambda > 0$) se vyznačuje exponenciálním rozpínáním $a(t) \propto \exp \chi t$.
- 3. pro prach a plyn existuje kritická hustota ρ_c (viz (197)); je-li $\rho = \rho_c \Rightarrow K = 0$, tzn. vesmír je plochý; $\rho > \rho_c \Rightarrow K > 0$, je uzavřený, má kulovou geometrii; $\rho < \rho_c \Rightarrow K < 0$, je otevřený, geometrie je hyperbolická. Pro podkritický látkou vyplněný vesmír platí úměra $a \propto t^{2/3}$.
- 4. vesmír vyplněný zářením se rozpíná jako $a \propto t^{1/2}$
- 5. náš pozorovaný vesmír má počáteční podmínky (v čase $t = t_0$) přibližně $\Omega_{\rm m0} = 0.27$, $\Omega_{\rm rel0} = 8.24 \cdot 10^{-5}$, $\Omega_{\Lambda 0} = 0.73$. Na obr. 51 a 52 vidíme jeho vývoj spočtený výše uvedeným programem. Můžeme z něj odečíst okamžik Velkého třesku $t_{\rm BB} = -13.7$ Gyr, kdy je a = 0, začátek zrychlování v čase t = -6.7 Gyr, nebo trvání éry záření ($\rho_{\rm rel} > \rho_{\rm m}$) asi 55 000 roků od Velkého třesku

V další kapitole vysvětlíme, z čeho se odvozují výše uvedené hodnoty Ω .

7.5 Kosmologické parametry

Parametry našeho vesmíru jsou omezené především třemi pozorováními: i) měřením fluktuací kosmického mikrovlnného záření (CMB); ii) fotometrií a spektroskopií supernov typu Ia; iii) velkoškálovými strukturami v rozložení galaxií (baryonovými akustickými oscilacemi, BAO); případně iv) měřeními polarizace (viz kap. 8).

Z měřené intenzity kosmického mikrovlnného záření se vypočítává prostorové spektrum fluktuací (přičemž se odečte dipólní složka a rušení Mléčnou dráhou) a ta se fituje kosmologickými modely (viz obr. 53). Není to jednoduchý homogenní model, to bychom pochopitelně nedostali žádné fluktuace CMB.³²

Tvar prostorového spektra se vysvětluje akustickými oscilacemi v plazmatu tvořeném baryony a fotony. Největší amplituda okolo $\ell \simeq 200$, čemuž odpovídá úhel

³² Toto záření vzniklo asi 380 000 roků po Velkém třesku, když došlo k rekombinaci, čili záření se oddělilo od látky a vesmír se stal průhledný. Jedná se vlastně o nejvzdálenější objekt, který můžeme pozorovat. Pozor, není možné tvrdit, že vzdálenost CMB je 13,7 Gly! V okamžiku, kdy došlo k emisi fotonů, byl zdroj od nás (budoucí Země) vzdálen *jen* 40 Mly. Toto záření pak cestovalo 13,7 Gyr skrz rozpínající se prostor, takže souhybná vzdálenost někdejšího zdroje (dnes nějaké galaxie) od současné Země je 48,5 Gly.

Obr. 51 — Vývoj expanzního parametru a(t) pro různé hodnoty Ω_{m0} , $\Omega_{\Lambda 0}$, Ω_{rel0} . Hodnota Hubblova parametru je ve všech případech $H_0 = 70.9 \,\mathrm{km \cdot s^{-1} \cdot Mpc^{-1}}$.

Obr. 52 — Časové závislosti relativních husto
t $\Omega' = \frac{\rho}{\rho_{c0}}$ pro náš pozorovaný vesmír. Rozlišujeme přitom příspěvky od kosmologické konstanty, temné látky + baryonů a od záření. Na detailu vpravo je patrné období od Velkého třesku do 1 Myr.

na obloze $\varphi = 180^{\circ}/\ell \simeq 1^{\circ}$, se proto nazývá *akustický vrchol*. Dalšími jevy, které fotony CMB ovlivňují, jsou difuzní tlumení (též Silkovo; jde o vyrovnávání fluktuací hustoty fotony během rekombinace), Sunyaevův–Zeĺdovičův jev (tj. změna tvaru spektra CMB rozptylem na energetických elektronech), Sachsův–Wolfův jev (gravitační rudý nebo modrý posuv fotonů CMB).

Luminozitní vzdálenosti supernov Ia jsou určované nezávisle pomocí cefeid nebo Tullyho–Fisherovým vztahem a porovnávají se s rudým posuvem mateřských galaxií (viz obr. 54).³³

Luminozitní vzdálenost d_L je definována jako:

$$d_L^2 \equiv \frac{L}{4\pi\Phi} \,, \tag{199}$$

kde L označuje luminozitu zdroje a Φ měřený tok. Předpokládejme, že zdroj je v počátku souhybné souřadnicové soustavy a emituje fotony do sféry o poloměru r. Plocha sféry je $4\pi [a(t)r]^2$ (i když a(t)r není poloměr při $K \neq 0$).

Tok je však kromě obvyklého zákona čtverců ovlivněn dalšími dvěma jevy: i) fotony mají kvůli expanzi menší energii $E_{\gamma} = \frac{hc}{\lambda}, \lambda \propto a(t);$ ii) fotony kvůli dilataci času přicházejí s většími "přestávkami". Oba se projeví faktorem 1/(1+z):

$$\Phi = \frac{L}{4\pi r^2} \frac{1}{1+z} \frac{1}{1+z} \,,$$

což po dosazení do (199) dává vztah:

$$d_L = r(1+z) \,. \tag{200}$$

Souhybné souřadnice r lze (bez důkazu) vypočítat jako:

$$r(z) = \frac{c}{H_0} S(z) , \qquad (201)$$

kde funkce:

$$S(z) = I(z) \quad \text{pro } \Omega_0 = 1,$$

$$= \frac{1}{\sqrt{\Omega_0 - 1}} \sin \left[I(z)\sqrt{\Omega_0 - 1} \right] \quad \text{pro } \Omega_0 > 1,$$

$$= \frac{1}{\sqrt{1 - \Omega_0}} \sinh \left[I(z)\sqrt{1 - \Omega_0} \right] \quad \text{pro } \Omega_0 < 1,$$
(202)

a integrál:

$$I(z) = H_0 \int_0^z \frac{\mathrm{d}z'}{H(z')},$$
(203)

který lze počítat numericky z výstupu programu fridman.

³³ K extinkci záření dochází zejména v hostitelské galaxii, nikoli v mezigalaktickém prostoru, proto jsou různě vzdálené supernovy zeslabeny stejně. Ostatně se nepozoruje ani výrazné zčervenání spekter vzdálených supernov.

Obr. 53 — Vlevo fluktuace intenzity mikrovlnného záření znázorněné barevnou škálou na mapě oblohy. Vpravo odpovídající prostorové spektrum, čili závislost amplitudy na prostorové frekvenci (multipólovém momentu ℓ). Největší amplitudu vykazují fluktuace s úhlovým rozměrem okolo 1°.

Obr. 54 — Vztah mezi modulem vzdálenosti a rudým posuvem pro velký vzorek supernov typu Ia. Převzato z [83].

Parametry vesmíru a jejich nejistoty odvozené z dat WMAP, SN Ia a SDSS (Spergel aj. 2006) jsou uvedeny v tab. 4.

V současnosti je kritická hustota rovna $\rho_{c0} = \frac{3H_0^2}{8\pi G} \doteq 10^{-26} \text{ kg} \cdot \text{m}^{-3} \simeq 6 \text{ protonů} \cdot \text{m}^{-3}$, *ale* nejsou to protony! Většinu obsahu vesmíru tvoří kosmologická konstanta alias temná energie, zbytek temná látka a "zanedbatelnou" menšinu (4%) baryony. O leptonech, fotonech nebo neutrinech ani nemluvě. Na titulním obrázku vidíme, jak důležité je pozorování různými metodami, protože každá má jiné nejistoty, přičemž výše uvedené přesné hodnoty Ω jsou v jejich průsečíku.

Pozorujeme tedy $\Omega = \Omega_{\Lambda} + \Omega_{\text{CDM}} + \Omega_{\text{baryonů}} + (\text{nepatrné příspěvky } e^-, \gamma, \nu) = (1,00 \pm 0,04)$, čili plochý vesmír je v souladu s pozorováním. Uvědomme si ale, že v principu *nelze* nikdy prokázat přesnou plochost!

Poznamenejme, že Λ přispívá svou hustotou ke zpomalování rozpínání (a vyrovnává jeho křivost na nulu), *ale* zároveň svým záporným tlakem rozpínání zrychluje. Existují samozřejmě i jiné hypotézy, hovoří se například o *kvintesenci*, která má

H_0	$= 70,9^{+2,4}_{-3,2}\mathrm{km}\cdot\mathrm{s}^{-1}\cdot\mathrm{Mpc}^{-1}$	Hubbleův parametr
$ ho_0$	$= 0.94^{+0.06}_{-0.09} \cdot 10^{-26} \rm kg \cdot m^{-3}$	kritická hustota
$\Omega_{ m b}$	$= 0,0444_{-0,0035}^{+0,0042}$	hustota baryonů
$\Omega_{\rm CDM+b}$	$0 = 0.266^{+0.025}_{-0.040}$	hustota temné látky $+$ baryonů
Ω_{Λ}	$= 0,732_{-0,025}^{+0,040}$	hustota temné energie
$z_{\rm ion}$	$= 10,5^{+2,6}_{-2,9}$	rudý posuv reionizace
au	$= 0.079^{+0.029}_{-0.032}$	optická hloubka reionizace
t_0	$= 13,73^{+0,13}_{-0,17}{\rm Gyr}$	stáří vesmíru

Obr. 55 — Chybové "elipsy" pro parametry Ω_{m0} a $\Omega_{\Lambda 0}$ vypočtené z měření kosmického mikrovlnného pozadí (CMB), ze supernov Ia (SNe) a ze struktur baryonické látky (BAO). Důležitý je průsečík vyplývající ze všech měření, který je vyznačen šedě. Převzato z [83].

odlišnou stavovou rovnici, proměnnou v čase. Parametry kosmologického modelu by se pak do jisté míry změnily.

7.6 Teplota záření

Spektrum kosmického pozaďového záření je planckovské, což svědčí o tom, že záření je (bylo) v termodynamické rovnováze. Za rovnovážného stavu máme ovšem podle

Stefanova–Boltzmannova zákona hustotu energie záření rovnu:

$$u = \frac{\sigma}{4c}T^4.$$
(204)

Pro záření zároveň platí kosmologické škálování $\rho_{\rm rel} = \rho_{\rm rel0} a^{-4}$, tudíž:

$$\frac{\sigma}{4c}T^4 = \frac{\sigma}{4c}T_0^4a^{-4}\,,$$

odkud snadno vyjádříme závislost teploty na expanzním parametru:

$$T(t) = \frac{T_0}{a(t)} \,. \tag{205}$$

Dosadíme-li pozorovanou hodnotu $T_0 = 2.7 \,\mathrm{K}$, můžeme odhadovat teplotu záření v minulosti (viz obr. 56). V éře záření (i před rekombinací) navíc lze předpokládat, že i látka byla v rovnováze se zářením, čili měla stejnou teplotu.

Zásadním poznatkem je, že nukleosyntéza ve hvězdách není schopna vysvětlit pozorovaný velký obsah *helia* ve vesíru ($Y \simeq 0.25$), vzhledem k relativně malému obsahu uhlíku nebo kyslíku ($Z \simeq 0.02$). Syntéza helia přitom vyžaduje teploty řádově $T \simeq 10^9$ K, aby mohla být překonána coulombická bariéra (s pomocí tunelového jevu).

Budeme-li tedy předpokládat, že "nadbytečné" helium byl syntetizováno v horkém raném vesmíru, v tu dobu muselo být $a(t) = \frac{T_0}{T}a_0 \simeq 3 \cdot 10^{-9}$. Z průběhu a(t) pak vyplývá, že nukleosyntéza musela probíhat v prvních *minutách* po Velkém třesku, ale ne dříve, protože by docházelo k fotodisintegraci jader.

Atomy vznikly až mnohem později, když teplota záření a odpovídající energie fotonů byla nižší než ionizační energie atomů. Výpočet můžeme provést pomocí Sahovy rovnice:

$$\frac{X^2}{1-X} n_{\rm e} = \left(\frac{2\pi m_{\rm e} kT}{h^2}\right)^{\frac{3}{2}} \exp\left(-\frac{\chi}{kT}\right) \,, \tag{206}$$

kde $X \equiv \frac{n_e}{n}$ označuje ionizační stupeň, n_e koncentraci elektronů (odvozenou z $\rho_b = \rho_{b0} a^{-3}$), m_e hmotnost elektronu, k Boltzmannovu konstantu, h Planckovu konstantu a χ ionizační energii atomu. Období, kdy probíhala *rekombinace*, vychází přibližně od 210 000 roků (X = 0.99) do 420 000 roků ($X = 10^{-3}$) po Velkém třesku.

Úvahy o průběhu teploty ve velmi raném období $(T > 10^{10} \text{ K})$ jsou složitější, protože dochází k fázovým přechodům (např. anihilaci párů, oddělení neutrin) nebo je rychlost expanze tak velká, že procesy probíhají nerovnovážně.

7.7 Co je zdrojem temné látky?

Pro existenci temné látky svědčí pozorování nezávislá na jakýchkoli kosmologických modelech. Jde zejména o nekeplerovskou rotaci vnějších částí galaxií (plochá rotační křivka v(r)), způsobenou halem nesvítící látky.

Obr. 56 — Teplota záření v závislosti na čase a stupeň ionizace vypočtený dle Sahovy rovnice.

Obr. 57 — Schematické znázornění jaderných reakcí, které se uplatňovaly během nukleosyntézy po Velkém třesku. Převzato z [81].

Oblaka horkého mezigalaktického plynu zářícího v rentgenovém oboru, která se pozorují v kupách galaxií, se vyznačují velkou rychlostí emitujících částic, jež přesahuje rychlost únikovou (počítanou ze svítící látky). Protože plyn navzdory tomu pozorujeme, musí být kupy celkově asi 10 krát hmotnější než svítící látka.

Temnou látkou nemohou být stelární černé díry, ty byly vyvráceny negativním pozorováním gravitačních čoček ve Velkém Magellanově mračnu.

Temná látka musí být *nebaryonická*, protože jinak by nukleosyntéza po Velkém třesku proběhla odlišně, byla by překonána beryliová bariéra a vzniklo by mnoho primordiálního železa (viz obr. 57). Nesmí ani interagovat elektromagneticky, protože by se prozradila nějakým zářením.

Proto se uvažuje o hmotných neutrálních elementárních částicích interagujících pouze slabě a gravitačně. Mimo jiné byly navrhovány axiony nebo neutralina (superpartneři neutrin v supersymetrických teoriích), nicméně zatím neexistuje experimentální potvrzení těchto hypotéz.

7.8 Co je zdrojem temné energie?

Nejjednodušším vysvětlením by mohlo být, že v Einsteinových rovnicích prostě musí být uvedena kosmologická konstanta Λ , nicméně není uspokojivé, když nemáme teorii vysvětlující její velikost.

Přirozeným vysvětlením by byla *energie vakua*, na než v kvantové mechanice nahlížíme jako na prostor plný virtuálních částic. Problém je, že z kvantové teorie vychází o 120 řádů větší hodnota než pozorovaná ρ_{Λ} ! Těžko pak takové interpretaci věřit.

Mějme jednu virtuální částici o hmotnosti $m \simeq \frac{\Delta E}{c^2}$ v boxu o rozměru $L \simeq \Delta x$. Její životní doba plyne z Heisenbergova principu neurčitosti:

$$\Delta t \simeq \frac{\hbar}{\Delta E} \simeq \frac{\hbar}{mc^2}$$

Protože nejistota hybnosti $\Delta p \ge 0$ i hybnost
 $p \ge 0$, musí minimální hodnota hybnosti být řádu
 $p_{\min} \simeq \Delta p.$ Z principu neurčitosti víme zároveň, že:

$$\Delta p \simeq \frac{\hbar}{\Delta x}$$

takže rychlost částice vyjádříme jako:

$$v \simeq \frac{p_{\min}}{m} \simeq \frac{\hbar}{mL}$$

Největší vzdálenost, kterou částice může proletět, aby nevyletěla z boxu, je $L = v\Delta t$. Po dosazení:

$$L = \frac{\hbar}{mL} \frac{\hbar}{mc^2}, \qquad L^2 = \frac{\hbar^2}{m^2 c^2}, \qquad L \simeq \frac{\hbar}{mc}.$$

Abychom vytvořili pár virtuálních částic, musí hustota energie vakua být:

$$u_{\mathrm{vac}} \simeq \frac{2mc^2}{L^3} \simeq \frac{2m^4c^5}{\hbar^3} \,.$$

Největší hmotnost, která přichází v úvahu, je Planckova hmotnost:

$$m_{\rm p} = \sqrt{\frac{\hbar c}{G}} \simeq 10^{19} \, {\rm GeV} \, , \label{eq:mp}$$

odkud plyne:

$$u_{
m vac} \simeq rac{2m_{
m p}^4c^5}{\hbar^3} \simeq rac{2c^7}{G^2\hbar} \simeq 10^{114} \, {
m J} \cdot {
m m}^{-3} \, .$$

Přesnější teorie dává $u_{\rm vac} \simeq 10^{111}\,{\rm J}\cdot{\rm m}^{-3}.$ To je v příkrém rozporu s měřenou hodnotou:

$$u_{\Lambda} = \rho_{\Lambda} c^2 = \rho_{\rm c} \Omega_{\Lambda} c^2 = 6.22 \cdot 10^{-10} \,\mathrm{J} \cdot \mathrm{m}^{-3}$$

Nelze vyloučit možnost, že ve vesmíru existuje nějaké další skalární pole, jako je zmiňovaná kvintesence.

- [79] CARROL S. M. A No-Nonsense Introduction to General Relativity [online]. [cit. 2010-03-08]. (http://preposterousuniverse.com/grnotes/grtinypdf.pdf).
- [80] CARROL B. W., OSTLIE D. A. An Introduction to Modern Astrophysics. San Francisco: Pearson, Addison Wesley, 2007. ISBN 0321442849.
- [81] NOLLET K. M., BURLET S. Estimating reaction rates and uncertainties for primordial nucleosynthesis Phys. Rev. D, 61, 123505, 2000.
- [82] Reduce. [online] [cit. 2010-03-08]. (http://www.reduce-algebra.com/).
- [83] Supernova Cosmology Project [online]. [cit. 2012-01-27]. (http://supernova.lbl.gov/).
- [84] WEINBERG S. Cosmology. Oxford: Oxford University Press, 2008. ISBN 0198526822.
- [85] WRIGHT, E. Cosmology Calculator. [online] [cit. 2012-01-31]. (http://www.astro.ucla.edu/~wright/CosmoCalc.html).

8 První hvězdy

V první větě musíme přiznat, že v následujícím textu jde o hvězdy hypotetické. Prý byly první ve vesmíru (označují se jako populace III). Prý měly nulový obsah prvků těžších než lithium (metalicita $Z \to 0$). Prý proto měly horší ochlazování.³⁴ Prý vznikly jako velmi hmotné, M = 60 až 300 M_{\odot} . A prý všechny dávno zanikly jako supernovy, konkrétně jako párově nestabilní. Zatím však nebyly (přímo) pozorovány.

Než přistoupíme k teoretickému studiu těchto hvězd, musíme si udělat pořádek ve **hvězdných populacích**, pročež jsme připravili kartičku–tahák:

Pop I	Pop II	Pop III	stáří
<			metalicita
<			moment hybnosti
	>		disperze rychlostí
disk	výduť halo	samy	místo
otevřené obíhání	kulové kmitání	žádné	hvězdokupy pohyb

Vidíme, že Pop I je nejmladší, kdežto Pop III nejstarší. Metalicita roste od Pop III k Pop I.³⁵ Hvězdy Pop I se nacházejí převážně v galaktickém disku nebo ve hvězdokupách otevřených, kdežto Pop II ve výduti, halu nebo hvězdokupách kulových. Moment hybnosti celé skupiny hvězd je podstatně větší pro Pop I než Pop II. U disperze rychlostí je tomu naopak. Tomu přesně odpovídá převažující pohyb, což je pro Pop I obíhání kolem středu, kdežto pro Pop II kmitání přes střed. Pro Pop III o tom nemá smysl mluvit, neboť jsou tyto hvězdy vesměs osamocené.

8.1 Způsob pozorování

Nejslibnějším způsobem jak nalézt hvězdy populace III je pozorování v čáře Lyman- α , která má nominální vlnovou délku $\lambda = 121 \text{ nm}$ (v FUV). Zároveň však takový zdroj musí vykazovat velký rudý posuv, přinejmenším z = 6 až 7, což odpovídá

³⁴ Za pozornost stojí, že na ohřívání hvězd prakticky nezáleží. I když se hovoří o tom, jak je důležité znát zdroje energie hvězd, tak jejich nejzákladnější vlastnosti, počáteční hmotnost, pozdější poloměr, zářivý výkon, atd., jsou určované *ochlazováním*, nikoli ohříváním.

³⁵ Podrobněji se rozlišuje Pop III.1 se Z = 0 a izolovanými hvězdami; Pop III.2 také se Z = 0, pouze vykazující určité ovlivnění plynu hvězdami Pop III.1 a zpoždění; Pop II "hyper" chudé na kovy (HMP) se $Z = 10^{-6}$ až 10^{-5} a dalším zpožděním; Pop II "ultra" chudé (UMP) se $Z = 10^{-5}$ až 10^{-4} a Pop II extrémně chudé (EMP) se $Z = 10^{-4}$ až 10^{-3} .

období reionizace vesmíru.³⁶ Pak je ale očekávaná pozorovaná délka:

$$\lambda' = (1+z)\lambda = 847 \text{ až } 968 \text{ nm (v NIR)}.$$

Sobral aj. (2015) takto pomocí Subaru/Suprimecam našli například galaxii označenou "CR7" (Cosmos Redshift 7; obr. 58) silně emitující v Ly_{α}, se z = 6,604, zářivým výkonem $P = 2,6 \cdot 10^{10} L_{\odot}$ a lineárním rozměrem D = 16 kpc.

Obr. 58 — Vzhled zdroje CR7 v různých filtrech, od B až k FIR $(4,5 \,\mu\text{m})$. Emise je patrná v úzkopásmovém filtru NB921. Převzato ze Sobral aj. (2015).

Cára Ly_α musí mít ovšem určité charakteristiky! Především musí být **emisní a úzká**, má-li vznikat ve stabilních horkých atmosférách hvězd populace III. Rozšíření je zde způsobované pouze tlakem a rotací. Spektroskopie pomocí VLT/X-shooter a Keck/Deimos (obr. 59) ukázala u zdroje CR7 rozšíření $\Delta v = \Delta \lambda / \lambda c =$ $= (266 \pm 15) \text{ km s}^{-1}$, což odpovídá obvodové rychlosti normálních hvězd. Potvrzuje to i pozorování čáry He II na $\lambda = 164 \text{ nm}$, mající $\Delta v = (130 \pm 30) \text{ km s}^{-1}$.

Obr. 59 — Spektrum zdroje CR7 pořízené spektrografy VLT/X-shooter a Keck/Deimos. Převzato ze Sobral aj. (2015).

Jinak existují další tři obvyklé zdroje emise: aktivní galaktická jádra (AGN); Wolfovy–Rayetovy hvězdy (WR); černá díra (BH), resp. akreční disk okolo ní. První byl vyloučen, protože by měl $\Delta v \simeq 1000 \,\mathrm{km \, s^{-1}}$ kvůli rotaci disku; nepozoruje se ani žádný rentgen, radio nebo metalické čáry. Druhý by dosahoval až $\Delta v \simeq$

 $^{^{36}}$ Vztah meziz,expanzním parametrem aa časem tlze nahlédnout v kap. 7.

 $\simeq 3\,000 \,\mathrm{km \, s^{-1}}$, což je terminální rychlost hvězdného větru; nepozorují se ani žádné profily P Cygni. Třetí by měl také široké čáry a zároveň nižší emise (asi $10^2 \,\mathrm{krát}$). Naneštěstí se takto podařilo vyloučit i *samotné* hvězdy populace III, protože tok v FIR na $\lambda > 3 \,\mu\mathrm{m}$ se zdá příliš malý (10 krát).

Celé spektrum (SED) je ovšem možné vysvětlit kombinací (obr. 60): Pop III (většina záření UV \rightarrow NIR) + nebulární kontinuum + metalické hvězdy (se $Z = 0.2 Z_{\odot}$) + mezigalaktické prostředí (IGM) + extinkce (tj. prach). Pomocí pozorování HST/WFC3 se dokonce podařilo rozlišit zdroj na 3 (A, B, C; obr. na titulní straně), přičemž Ly_{\alpha} emituje jen A. V žádném případě se ale nejedná o přímé pozorování jednotlivých hvězd.

Obr. 60 — Absolutní spektrum CR7 a jeho modelování pomocí několika populací. Převzato ze Sobral aj. (2015).

Obr. 61 — Snímek CR7 pomocí HST, s rozlišenými komponentami A, B, C. Převzato ze Sobral aj. (2015).

8.2 Simulace popisující vznik

Vznik jednotlivých prvních hvězd můžeme ovšem studovat pomocí hydrodynamických rovnic a jejich numerického řešení (Abel aj. 2002). Nejedná se však o snadnou úlohu! 1. problém je gravitační kolaps reaktivní látky, při němž vznikají nestability. 2. problém je převaha chladné temné látky (CDM), která vytváří potenciálové jámy, a proto potřebujeme kosmologický kontext. 3. problém je tudíž rozlišení, neboť potřebný dynamický rozsah je více než 10¹⁰, abychom popsali zároveň kosmologii a 1 objekt; toto se musí řešit pomocí adaptivního zjemňování sítě (AMR). 4. problém jsou rázové vlny, které jsou i tak příliš úzké; abychom je správně spočetli mezi buňkami sítě, musíme použít Riemannův řešitel (Godunov 1959).

Počáteční podmínky se volí obvykle na z = 100, tzn. v natolik raném vesmíru, kdy můžeme předpokládat, že fluktuace všech veličin *nezávisejí na škále*. To je tak jednoduché (ploché) prostorové spektrum, že jednodušší už být nemůže.

Okrajové podmínky jsou neméně důležité; nemůžeme simulovat celý vesmír. Uvažujeme-li krychli o rozměru alespoň 128 kpc, můžeme předpokládat, že sousední krychle vlevo–vpravo, nahoře–dole, vpředu–vzadu jsou v našem vesmíru dosti podobné, čili okrajové podmínky volíme *periodické*. Držíme-li souhybný rozměr konstantní, tzn. sledujeme rozpínání prostoru ve zvolené kosmologii, žádná hmota nevytéká nebo nevtéká pouze kvůli rozpínání. Odpovídající vlastní vzdálenost je pak:

$$d_{\rm proper} = \frac{d_{\rm comoving}}{1+z} , \qquad (207)$$

kde z se zmenšuje, čili d_{proper} roste. Na z = 0 by bylo $d_{\text{proper}} = 12.9 \text{ Mpc}$.

Pro numerické řešení se musí provést **diskretizace** rovnic. V původně hrubé homogenní síti s řádově $512^3 \simeq 10^8$ buňkami musí postupně docházet ke zjemňování, při hustotě $\rho > 5\rho_0$ nebo je-li méně než 64 buněk na Jeansovu délku, která vymezuje lokální gravitační kolaps:

$$R_{\rm J} = \sqrt{\frac{3\pi}{32} \frac{\Gamma kT}{G\mu m_{\rm H}\rho}},\qquad(208)$$

kde Γ označuje adiabatický index, k Boltzmannovu konstantu, T teplotu, G gravitační konstantu, μ střední molekulovou hmotnost, $m_{\rm H}$ hmotnost atomu vodíku a ρ hustotu.

Nesmíme samozřejmě zapomenout na žádné důležité fyzikální procesy probíhající v baryonické látce. Konkrétně jde o různé **reakce atomů, iontů, elektronů a posléze molekul**, H, H⁺, H⁻, e⁻, He, He⁺, He²⁺, H₂, H₂⁺, a to zejména:

$$\begin{split} \mathbf{H} + \mathbf{e}^{-} &\rightarrow \mathbf{H}^{-} + \gamma \,, \\ \mathbf{H}^{-} + \mathbf{H} &\rightarrow \mathbf{H}_{2} + \mathbf{e}^{-} \,, \\ \mathbf{H} + \mathbf{H} + \mathbf{H} &\rightarrow \mathbf{H}_{2} + \mathbf{H} \,, \end{split}$$
(209)

tj. důležitá tříčásticová reakce, která se uplatňuje v pozdější fázi. Přenos záření se uvažuje, ale pouze opticky tenký (protože tlustý je obtížný). Jedná se výhradně o přenos v čarách atomárních a molekulárních (protože žádný prach zatím neexistuje); případně Comptonův rozptyl na volných elektronech. Musíme uvážit i ohřev zářením kosmického pozadí, které tehdy bylo energetičtější (ne jako dnešní CMB). Znovu zdůrazněme, že "všechno" závisí na chlazení! Logicky: chlazení čímkoliv \rightarrow

snížení P i $\nabla P \rightarrow$ gravitační kolaps. Navíc, platí-li: zvýšení $\rho \rightarrow$ zvýšení chlazení, pak nevyhnutelně nastává \rightarrow rychlý kolaps v témže místě \rightarrow fragmentace oblaku.

Vznik prvních hvězd proto probíhal následovně (obr. 65). Malé fluktuace hustoty temné látky vedly k hierarchickému shlukování temné i baryonické látky, přesněji řečeno neutrálního plynu (nikoliv plazmatu, neboť jsme již v temném období po rekombinaci). Plyn se ale na rozdíl od temné látky může ochladit rotačními a vibračními přechody H₂ (nikoliv elektronovými, na to je jeho teplota příliš nízká, $T \simeq 200$ K), proto se může více soustředit v potenciálové jámě CDM. Na z = 30až 20 tak vznikne pre-galaktický objekt neboli minihalo s hmotností asi $10^6 M_{\odot}$, v něm oblak $4000 M_{\odot}$ (tj. obdoba velkého molekulárního oblaku z dnešního vesmíru), v něm self-gravitující fragment $100 M_{\odot}$, v něm protostelární jádro $1 M_{\odot}$, a to díky výše zmiňované tříčásticové interakci. Akrece pak pokračuje přes disk, čímž se hvězda postupně zahřeje, načež se zahřeje celé minihalo a vznikne **pouze 1 hvězda na 1 objekt**. Proto očekáváme *osamocené* hvězdy populace III.

Jinými slovy, za vznikem hvězd stojí **chemotermální nestabilita**: více H_2 z (209) \rightarrow zvýšení chlazení \rightarrow zrychlený kolaps \rightarrow více $H_2 \dots$ Bez dalšího by nastala další fragmentace, ale nestabilitu limitují: (i) zvukové vlny rychle vyrovnávající rozdíly hustoty; (ii) husté, opticky tlusté prostředí zabraňující ochlazování; (iii) celé jádro se nakonec stane molekulární, čili není kde brát.

Obr. 62 — Simulace vzniku "první" hvězdy ve vesmíru. Nahoře je kosmologický kontext, uprostřed detail rozložení hustoty plynu a dole detail teploty. Převzato z Abel aj. (2002).

Musíme si též položit důležitou otázku. Kam se "ztratil" moment hybnosti L? Nikam! Jedná se totiž o veličinu, kterou *nelze* disipovat; můžeme ji nanejvýš přenést odněkud někam. V zásadě existují dva jevy, které kolapsu mohou bránit — ∇P (viz výše) anebo právě rotace (velké $|\mathbf{L}|$). Rotující látka je sice přitahována gravitací centra, ale má natolik velkou obvodovou rychlost, $v_{\text{kepl}} = \sqrt{GM/r}$, že pád má podobu kružnice. Buď byl $|\mathbf{L}|$ od začátku nulový, nebo nebyl nulový. Úspěšně kolabující oblaky se vyznačují tím, že jejich L je asi jen 10^{-3} průměrného \bar{L} . Dále proběhl transport L pomocí supersonické turbulence, čili vírů, prostřednictvím ∇P , respektive rázovými vlnami. Ostatně v každém víru je látka mající menší nebo větší L(vzhledem k centru), přičemž malé L padá dovnitř (obr. 63).

Obr. 63 — Supersonická turbulence v okolí první hvězdy. Barevně je znázorněna rychlost v jednotkách rychlosti zvuku (Machovo číslo). Převzato z Bromm aj. (2009).

Všimněme si, jak dramaticky se liší vznik prvních hvězd od vzniku pozdějších! Především později existují **prachová zrna**, tzn. makroskopické objekty se spojitým tepelným spektrem; ochlazování je proto "příliš" účinné, takže alespoň zpočátku jde téměř o volný pád ($\tau_{cool} < \tau_{free}$). Zároveň již existují jiné hvězdy, ovlivňující stav mezihvězdné látky, energetické kosmické paprsky, vysoká ionizace, kvůli níž obtížněji funguje ambipolární difuze, tj. drift neutrálních atomů vzhledem k iontům drženým externími magnetickými poli.

Hmotnost prvních hvězd vychází v intervalu 60 až 300 M_{\odot} , ale je zde stále nejistota. Spodní mez je dána nepokračující fragmentací. Horní mez způsobuje: (i) fotodisociace $H_2 \rightarrow$ omezení chlazení; (ii) záření Ly_{α} při $T = 10^4$ K sice způsobuje chlazení H, ale i tlak záření $P_{\rm rad}$ a namísto akrece nastává dekrece v polárních oblastech; (iii) fotoionizace, vznik H II v celém oblaku; (iv) fotoevaporace akrečního disku; (v) fotodisintegrační nestabilita, tzn. pohlcení $\gamma \rightarrow$ zmenšení $P_{\rm rad} \rightarrow$ urychlení kolapsu \rightarrow vznik černé díry. Očekávaná supernova také odvrhává okolní plyn. Zřejmě je důležité započtení zpětné vazby na okolní plyn.

Pak ale mohly v rámci populace III vzniknout hvězdy nadvakrát. Úplně první hvězdy Pop III.1 totiž vytvoří difuzní ionizující záření, zvané **Lymanovo–Wernerovo**. Jeho zpětná vazba na okolí je poněkud nejistá, může být pozitivní i negativní. V každém případě ovlivní okolní plyn a lze očekávat určité zpoždění tvorby hvězd Pop III.2, řádově 10⁸ yr (obr. 64).

Bromm aj. (2009) také zmiňuje možnou roli primordiálního deuteria D, od něhož pochází molekula HD, tzn. další rotační a vibrační stavy a účinnější chlazení. Nakonec je zde hypotetická možnost, že by tvorbu hvězd mohla ovlivňovat zatím neznámá částicová fyzika. Například je-li CDM neutralino, pak má velký účinný průřez pro anihilaci a může docházet k materializacím párů jiných částic.

Obr. 64 — Představa prvními hvězdami ovlivněné mezihvězdné látky. Převzato z Bromm aj. (2009).

8.3 Reionizace vesmíru

Hvězdy populace III během své existence naprosto zásadním způsobem ovlivnily celý vesmír — způsobily totiž jeho reionizaci. Předpokládáme-li reionizaci výhradně UV fotony hvězd populace III, muselo 0,01 % až 1 % baryonické látky být v těchto hvězdách. Má-li každá řádově $10^2 M_{\odot}$ a (dnešní) typická galaxie $10^{11} M_{\odot}$, připadalo by jen 10^4 až 10^7 hvězd na 1 galaxii, což je sice názorná představa, nicméně galaxie tehdy ještě neexistovaly.

Připomeňme, že rekombinace nastala již na $z \simeq 1\,100$ (Zeldovič aj. 1969), reionizace nejpozději na $z \simeq 6$ (Gunn & Peterson 1965). Reionizaci můžeme mimo jiné měřit pomocí **polarizace kosmického mikrovlnného pozadí** (CMB). Mění ji totiž volné elektrony podél zorného paprsku, na nichž probíhá Thomsonův rozptyl (bez změny energie fotonu). Je-li intenzita fotonů CMB jakkoliv anizotropní, projeví se to polarizací γ rozptýlených e⁻ do strany. Představme si elektromagnetickou vlnu (popsanou \mathbf{k}) jdoucí svisle, tzn. naprosto anizotropní. Setkává se s jedním volným e⁻. Elektrické pole \mathbf{E} kmitá kolmo na \mathbf{k} , rozkmitá tedy e⁻ vodorovně. Ten samý e⁻ opět vlnu vyzáří, ale ne nutně v původním směru. Při pohledu zboku uvidíme \mathbf{E} kmitající vždy vodorovně (jako e⁻), čili úplnou lineární polarizaci. Rozlišuje se ovšem polarizace dvou druhů: polarizace E, lokálně izotropní, vznikající zmiňovaným rozptylem anizotropního záření, a polarizace B, lokálně pravotočivá nebo levotočivá, způsobovaná gravitačními vlnami³⁷ (na velkých úhlech, resp. malých stupních ℓ) nebo gravitačními čočkami (na velkých ℓ). Namísto intenzity *I* se obvykle užívá teplota *T*, resp. namísto fluktuací δI fluktuace δT , protože CMB má beztak planckovské spektrum. Fluktuace sice dosahují $\delta T \simeq 100 \,\mu\text{K}$, ale polarizační signál nanejvýš $3 \,\mu\text{K}$ (E; B od CMB zatím nebylo spolehlivě zjištěno). Prakticky je potřeba z měření spočítat výkon prostorového spektra P^{EE} , nebo kross-spektra P^{TE} pro nízké stupně $\ell \lesssim 10$. Adam aj. (2016) takto z měření družice Planck/HFI odvodili odpovídající optickou tloušťku $\tau = 0.058 \pm 0.012$ a průběh reionizace mezi $z_{\text{rei}} = 6$ až 11 (viz obr. 65).

Obr. 65 — Průběh stupně ionizace 1 - Q v závislosti na červeném posuvu z. Převzato z Adam aj. (2016).

Fluktuace ovlivňuje též **Sunyaevův–Zeĺdovičův jev**, neboli inverzní Comptonův rozptyl (se změnou energie fotonu) na energetických e⁻ v mezilehlých kupách galaxií. Může být buď tepelný (od náhodných pohybů), nebo kinetický (od systematického pohybu), ale příslušné fluktuace jsou pouze $\delta T_{kSZ} < 1.6 \,\mu$ K. Systematické nejistoty jsou způsobované prachovým popředím, které se musí důsledně odečítat, nebo průsakem mezi Stokesovými složkami I, Q, U.

8.4 Simulace explozí supernov

Poklidný vývoj hvězd s nízkou nebo i nulovou metalicitou bychom mohli popsat klasickou soustavou: rovnicí kontinuity, hydrostatické rovnováhy, tepelné rovnováhy, přenosu zářivou difuzí, přenosu konvekcí, změn chemického složení, konvektivního promíchávání a samozřejmě rovnicí stavovou (viz např. Harmanec a Brož 2011).

³⁷ Představme si gravitační vlnu (popsanou **k**) jdoucí svisle. Prostor, záření CMB i oblak e⁻ se ve směru $\hat{x} \perp \mathbf{k}$ stáhne a ve směru $\hat{y} \perp \hat{x} \land \hat{y} \perp \mathbf{k}$ roztáhne. Při pohledu zboku vidíme více (\hat{x}) nebo méně (\hat{y}) lineárně polarizovaného záření. To ale znamená, že polarizace B má jiný směr než E, konkrétně o ±45°.
Metalicita má přitom na vývoj zásadní vliv, jednak se liší poloha hlavní posloupnosti, jednak jsou velké rozdíly na horizontální větvi.

Chceme-li však popsat hvězdy až do exploze supernovy včetně, potřebujeme poněkud vyšší level: rovnice **GRNRHD**, tzn. obecně relativistickou neutrinově– –radiační hydrodynamiku (Müller aj. 2010). Ty kromě klasických jevů musejí zohlednit změny hydrodynamických veličin způsobované zakřivením časoprostoru. Nejstručněji je lze zapsat (prozatím bez zdrojů):

$$\nabla_{\!\mu} J^{\mu} = 0 \,, \tag{210}$$

$$\nabla_{\!\nu} T^{\mu\nu} = 0, \qquad (211)$$

kde $J^{\mu} \equiv \rho u^{\mu}$ označuje proud baryonické látky, $T^{\mu\nu} \equiv \rho h u^{\mu} u^{\nu} + P g^{\mu\nu}$ tenzor energie a hybnosti, ρ hustotu, u^{ν} čtyřrychlost, P tlak, $h = 1 + U + P/\rho$ měrnou entalpii, U měrnou vnitřní energii; ∇_{μ} jsou kovariantní derivace, v nichž vystupuje metrika $g_{\mu\nu}$, popisující křivost časoprostoru. Metriku bychom jako obvykle zjistili řešením Einsteinových rovnic pole (186).

Namísto obecné metriky $g_{\mu\nu}$ se pro numerické výpočty často užívá formalismus dle Arnowitta–Dessera–Misnera (ADM), s metrikou zapsanou jako:

$$\mathrm{d}s^2 \equiv g_{\mu\nu}\mathrm{d}x_{\mu}\mathrm{d}x_{\nu} = -\alpha^2\mathrm{d}t^2 + \gamma_{ij}(\mathrm{d}x^i + \beta^i\mathrm{d}t)(\mathrm{d}x^j + \beta^j\mathrm{d}t)\,. \tag{212}$$

Navíc nás zajímá jen jedno místo ve vesmíru (kde to exploduje), dovolíme si proto předpokládat, že ve velkých vzdálenostech je časoprostor plochý, $\gamma_{ij} = \phi^4 \hat{\gamma}_{ij}$, kde ϕ označuje konformní faktor. Pak má metrika 5 volných parametrů, resp. funkcí (α, ϕ, β^i) , které vystupují prakticky ve všech rovnicích. Pro přenos neutriny se využívá variabilního Eddingtonova faktoru a aproximace "ray-by-ray-plus".

Rovnice zde vypisovat nebudeme (viz Müller aj. 2010), ale zahrnují výše zmiňované rovnice hydrodynamiky, zachování e⁻, p, n, α , dalších jader, Einsteinovy rovnice, momenty intenzity neutrin ν , přenos ν , uzavírací relaci, srážkové členy, srážkové integrály, opacity neutrin, stavovou rovnici. Chybí zde oscilace neutrin, ale ty jsou důležité až ve větších vzdálenostech od centra. Momenty intenzity, čili integrály přes směrový kosinus $\mu \equiv \cos \vartheta$:

$$\{J, H, K, L\} = \frac{1}{2} \int_{-1}^{1} I \mu^{\{0, 1, 2, 3\}} d\mu$$
(213)

se používají proto, že bychom jinak v každém bodě museli řešit přenos ve dvou směrech, což by byl sám o sobě pětirozměrný problém. Namísto toho využíváme pro popis hustotu energie (resp. 0. moment), tok (1.), tlak (2.). Rovnice přenosu se pak "zjednoduší" a vypadá takto (Müller aj. 2010):

$$\begin{split} &\frac{\partial W(\hat{J} + v_r \hat{H})}{\partial t} + \frac{\partial}{\partial r} \left[\left(W \frac{\alpha}{\phi^2} - \beta^r v_r \right) \hat{H} + \left(W v_r \frac{\alpha}{\phi^2} - \beta^r \right) \hat{J} \right] \\ &- \frac{\partial}{\partial U} \left\{ WU \hat{J} \left[\frac{1}{r} \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) + 2 \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) \frac{\partial \ln \phi}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right] \\ &+ WU \hat{H} \left[v_r \left(\frac{\partial \beta^r \phi^2}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right) - \frac{\alpha}{\phi^2} \frac{\partial \ln \alpha W}{\partial r} + \alpha W^2 \left(\beta^r \frac{\partial v_r}{\partial r} - \frac{\partial v_r}{\partial t} \right) \right] \right] \\ &- U \hat{K} \left[\frac{\beta^r W}{r} - \frac{\partial \beta^r W}{\partial r} + W v_r r \frac{\partial}{\partial r} \left(\frac{\alpha}{r \phi^2} \right) + W^3 \left(\frac{\alpha}{\phi^2} \frac{\partial v_r}{\partial r} + v_r \frac{\partial v_r}{\partial t} \right) \right] \right\} \\ &- W \hat{J} \left[\frac{1}{r} \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) + 2 \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) \frac{\partial \ln \phi}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right] \\ &- W \hat{H} \left[v_r \left(\frac{\partial \beta^r \phi^2}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right) - \frac{\alpha}{\phi^2} \frac{\partial \ln \alpha W}{\partial r} + \alpha W^2 \left(\beta^r \frac{\partial v_r}{\partial r} - \frac{\partial v_r}{\partial t} \right) \right] \\ &+ \hat{K} \left[\frac{\partial \beta^r W}{r} - \frac{\partial \beta^r W}{\partial r} + W v_r r \frac{\partial}{\partial r} \left(\frac{\alpha}{r \phi^2} \right) + W^3 \left(\frac{\alpha}{\phi^2} \frac{\partial v_r}{\partial r} + v_r \frac{\partial v_r}{\partial t} \right) \right] \\ &- \frac{\partial W (\hat{H} + v_r \hat{K})}{\partial t} + \frac{\partial}{\partial r} \left[\left(W \frac{\alpha}{\phi^2} - \beta^r v_r \right) \hat{K} + \left(W v_r \frac{\alpha}{\phi^2} - \beta^r \right) \hat{H} \right] \\ &- \frac{\partial}{\partial U} \left\{ W U \hat{H} \left[\frac{1}{r} \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) + 2 \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) \frac{\partial \ln \phi}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right] \\ &+ W U \hat{K} \left[v_r \left(\frac{\partial \beta^r \phi^2}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right) - \frac{\alpha}{\phi^2} \frac{\partial \ln \alpha W}{\partial r} + \alpha W^2 \left(\beta^r \frac{\partial v_r}{\partial r} - \frac{\partial v_r}{\partial t} \right) \right] \\ &- U \hat{L} \left[\frac{\beta^r W}{r} - \frac{\partial \beta^r W}{\partial r} + W v_r r \frac{\partial}{\partial r} \left(\frac{\alpha \psi}{\phi^2} \right) - \frac{W \alpha}{\phi^2} \frac{\partial \psi r}{\partial r} + r \frac{\partial v_r}{\partial t} \right) \right] \\ &+ (\hat{J} - \hat{K}) \left[v_r \left(\frac{\beta r}{\eta} - \frac{\partial \beta^r}{\eta} \right) + \frac{\partial}{\partial r} \left(\frac{W \alpha}{\phi^2} \right) - \frac{W \alpha}{\eta \phi^2} \frac{\partial \psi r}{\eta \sigma} + r \frac{\partial \psi r}{\partial t} \right] \\ &+ (\hat{H} - \hat{L}) \left[\frac{W^3 \alpha}{\phi^2} \frac{\partial v_r}{r} + \frac{\beta W}{r} - \frac{\partial \beta W}{\partial r} - W v_r r \frac{\partial}{\partial r} \left(\frac{\alpha}{\tau \phi^2} \right) + \frac{\partial W}{\partial t} \right] \\ \\ &- W \hat{H} \left[\frac{1}{r} \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) + 2 \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) \frac{\partial \ln \phi}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right] \\ \\ &- W \hat{H} \left[\frac{1}{r} \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) + 2 \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) \frac{\partial \ln \phi}{\partial r} - 2 \frac{\partial \ln \phi}{\partial t} \right] \\ \\ &- W \hat{H} \left[\frac{1}{r} \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) + 2 \left(\beta^r - \frac{\alpha v_r}{\phi^2} \right) \frac{\partial \ln$$

kde $W = 1/\sqrt{1 - v_i v^i}$ označuje Lorentzův faktor, v_i třírychlost, $\hat{J} = \sqrt{\gamma}J$ apod., γ determinant třímetriky $\gamma_{ij}, C^{(0)}, C^{(1)}$ momenty srážkového integrálu, f_K, f_L variabilní Eddingtonovy faktory.

Mechanismus supernov s kolapsem jádra je založen jednak na neutrinové bombě, zajišťující ohřev látky zespodu, a jednak na hydrodynamických nestabilitách (Müller aj. 2012; obr. 66): (i) konkrétně konvektivní (stoupání horkých bublin);

Obr. 66 — Třírozměrná simulace exploze supernovy s kolapsem jádra, na níž je vidět rozvinutá nestabilita . Převzato z Müller aj. (2012).

(ii) stojaté akreční rázové (SASI; Blondin aj. 2003). Nestabilita SASI vzniká takto: každá trochu šikmá rázová vlna generuje turbulenci na rozhraních \rightarrow turbulence je nesena proudem plynu podzvukovou rychlostí v dovnitř \rightarrow amplituda je zesílena konvergencí \rightarrow při turbulenci se generují zvukové vlny, šířící se rychlostí $c_{\rm s}$ ven \rightarrow rázová vlna je jimi narušena (stává se šikmější, asymetrická se stupněm $\ell = 1$ až 2) \rightarrow vytváří více turbulence...

Někdy se uvažují alternativní mechanismy: (i) akustické vlny buzené dipolárními oscilacemi protoneutronové hvězdy (Burrows aj. 2006); (ii) magnetorotační nestabilita (MRI; Burrows aj. 2007); (iii) fázové přechody kvarkové látky (Sagert aj. 2009).

8.5 Párově nestabilní supernovy

Specifickým případem jsou párově nestabilní supernovy, v jejichž progenitorech dochází k produkci párů:

$$2\gamma \rightarrow e^- + e^+$$
,

za podmínky, že energie fotonů E_{γ} v centru dosahují přinejmenším klidové energie elektronu, $E_0 = 0.51 \text{ MeV}$. Tím se ovšem spotřebovávají fotony $\gamma \rightarrow \text{klesá} \nabla P_{\text{rad}}$, který je hlavním příspěvkem k celkovému ∇P u horkých hvězd \rightarrow jádro se smrští \rightarrow příslušný ohřev způsobí termonukleární pulz (konkrétně hoření C, O, Si, N) \rightarrow nastává expanze a výhoz \rightarrow příp. opakování, a pak hovoříme o pulsačních supernovách.

Rozhodujícím parametrem, zda hvězda exploduje jako SN PI (nebo PPI), či nikoli, je hmotnost heliového jádra. Podle zjednodušeného 1-rozměrného modelu

Woosleyho (2017) to nastává pro $M_{\rm He} > 40 \, M_{\odot}$, zejména je-li $Z < \frac{1}{3} Z_{\odot}$ a má-li hvězda slabý vítr. Pro $M_{\rm He} < 62 \, M_{\odot}$ dochází ke zmiňovaným pulzacím. Odpovídající rozsah na hlavní posloupnosti je asi M = 70 až 140 M_{\odot} , ale s větší nejistotou. Progenitorem přitom může být červený veleobr (RSG), modrý veleobr (BSG), svítivá modrá proměnná (LBV) nebo Wolfova–Rayetova hvězda a zřejmě také hvězda populace III. Podíl párově nestabilních a všech supernov vznikajících kolapsem jádra (s $M > 8 \, M_{\odot}$) pro standardní počáteční funkci hmoty (IMF) se sklonem q = -1,35 je $f = (70^q - 140^q)/(8^q - 150^q) = \text{jen } 3,3\%$.

Co se týká pozorování supernov typu PI, Cooke aj. (2012) nalezli slibné nadsvítivé supernovy s energií $E_{\gamma} \simeq 10^{44}$ J na z > 2 pomocí snímků CFHT skládaných za celou sezónu (čili zpětně). Spektroskopie pomocí Keckova dalekohledu byla provedena až po 5,2 letech, nicméně vzhledem k dilataci času to bylo 626 dní v klidové soustavě. Bohužel se ve spektru objevují četné čáry kovů, čili se v žádném případě nemůže jednat o zánik hvězdy populace III. A proto nezbývá než doufat, že se takové unikátní pozorování zániku první hvězdy ve vesmíru podaří v budoucnosti...

- [86] ABEL, T. AJ. The formation of the first star in the Universe. Science, 295, 93, 2002.
- [87] ARNOWITT, R., DESER, S., MISNER, C. W. The dynamics of general relativity. 1962. (https://arxiv.org/pdf/gr-qc/0405109.pdf).
- [88] BROMM, V. AJ. Formation of the first stars and galaxies. Nature, 459, 49, 2009.
- [89] BURROWS, A. AJ. A new mechanism for core-collapse supernova explosions. Astrophys. J., 540, 878, 2007.
- [90] COOKE, J. AJ. Superluminous supernovae at redshifts of 2.05 and 3.90. Nature, 491, 228, 2012.
- [91] FRYER, C. L. AJ. Pair-instability supernovae, gravity waves, and gamma-ray transients. Astrophys. J., 550, 372, 2001.
- [92] HARMANEC, P., BROŽ, M. Stavba a vývoj hvězd. Praha: Matfyzpress, 2011.
- [93] HEGER, A. AJ. How massive single stars end their life. Astrophys. J., 591, 288, 2003.
- [94] MÜLLER, B. AJ. A new multi-dimensional general relativistic neutrino hydrodynamic code for core-collapse supernovae. I. Method and code tests in spherical symmetry. Astrophys. J. Suppl. S., 189, 104, 2010.
- [95] MÜLLER, B. AJ. ... II. Relativistic explosion models of core-collapse supernovae. Astrophys. J., 756, 84, 2012.
- [96] SOBRAL, D. AJ. Evidence for PopIII-like stellar populations in the most luminous Ly_α emitters at the epoch of reionization: Spectroscopic confirmation. Astrophys. J., 808, 139, 2015.
- [97] WOOSLEY, S. E., HEGER, A. The evolution and explosion of massive stars. Rev. Mod. Phys., 74, 1015, 2002.
- [98] WOOSLEY, S. E. Pulsational pair-instability supernovae. Astrophys. J., 836, 244, 2017.

Obr. 67 — Základní třídění typů supernov dle počáteční hmotnosti hvězdy a metalicity. Převzato z Heger aj. (2003). Pro hmotné hvězdy je však situace patrně složitější (viz kap. 9).

Obr. 68 — Spektrum nadsvítivé supernovy SN 2213–1745, pravděpodobně párově nestabilní. Převzato z Cooke aj. (2012).

9 Druhé hvězdy

Hvězdy, které pozorujeme dnes, se nám pouhým okem jeví jako body. Při pozorování interferometrem však lze nemálo bodů rozlišit jako kotoučky. Stejně tak pozorování spektrografem svědčí o tom, že nemálo hvězd má atmosféru, kterou lze charakterizovat jednou hodnotou efektivní teploty $T_{\rm eff}$. Proto si dovolujeme hvězdy popisovat v prvním přiblížení jako sféricky symetrické.

Od prvních hvězd (kap. 8) se však podstatně liší, vzhledem k odlišnému stavu mezihvězdného prostředí (ISM). Především je dnes v ISM přítomen prach, způsobující účinnější ochlazování, fragmentaci oblaků na menší části, potažmo vznik hvězd malých hmotností. Tyto hvězdy pak existují dlouhou dobu, a to ve stavu téměř rovnovážném; budeme je proto nazývat "druhé".

9.1 Rovnice kontinuity

Sférické rovnice zde odvodíme zjednodušením složitých rovnic MHD ((1) až (4)), které jsme používali pro disk. Předpokládáme přitom, že žádný asymetrický akreční disk již neexistuje, naopak existuje protohvězda, která je zcela symetrická, čili směřujeme k rovnicím jednorozměrným. Zároveň se budeme snažit "za každou cenu" eliminovat rychlost \boldsymbol{v} , čili směřujeme k rovnicím statickým.

Vezměme jako první kontinuitu:

$$\frac{\partial \rho}{\partial t} + \overbrace{\boldsymbol{v} \cdot \nabla \rho}^{\text{konvekce}} = \overbrace{-\rho \nabla \cdot \boldsymbol{v}}^{\text{expanze}}.$$

Pro statický případ nelze jen tak $\frac{\partial}{\partial t}$, \boldsymbol{v} položit rovné nule; 0 = 0 by nám ostatně bylo k ničemu. Převedeme-li vše vlevo ($\boldsymbol{v} \cdot \nabla \rho + \rho \nabla \cdot \boldsymbol{v} = \nabla \cdot (\rho \boldsymbol{v})$) a zapíšeme-li složku \hat{r} operátoru divergence ve sférických souřadnicích:

$$\frac{\partial \rho}{\partial t} + \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 \rho \mathbf{v}) = 0,$$

což po rozšíření $4\pi R^2$ dá:

$$\frac{\partial}{\partial t}(4\pi R^2\rho) + \frac{\partial}{\partial R}(4\pi R^2\rho\mathbf{v}) = 0.$$

Zavedeme-li veličinu:

$$M_R \equiv \int_0^R 4\pi R'^2 \rho \, \mathrm{d}R' \,, \tag{214}$$

tj. hmotnost koule o poloměru R, první závorku ihned identifikujeme jako $\frac{\partial M_R}{\partial R}$, druhou jako $-\frac{\partial M_R}{\partial t}$, čili celou rovnici jako d $M_R = 0$. Jinými slovy: přírůstek hmotnosti d M_R je totální diferenciál; nezáleží na tom, jakým způsobem "přisypáváme".

Pro statický případ uvažujeme pouze jedinou parciální derivaci $\frac{\partial}{\partial R}$, kterou můžeme b.ú.n.o. nahradit za totální:

$$\frac{\mathrm{d}M_R}{\mathrm{d}R} = 4\pi R^2 \rho \,,$$

nebo po obvyklé záměně nezávislé proměnné:

$$\frac{\mathrm{d}R}{\mathrm{d}M_R} = \frac{1}{4\pi R^2 \rho} \,. \tag{215}$$

9.2 Hydrostatická rovnováha

V obecné Navierově–Stokesově rovnici:

$$\frac{\partial \boldsymbol{v}}{\partial t} + \overbrace{\boldsymbol{v} \cdot \nabla \boldsymbol{v}}^{\text{konvekce}} = -\frac{1}{\rho} \nabla P - \overbrace{\nabla \Phi}^{\text{gravitace}} + \overbrace{\frac{1}{\rho} \mu_{\text{vac}}}^{\text{Lorentz}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \overbrace{\frac{1}{\rho} \nabla \cdot \mu_{1} \nabla \boldsymbol{v}}^{\text{viskozita}} + \dots$$

položíme rovnou $\boldsymbol{v} = 0, \boldsymbol{B} = 0, \text{ což vede na:}$

$$0 = -\frac{1}{\rho}\nabla P - \nabla\Phi\,,$$

což zapsáno ve sférických:

$$0 = -\frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}R} - \frac{GM_R}{R^2}$$

odkud obratem:

$$\frac{\mathrm{d}P}{\mathrm{d}R} = -\frac{GM_R\rho}{R^2},$$

$$\frac{\mathrm{d}P}{\mathrm{d}M_R} = -\frac{GM_R}{4\pi R^4}.$$
(216)

neboli:

Při rovnováze je tedy gravitace vnitřních vrstev vyrovnána gradientem tlaku; nikoli tlakem samotným! Nezáleží ani na tlaku, ani na vnějších vrstvách. I když je pravda, že tlak významně ovlivňuje stav látky (přes rovnici stavovou (235)). Vnější vrstvy se neuplatňují, neboť jejich gravitace je dle Newtonova teorému nulová; dokonce jejich přítomnost snižuje ∇P , čili v tomto smyslu působí poněkud odpudivě.

Poznamenejme ještě, že i když $\nabla \Phi = -\frac{GM_R}{R^2}\frac{\mathbf{R}}{R}$, tak potenciál $\Phi \neq -\frac{GM_R}{R}$, jako pro hmotný bod! Záporně vzatý gradient tohoto výrazu by totiž byl:

$$GM_R \nabla \frac{1}{R} + \frac{G}{R} \nabla M_R = -GM_R \frac{\mathbf{R}}{R^3} + \frac{G}{R} 4\pi R^2 \rho \frac{\mathbf{R}}{R},$$

čili správně by bylo:

$$\Phi = -\frac{GM_R}{R} + \int_0^R 4\pi G\rho R' \mathrm{d}R' \,. \tag{217}$$

Protože jsme paranoidní, ověříme ještě, že takové Φ splňuje Poissonovu rovnici:

$$\nabla \cdot \nabla \Phi = \nabla \cdot \left(GM_R \frac{\mathbf{R}}{R^3} \right) = G \frac{\mathbf{R}}{R^3} \cdot \widetilde{\nabla M_R} + \frac{GM_R}{R^3} \underbrace{\nabla \cdot \mathbf{R}}_{R} + GM_R \mathbf{R} \cdot \underbrace{\nabla \frac{1}{R^3}}_{R} = 4\pi G\rho$$

c.b.d.

9.3 Energetická rovnováha

Do známé 1. věty termodynamické:

$$\frac{\partial U}{\partial t} + \overbrace{\boldsymbol{v} \cdot \nabla U}^{\text{konvekce}} = \overbrace{-U\nabla \cdot \boldsymbol{v}}^{\text{expanze}} - \overbrace{P\nabla \cdot \boldsymbol{v}}^{\text{práce}} - \overbrace{\kappa_{\text{R}}\rho caT^{4}}^{\text{emise}} + \overbrace{\kappa_{\text{R}}\rho cE_{\text{rad}}}^{\text{absorpce}} + \dots + \overbrace{\epsilon\rho}^{\text{reakce}}$$

můžeme dosadit z rovnice přenosu záření v difuzní aproximaci:

$$\frac{\partial E_{\rm rad}}{\partial t} = \nabla \cdot \underbrace{\frac{-\Phi}{\epsilon \lambda_{\rm lim}} \nabla E_{\rm rad}}_{\kappa_{\rm R}\rho} + \underbrace{\epsilon_{\rm R}\rho caT^4}_{\kappa_{\rm R}\rho caT^4} - \underbrace{\epsilon_{\rm R}\rho cE_{\rm rad}}_{\kappa_{\rm R}\rho cE_{\rm rad}}$$
(218)

za emisi a absorpci, a přitom pokládat $\frac{\partial}{\partial t} = 0$, $\mathbf{v} = 0$:

 $0 = -\nabla \cdot \vec{\Phi} + \epsilon \rho \,,$

kde $\vec{\Phi}$ je vektor toku záření a ϵ měrný výkon všech reakcí (ať už kladný či záporný). Operátor divergence ve sférických je zřejmě:

$$0 = -\frac{1}{R^2} \frac{\mathrm{d}}{\mathrm{d}R} R^2 \Phi + \epsilon \rho;$$

s využitím veličiny $L_R\equiv 4\pi R^2\Phi,$ tj. toku povrchem koule o poloměru R, bychom pak obdrželi:

 $\frac{\mathrm{d}L_R}{\mathrm{d}R} = 4\pi R^2 \epsilon \rho \,,$

neboli:

$$\frac{\mathrm{d}L_R}{\mathrm{d}M_R} = \epsilon_{\mathrm{nuc}} - \epsilon_{\nu} \,, \tag{219}$$

kde jsme explicitně vyjádřili reakce termonukleární ϵ_{nuc} (viz příklady obr. 69, 70) a ztráty neutriny ϵ_{ν} . Neznamená to ovšem, že se veškerá energie uvolňuje jako fotony (a neutrina)! Reakce totiž uvolňují nejen γ , ν , ale též pozitrony e⁺ (záhy anihilují), a kinetickou energii produktů reakce. Nicméně jsme předpokládali, že plyn a záření jsou neustále v rovnováze, takže je vlastně jedno, v jaké formě energii uvolníme. Stejně se určitým způsobem přerozdělí mezi U, E_{rad} , dle hodnoty $T = T_{gas} =$

Obr. 69 — Termonukleární reakce uvažované pro hvězdy malých a středních hmotností, zobrazené na grafu protonové číslo Z versus neutronové číslo N. Vlevo dole je proton–protonový řetězec, respektive jeho 3 varianty, vpravo nahoře cyklus CNO, dlouhá šipka odpovídá Salpeterově reakci (též 3α). Celkem se jedná o 75 reakcí. Stabilní izotopy jsou zobrazeny šedě.

 $T_{\rm rad}$. Skrytým předpokladem je, že v daném místě je dosti vysoká opacita $\kappa_{\rm P}$, $\kappa_{\rm R}$. Doposud jsme řešili pouze místní rovnováhu, ale neuvážili jsme, že se energie může přenášet z místa na místo. (Ostatně jsme nijak nevyužili ani zmiňovanou difuzní aproximaci, tzn. předpis pro $\vec{\Phi}$.)

9.4 Přenos energie

Způsobů přenosu energie je přinejmenším šest:

- 1. záření, resp. zářivá difuze, je-li prostředí opticky tlusté;
- 2. proudění, též konvekce, turbulence, vztlaková nestabilita (tj. vlastně opak vln);
- 3. vedení, čili částicová difuze v plazmatu, příp. šíření neuspořádaných vibrací v pevné látce;
- 4. neutrina, většinou způsobující chlazení, jen výjimečně ohřev;
- 5. vlny, resp. jejich *disipace* (jinak by totiž vlna prošla skrz), ať už jde o zvukové, vztlakové, rázové, seismické, MHD, atd. atd.
- 6. gravitační vlny, neboli deformace časoprostoru (jež je obzvlášť obtížné uložit do jiné formy).

V normálních hvězdách se uplatňuje především 1. a 2. V bílých trpaslících 3. V pozdních fázích vývoje anebo v supernovách 4. Někde na rozhraní fotosféra,

Obr. 70 — Reakce vedoucí až ke skupině železa (Fe, Co, Ni), které se uvažují pro hmotné hvězdy, přičemž řetězec pp a cyklus CNO (nezobrazeny) bývají značně zjednodušeny; celkem jde o 91 reakcí. Stabilní izotopy jsou zobrazeny šedě. Není zde zachycena ani případná nukleosyntéza s-procesem (zachycování neutronů pomalejší než rozpad β^{-}).

chromosféra, koróna 5. Při spirálování a splývání černých děr nebo neutronových hvězd 6.

Přenos zářením. Zřejmě bychom mohli vyjít z obecné rovnice (181), ale pro naše záměry zápis zjednodušíme; namísto Einsteinových A_{ji} , B_{ij} , B_{ji} opět píšeme emisní a opacitní koeficienty j_{ν} , κ_{ν} , vynecháváme prach, dělíme c:

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \hat{k}\cdot\nabla I_{\nu} = j_{\nu}\rho - \kappa_{\nu}^{\text{abs}}\rho I_{\nu} - \kappa_{\nu}^{\text{sca}}\rho I_{\nu} + \kappa_{\nu}^{\text{sca}}\rho \frac{1}{4\pi}\int I_{\nu}d\omega \quad \text{pro }\forall\hat{k}.$$
(220)

Dále integrujeme přes všechny vlnové délky, užíváme přitom vhodně středované opacity:

$$\frac{1}{c}\frac{\partial I}{\partial t} + \hat{k}\cdot\nabla I = j\rho - \kappa^{\rm abs}\rho I - \kappa^{\rm sca}\rho I + \kappa^{\rm sca}\rho \frac{1}{4\pi}\int Id\omega \quad \text{pro } \forall \hat{k} \,.$$

Namísto řešení pro všechny možné směry zavádíme 0., 1. a 2. moment intenzity jako integrály přes prostorový úhel $(d\omega = \sin \vartheta d\vartheta d\phi)$:

$$J \equiv \frac{1}{4\pi} \int I \mathrm{d}\omega \,, \tag{221}$$

$$\boldsymbol{H} \equiv \frac{1}{4\pi} \int I \hat{k} \mathrm{d}\omega \,, \tag{222}$$

$$\mathbf{K} \equiv \frac{1}{4\pi} \int I \hat{k} \hat{k} \mathrm{d}\omega \,, \tag{223}$$

kde J, H, K jsou po řadě skalár, vektor, tenzor. Sice to je 1 + 3 + 9 = 13 veličin namísto 1, ale neřešíme žádný směr.

Integrujeme-li (220) přes prostorové úhly, získáme nultý integrál rovnice přenosu:

$$\frac{1}{c}\frac{\partial J}{\partial t} + \nabla \cdot \boldsymbol{H} = 4\pi j\rho - \kappa\rho J, \qquad (224)$$

kde jsme počítali $\int \hat{k} \cdot \nabla I d\omega = \nabla \cdot \int \hat{k} I d\omega$. Čtvrtý člen popisující rozptyl by byl zřejmě $\kappa^{\text{sca}} \rho J$; pro skoro izotropní intenzitu je ovšem $I \doteq J$, čili se odečte se třetím.

Následně první integrál (tzn. po násobení jednotkovým vektorem k) je:

$$\frac{1}{c}\frac{\partial \boldsymbol{H}}{\partial t} + \nabla \cdot \boldsymbol{K} = 0 - \kappa \rho \boldsymbol{H}, \qquad (225)$$

kde emise zmizela, neb ji předpokládáme izotropní. Soustava (224), (225) je bohužel neuzavřená; máme jen 2 rovnice pro 3 neznámé. Další integrování nepomůže, neboť druhý integrál by obsahoval 3. moment, atd. Zřejmě se není čemu divit — nelze čekat, že se integraci pro všechny směry lze vyhnout tak snadno!

Namísto toho předpokládáme uzavírací relaci:

$$\mathbf{K} = \frac{1}{3} \delta_{ij} J \,, \tag{226}$$

která platí pro skoro izotropní intenzitu, $I = I_0 + I_1 \cos \theta$, $I_1 \ll I_0$, nebo též planparalelní atmosféru (viz níže). Nazývá se jinak Eddingtonův faktor. Kdybychom ji dosadili do (224), obratem získáme difuzní aproximaci (218), ale ta nás momentálně nezajímá.

Využijeme ovšem (225); pro stacionární případ je $\frac{\partial}{\partial t} \doteq 0$, navíc umenšené faktorem $\frac{1}{c}$:

$$abla \cdot \frac{1}{3} \delta_{ij} J = \frac{1}{3} \nabla J = -\kappa \rho \mathbf{H} \,.$$

Pro lokální termodynamickou rovnováhu (LTE) víme, že pro hustotu energie záření platí $u = \frac{4\pi}{c}J = aT^4$. Navíc první moment samozřejmě souvisí s výše užívanou veličinou L_R , $|\mathbf{H}| = L_R/(16\pi^2 R^2)$, neboť dalším faktorem 4π se dělilo v definici. Ve sférické symetrii je (složka \hat{r}):

$$\frac{1}{3} \frac{c}{4\pi} a \, 4T^3 \frac{\mathrm{d}T}{\mathrm{d}R} = -\frac{\kappa \rho L_R}{16\pi^2 R^2} \, ,$$

odkud:

neboli:

$$\frac{\mathrm{d}R}{\mathrm{d}R_{\mathrm{rad}}} = 16\pi a c R^2 T^3 ,$$

$$\frac{\mathrm{d}T}{\mathrm{d}M_R}\Big|_{\mathrm{rad}} = -\frac{3\kappa L_R}{64\pi^2 a c R^4 T^3} .$$
(227)

 $3\kappa\rho L_R$

Adiabatická konvekce. Chceme-li popsat jakékoliv proudění, máme zásadní problém, neboť $\mathbf{v} \neq 0$! Nicméně představíme si jej "mlhavě" tak, že probíhá nějaký termodynamický děj, v nejjednodušším případě adiabatický. Už jsme jej ostatně odvozovali pro atmosféru (159):

dT

$$\frac{\mathrm{d}T}{\mathrm{d}R}\Big|_{\mathrm{ad}} = \frac{T}{P}\left(1 - \frac{1}{\Gamma}\right)\frac{\mathrm{d}P}{\mathrm{d}R}.$$
(228)

Při adiabatické konvekci se vlastně nic neděje (dQ = 0), pouze máme málo strmý gradient teploty, na nějž se nahoře naváže. Snad bychom tomu ani neměli říkat "přenos", když expandující a kontrahující bubliny nikam nic neodevzdávají.

Pro posouzení, kdy konvekce nastává a kdy nikoli, můžeme využít odvozenou Bruntovu–Väisäläovu frekvenci (160):

$$N^{2} = \frac{g}{\rho} \left(\frac{\mathrm{d}\rho}{\mathrm{d}R} \Big|_{\mathrm{ad}} - \frac{\mathrm{d}\rho}{\mathrm{d}R} \right) = \frac{g}{\rho} \left(\frac{\rho}{\Gamma P} \frac{\mathrm{d}P}{\mathrm{d}R} - \frac{\mathrm{d}\rho}{\mathrm{d}R} \right) , \qquad (229)$$

Podmínka pro konvekci je přirozeně $N^2 < 0$, neboť pak je N imaginární a nevznikají vlny, nýbrž nestabilita. Je ekvivalentní Schwarzschlidovu kritériu:³⁸

$$\nabla_{\rm ad} < \nabla_{\rm rad}$$
 (230)

Jinými slovy: je-li prostředí "mezi námi a vámi" neprůhledné ($\kappa \rho$ velké), musí zde být strmý gradient $\nabla_{\rm rad}$; bublina se sice adiabaticky ochladí (dle $\nabla_{\rm ad}$), ale její $T_{\rm b} > T_{\rm o}$ zůstane vyšší, potažmo $\rho_{\rm b} < \rho_{\rm o}$ nižší (neb $P_{\rm b} = P_{\rm o}$ je neustále vyrovnané), tudíž podlehne vztlaku.

Semiempirická konvekce. Konkvekce však často adiabatická *není*. Pak lze využít semiempirický popis, kdy předpokládáme, že víry urazí vzdálenost $\ell = \alpha H_P$, která je určitým násobkem tlakové škály $H_P \equiv P/(dP/dR)$, kde parametr α je volný; pro standardní sluneční model (SSM) se volí např. $\alpha = 2,1$. Inverzí rovnice (156) lze vyjádřit:

$$\frac{\mathrm{d}T}{\mathrm{d}R}\Big|_{\mathrm{semi}} = \frac{\mathrm{d}T}{\mathrm{d}R}\Big|_{\mathrm{ad}} - \left[\frac{L_R}{4\pi R^2} \frac{1}{\alpha^2 \sqrt{\beta} c_P \rho} \left(\frac{\mu m_{\mathrm{u}}}{k}\right)^2\right]^{\frac{4}{3}} \frac{g}{T}.$$
(231)

³⁸ Tyto symboly naneštěstí nejsou operátory, nýbrž $\nabla \equiv \frac{P}{T} \frac{dT}{dP}$; jejich výhodou je bezrozměrnost a kladnost, neboť P(R) je klesající funkce, stejně jako T(R). Nemusíme pak přemýšlet nad nerovnostmi záporných čísel.

Vidíme, že ρ iTjsou ve jmenovateli, čili semiempirická konvekce hluboko v nitru se blíží adiabatické.

Semikonvekce. Existuje ještě jedno kritérium pro konvekci, kde se využívá Ledouxův gradient:

$$\nabla_{\rm L} = \nabla_{\rm ad} + \nabla_{\rm B} \,, \tag{232}$$

který zahrnuje Bruntův gradient všech abundancí:

$$\nabla_{\rm B} = \frac{\partial \ln T}{\partial \ln P} \Big|_{\rho} \sum_{i} \frac{\partial \ln P}{\partial \ln X_{i}} \Big|_{\rho, T, X_{j \neq i}} \frac{d \ln X_{i}}{d \ln P} \,. \tag{233}$$

Je-li prostředí nestabilní vzhledem k Schwarzschildovi, ale stabilní vzhledem k Ledouxovi:

$$\nabla_{\rm ad} < \nabla_{\rm rad} < \nabla_{\rm L} \,, \tag{234}$$

pak nastává *semikonvekce*. Pro její popis lze použít difuzní aproximaci (Langer aj. 1983), s volným parametrem $\alpha_{sc} = 1$ až 667.

Termohalinní cirkulace. Další možné proudění je termohalinní (hez. čes. tepelněsolné). Jedná se o obdobu hlubinné cirkulace v oceánech, při níž hraje roli slanost vody, přičemž slanější znamená hustší. Ve hvězdách jde o inverzi střední molekulové hmotnosti μ v oblasti klesající ionizace, kde se nachází "řidší pod hustým" (plně ionizovaný vodík má $\mu = 0.5$, plně neutrální $\mu \doteq 1$). Cirkulace pak probíhá následovně: látka klesne \rightarrow ionizuje se \rightarrow zředí se \rightarrow stoupne \rightarrow rekombinuje \rightarrow zhoustne atd. Nastává i v případě, že Ledouxovo kritérium není splněno, tzn. $\nabla_{\rm rad} < \nabla_{\rm L}$. Příspěvek k přenosu energie je možné popsat opět pomocí difuzní aproximace (Ulrich 1972), s volným parametrem $\alpha_{\rm th} = 0.001$ až 1.

Konvektivní přestřelování. Případný pohyb za hranicí konvektivní zóny vymezené Schwarzschildem se nazývá přestřelování. Jedná se vlastně o očekávaný jev, neboť víry mající velkou setrvačnost se zřejmě nebudou zastavovat okamžitě. Parametrizace se provádí pomocí $f_{ov} = 0.1$ až 0,6, jakožto násobku H_P , přičemž se předpokládá exponenciální pokles promíchávání s postupným vzdalováním od hranice.

Jedním z pozorovaných projevů přestřelování je větší rozměr heliového jádra u červených obrů dle asteroseismologických měření (Montalbán aj. 2013). Pro Slunce se také pozorují odchylky pod tachoklinou, tj. rozhraním mezi zónou zářivé rovnováhy a konvektivní zónou, i když ty mohou souviset též s chybnými opacitami (Bailey aj. 2015).

Cílem dokonalejších modelů konvekce (např. Viallet aj. 2013), je popsat turbulentní proudění *bez* volných parametrů, se skutečným rychlostním polem \mathbf{v} , bez omezujících předpokladů ($dQ \neq 0$), nejlépe včetně magnetického pole \mathbf{B} , pročež jsou potřebné rovnice MHD. Nejlepší by bylo, kdyby pro Slunce zároveň vyšly oscilace \mathbf{B} s periodou okolo 11 let.

9.5 Stavová rovnice a Sahovy rovnice

Celou soustavu uzavírá jako obvykle stavová rovnice pro hvězdnou látku:

$$P = \frac{\rho}{\mu m_{\rm u}} kT \lambda_{\rm deg}(\rho, T) + \frac{1}{3} aT^4$$
(235)

kde je zohledněn ideální plyn, elektronová degenerace, tlak záření (fotonový plyn) i částečná ionizace jakožto závislost $\mu(Q)$.

Nesmíme proto zapomenout, že nedílnou součástí soustavy rovnic je soustava Sahova, která popisuje stupně ionizace x_j^r jednotlivých prvků (případně molekul) při LTE:

$$\frac{x_j^{r+1}}{x_j^r} P_{\rm e} = \frac{2(2\pi m_{\rm e})^{\frac{3}{2}} (kT)^{\frac{5}{2}}}{h^3} \frac{Z_j^{r+1}}{Z_j^r} e^{-\frac{\chi_j^r}{kT}} \text{ pro } \forall j, \forall r, \qquad (236)$$

kde $P_{\rm e}$ označuje tlak elektronového plynu, $m_{\rm e}$ hmotnost elektronu, Z_j^r partiční sumu, χ_j^r ionizační energii; spolu s normovací podmínkou $\sum_r x_j^r = 1$ pro $\forall j$. Pak počet volných elektronů na jeden atom je:

$$Q = \sum_{j} \nu_j \sum_{r} r x_j^r, \qquad (237)$$

což přímo ovlivňuje střední molekulovou hmotnost $\mu = \frac{\mu_i}{1+Q}$, kde $\mu_i = \left(\sum_E \frac{A_E}{w_E}\right)^{-1}$.

9.6 Okrajové podmínky v centru

Aby řešení soustavy diferenciálních rovnic bylo jednoznačné, musíme předepsat rozumné okrajové podmínky. Pro $M_R = 0$ (tj. centrum) máme z definice $L_R = 0$, R = 0. Určitým problémem je R ve jmenovatelích, avšak zároveň se vyskytují M_R nebo L_R v čitatelích, výrazy by tedy neměly divergovat. Při numerickém řešení to ovšem musíme ošetřit (viz Harmanec a Brož 2011).

9.7 Okrajové podmínky na povrchu

Pro $M_R = M_{\star}$, což je parametr problému, nelze předepsat nic, R, L_R , ani T, protože předem nevíme, kolik to vyjde, a nesmíme "znásilnit" model. Pouze víme, že v atmosféře $\rho \to 0$, $P_{\rm g} \to 0$. Správně bychom měli použít sofistikovaný model atmosféry, který by mimochodem poskytoval kompletní syntetické spektrum, my však použijeme ten nejjednodušší (šedý).

Šedá atmosféra. Uvažovat budeme planparalelní (tenkou) atmosféru a rovnici přenosu bez rozptylu ($\mu \equiv \cos \vartheta$, $d\tau = \kappa \rho dx$, kde x je hloubka, i když referenční směr pro μ je nahoru):

$$-\mu \frac{\mathrm{d}I}{\mathrm{d}\tau} = \frac{j}{\kappa} - I. \qquad (238)$$

Zavedeme-li skalární momenty intenzity (viz obr. 71):

$$J \equiv \frac{1}{4\pi} \int I \mathrm{d}\omega \,, \tag{239}$$

$$H \equiv \frac{1}{4\pi} \int I \mu \mathrm{d}\omega \,, \tag{240}$$

$$K \equiv \frac{1}{4\pi} \int I \mu^2 \vartheta \mathrm{d}\omega \,, \tag{241}$$

pak nultý integrál rovnice přenosu:

$$-\frac{\mathrm{d}}{\mathrm{d}\tau}\int I\mu\mathrm{d}\omega = \frac{j}{\kappa}\int\mathrm{d}\omega - \int I\mathrm{d}\omega\,,$$

vychází:

$$-\frac{\mathrm{d}H}{\mathrm{d}\tau} = \frac{j}{\kappa} - J\,,$$

kdežto první integrál (po násobení μ):

$$-\frac{\mathrm{d}K}{\mathrm{d}\tau} = 0 - H \,.$$

Zároveň požadujeme, aby Hodpovídalo hvězdě, tzn. předpokládanému $L_\star,~R_\star$ nebo $T_{\rm eff},$ dle jejího definičního vztahu $L_\star=4\pi R_\star^2\sigma T_{\rm eff}^4,$ pak:

$$H = \frac{L_{\star}}{16\pi^2 R_{\star}^2} = \frac{1}{4\pi} \sigma T_{\rm eff}^4 \, .$$

jinými slovy je H = konst. Integrace 1. integrálu (podle τ) je tudíž triviální:

$$K = H\tau + C, \qquad (242)$$

kde C je integrační konstanta, kterou zatím neznáme.

Eddingtonův trik spočívá v tom, že obecnou $I(\mu)$ jednoduše rozdělíme na horní poloprostor a dolní poloprostor: $I = I_1$ pro $\mu > 0$, $I = I_2$ pro $\mu \le 0$, kde I_1 , I_2 nezávisejí na μ , jen na τ . Přitom $I_2(\tau) = 0$ pro $\tau = 0$, tj. okrajová podmínka na "vršku" fotosféry. Pak ovšem lze snadno spočíst všechny momenty:

$$J = \frac{1}{2}(I_1 + I_2),$$

$$H = \frac{1}{4}(I_1 - I_2),$$

$$K = \frac{1}{6}(I_1 + I_2)$$

a uvidět, že i pro poloprostorovou intenzitu platí uzavírací relace:

$$K = \frac{1}{3}J \quad \text{pro } \forall \tau$$

a zároveň:

$$J = 2H$$
 pro $\tau = 0$.

Dosadíme-li obojí do (242), obdržíme obratem $C = \frac{2}{3}H$.

Dosadíme-li prvé do (242) (se $\sigma = \frac{ca}{4}$):

$$\frac{1}{3}\frac{c}{4\pi}aT^4 = \frac{1}{4\pi}\sigma T_{\rm eff}^4 \left(\tau + \frac{2}{3}\right) \,,$$

získáme teplotní profil atmosféry:

$$T^{4}(\tau) = \frac{1}{2} T_{\text{eff}}^{4} \left(\frac{3}{2}\tau + 1\right) , \qquad (243)$$

tzn. že nemusíme vůbec řešit její energetiku.

Hydrostatická rovnováha. Nakonec nám tedy pro popis atmosféry stačí pouze 1 rovnice, konkrétně hydrostatická rovnováha, neboť $T(\tau)$ známe a $P_{\rm g} = P_{\rm g}(\rho)$; kontinuita je triviální. Máme:

$$\frac{\mathrm{d}P}{\mathrm{d}x} = g\rho\,,$$

což zapsáno v optické tloušťce:

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \kappa\rho\,,\tag{244}$$

$$\frac{\mathrm{d}P}{\mathrm{d}\tau} = \frac{g}{\kappa}\,,\tag{245}$$

s okrajovou podmínkou $\tau = 0, x = 0, P_{\rm g} = 0$. Integrujeme numericky směrem dolu, počítáme přitom závislé veličiny $P_{\rm rad} = \frac{1}{3}aT^4, P = P_{\rm g} + P_{\rm rad}, \rho = P_{\rm g}\frac{\mu m_{\rm u}}{kT}$. Opacitu pro jednoduchost bereme dle Bell a Lin (1994). Ve Fortranu 77 bychom psali:

```
tau = 0.d0
x = 0.d0
P_g = 0.d0
do while (tau < tau_max)</pre>
  T = (0.5d0*Teff**4*(1.5d0*tau + 1.d0))**(0.25d0)
  P_r = 1.d0/3.d0*a*T**4
  P = P_g + P_r
  rho = P_g*mu*m_u/(k*T)
  kappa = kappa_func(rho, T)
  write(*,*) tau, x/1.d3, P, P_g, P_r, rho, T, kappa
  dx = dtau/(kappa*rho)
  dP = g/kappa*dtau
  dP_r = a/4.d0*Teff**4*dtau
  dP_g = dP - dP_r
  P_g = P_g + dP_g
  tau = tau + dtau
  x = x + dx
enddo
```

Řešením (jako obr. 72) několika fotosfér (různé L_{\star} , R_{\star}) získáváme vhodné okrajové podmínky pro modely nitra (na $\tau = 2/3$), avšak musíme předepsat pouze *relace* mezi veličinami R, P, L_R, T , nikoli veličiny samotné, protože a priori nevíme, kolik to vyjde!

Obr. 72 — Profil sluneční fotosféry, znázorňující tlak P a hustotu ρ v závislosti na optické tloušťce τ . Předpokládáme šedou atmosféru a porovnáváme ji s daty Holweger a Müller (1974).

Shrnutí: jsou soustavou 4 diferenciálních nelineárních rovnic 1. řádu se smíšenými okrajovými podmínkami, pro 4 neznámé funkce $R(M_R)$, $P(M_R)$, $L_R(M_R)$, $T(M_R)$ 1 nezávislé proměnné M_R .

9.8 Vývojové rovnice stavby

Pokud bychom chtěli zároveň studovat vývoj v čase, musíme změnit chemické složení a promíchat (netřepat):

$$\frac{\partial Y}{\partial t} = \sum_{j} \frac{\epsilon_j}{\alpha_j}, \qquad (246)$$

kde ϵ_j označuje měrný výkon jednotlivých reakcí a α_j měrnou energii hvězdné látky, která by se celkově uvolnila při dané reakci, a:

$$Y_{\rm K} = \frac{\int_{\rm K} Y \,\mathrm{d}M_R}{\int_{\rm K} \mathrm{d}M_R} \quad \text{pro } \forall \,\mathrm{K}\,, \tag{247}$$

neboť v každá konvektivní zóna (vnitřní i vnější) je pokládána za dokonale promísenou a chemicky homogenní. Obdobně bychom postupovali pro X, Z, případně jednotlivé izotopy.

V tepelné rovnováze (219) musíme uvážit i časové změny vnitřní energie a vykonanou práci:

$$\frac{\mathrm{d}L_R}{\mathrm{d}M_R} = \epsilon_{\mathrm{nuc}} - \epsilon_{\nu} - \frac{\mathrm{d}U}{\mathrm{d}t} + \frac{1}{\rho} P \frac{\mathrm{d}\rho}{\mathrm{d}t} \,. \tag{248}$$

Pokud by se hvězda vyvíjela opravdu rychle, můžeme situaci zkusit zachránit tím, že do (216) vrátíme inerciální člen (zrychlení):

$$\frac{\mathrm{d}P}{\mathrm{d}M_R} = -\frac{GM_R}{4\pi R^4} - \frac{1}{4\pi R^2} \frac{\partial^2 R}{\partial t^2} \,. \tag{249}$$

9.9 Počáteční podmínky

Počáteční podmínky se nejčastěji předepisují ve fázi hydrostatické protohvězdy (tzn. před hlavní posloupností), která bývá plně konvektivní, neboť protohvězdy jsou chladné, látka je ve stavu částečné ionizace, má vysokou opacitu, čili je všude splněna Schwarzschildova podmínka $\nabla_{\rm ad} < \nabla_{\rm rad}$. Při dokonalém promíchávání můžeme předpokládat X = konst., Y = konst., Z = konst. pro všechna M_R , zvolené tak, aby odpovídaly zvolené populaci hvězd.

Shrnutí: vývojové rovnice stavby jsou soustavou 7 integro-diferenciálních nelineárních rovnic 2. řádu se smíšenými okrajovými podmínkami, pro 7 neznámých funkcí $R(M_R,t)$, $P(M_R,t)$, $L_R(M_R,t)$, $T(M_R,t)$, $X(M_R,t)$, $Y(M_R,t)$, $Z(M_R,t)$ 2 nezávislých proměnných M_R , t.

9.10 Numerické řešení metodou FVM

Jedním ze způsobů numerické řešení je integrace přes (neinfenetizimální) objemy (FVM), v našem případě kulové slupky vymezené zvolenými hodnotami M_j . Namísto neznámých spojitých funkcí máme neznámé diskrétní veličiny R_j , P_j , L_j , T_j ,

 X_j, Y_j, Z_j pro j = 1..M, přičemž tyto jsou definované uvnitř objemu $(P_j, T_j, X_j, Y_j, Z_j)$ nebo na jeho hranici (R_j, L_j) . Provedeme-li zároveň nejjednodušší Eulerovu diskretizaci v čase:

$$\frac{\partial Y}{\partial t} \doteq \frac{Y^{n+1} - Y^n}{\delta t} \,, \tag{250}$$

apod. pro ostatní veličiny, a dosadíme-li všude jinde hodnoty veličin v *novém* čase t^{n+1} , získáme implicitní metodu, v rámci které bychom museli vyřešit nelineární soustavu 7*M* rovnic. Symbolicky ji zapíšeme pro všechny veličiny najednou jako:

$$F_j = 0 \quad j = 1..7M$$
 (251)

Soustavu nelze jen tak invertovat (je stále nelineární). Dosadíme-li do ní odhad (např. řešení z předchozího časového kroku, jednoduchý polytropický model) jistě *nebude* splněna:

$$F_i \neq 0$$

Ke skutečnému řešení se můžeme přiblížit metodou Newtonovou–Raphsonovou, která pro jednorozměrnou funkci f(x) funguje jako na obr. 73.

Obr. 73 — Schéma jedné iterace Newtonovy–Raphsonovy metody pro hledání kořenů funkce f(x) = 0. V bodě x_n zkonstruujeme pomocí derivace $f'(x_n)$ tečnu, jejíž průsečík s osou x nám dá novou hodnotu x_{n+1} , která je blíže kořenu.

V našem mnoharozměrném případě vlastně hledáme mnoho kořenů, jedna iterace NR vlastně představuje nalezení intervalů ΔX_k (neboli oprav veličin):

$$F_j + \sum_{k=1}^{7M} \overbrace{\frac{\partial F_j}{\partial X_k}}^{J_{jk}} \Delta X_k = 0 \quad \text{pro } \forall j , \qquad (252)$$

což evidentně spočívá v řešení lineární soustavy rovnic; matice J_{jk} se nazývá jakobián. Je nanejvýš vhodné, když jsou rovnice úhledně uspořádané, takže J_{jk} je pásové a inverze snazší. Prakticky můžeme výpočet provést programem Mesastar (Paxton aj. 2011, 2013, 2015).

Kdybychom se chtěli obeznámit s tím, kde jsou rovnice v programu zapsány, začneme v souboru star/job/run_star.f90 a postupujeme takto:

```
do_run_star (1)
  run1_star (2)
   EVOLVE_LOOP:
     STEP_LOOP:
        star_evolve_step (3)
          do_evolve_step_part2 (4)
            IMPLICIT_MDOT_LOOP:
              do_struct_burn_mix (5)
                do_hydro_converge (6)
                  do_hydro_newton (7)
                    hydro_newton_step (8)
                      newt (9)
                        newton (10)
                          do_newton (11)
                            eval_equations (12)
                               eval_equ (13)
                                 eval_equ_for_solver (14)
                                   ZONES_LOOP:
                                     do1_dlnd_dt_eqn (15)
                                       e00 (16)
```

kde se na 16. úrovni vnoření (!) vyskytuje zápis jednoho z členů jedné z derivací jedné z rovnic (konkrétně kontinuity) do jakobiánu.

9.11 Značení vývojových stadií

Abychom se neupsali, označíme si vývojová stadia následujícími zkratkami:

nerovnovážná protohvězda (angl. protostar)
hvězda před hlavní posloupností
hlavní posloupnost (main sequence)
větev podobrů (subgiant branch)
větev červených obrů (red giant branch)
horizontální větev (horizontal branch)
asymptotická větev obrů (asymptotic giant branch)
termální pulzy
hvězda po AGB
obálková mlhovina (nebula)
bílý trpaslík (white dwarf)
hnědý trpaslík (brown dwarf)
červený trpaslík (red dwarf)
modrý veleobr (blue supergiant)
červený veleobr (red supergiant)
Wolfova–Rayetova hvězda
supernova
neutronová hvězda (neutron star)
černá díra (black hole)

Dále budeme samozřejmě užívat písmena odpovídající Harvardské spektrální klasifikaci: O. B, A, F, G, K, M, L, T. Případně podrobnější číselné členění O2 ... O8, B0 ... B8, atd.

Další méně časté zkratky nechť jsou: WN tj. WR s čarami N; WC WR s C; LBV svítivá modrá proměnná, Of O s emisními čarami.

9.12 Vývojové procesy

Vzhledem k tomu, že se procesy mohou opakovat, nemá cenu je vysvětlovat vícekrát. Proto o nich pojednáme jen jednou a uvedeme fáze, ve kterých se zejména uplatňují.

- 1. kontrakce $\rightarrow oh\check{r}ev$: Každý normální plyn se při stlačení zahřeje, není-li v kontaktu s nějakým rezervoárem, který by jeho teplotu udržoval. Pro adiabatický děj (dQ = 0) a zároveň platnou stavovou rovnici ostatně máme $P = K\rho^{\gamma} = \rho/(\mu m_{\rm u})kT$, neboli $\rho^{\gamma-1}T^{-1} = k/(K\mu m_{\rm u})$, což při $\gamma > 1$ znamená ohřev při kontrakci. Ve hvězdě jde zejména o kontrakci jádra. Uplatňuje se ve fázích SGB, RGB.
- 2. expanze \rightarrow ochlazení: Samozřejmě je možný i proces opačný. Často se jedná o expanzi obálky; oba procesy probíhají zároveň, neboť po kontrakci jádra se něco stát musí. Proč nekontrahuje také obálka? Kdyby mohla, kontrahovala by už předtím, avšak nyní do ní přichází více tepelné energie! Uplatňuje se opět ve fázích SGB, RGB
- 3. hoření H v centru: Termonukleární reakce jakožto kladný příspěvek k dQ hvězdu vlastně neohřívají, nýbrž vyrovnávají ztrátu (záporné dQ), a tím zpooomalují kontrakci. Udržují hvězdu velmi blízko hydrostatické rovnováhy, všechny stavové veličiny se mění pomalu. Jedná se samozřejmě o nejdelší fázi MS.
- 4. růst střední molekulové hmotnosti μ : Podstatnou změnou je však změna chemického složení, přičemž ve stavové rovnici $P = \rho/(\mu m_u)kT$, je μ ve jmenovateli. Pro čistý plně ionizovaný vodík by bylo $\mu \doteq 1/2$ (1 proton, 1 elektron s $m \doteq 0$, 2 částice), pro čisté helium $\mu \doteq 4/3$. Tomu odpovídá menší tlak P i ∇P (i když ne nutně). Látka se nám mění "pod rukama", stává se měkčí. Jedná se o hlavní vývojový proces na MS.
- 5. pokles opacity κ chemicky: Rozptyl na volných elektronech je zdaleka nejvýznamnější zdroj opacity v plně ionizovaném plazmatu, kde nejsou možné vázaně–volné natož vázaně–vázané přechody. Pak κ logicky klesá, neboť elektrony anihilují s pozitrony, uvolněnými řetězcem pp nebo cyklem CNO. Ostatně tomu odpovídá i přibližná Kramersova opacita, $\kappa \doteq 0.19 \text{ cm}^2 \text{ g}^{-1} (1-X)$, kde přímo vystupuje abundance vodíku. Uplatňuje se taktéž na MS.
- 6. hoření H ve slupce: Po poklesu $X_c \to 0$ se maximum ϵ_{nuc} přesouvá ven, čemuž říkáme hoření ve slupce. Pokračuje téměř neustále od SGB \to AGB.
- 7. růst opacity κ rekombinací: Obzvlášť po zmiňované expanzi obálky lze očekávat vznik konvektivní zóny, které roste od povrchu směrem dovnitř, až je většina objemu konvektivní. Způsobuje první vynesení prvků do atmosféry; uplatňuje se ve fázi RGB.

- 8. vznik degenerovaného jádra: Elektronový plyn vykazuje při vysoké hustotě (anebo ekvivalentně nízké teplotě) degeneraci, neboli prudký nárůst tlaku kvůli Pauliho vylučovacímu principu. ∇P by u málo hmotných hvězd zastavil další kolaps; není však dost času, aby se takto vyvinuly. Situace jinak nastává ve fázi RGB.
- 9. chlazení neutriny: V určitých krátkých fázích, kdy je vysoká centrální teplota T_c , může být $\epsilon_{\nu} \gg \epsilon_{nuc}$. Pak ovšem nutně nastává rychlý kolaps jádra. Jedná se o přechod mezi RGB/HB a krátké fáze TP-AGB, WR.
- 10. He záblesk v jádře: Vysoce degenerovaný plyn má velmi zvláštní vlastnost: při dodání dQ se nezvýší T, tedy ani P, nedojde k žádné expanzi, pouze ke snížení stupně degenerace ψ . Hoření He proto začíná překotně, dokud $\psi \to 0$. Příslušná Salpeterova reakce (3 α) kvůli chlazení neutriny začíná mimo centrum. I když $L_{\rm nuc} \simeq 10^{10}$, na povrchu se příliš neprojeví. V té souvislosti ovšem nastávají oscilace celé hvězdy. Jedná se opět o přechod RGB/HB.
- 11. hoření He v centru: Druhý zdroj kupodivu neznamená zvýšení zářivého výkonu L. Musí se totiž uvážit interakce dvou slupek — expanze jádra způsobí expanzi H slupky, snížení $\epsilon_{\rm H}$ i značný pokles celkového L. Vzhledem ke strmosti $\epsilon_{\rm nuc}(T)$ očekáváme navíc konvektivní zónu v centru. Jedná se vlastně o obdobu MS, ale odlišujeme ji jako HB.
- 12. hoření He ve slupce: Analogicky se hvězda vyvíjí při $Y_c \rightarrow 0$, obdobně jako na RGB, avšak tentokrát hovoříme o fázi AGB. Obě větve leží blízko sebe a částečně se překrývají. V atmosféře se později objevuje druhé vynesení.
- 13. He záblesky ve slupce: Postupně dochází ke ztenčování slupek, přibližování slupek, jejich interakci, při níž kvůli degeneraci na spodku He slupky nastává překotné hoření He a silný ohřev. V horní části přitom vznikne malá konvektivní zónička a dojde k dočasnému vyhasnutí H slupky. Tepelné pulzy trvají řádově 10² yr, intervaly mezi pulzy 10⁴ yr. Případně dochází ke třetímu vynesení, pokud se konvektivní zóna propojí s vnější. Jedná se fázi označovanou TP-AGB.
- 14. ztráta hmoty: Ať už jde o hydrodynamický vítr, vítr řízený zářením, supervítr, pulzace obálky, nebo pouze o nějaký semiempirický předpis, hvězda v pozdních fázích prodělává zásadní změnu hmotnosti. Jedná se především o fáze RGB, AGB, post-AGB, WR.
- 15. hoření C: Pro hmotnější hvězdy dochází i k reakcím uhlíku, při němž v nitru vznikají izotopy Ne, Mg, Jedná se opět o fázi AGB, potažmo WD se složením O/Ne/Mg.
- 16. vznik Fe jádra: Pokračující zachycování částic α vede až ke vzniku jader skupiny železa (obr. 70), která mají maximální vazebnou energii na nukleon. Pak nastává nevyhnutelný kolaps, při němž hraje roli fotodisintegrace jader Fe (zpět na α), neutronizace, vzniká NS nebo BH, v závislosti na detailní struktuře jádra před kolapsem.
- 17. ohřev neutriny: Hustota látky v okolí proto-NS je natolik vysoká, že se uplatňuje přenos energie neutriny, která jsou při slabých interakcích s látkou termalizována. Probíhá nukleosyntéza r-procesem (zachycování neutronů rychlejší než rozpad β^{-}) nebo p-procesem. Přitom lze očekávat určité nestability (viz kap. 8).

Obr. 74 — Hertzsprungův–Russelův diagram, tj. závislost zářivý výkon L versus efektivní teplota $T_{\rm eff}$, pro hvězdu s hmotností $M = 0.05 M_{\odot}$ neboli hnědého trpaslíka. Krátká fáze hoření deuteria (oranžově) není následována hořením H, čili trpaslík pozvolna chladne, kontrakce je zastavována degenerovaným plynem. Vývoj byl ukončen v čase 13,7 Gyr, odpovídajícím stáří vesmíru. Výpočet programem Mesastar (Paxton aj. 2015).

9.13 Vývoj hvězd různých hmotností

Zkusme nyní stručně popsat, jak se liší vývoj hvězd podle jejich počáteční hmotnosti. Když se z mezihvězdné látky vydělí kolabující protohvězda, zpočátku je možno kolaps považovat za izotermální, později za adiabatický. Na HR diagramu by tomu odpovídal pohyb za Hayashiho linií. Po dosažení hydrostatické rovnováhy konvektivní protohvězda sestupuje podél Hayashiho linie a posléze se posouvá ke hlavní posloupnosti. Méně hmotné hvězdy se přitom jeví jako objekty typu T Tauri, příp. FU Orionis, více hmotné jako Herbigovy hvězdy Ae nebo Be, nejhmotnější pak jako RSG, BSG. Schematicky bychom to mohli popsat jednoduše jako:

 $\mathrm{PS} \to \mathrm{pre-MS} \to \mathrm{MS}$. . .

Co se týká následného vývoje, u hvězdy s hmotností $M \ge 0.013 M_{\odot}$ dochází pouze hoření deuteria, $D+p \rightarrow {}^{3}He+e^{+}+\bar{\nu}_{e}$ (obr. 76). Zpočátku je plně konvektivní, posléze zóna ustupuje (obr. 75). Kolapsu brání degenerovaný plyn, pouze postupně chladne (obr. 74). Hvězda spektrálního typu T i její konečné stadium se nazývá hnědý trpaslík, což zapíšeme jako:

 $T \rightarrow BD (D)$

Podobně se vyvíjejí hvězdy s $M \geq 0,060\,M_{\odot},$ ale dochází u nich navíc k hoření lithia:

Obr. 75 — Kippenhahnův diagram (pro $M = 0.05 M_{\odot}$), čili vnitřní struktura vynesená ve hmotnosti M_R a v závislosti na čase t. Konvektivní zóna je značena modře; zóny hoření zde nejsou patrné.

Obr. 76 — Abundance jednotlivých izotopů v centru (pro $M = 0.05 M_{\odot}$). Ve fázi před hlavní posloupností je patrné pouze hoření deuteria, jinak abundance zůstávají konstantní. Zobrazen je pouze krátký úsek do 10 Myr.

 $L \rightarrow BD$ (Li)

Hvězda s $M \ge 0.10 M_{\odot}$ je červený trpaslík. Její konečné stadium by byl heliový podtrpaslík, ale evidentně není čas, aby se vyvinul (v mladých otevřených hvězdokupách naopak vídáme spíše fázi pre-MS):

 $\mathrm{M8} \to \mathrm{He}~\mathrm{sd}$

Pro $M \ge 0.25 M_{\odot}$ jde opět o červeného trpaslíka, ale tentokrát by vystoupal nad hlavní posloupnost mezi "podobry". Na konečné stadium, heliového bílého trpaslíka, ale opět není čas:

 $M5 \rightarrow SGB \rightarrow He WD$

Pro $M \ge 0.60 M_{\odot}$ nastává určité stoupání podél Hayashiho linie, avšak degenerace zabrání dalšímu kolapsu jádra a hoření helia, čili:

 $\mathrm{K5} \rightarrow \mathrm{SGB} \rightarrow \mathrm{RGB} \rightarrow \mathrm{He}~\mathrm{WD}$

Pro Slunce s $M \ge 1,0 M_{\odot}$ již očekáváme komplexní vývoj (obr. 77), komplexní změny konvektivních zón (obr. 78), fázi hoření He (obr. 79) včetně záblesků, čemuž odpovídá konečné stadium uhlíkovo/kyslíkový bílý trpaslík:

MS G5 \rightarrow SGB \rightarrow RGB \rightarrow HB \rightarrow AGB \rightarrow TP-AGB \rightarrow post-AGB \rightarrow NB \rightarrow C/O WD

Obr. 77 — HR diagram pro Slunce s počáteční hmotností $M = 1 M_{\odot}$. Černě jsou podél vývojové stopy připsány jednotlivé fáze, od pre-MS do post-AGB. Barevně jsou vyznačeny období hoření H v centru (červeně), hoření H ve slupce (žlutě), hoření He v centru (modře), hoření He ve slupce (bledě). Čárkovaně jsou vyneseny linie konstantního poloměru, dle vztahu $L = 4\pi R^2 \sigma T_{\text{eff}}^4$. Během stoupání podél RGB je patrná malá zastávka (angl. dip). Je způsobená průchodem zóny hoření diskontinuitou v chemickém složení tam, kam zasáhla konvektivní zóna, jež způsobila zvýšení X na $X_{\text{surf}} \rightarrow \text{pokles } \mu \rightarrow \text{pokles } T \rightarrow \text{dočasný pokles } \epsilon_{\text{nuc}}$. U hvězd s nížší metalicitou bychom v rámci HB také očekávali výraznou modrou smyčku (k vyšším T_{eff}). Počáteční abundance helia byla zvolena Y = 0,274, metalicita Z = 0,01954, opacity dle Grevesse a Noels (1993), parametr konvekce $\alpha = 2,1$, parametrický Reimersův vítr (ve fázi RGB) s účinností $\eta = 0,6$, Blockerův vítr (AGB) s $\eta = 0,1$.

Pro $M \ge 1,3 M_{\odot}$ je obdobná situace, pouze poloha na hlavní posloupnosti je více vlevo nahoře. Uvádíme ji zde kvůli odlišné spektrální třídě (na MS):

 $F5 \rightarrow dtto$

Obr. 78 — Kippenhahnův diagram (pro $M = 1 M_{\odot}$) v pozdních fázích vývoje (RGB až WD). Vyznačeny jsou nejvýše 2 největší konvektivní zóny a 2 zóny hoření (H, He). Zejména na konci fáze RGB dochází ke ztrátě na $0.7 M_{\odot}$, později až na $0.5 M_{\odot}$. Vnější konvektivní zóna ustupuje před tenkou slupkou H. He záblesk zde nastává v čase asi 11,85 Gyr. Na konci je patrné dohořívání obou slupek až k povrchu. Detail vpravo zachycuje krátkou fázi TP-AGB, během které je patrných pět He záblesků ve slupce, čili tepelných pulzů. Na hranici rozlišení jsou dočasná vyhasnutí H slupky a malé konvektivní zóny.

Obr. 79 — Abundance v centru (pro $M = 1 M_{\odot}$) pro všechny izotopy uvažované sítě reakcí, zahrnující řetězec pp, cyklus CNO a reakce až po ²⁴Mg. Během fáze HB se spotřebovává He v centru. Náhlé zvýšení Y v čase 11,92 Gyr souvisí s počátkem přeměny O na C a rozšířením centrální konvektivní zóny. V konečném stadiu (WD) je jádro tvořené především kyslíkem ¹⁶O a uhlíkem ¹²C.

Pro $M \ge 1.8 M_{\odot}$ je obdobná obdobná situace:

 $A5 \rightarrow dtto$

Pro hmotnost $M \ge 5 M_{\odot}$ sled reakcí pokračuje až za cyklus CNO (srov. obr. 69), tudíž konečné stadium je kyslíkovo/neonový/hořčíkový bílý trpaslík:

$$\begin{array}{l} {\rm B4} \rightarrow {\rm SGB} \rightarrow {\rm RGB} \rightarrow {\rm HB} \rightarrow {\rm AGB} \rightarrow {\rm TP}\text{-}{\rm AGB} \rightarrow {\rm post}\text{-}{\rm AGB} \rightarrow {\rm NB} \\ \rightarrow {\rm O}/{\rm Ne}/{\rm Mg} \; {\rm WD} \end{array}$$

Při hmotnosti $M \geq 10 M_{\odot}$ je natolik vysoký zářivý výkon, že přechody mezi fázemi jsou na HR diagramu víceméně vodorovné. O moc výše už hvězdy ani být nemohou, neboť se blíží Eddingtonově limitě. Jeví se jako modří nebo červení veleobři, v nichž vznikne jádro Fe, což končí explozí supernovy typu II a konečné stadium je zpravidla neutronová hvězda (obr. 83):

 $B1 \rightarrow BSG \rightarrow RSG \rightarrow SN \rightarrow NS$

Pro $M \geq 20 M_{\odot}$ lze očekávat natolik zásadní ztrátu hmoty hvězdným větrem, že vznikne WR hvězda s atmosférou obohacenou o ¹⁴N. Konečné stadium je jistě neutronová hvězda nebo černá díra, podle toho, je-li exploze supernovy úspěšná či nikoli:

 $\mathrm{O8} \rightarrow \mathrm{BSG} \rightarrow \mathrm{WN} \rightarrow \mathrm{SN} \rightarrow \mathrm{NS}$ nebo BH

Pro $M \ge 25 M_{\odot}$ také vznikne WR hvězda, ale její atmosféra je navíc obohacená o ¹²C; končí spíše kolapsem do černé díry:

 $O7 \rightarrow BSG \rightarrow WN \rightarrow WC \rightarrow SN \rightarrow BH$

Pro $M \ge 40 M_{\odot}$ lze po opuštění hlavní posloupnosti odlišit stadium Of, ale jinak je situace obdobná:

 $\mathrm{O5} \rightarrow \mathrm{Of} \rightarrow \mathrm{WN} \rightarrow \mathrm{WC} \rightarrow \mathrm{SN} \rightarrow \mathrm{NS}$ nebo BH

Konečně pro $M \ge 85 M_{\odot}$ očekáváme fázi výrazné proměnnosti (LBV), jinak je situace obdobná obdobné (viz obr. 80, 81, 82):

 $O2 \rightarrow Of \rightarrow LBV \rightarrow WN \rightarrow WC \rightarrow SN \rightarrow BH$

Zdůrazněme, že exploze supernovy může mít vícero možných výsledků; i pro prakticky stejnou počáteční hmotnost M_i se liší konečná hmotnost M_f . Funkce $M_f(M_i)$ s více hodnotami ovšem není funkce! Důvodem jsou patrně interakce mezi několika slupkami C, O, které velmi citlivě závisejí na jejich vzájemných vzdálenostech (Pejcha a Thompson 2015, Sukhold aj. 2018).

- [99] GREVESSE, N., NOELS, A. Cosmic abundances of the elements. in Origin and evolution of the elements, eds. M. Prantzos, E. Vangioni-Flam, M. Casse, Cambridge: Cambridge Univ. Press, 1993.
- [100] GREVESSE, N., SAUVAL, A. J. Standard solar composition. Space Sci. Rev., 85, 161, 1980.
- [101] HARMANEC, P., BROŽ, M. Stavba a vývoj hvězd. Praha: MatfyzPress, 2011. ISBN 97880-73781651.
- [102] HENYEY, L., VARDYA, M. S., BODENHEIMER, P. Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J., 142, 841, 1965.

Obr. 80 — HR diagram pro hvězdu s počáteční hmotnosti $M = 85 M_{\odot}$. Metalicita byla volena Z = 0,02, opacity dle Grevesse a Sauval (1998) pro látku obohacenou o C/O (tzv. typ 2), účinnost větru $\eta = 0,8$ (dle Vink aj. 2001, Nugis a Lamers 2000), parametr konvekce $\alpha = 1,5$ (dle Henyey aj. 1965), dále bylo použito Ledouxovo kritérium, parametr semikonvekce $\alpha_{\text{semi}} = 0,01$, termohalinní cirkulace $\alpha_{\text{th}} = 2$ (Kippenhahn aj. 1980), přestřelování $\alpha_{\text{ov}} = \alpha$, s exponenciální poklesem popsaným $f_0 = 0,0005$, $f_{\text{ov}} = 0,001$. Na grafu je zobrazen relativně malý rozsah zářivých výkonů. Hvězda nepostoupila ani do fáze RGB mimo jiné díky ztrátě hmoty způsobené větrem. Výpočet byl zastaven na začátku kolapsu, před explozí SN.

- [103] HOLWEGER, H., MÜLLER, E. A. The photospheric barium spectrum Solar abundance and collision broadening of BA II lines by hydrogen. Sol. Phys., 39, 19–30, 1974.
- [104] IBEN, I. Stellar evolution physics. Cambridge: Cambridge Univ. Press, 2013. ISBN 97811070-16569.
- [105] KIPPENHAHN, R., RUSCHENPLATT, G., THOMAS, H.-C. The time scale of thermohaline mixing in stars. Astron. Astrophys., 91, 175, 1980.
- [106] LANGER, N., FRICKE, K. J., SUGIMOTO, D. Semiconvective diffusion and energy transport. Astron. Astrophys., 126, 207, 1983.
- [107] MAEDER, A. Physics, formation and evolution of rotating stars. Berlin: Springer-Verlag, 2009. ISBN 9783540769484.
- [108] MIHALAS, D., MIHALAS, B. W. Foundations of radiation hydrodynamics. Oxford: Oxford Univ. Press, 1984. ISBN 0195034376.
- [109] MONTALBÁN, J. AJ. Testing convective-core overshooting using period spacings of dipole models in red giants. Astrophys. J., 766, 118, 2013.
- [110] NUGIS, T., LAMERS, H. Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron. Astrophys., 360, 227, 2000.
- [111] PAXTON, B. AJ. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. S., 192, 3, 2011.
- [112] PAXTON, B. AJ. Modules for experiments in stellar astrophysics (MESA): Planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. S., 208, 4, 2013.
- [113] PAXTON, B. AJ. Modules for experiments in stellar astrophysics (MESA): Binaries, pulsations, and explosions. Astrophys. J. Suppl. S., 220, 15, 2015.

Obr. 81 — Oddělený Kippenhahnův diagram (pro $M = 85 M_{\odot}$), zachycující vývoj po MS. Nahoře jsou zobrazeny zóny promíchávání, s rozlišením konvekce (modře), přestřelování (zeleně) semikonvekce (žlutě) a termohalinní cirkulace (šedě). Dole je znázorněn měrný výkon ϵ termonukleárních reakcí s barevnou logaritmickou škálou. Na konci fáze Of, kdy hoří H ve slupce a He v centru, se v nitru nachází 25 zón promíchávání. Ve fázi LBV je zřetelná ztráta hmoty M(t) až na méně než 40 M_{\odot} . Ve fázi WR se vodíková slupka odhalí na povrchu a záhy zanikne, neboť se spotřebuje prakticky všechen vodík. Slupek hoření těžších prvků je nakonec ve hvězdě vícero.

Obr. 82 — Abundance v centru (pro $M = 85 M_{\odot}$) a detail těsně před explozí SN, se škálou v rocích. Po přeměně He na C/O velmi rychle proběhne série reakcí, kdy zachycováním částic α vzniknou jádra se sudým Z a N = Z, tj. zejména ⁵²Fe, ⁵⁶Ni, který se ovšem záhy rozpadá dvakrát β^+ . Při vzniku jádra ⁵⁶Fe se vývoj odehrává na škále hodin; samotný kolaps poté na škále sekund.

Obr. 83 — Konečná stadia hvězd různých počátečních hmotností M a metalicit Z. Pro jednorozměrné modely předchůdců byla použita jednoduchá parametrizace následné exploze, $L_{\nu e}/L_{\rm crit} = p[\dot{M}/(0,4 M_{\odot} {\rm s}^{-1})^q$, se zvolenými parametry p = 0,18, q = 1,5, tak aby odpovídaly 2D nebo 3D modelům explozí. Zeleně jsou značeny neutronové hvězdy, černě černé díry, oranžově díry vznikající zpětným pádem. Převzato z Pejcha a Thompson (2015).

- [114] PEJCHA, O., THOMPSON, T. A. The landscape of neutrino mechanism of core-collapse supernovae: Neutron star and black hole mass functions, explosion energies, and nickel yields. Astrophys. J., 801, 90, 2015.
- [115] SUKHBOLD, T., WOOSLEY, S. E., HEGER, A. High resolution study of presupernova core structure. Astrophys. J., accepted, 2018.
- [116] ULRICH, R. K. Thermohaline convection in stellar interiors. Astrophys. J., 172, 165, 1972.
- [117] VIALLET, M. AJ. Turbulent convection in stellar interiors. III. Mean-field analysis and stratification effects. Astrophys. J., 769, 1, 2013.
- [118] VINK, J. S., DE KOTER, A., LAMERS, H. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys., 396, 574, 2001.

A Skaláry, vektory a operátory

Mějme reálné číslo (skalár), označované jednoduše a. Dále mějme vektor, který lze zapsat ve vektorové, složkové nebo indexové notaci:

$$\mathbf{a} = (a_1, a_2, a_3) = a_i \,. \tag{253}$$

Skalární součin. Skalární součin dvou vektorů je číslo definované jako:

$$\boldsymbol{a} \cdot \boldsymbol{b} \equiv a_1 b_1 + a_2 b_2 + a_3 b_3 \equiv a_i b_i \,, \tag{254}$$

přičemž jeho hodnota je zároveň rovna $\boldsymbol{a} \cdot \boldsymbol{b} = ab \cos \alpha$, kde vystupuje kosinus sevřeného úhlu. Výraz $\boldsymbol{a} \cdot \boldsymbol{a} = \boldsymbol{a}^2 = a^2$ je proto velikost vektoru na druhou.

Vektorový součin. Vektorový součin dvou vektorů je vektor definovaný jako:

$$\boldsymbol{a} \times \boldsymbol{b} \equiv \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{i}a_2a_3 - \hat{i}a_3b_2 + \hat{j}a_3b_1 - \hat{j}a_1b_3 + \hat{k}a_1b_2 - \hat{k}a_2b_1 = \epsilon_{ijk}a_jb_k \,.$$
(255)

Jeho směr je kolmý k **a** i k **b**, přičemž jeho velikost $|\mathbf{a} \times \mathbf{b}| = ab \sin \alpha$, kde vystupuje sinus sevřeného úhlu. Výraz $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ je tudíž nulový vektor.

Mezi zmiňovanými součiny platí identita nazývaná mnemotechnicky "bác mínus cáb":

$$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c}) - \boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b}), \qquad (256)$$

která se často užívá při úpravách vektorových rovnic.

Jako skalární pole označujeme funkci přiřazující číslo každému bodu prostoru, např. jde o hustotu $\rho(\mathbf{r})$. Vektorové pole je funkce přiřazující vektor každému bodu prostoru, např. rychlost $\mathbf{v}(\mathbf{r})$. Různé derivace těchto funkcí je možné zapisovat elegantně pomocí diferenciálních operátorů.

Operátor gradientu. Operátor gradientu (čes. stoupání) je vektor definovaný jednoduše v kartézských souřadnicích:

grad
$$\equiv \nabla \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$
.

Gradient skalárního pole $\rho(\mathbf{r})$ je tedy vektor $\nabla \rho$ v tom směru, ve kterém ρ nejvíce stoupá (viz obr. 84).

Operátor divergence. Operátor divergence (čes. rozbíhavost) úzce souvisí se skalárním součinem:

div
$$\equiv \nabla \cdot \equiv \frac{\partial ?_x}{\partial x} + \frac{\partial ?_y}{\partial y} + \frac{\partial ?_z}{\partial z}$$

Divergence vektorového pole $\boldsymbol{v}(\boldsymbol{r})$ je skalár $\nabla \cdot \boldsymbol{v}$, který je kladný, pokud se vektory v okolí daného místa (spíše) rozbíhají (obr. 85).

Operátor rotace. Operátor rotace (čes. stáčení) naopak souvisí s vektorovým součinem:

$$\operatorname{rot} \equiv \nabla \times \equiv \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{x} & \frac{\partial}{y} & \frac{\partial}{z} \end{vmatrix}$$

Rotace vektorového pole $\mathbf{v}(\mathbf{r})$ je vektor $\nabla \times \mathbf{v}$, jehož složka z je kladná, pokud se vektory v okolí (rovině x, y) stáčejí proti směru hodinových ručiček; $\frac{\partial v_y}{\partial x}$ je pak kladné a $\frac{\partial v_x}{\partial y}$ záporné (obr. 86).

Obr. 84 — Příklady skalárních polí $v_x(\mathbf{r})$ stoupajících. Vlevo je pole $v_x = 0,5 x$, jehož $\nabla v_x = (0,5;0;0)$. Vpravo je $v_x = 2y$, čili $\nabla v_x = (0;2;0)$. Zde jsme pro názornost vynechali fyzikální jednotky. Odpovídající proudnice jsou znázorněny šedě tečkovaně. Namísto skalárního pole $\rho(\mathbf{r})$ jsme zvolili jednu ze složek rychlosti, aby se nám veličina dobře kreslila. Kdybychom operátor gradientu aplikovali na vektorové pole $\nabla \mathbf{v}$, získali bychom tenzor 2. řádu, tzn. matici 3×3 s řádky ∇v_x , ∇v_y , ∇v_z .

Obr. 85 — Příklady vektorových polí $\boldsymbol{v}(\boldsymbol{r})$ s kladnou rozbíhavostí. Vlevo je pole $\boldsymbol{v} = (0,5\,x;0;0),$ $\nabla \cdot \boldsymbol{v} = 0,5.$ Vpravo $\boldsymbol{v} = (x;y;z), \nabla \cdot \boldsymbol{v} = 3.$

Obr. 86 — Příklady vektorových polí $\mathbf{v}(\mathbf{r})$ s kladným stáčením v rovině xy. Vlevo je pole $\mathbf{v} = (-2y; 0; 0), \nabla \times \mathbf{v} = (0; 0; 2)$. Vpravo $\mathbf{v} = (-y; x; 0), \nabla \times \mathbf{v} = (0; 0; 2)$.

Křivočaré souřadnice. V křivočarých souřadnicích mají operátory podstatně složitější vyjádření. Namísto kartézských x, y, z mějme jiné ortogonální, ale obecně křivočaré souřadnice u, v, w. Diferenciál polohového vektoru:

$$\mathrm{d}\boldsymbol{r} = \frac{\partial \boldsymbol{r}}{\partial u} \mathrm{d}u + \frac{\partial \boldsymbol{r}}{\partial v} \mathrm{d}v + \frac{\partial \boldsymbol{r}}{\partial w} \mathrm{d}w$$

upravíme pomocí velikostí paricálních derivací:

$$h_u \equiv \left| \frac{\partial \mathbf{r}}{\partial u} \right|, \quad h_v \equiv \left| \frac{\partial \mathbf{r}}{\partial v} \right|, \quad h_w \equiv \left| \frac{\partial \mathbf{r}}{\partial w} \right|$$
(257)

a bázových vektorů křivočarých souřadnic na:

$$\mathrm{d}\boldsymbol{r} = h_u \boldsymbol{e}_u \mathrm{d}u + h_v \boldsymbol{e}_v \mathrm{d}v + h_w \boldsymbol{e}_w \mathrm{d}w \,.$$

Element vzdálenosti je pak dán:

$$ds^{2} = (h_{u}du)^{2} + (h_{v}dv)^{2} + (h_{w}dw)^{2}, \qquad (258)$$

element různě orientovaných ploch:

 $dS_u = h_v h_w dv dw, \quad dS_v = h_u h_w du dw, \quad dS_w = h_u h_v du dv$ (259)

a element objemu:

$$\mathrm{d}V = h_u h_v h_w \mathrm{d}u \mathrm{d}v \mathrm{d}w \,. \tag{260}$$

Nakonec bez odvození uvádíme vyjádření základních operátorů [119]:

$$\nabla f = \left(\frac{1}{h_u}\frac{\partial f}{\partial u}, \frac{1}{h_v}\frac{\partial f}{\partial v}, \frac{1}{h_w}\frac{\partial f}{\partial w}\right), \qquad (261)$$

$$\nabla \cdot \mathbf{f} = \frac{1}{h_u h_v h_w} \left(\frac{\partial f_u h_v h_w}{\partial u} + \frac{\partial h_u f_v h_w}{\partial v} + \frac{\partial h_u h_v f_w}{\partial w} \right) , \qquad (262)$$

$$\nabla \times \boldsymbol{f} = \frac{1}{h_u h_v h_w} \begin{vmatrix} h_u \boldsymbol{e}_u & h_v \boldsymbol{e}_v & h_w \boldsymbol{e}_w \\ \frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} \\ h_u f_u & h_v f_v & h_w f_w \end{vmatrix}$$
(263).

Sférické souřadnice. Pro konkrétní případ sférických souřadnic bychom měli:

$$\begin{split} x &= r\cos\vartheta\cos\varphi\,,\\ y &= r\cos\vartheta\sin\varphi\,,\\ z &= r\sin\vartheta\,, \end{split}$$

odkud:

$$h_r = \sqrt{\left(\frac{\partial x}{\partial r}\right)^2 + \left(\frac{\partial y}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial r}\right)^2} = \sqrt{\cos^2\vartheta\cos^2\varphi + \cos^2\vartheta\sin^2\varphi + \sin^2\vartheta} = 1,$$
(264)

$$h_{\vartheta} = r \,, \tag{265}$$

$$h_{\varphi} = r \sin \vartheta \,, \tag{266}$$

které se použijí pro dosazení do (258) až (263).

[119] Gradient, divergence and curl in curvilinear coordinates. [online] [cit. 2017-05-05]. (https://www.jfoadi.me.uk/documents/lecture_mathphys2_05.pdf).
B Tenzorový počet

Diáda. Patrně nejjednodušším tenzorem (2. řádu) jsou součiny složek dvou vektorů:³⁹

$$\boldsymbol{a}\boldsymbol{b} = a^{i}b^{j} = \begin{pmatrix} a^{1}b^{1} & a^{1}b^{2} & a^{1}b^{3} \\ a^{2}b^{1} & a^{2}b^{2} & a^{2}b^{3} \\ a^{3}b^{1} & a^{3}b^{2} & a^{3}b^{3} \end{pmatrix},$$
(267)

neboli *diáda*. Vypadá jako matice a od toho se odvíjejí vlastnosti diády. Skalární součin zprava se sloupcovým vektorem \boldsymbol{c} (dle pravidel násobení matic) je vektor:

$$\begin{pmatrix} a^{1}b^{1} & a^{1}b^{2} & a^{1}b^{3} \\ a^{2}b^{1} & a^{2}b^{2} & a^{2}b^{3} \\ a^{3}b^{1} & a^{3}b^{2} & a^{3}b^{3} \end{pmatrix} \cdot \begin{pmatrix} c^{1} \\ c^{2} \\ c^{3} \end{pmatrix} = (a^{1}(b^{1}c^{1} + b^{2}c^{2} + b^{3}c^{3}); a^{2}(\ldots); a^{3}(\ldots)) .$$
(268)

Skutečně obdržíme $\boldsymbol{a}(\boldsymbol{b} \cdot \boldsymbol{c})$, čili vektor ve směru \boldsymbol{a} , s velikostí úměrnou projekci \boldsymbol{c} do směru \boldsymbol{b} . Při násobení řádkovým vektorem zleva lze obdobně očekávat $(\boldsymbol{c} \cdot \boldsymbol{a})\boldsymbol{b}$. Operace evidentně není komutativní. Chová se trochu jako "směrovník": přiložíme vektor a obdržíme jiný vektor.

Další častou operací je skalární součin diády s diádou, což je tenzor (opět diáda):

$$\boldsymbol{ab} \cdot \boldsymbol{cd} = \boldsymbol{a}(\boldsymbol{b} \cdot \boldsymbol{c})\boldsymbol{d} = (\boldsymbol{b} \cdot \boldsymbol{c})\boldsymbol{ad}$$
. (269)

Naopak dvoutečkový součin diády s diádou je skalár:

$$\boldsymbol{ab} : \boldsymbol{cd} = \sum_{i} \sum_{j} a^{i} b^{j} c^{i} d^{j} .$$
(270)

Elipsoid. Na tenzor je také možné nahlížet jako na elipsoid. Implicitní rovnice elipsoidu (v základní orientaci) je totiž:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1.$$
(271)

Z diády obdržíme rovnici příslušného elipsoidu jako:

$$\boldsymbol{r} \cdot \boldsymbol{a} \boldsymbol{b} \cdot \boldsymbol{r} = 1. \tag{272}$$

Roznásobíme-li:

$$\begin{split} & (xa^1+ya^2+za^3)(xb^1+yb^2+zb^3) = \\ & = x^2a^1b^1+y^2a^2b^2+z^2a^3b^3+xy(a^1b^2+a^2b^1)+xz(a^1b^3+a^3b^1)+yz(a^2b^3+a^3b^2)\,, \end{split}$$

 $^{^{39}}$ abychom dodrželi konvenci z relativity, píšeme indexy nahoře (viz dále)

což je elipsoid vzhledem k osám natočený, s poloosam
i $A=1/\sqrt{a_1b_1},$ atd. Kdyby byl diagonální, sladěný s osami, měli by
chom zřejmě:

$$\begin{pmatrix} 1/A^2 & 0 & 0 \\ 0 & 1/B^2 & 0 \\ 0 & 0 & 1/C^2 \end{pmatrix}.$$

Operátor divergence. Divergence tenzoru je vektor:

$$\nabla \cdot \mathbf{T} = \begin{pmatrix} \frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z} \end{pmatrix} \cdot \begin{pmatrix} T^{11} & T^{12} & T^{13} \\ T^{21} & T^{22} & T^{23} \\ T^{31} & T^{32} & T^{33} \end{pmatrix} = \begin{pmatrix} \frac{\partial T^{11}}{\partial x} + \frac{\partial T^{21}}{\partial y} + \frac{\partial T^{31}}{\partial z}; \\ \frac{\partial T^{12}}{\partial x} + \frac{\partial T^{22}}{\partial y} + \frac{\partial T^{32}}{\partial z}; \\ \frac{\partial T^{13}}{\partial x} + \frac{\partial T^{23}}{\partial y} + \frac{\partial T^{33}}{\partial z} \end{pmatrix},$$
(273)

obsahující v řádku divergence sloupců. Pokud by šlo o diádu, nezapomeňme, že operátor působí doprava na $ob\check{e}$ komponenty, tzn. $\nabla \cdot \boldsymbol{ab} = (\nabla \cdot \boldsymbol{a})\boldsymbol{b} + \boldsymbol{a} \cdot \nabla \boldsymbol{b}$.

Další příklady. Praktickým příkladem je tenzor napětí σ^{ij} , $[\sigma^{ij}] = Pa$, vystupující např. v elementárním vztahu $\mathbf{F}/dS = \mathbf{n} \cdot \sigma^{ij}$, tzn. na plochu dS s normálou \mathbf{n} působí síla \mathbf{F} (obecně v odlišném směru). Kdyby $\mathbf{n} = (1;0;0)$, jednalo by se plochu v rovině yz, přičemž příslušné napětí je v prvním řádku σ^{1j} . Toto byla ostatně veličina, která vedla k zavedení tenzorů, neboť ital. tensio = napětí; pak je ovšem pleonasmem.

Nebo vezměme tenzor momentu setrvačnosti I^{ij} , $[I^{ij}] = \text{kg m}^2$, $\mathbf{L} = \mathbf{I} \cdot \vec{\omega}$, tzn. při otáčení okolo osy $\vec{\omega}$ by mělo těleso moment hybnosti \mathbf{L} (v témže směru), anebo opačně (\mathbf{L} se zachovává, takže se odpovídajícím způsobem mění $\vec{\omega}$).

Obdobně tenzor malých deformací ϵ^{ij} , $[\epsilon^{ij}] = m m^{-1} = 1$, $d\boldsymbol{u} = \epsilon^{ij} \cdot d\boldsymbol{r}$, tzn. jak se změní posunutí \boldsymbol{u} v deformovaném materiálu, když se posuneme o d \boldsymbol{r} .

Zcela jiným příkladem je ovšem metrický tenzor $g_{\mu\nu}$, mající obecně různé jednotky složek, $[g_{00}] = m^2 s^{-2}$, $[g_{11}] = 1$, atd. v závislosti na tom, jaké (křivočaré) souřadnice používáme. Známe jej ze vztahu $ds^2 = \sum_{\mu} \sum_{\nu} g_{\mu\nu} dx^{\mu} dx^{\nu}$, přičemž $g_{\mu\nu} = \mathbf{e}_{\mu} \cdot \mathbf{e}_{\nu}$ obsahuje skalární součiny bází, tzn. mezi dvěma událostmi, které se liší o dx^{μ} , je vzdálenost ds nejenže zde má řecké indexy 0. 3, protože popisujeme čtyřrozměrný časoprostor, ale především má jiné jednotky, "něco na metr". Může to být trochu obtížné poznat, protože to může být také m² na m² = 1 Naznačuje nám to, že se bude chovat *jinak* při transformaci souřadnic!⁴⁰ V rovnicích nelze bez rozmyslu kombinovat tenzory s indexy dole a nahoře. Musíme přece dodržovat jednotky! V Einsteinových rovnicích pro $g_{\mu\nu}$ je ostatně na pravé straně tenzor energie a hybnosti $T_{\mu\nu}$, nikoli $T^{\mu\nu}$, i když samotná hustota energie a hybnosti není "na metr".

Kontravariantní a kovariantní složky. Dokonce můžeme čekat, že se mohou lišit jednotlivé složky tenzoru. Složka *kontravariantní* má index nahoře; při zvětšení

 $[\]overline{40}$ proto píšeme indexy dole

báze dochází ke zmenšení složek. Chová se jako souřadnice, diferenciál souřadnic nebo obyčejný vektor. Ostatně si představme týž vektor \boldsymbol{v} , pouze v nové bázi:

---->
$$\boldsymbol{e}_x$$
 ----> \boldsymbol{e}'_x
---> $\boldsymbol{v} = (1;0;0)$ ---> $\boldsymbol{v}' = (0,5;0;0)$

Naopak kovariantní má index dole; zvětšení báze vede kupodivu ke zvětšení složek. Chová se totiž jako gradient (derivace podle souřadnic, "něco na metr"), báze, kovektor, též lineární forma. Mějme týž průběh funkce ρ , novou bázi a podívejme se, jak se změní gradient $\nabla \rho$:

--->
$$\boldsymbol{e}_x$$
 ----> \boldsymbol{e}'_x
---> $\nabla \rho = (1;0;0)$ -----> $\nabla \rho' = (2;0;0)$

což nejlépe osvětluje druhý ascii-art:

Mezi kontravariantními a kovariantními složkami existuje vztah duality. Zdůrazněme pro jistotu, že skalár na volbě báze nikdy nezávisí, avšak vektor nebo tenzor vždy. Prvnímu typu odpovídá transformace $(x^i \to x^{j'})$:

$$v^{j'} = \sum_{i} \frac{\partial x^{j'}}{\partial x^{i}} v^{i} , \qquad (274)$$

takže vskutku zvětšení báze (zmenšení čárkovaných souřadnic) odpovídá zmenšení složek vektoru. Druhý typ transformace spočívá v prostém prohození:

$$u_j' = \sum_i \frac{\partial x^i}{\partial x^{j'}} u_i \,. \tag{275}$$

Obecně je tenzor cokoliv, co splňuje následující definici pomocí transformace:

$$T^{mn.}{}_{op..}{}' = \sum_{i} \sum_{j} \sum_{k} \sum_{l} \dots \frac{\partial x^{m'}}{\partial x^{i}} \frac{\partial x^{n'}}{\partial x^{j}} \dots \frac{\partial x^{k}}{\partial x^{o'}} \frac{\partial x^{l}}{\partial x^{p'}} \dots T^{ij..}{}_{kl..}$$
(276)

Z toho je patrné, že ne každá matice je tenzor!

Inverzní tenzor. Inverzní tenzor k T_{ij} je definován pomocí vztahu:

$$\sum_{j} T^{ij} T_{jk} = \delta^{i}_{\ k} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad (277)$$

183

kde δ^i_k označuje Kroneckerovo delta (též jednotkovou matici). Hledání inverzního tenzoru je hledáním inverzní matice, čili soustavou rovnic pro *j* krát *j* neznámých. Jeho složky mají pochopitelně reciproké jednotky, jinak bychom nikdy nedostali 1.

Pro nejjednodušší metrický tenzor (plochý časoprostor, kartézské souřadnice):

$$g_{\mu\nu} \equiv \eta_{\mu\nu} = \begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

by inverzní byl zřejmě:

$$g^{\mu\nu} = \begin{pmatrix} -c^{-2} & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Metrický tenzor a jeho inverzi lze použít pro snižování indexu:

$$T_{\mu}^{\ \nu} = \sum_{\eta} g_{\mu\eta} T^{\eta\nu} \tag{278}$$

nebo zvyšování indexu:

$$T^{\mu}_{\ \nu} = \sum_{\eta} g^{\mu\eta} T_{\eta\nu} \,. \tag{279}$$

Mimochodem pak nutně $g^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu}$. Můžeme tak měnit tenzory kontravariantní na kovariantní a naopak.

Kovariantní derivace. Když se báze mění, nezbývá než derivovat jako součin. Vezměme nejprve vektor:

$$\frac{\partial \mathbf{v}}{\partial x_j} = \frac{\partial \sum_i v^i \mathbf{e}_i}{\partial x^j} = \sum_i \frac{\partial v^i}{\partial x^j} \mathbf{e}_i + \sum_i v^i \frac{\partial \mathbf{e}_i}{\partial x^j}, \qquad (280)$$

kde derivace báze podle souřadnice je určitě vektor, který lze opětovně vyjádřit jako lineární kombinaci bází:

$$\frac{\partial \boldsymbol{e}_i}{\partial x^j} = \sum_k \Gamma^k_{\ ij} \boldsymbol{e}_k \,, \tag{281}$$

přičem
ž $\Gamma^k_{\ ij}$ se nazývají Christofellovy symboly. Nejedná se o žádné
operátory ani tenzory, nýbrž koeficienty. Pak:

$$\frac{\partial \mathbf{v}}{\partial x_j} = \sum_i \frac{\partial v^i}{\partial x^j} \mathbf{e}_i + \sum_i \sum_k v^i \Gamma^k_{\ ij} \mathbf{e}_k = \sum_i \left(\frac{\partial v^i}{\partial x^j} + \sum_k v^k \Gamma^i_{\ kj} \right) \mathbf{e}_i \,, \qquad (282)$$

pokud bez újmy zaměníme ve druhém členu $i \leftrightarrow k.$ Zkrácený složkový zápis by byl:⁴¹

kovariantní afinní
derivace
$$v_{;j}^{i} = \underbrace{v_{,j}^{i}}_{\text{parciální}} + \underbrace{\sum_{k}^{k} v^{k} \Gamma_{kj}^{i}}_{parciální}$$
 (284)

Pro tenzor obdobně (představme si jej jako diádu):

$$T^{ij}_{\ ;k} = T^{ij}_{\ ,k} + \sum_{l} T^{lj} \Gamma^{i}_{\ lk} + \sum_{l} T^{il} \Gamma^{j}_{\ lk} \,, \tag{285}$$

kde jsme pouze museli poposunout index
y $j,k \to k,l,$ protože tenzor sám má dva.

Jediný tenzor, který se při kovariantní derivaci nemění, je právě metrický $g_{\mu\nu}$. Je to logické, všechny změny bází jsme pracně kompenzovali. To ale znamená, že vlevo máme nulu, a můžeme vyjádřit Γ z g! Konkrétně:

$$0 = g_{\mu\nu,\kappa} - \sum_{\lambda} g_{\lambda\nu} \Gamma^{\lambda}{}_{\mu\kappa} - \sum_{\lambda} g_{\mu\lambda} \Gamma^{\lambda}{}_{\nu\kappa}$$

a po (mnoha) úpravách:

$$\Gamma^{\kappa}_{\ \mu\nu} = \sum_{\lambda} \frac{1}{2} g^{\kappa\lambda} \left(g_{\lambda\mu,\nu} + g_{\lambda\nu,\mu} - g_{\mu\nu,\lambda} \right) \,. \tag{286}$$

- [120] DVOŘÁK, L. Obecná teorie relativity a moderní fyzikální obraz vesmíru. Praha: SPN, 1984.
- [121] KULHÁNEK, P. Obecná relativita. [online] [cit. 2018-01-26]. (http://www.aldebaran.cz/studium/otr.pdf).
- [122] MISNER, C. W., THORNE, K. S., WHEELER, J. A Gravitation San Francisco: W. H. Freeman and Company, 1973. ISBN 0716703440.

 $\overline{{}^{41}}$ Kdyby se jednalo o kovektor (kovariantní složku), využili bychom $(u^i u_i)_{;j}=0$ a odvodili:

$$u_{i;j} = u_{i,j} - \sum_{k} u_k \Gamma^k_{\ ij} , \qquad (283)$$

který se odlišuje mínusy a indexy.

C Lagrangeovy planetární rovnice

V případě planetárního systému, jež má více než 1 planetu, nemohou být obvyklé orbitální elementy $a, e, i, \Omega, \omega, M$ konstantami a o to více nás zajímají jejich hodnoty, respektive jejich vývoj v čase. Mohli bychom sice pohybové rovnice pro N těles rovnou integrovat numericky a z výsledných $\mathbf{r}_i(t), \mathbf{v}_i(t)$ vypočítávat oskulační elementy, čili takové, jaké by mělo těleso v okamžiku t, pokud bychom poruchu náhle vypnuli.⁴² Hlubší pochopení však umožňují Lagrangeovy rovnice pro časové derivace elementů $\frac{da}{dt}$ atd., které zde odvodíme pomocí Lagrangeových závorek.

C.14 Lagrangeovy závorky

Pokud bychom se nenechali ničím rušit, pohybová rovnice pro planetu v *relativní* soustavě spojené se Sluncem, $\ddot{\mathbf{r}} + \mu \frac{\mathbf{r}}{r^3} = 0$, kde $\mu \equiv G(m_1 + m_2)$, by právě odpovídala problému 2 těles (viz např. Brož a Šolc 2013). Tuto obyčejnou diferenciální rovnici 2. řádu pro \mathbf{r} zde opíšeme jako dvě obyčejné diferenciální rovnice 1. řádu pro \mathbf{r} a \mathbf{v} a navíc na pravou stranu doplníme poruchu:

$$\dot{\mathbf{v}} + \mu \frac{\mathbf{r}}{r^3} = \nabla \mathcal{R} \,, \tag{287}$$

$$\mathbf{v} = \dot{\mathbf{r}} \,, \tag{288}$$

kde jsme zavedli skalární *poruchovou funkci* \mathcal{R} , což je obecně fyzikálně potenciál. Zatím ji nebudeme nijak specifikovat, ale představme si místo ní například gravitační potenciál ostatních planet. Tyto rovnice chceme přepsat pro 6 elementů, konkrétně $a, e, i, \Omega, \varpi, \overline{\lambda}_0$, kde $\varpi = \Omega + \omega$ je délka pericentra a $\overline{\lambda}_0 = \lambda - nt$ střední délka epochy, čili pomalá proměnná, nikoli (rychlá) pravá délka $\lambda = M + \varpi$ nebo střední anomálie $M = n(t - \tau)$; $n = \sqrt{a^3/\mu}$ označuje střední pohyb (úhlovou frekvenci).

Abychom se neupsali přeznačíme elementy jako c_1 až c_6 . Mezi souřadnicemi i rychlostmi a elementy určitě existují nějaké funkční vztahy:

$$\mathbf{r} = \mathbf{r}(c_1, c_2, c_3, c_4, c_5, c_6, t), \qquad (289)$$

$$\mathbf{v} = \mathbf{v}(c_1, c_2, c_3, c_4, c_5, c_6, t).$$
(290)

Pak časové derivace:

$$\dot{\boldsymbol{r}} = \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = \frac{\partial \boldsymbol{r}}{\partial t} + \sum_{k=1}^{6} \frac{\partial \boldsymbol{r}}{\partial c_k} \frac{\mathrm{d}c_k}{\mathrm{d}t},$$

⁴² Musíme si být ovšem vědomi, že je-li porucha opravdu veliká, odchyluje se skutečná trajektorie od oskulační kuželosečky natolik, že oskulační elementy poněkud ztrácejí smysl.

$$\dot{\boldsymbol{\nu}} = \frac{\mathrm{d}\boldsymbol{\nu}}{\mathrm{d}t} = \frac{\partial\boldsymbol{\nu}}{\partial t} + \sum_{k} \frac{\partial\boldsymbol{\nu}}{\partial c_{k}} \frac{\mathrm{d}c_{k}}{\mathrm{d}t}.$$

Protože polohový vektor má zásadně nezávislé složky, $x \neq x(y)$, je $\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\partial \mathbf{r}}{\partial t}$. Zároveň $\frac{\partial \mathbf{v}}{\partial t} = -\mu \frac{\mathbf{r}}{r^3}$ je řešení nerušeného problému 2 těles. Tudíž musí být:

$$\sum_{k} \frac{\partial \mathbf{r}}{\partial c_k} \frac{\mathrm{d}c_k}{\mathrm{d}t} = 0,$$
$$\sum_{k} \frac{\partial \mathbf{v}}{\partial c_k} \frac{\mathrm{d}c_k}{\mathrm{d}t} = \nabla \mathcal{R}$$

Nakonec provedeme symetrizaci, a to násobením první rovnice skalárně $-\frac{\partial \mathbf{v}}{\partial c_j}$, druhé $\frac{\partial \mathbf{r}}{\partial c_i}$ a jejich sečtením, čímž získáme 6 skalárních rovnic:

$$\sum_{k} \left(-\frac{\partial \boldsymbol{r}}{\partial c_k} \frac{\mathrm{d}c_k}{\mathrm{d}t} \cdot \frac{\partial \boldsymbol{\nu}}{\partial c_j} + \frac{\partial \boldsymbol{\nu}}{\partial c_k} \frac{\mathrm{d}c_k}{\mathrm{d}t} \cdot \frac{\partial \boldsymbol{r}}{\partial c_j} \right) = \nabla \mathcal{R} \cdot \frac{\partial \boldsymbol{r}}{\partial c_j}, \quad j = 1..6$$

čili:

$$\sum_{k} \left(\frac{\partial \mathbf{r}}{\partial c_j} \cdot \frac{\partial \mathbf{v}}{\partial c_k} - \frac{\partial \mathbf{r}}{\partial c_k} \cdot \frac{\partial \mathbf{v}}{\partial c_j} \right) \frac{\mathrm{d}c_k}{\mathrm{d}t} = \frac{\partial \mathcal{R}}{\partial c_j}$$

Zavedeme-li Lagrangeovy závorky jako zkratku za:

$$[c_j, c_k] \equiv \frac{\partial \mathbf{r}}{\partial c_j} \cdot \frac{\partial \mathbf{v}}{\partial c_k} - \frac{\partial \mathbf{r}}{\partial c_k} \cdot \frac{\partial \mathbf{v}}{\partial c_j}, \qquad (291)$$

je možné zapsat pohybové rovnice pro elementy elegantně jako:

$$\sum_{k} [c_j, c_k] \frac{\mathrm{d}c_k}{\mathrm{d}t} = \frac{\partial \mathcal{R}}{\partial c_j}, \quad j = 1, 6$$
(292)

a nazvat je "Lagrangeovy planetární".

C.15 Časová invariance Lagrangeových závorek

Zatím nevíme nic konkrétního, neboť jsme závorky nevyčíslili. Jejich vyčíslení asi nebude nic jednoduchého, když se \boldsymbol{r} i \boldsymbol{v} neustále mění. Nicméně jejich parciální derivace podle času je:

$$\frac{\partial}{\partial t}[c_j, c_k] = \frac{\partial^2 \mathbf{r}}{\partial t \partial c_j} \cdot \frac{\partial \mathbf{v}}{\partial c_k} + \frac{\partial \mathbf{r}}{\partial c_j} \cdot \frac{\partial^2 \mathbf{v}}{\partial t \partial c_k} - \left(\frac{\partial^2 \mathbf{r}}{\partial t \partial c_k} \cdot \frac{\partial \mathbf{v}}{\partial c_j} + \frac{\partial \mathbf{r}}{\partial c_k} \cdot \frac{\partial^2 \mathbf{v}}{\partial t \partial c_j}\right) = \\ = -\mu \frac{\mathbf{r}}{r^3} = \mu \nabla \frac{1}{r} \equiv \nabla U_0 \\ = \frac{\partial}{\partial c_j} \left(\frac{\partial \mathbf{r}}{\partial t} \cdot \frac{\partial \mathbf{v}}{\partial c_k} - \frac{\partial \mathbf{r}}{\partial c_k} \cdot \frac{\partial \mathbf{v}}{\partial t}\right) + \frac{\partial}{\partial c_k} \left(\frac{\partial \mathbf{r}}{\partial c_j} \cdot \frac{\partial \mathbf{v}}{\partial t} - \frac{\partial \mathbf{r}}{\partial t} \cdot \frac{\partial \mathbf{v}}{\partial c_j}\right) =$$

$$= \frac{\partial}{\partial c_j} \left(\frac{1}{2} \frac{\partial \mathbf{v} \cdot \mathbf{v}}{\partial c_k} - \nabla U_0 \cdot \frac{\partial \mathbf{r}}{\partial c_k} \right) - \frac{\partial}{\partial c_k} \left(\frac{1}{2} \frac{\partial \mathbf{v} \cdot \mathbf{v}}{\partial c_j} - \nabla U_0 \cdot \frac{\partial \mathbf{r}}{\partial c_j} \right) =$$
$$= \frac{1}{2} \frac{\partial^2 v^2}{\partial c_j \partial c_k} + \frac{\partial^2 U_0}{\partial c_j \partial c_k} - \frac{1}{2} \frac{\partial^2 v^2}{\partial c_k \partial c_j} - \frac{\partial^2 U_0}{\partial c_k \partial c_j} = 0, \qquad (293)$$

kde jsme zavedli pomocný potenciál $U_0 \equiv \frac{\mu}{r}$, což je spojitá diferencovatelná funkce, a všechny členy typu $\frac{\partial^2 \mathbf{r}}{\partial t \partial c_j} \cdot \frac{\partial \mathbf{v}}{\partial c_k}$ se pak odečtou. Tzn. že závorky se nemění! Nejsou explicitní funkce času. Můžeme si je proto spočíst v libovolném bodě dráhy (třeba v pericentru).

C.16 Transformace při otočeních

Nejjednodušší způsob, jak to provést, je otočit souřadnicovou soustavu natřikrát tak, aby (neporušená) dráha ležela v rovině x'''y''' a pericentrum na ose x'''. Potřeba jsou 3 otočení, o úhly Ω , *i* a ω . Nejprve provedeme otočení o Ω kolem Z ($XYZ \rightarrow x'y'z'$), přičemž pro dosazení do (291) potřebujeme staré vlevo:

$$X = x' \cos \Omega - y' \sin \Omega ,$$

$$Y = x' \sin \Omega + y' \sin \Omega ,$$

$$Z = z' ,$$

pak:

$$\begin{split} & \underbrace{\frac{\partial X}{\partial c_j} = \overbrace{\left(\frac{\partial x'}{\partial c_j} - y'\frac{\partial\Omega}{\partial c_j}\right)}^{A_1} \cos \Omega - \overbrace{\left(\frac{\partial y'}{\partial c_j} - y'\frac{\partial\Omega}{\partial c_j}\right)}^{B_1} \sin \Omega ,} \\ & \underbrace{\frac{\partial \dot{X}}{\partial c_j} = \overbrace{\left(\frac{\partial \dot{x}'}{\partial c_j} - \dot{y}'\frac{\partial\Omega}{\partial c_j}\right)}^{C_1} \cos \Omega - \overbrace{\left(\frac{\partial \dot{y}'}{\partial c_j} - \dot{y}'\frac{\partial\Omega}{\partial c_j}\right)}^{D_1} \sin \Omega ,} \\ & \underbrace{\frac{\partial Y}{\partial c_j} = B_1 \cos \Omega + A_1 \sin \Omega ,} \\ & \frac{\partial \dot{Y}}{\partial c_j} = D_1 \cos \Omega + C_1 \sin \Omega \end{split}$$

a samozřejmě $\frac{\partial Z}{\partial c_j} = \frac{\partial z'}{\partial c_j}, \ \frac{\partial \dot{Z}}{\partial c_j} = \frac{\partial \dot{z}'}{\partial c_j};$ obdobně mějme A_2, B_2, C_2, D_2 pro c_k .

Dosazení do (291) dá:

$$\begin{split} [c_j, c_k] &= \frac{\partial X}{\partial c_j} \frac{\partial \dot{X}}{\partial c_k} + \frac{\partial Y}{\partial c_j} \frac{\partial \dot{Y}}{\partial c_k} + \frac{\partial Z}{\partial c_j} \frac{\partial \dot{Z}}{\partial c_k} - \frac{\partial X}{\partial c_k} \frac{\partial \dot{X}}{\partial c_j} - \frac{\partial Y}{\partial c_k} \frac{\partial \dot{Y}}{\partial c_j} - \frac{\partial Z}{\partial c_k} \frac{\partial \dot{Z}}{\partial c_j} = \\ &= (A_1 \cos \Omega - B_1 \sin \Omega) (C_2 \cos \Omega - D_2 \sin \Omega) + (B_1 \cos \Omega + A_1 \sin \Omega) (D_2 \cos \Omega + C_2 \sin \Omega) - \\ &- (A_2 \cos \Omega - B_2 \sin \Omega) (C_1 \cos \Omega - D_1 \sin \Omega) - (B_2 \cos \Omega + A_2 \sin \Omega) (D_1 \cos \Omega + C_1 \sin \Omega) + \\ &+ \frac{\partial z'}{\partial c_j} \frac{\partial \dot{z}'}{\partial c_k} - \frac{\partial z'}{\partial c_k} \frac{\partial \dot{z}'}{\partial c_j} = \\ &= A_1 C_2 - A_2 C_1 + B_1 D_2 - B_2 D_1 + \frac{\partial z'}{\partial c_j} \frac{\partial \dot{z}'}{\partial c_k} - \frac{\partial z'}{\partial c_k} \frac{\partial \dot{z}'}{\partial c_j} - \frac{\partial z'}{\partial c_k} \frac{\partial \dot{z}'}{\partial c_j} = \\ &= \frac{\partial x'}{\partial c_j} \frac{\partial \dot{x}'}{\partial c_k} + \frac{\partial y'}{\partial c_j} \frac{\partial \dot{y}'}{\partial c_k} + \frac{\partial z'}{\partial c_k} \frac{\partial \dot{z}'}{\partial c_k} - \frac{\partial x'}{\partial c_k} \frac{\partial \dot{x}'}{\partial c_j} - \frac{\partial y'}{\partial c_k} \frac{\partial \dot{y}'}{\partial c_j} - \frac{\partial z'}{\partial c_k} \frac{\partial \dot{z}'}{\partial c_j} + \\ &+ \frac{\partial \Omega}{\partial c_j} \left(\frac{\partial x'}{\partial c_k} \dot{y}' + x' \frac{\partial \dot{y}'}{\partial c_k} - \frac{\partial y'}{\partial c_k} \dot{x}' - y' \frac{\partial \dot{x}'}{\partial c_k} \right) - \frac{\partial \Omega}{\partial c_k} \left(\frac{\partial x'}{\partial c_j} \dot{y}' + x' \frac{\partial \dot{y}'}{\partial c_j} - \frac{\partial y'}{\partial c_j} \dot{x}' - y' \frac{\partial \dot{x}'}{\partial c_j} \right) = \\ &= [c_j, c_k]' + \frac{\partial \Omega}{\partial c_j} \frac{\partial (x' \dot{y}' - y' \dot{x}')}{\partial c_k} - \frac{\partial \Omega}{\partial c_k} \frac{\partial (x' \dot{y}' - y' \dot{x}')}{\partial c_j} . \end{split}$$

Použijeme-li poněkud zkrácený závorkový zápis:

$$[c_j, c_k] = [c_j, c_k]' + \frac{\partial(\Omega, x'\dot{y}' - y'\dot{x}')}{\partial(c_j, c_k)} = [c_j, c_k]' + \frac{\partial(\Omega, \mathcal{G})}{\partial(c_j, c_k)},$$
(294)

kde $x'\dot{y}' - y'\dot{x}' = h\cos i = \sqrt{\mu a(1-e^2)}\cos i \equiv \mathcal{G}$ je složka z' momentu hybnosti. Analogicky otočení o *i* kolem $x' (x'y'z' \to x''y''z'')$:

$$[c_j, c_k]' = [c_j, c_k]'' + \frac{\partial(\Omega, y'' \dot{z}'' - z'' \dot{y}'')}{\partial(c_j, c_k)} = [c_j, c_k]'' + 0, \qquad (295)$$

protože z'' = 0, $\dot{z}'' = 0$; dráha již leží v x''y''.

Zcela analogicky otočení o $\omega = \varpi - \Omega$ kolem $z'' (x''y''z'' \to x'''y'''z''')$:

$$[c_j, c_k]'' = [c_j, c_k]''' + \frac{\partial(\omega, x'''\dot{y}''' - y'''\dot{x}''')}{\partial(c_j, c_k)} = [c_j, c_k]''' + \frac{\partial(\omega, \mathcal{H})}{\partial(c_j, c_k)},$$
(296)

kde $x'''\dot{y}''' - y'''\dot{x}''' = h\cos 0^\circ = \sqrt{\mu a(1-e^2)} \equiv \mathcal{H}$ je celkový moment hybnosti. Zbývá spočítat $[c_j, c_k]'''$.

C.17 Vyčíslení v pericentru

V pericentru je $M = \bar{\lambda}_0 - \varpi + nt = 0$, ale nemůžeme tam rovnou dosadit nulu, nýbrž $M \to 0$, protože bychom jinak nemohli počítat derivace. V soustavě x'''y'''z'''

jsou jinak $i = \varpi = \Omega = 0$:

$$\begin{split} x &= a(1-e) \,, \\ y &\doteq 0 + aM \sqrt{\frac{1+e}{1-e}} \,, \\ \dot{x} &\doteq 0 - an \frac{M}{(1-e)^2} \,, \\ \dot{y} &= an \sqrt{\frac{1+e}{1-e}} \,. \end{split}$$

Nenulové derivace jsou pouze (ovšemže po dosazení M = 0):

$$\begin{aligned} \frac{\partial x}{\partial a} &= 1 - e ,\\ \frac{\partial x}{\partial e} &= -a ,\\ \frac{\partial y}{\partial M} &= a \sqrt{\frac{1 + e}{1 - e}} ,\\ \frac{\partial \dot{x}}{\partial M} &= -an \frac{1}{(1 - e)^2} ,\\ \frac{\partial \dot{y}}{\partial a} &= -\frac{n}{2} \sqrt{\frac{1 + e}{1 - e}} ,\\ \frac{\partial \dot{y}}{\partial e} &= an (1 + e)^{-1/2} (1 - e)^{-3/2} \end{aligned}$$

což po dosazení do (291):

$$[c_j, c_k]''' = \frac{\partial(\bar{\lambda}_0 - \varpi, a)}{\partial(c_j, c_k)} \frac{na}{2} = \frac{\partial(\bar{\lambda}_0 - \varpi, \mathcal{L})}{\partial(c_j, c_k)}, \qquad (297)$$

,

kde $\mathcal{L} \equiv \sqrt{\mu a}$.

Dosazením (297) do (296) do (295) do (294) obdržíme:

$$[c_j, c_k] = \frac{\partial(\bar{\lambda}_0 - \varpi, \mathcal{L})}{\partial(c_j, c_k)} + \frac{\partial(\omega, \mathcal{H})}{\partial(c_j, c_k)} + \frac{\partial(\Omega, \mathcal{G})}{\partial(c_j, c_k)}.$$
(298)

C.18 Lagrangeovy planetární rovnice

Zbývá spočítat parciální derivace $\mathcal{L}, \mathcal{H}, \mathcal{G}$ dle elementů (jen 6): $\frac{\partial \mathcal{L}}{\partial a}, \frac{\partial \mathcal{H}}{\partial a}, \frac{\partial \mathcal{G}}{\partial e}, \frac{\partial \mathcal{G}}{\partial a}, \frac$

Kupříkladu:

$$[\bar{\lambda}_0, a] = \underbrace{\overbrace{\partial(\bar{\lambda}_0 - \varpi)}^{1}}_{\partial \bar{\lambda}_0} \underbrace{\frac{\partial \mathcal{L}}{\partial a}}_{\partial a} - \underbrace{\overbrace{\partial(\bar{\lambda}_0 - \varpi)}^{2}}_{\partial a} \frac{\partial \mathcal{L}}{\partial \bar{\lambda}_0} + \frac{\partial \omega}{\partial \bar{\lambda}_0} \frac{\partial \mathcal{H}}{\partial a} - \frac{\partial \omega}{\partial a} \frac{\partial \mathcal{H}}{\partial \bar{\lambda}_0} + \frac{\partial \omega}{\partial a} \frac{\partial \mathcal{H}}{\partial \bar{\lambda}_0} + \frac{\partial \omega}{\partial a} \frac{\partial \mathcal{H}}{\partial \bar{\lambda}_0} + \frac{\partial \omega}{\partial \bar{\lambda}_0} \bar{\lambda}_0} +$$

Rozepsáním (292):

$$\begin{split} a,\Omega]\frac{\mathrm{d}\Omega}{\mathrm{d}t} + [a,\varpi]\frac{\mathrm{d}\varpi}{\mathrm{d}t} + [a,\bar{\lambda}_0]\frac{\mathrm{d}\lambda_0}{\mathrm{d}t} &= \frac{\partial\mathcal{R}}{\partial a} \,, \\ [e,\Omega]\frac{\mathrm{d}\Omega}{\mathrm{d}t} + [e,\varpi]\frac{\mathrm{d}\varpi}{\mathrm{d}t} &= \frac{\partial\mathcal{R}}{\partial e} \,, \\ [i,\Omega]\frac{\mathrm{d}\Omega}{\mathrm{d}t} &= \frac{\partial\mathcal{R}}{\partial i} \,, \\ [i,\Omega]\frac{\mathrm{d}\Omega}{\mathrm{d}t} &= \frac{\partial\mathcal{R}}{\partial i} \,, \\ [\Omega,a]\frac{\mathrm{d}a}{\mathrm{d}t} + [\Omega,e]\frac{\mathrm{d}e}{\mathrm{d}t} + [\Omega,i]\frac{\mathrm{d}i}{\mathrm{d}t} &= \frac{\partial\mathcal{R}}{\partial \Omega} \,, \\ [\varpi,a]\frac{\mathrm{d}a}{\mathrm{d}t} + [\varpi,e]\frac{\mathrm{d}e}{\mathrm{d}t} &= \frac{\partial\mathcal{R}}{\partial \omega} \,, \\ [\bar{\lambda}_0,a]\frac{\mathrm{d}a}{\mathrm{d}t} &= \frac{\partial\mathcal{R}}{\partial \bar{\lambda}_0} \,. \end{split}$$

a přeuspořádáním vydobudeme Lagrangeovy planetární rovnice ve standardním tvaru:

$$\frac{\mathrm{d}a}{\mathrm{d}t} = \frac{2}{na} \frac{\partial \mathcal{R}}{\partial \bar{\lambda}_0} \,, \tag{299}$$

$$\frac{\mathrm{d}e}{\mathrm{d}t} = -\frac{\eta(1-\eta)}{na^2 e} \frac{\partial \mathcal{R}}{\partial \bar{\lambda}_0} - \frac{\eta}{na^2 e} \frac{\partial \mathcal{R}}{\partial \varpi} \,, \tag{300}$$

$$\frac{\mathrm{d}i}{\mathrm{d}t} = -\frac{1}{na^2\eta} \frac{1-\cos i}{\sin i} \left(\frac{\partial \mathcal{R}}{\partial \bar{\lambda}_0} + \frac{\partial \mathcal{R}}{\partial \varpi}\right) - \frac{1}{na^2\eta\sin i} \frac{\partial \mathcal{R}}{\partial \Omega}, \qquad (301)$$

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\eta}{na^2e}\frac{\partial\mathcal{R}}{\partial e} + \frac{1}{na^2n}\frac{1-\cos i}{\sin i}\frac{\partial\mathcal{R}}{\partial i}\,,\tag{302}$$

$$\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{1}{na^2\eta\sin i}\frac{\partial\mathcal{R}}{\partial i}\,,\tag{303}$$

$$\frac{\mathrm{d}\bar{\lambda}_0}{\mathrm{d}t} = -\frac{2}{na}\frac{\partial\mathcal{R}}{\partial a} + \frac{\eta(1-\eta)}{na^2e}\frac{\partial\mathcal{R}}{\partial e} + \frac{1}{na^2\eta}\frac{1-\cos i}{\sin i}\frac{\partial\mathcal{R}}{\partial i},\qquad(304)$$

kde $\eta \equiv \sqrt{1 - e^2}$. Všimněme si, že velkou poloosu *a* měníme působením v délce λ a obráceně, což je fyzikálně princip akce a reakce nebo matematicky antisymetrie Lagrangeových závorek.

- [123] BROUWER, D., CLEMENCE, G. M. Methods of celestial mechanics. New York: Academic Press, 1961
- [124] FITZPATRICK, R. Derivation of Lagrange planetary equations. 2016, (https://farside.ph.utexas.edu/teaching/celestial/Celestial/node150.html).

Rejstřík

Tučným písmem jsou v rejstříku označené odkazy na obrázky.

1. věta termodynamická: 17, 39, 153 absorpce: 100 absorpční koeficient: 104 absorpční pás: 113 absorpční spektrum: 102 adaptivní zjemňování sítě: 31, 140 adiabatická konvekce: 157, 158 adiabatický gradient: 91 adiabatický index: 18 ADM: 145 AGB: 165, 166, 167 ageostrofické proudění: 89 AGN: 138 akcelerovaná Λ iterace: 110 akrece: 34 akreční disk: 37, 151 aktivační mez: 41 aktivní galaktické jádro: 138 akustické oscilace: 127 akustický vrchol: 129 ALI: 110 ALMA: 112 ambipolární difuze: 26, 142 AMR: 31, 32, 140 ANEOS: 39 anticyklóna: 25, 85 aproximace tenké vrstvy: 81 Arnowittův–Desserův–Misnerův formalismus: 145atmosféra: 81 bác mínus cáb: 177 backward time centered space: 62 Balmerova série: 112 Balmerův skok: 99, 113 balvany: 70 baroklinická nestabilita: 24 baryonická látka: 130 báze: 183 bázová funkce: 64, 64 BD: 165 Bell a Lin: 116, 162 BH: 165, 167 blanketing: 111 Boltzmannův vztah: 103 Boussinesqova aproximace: 90

Bruntova-Väisäläova frekvence: 92, 157 Bruntův gradient: 158 BSG: 165 BTCS: 62 bublina: 90, 93 čára Lyman- α : 137 časoprostor: 119 částečné přerozdělení: 111 částicová difuze: 154 CDM: 140 černá díra: 175 chemotermální nestabilita: 141 Chianti: 108 chladná temná látka: 140 Chombo: 32 Christofellův symbol: 184 Christoffelův symbol: 120 cirkumstelární prostředí: 113 CMB: 143 Comptonův rozptyl: 98, 140 Coriolisovo zrychlení: 81 Coriolisův parametr: 84 Cosmos Redshift 7: 138 Crankova–Nicholsonova metoda: 63 CSM: 113 cyklóna: 25, 85 cyklostrofické proudění: 83, 84 cyklotronová emise: 98 cyklus CNO: 154 decelerační parametr: 125 deformace: 40, **41** degenerace: 167 Delaunayho triangulace: 68 derivace: 184 de Sitterův vesmír: 127 detailní vyrovnání: 104 deterministický chaos: 28 deuterium: 143, 168 diáda: 181 difuzní aproximace: 18, 156, 158 difuzní koeficient: 21 difuzní tlumení: 129 dipól: 49 dipolární oscilace: 147 Diracova distribuce δ : 42, 94

Dirichletova podmínka: 58 disipace: 57, 154 disk: 137 diskretizace: 30, 61, 64, 65, 140, 164 disperze rychlostí: 137 divergence: 178, 178, 182 Dopplerův posun: 105, 111 dostředivé zrychlení: 83 druhé hvězdy: 151 dualita: 183 duchařská oblast: 31 duchařské částice: 51 dvojitá emise: 113 dvouhladinový atom: 102, 104 dvoutečkový součin: 181 dynamická viskozita: 18, 89 Eddingtonův faktor: 156 efektivní teplota: 112 Einsteinovy rovnice pole: 5, 119, 145 Einsteinův koeficient: 103, 104, 155 Ekmanova spirála: 88, 90 Ekmanovo číslo: 82 elasticita: 40, 73 elektronový přechod: 99 elementární přenosy: 100 elementární procesy: 98 elipsoid: 181 emise: 100 emisní čára: 102 emisní koeficient: 100, 104 EMP: 137 energetická rovnováha: 153 Epsteinův zákon: 20, 27 Euklidův prostor: 119 Eulerova dopředná metoda: 61 Eulerova zpětná metoda: 62 Eulerův popis: 17 expanze: 166 expanzní parametr: 122, 128 explicitní schéma: 60 extinkce: 113 extinkční funkce: 114 falešná konvergence: 110 FDM: 60 FEM: 65, 74 FLD: 18 FLRW: 121 fluktuace: 144 fonon: 106 formální řešení: 101, 102 forward time centered space: 61 fotodisintegrační nestabilita: 142

fotodisociace: 142 fotoevaporace: 142 fotoionizace: 142 fotosféra: 162 Fourierova řada: 57 Fourierova transformace: 93 fragmentace: 141 fragmentační fáze: 51 FreeFem++: 66, 75 Fridmannovy rovnice: 122 fronta: 25 FTCS: 61 FU Orionis: 168 FVM: 30, 163 Galerkinova metoda: 65, 74 Gaussova věta: 43, 65 Gaussův profil: 103, 104 geometrická absorpce: 105 geometrický rozptyl: 106 geostrofické proudění: 84 gloriola: 106 g-mód: 92 gradient: 177, **178**, 183 gradientové proudění: 85 Grashofovo číslo: 82 gravitační čočka: 144 gravitační kolaps: 27, 140 gravitační nestabilita: 27 gravitační potenciál: 20, 50 gravitační vlna: 144, 154 Greenovo lemma: 65, 75 GRNRHD: 145 Grotrianův diagram: 108, 108 halo: 137 harmonický oscilátor: 92 Harvardská klasifikace: 166 Hayashiho linie: 168 HB: 165, 167 HDF5: 32 Heavisidova skoková funkce: 57 heliový záblesk: 167 Herbigova hvězda: 168 Hertzsprungův-Russelův diagram: 168, 170, 173 hexadekupól: 49 HITRANS: 108 HMP: 137 Hookeův zákon: 40, 73 Hubblův parametr: 125 hustota energie: 18, 145 hustota energie záření: 156 hvězdné populace: 137

hybridní schéma: 62 hydrostatická rovnováha: 82, 152, 161 ideální kapalina: 120 ideální plyn: 18 implicitní metoda: 164 implicitní schéma: 61 index lomu: 106 indexová notace: 73 indukční rovnice: 18 inerciální soustava: 81 infračervený exces: 113 integrální popis: 115 intenzita: 97, 160 inverzní Comptonův rozptyl: 144 inverzní profil P Cygni: 113 inverzní tenzor: 183 ionizace: 99, 158 iont H^- : 99 ISM: 113 Itokawa: 70 izobary: 84 jádro čáry: 103 jakobián: 164 Jansky: 112 Jarkovského jev: 68 Jeansova délka: 140 jednotky: 31 Jena: 108 k-d strom: 46, 51 Kelvinova-Helmholtzova nestabilita: 22, 23, 32 Keplerův–Olbersův paradox: 119 kernel: 42 kinematická viskozita: 81 Kippenhahnův diagram: 169, 171, 174 Kirchhoffův zákon: 19 Kolmogorovovo spektrum turbulence: 93 komplexní rychlost: 89 konstituční rovnice: 40 kontinuum: 103 kontrakce: 166 kontravariantní složka: 182 konvekce: 24, 90, 92, 154, 158, 174 konvektivní zóna: 163 konvoluce: 105 koperníkovský princip: 119 kořen: 48 korotační orbita: 28 kosmologická konstanta: 120, 130 kosmologické parametry: 127 kosmologický princip: 119 kosmologie: 119

kovariantní derivace: 145, 184 kovariantní složka: 183 kovektor: 183, 185 křídla čáry: 103 kritická hustota: 126, 130 křivočaré souřadnice: 179 křivost: 121 Kroneckerovo delta: 184 kross-spektrum: 144 kulová hvězdokupa: 137 Kurucz: 108 kvadrupól: 49 kvarková látka: 147 kvintesence: 130 Lagrangeovy závorky: 188 Lagrangeův popis: 3, 22, 39 Λ iterace: 109 Lambertův rozptyl: 68 Laméova rovnice: 74 Laméovy konstanty: 73 laminární proudění: 81 Ledouxovo kritérium: 158 Ledouxův gradient: 158 Leiden: 108 limiter: 18 linearizace: 59, 66 lineární forma: 183 lineární polarizace: 143 list: 48 lithium: 168 lokální inerciální soustava: 120 lokální kartézské souřadnice: 81 lokální termodynamická rovnováha: 19, 101, 156Lorentzův profil: 103, 105 LTE: 4, 101, 156 luminozitní vzdálenost: 129 Lyman- α : 137 Lymanovo-Wernerovo záření: 143 magnetická difuzivita: 18 magnetická permeabilita: 18 magnetohydrodynamika: 17 magneto-rotační nestabilita: 25, 26 magnetorotační nestabilita: 147 měrný výkon: 153, 163 Mesastar: 164 metalicita: 137 metoda hlazená částicová: 42 metoda konečných diferencí: 60 metoda konečných objemů: 30 metoda konečných prvků: 65, 74 metoda Monte Carlo: 108

metoda variace konstant: 101 metrický tenzor: 120, 145, 182, 184, 185 metrika FLRW: 121 mez pevnosti: 41 mez pružnosti: 41 mezihvězdná extinkce: 113 mezihvězdné prostředí: 113 MHD: 19 Mieho rozptyl: 100 Mieho teorie: 106 migrace: 34 minihalo: 141 modrá smyčka: 170 molekulární viskozita: 82 moment hybnosti: 137, 141 moment intenzity: 145, 156, 160 monochromatická intenzita: 97 monopól: 49 montáž: 78 MPI: 32 MRI: 25, 36, 147 MRN: 115 mrtvá zóna: 25 MS: 165, 166 multipól: 49 multipólový rozvoj: 49 napětí: 19, 40, 41, 89 Navierova–Stokesova rovnice: 17, 39, 81, 152 nedivergentní proudění: 81 neinerciální soustava: 81 nerovnovážné záření: 113 nerozlišený zdroj: 97 nestabilita dvou proudění: 26 Neumannova podmínka: 58 neutralino: 143 neutrino: 153, 167 neutrinová bomba: 146 neutronová hvězda: 175 nevratný děj: 28 Newtonova-Raphsonova metoda: 164, 164 newtonovská tekutina: 19 Ngova akcelerace: 111 NIST: 108 non-LTE: 102 nosník: 76 NS: 165, 167 nultý integrál: 156, 160 nultý moment intenzity: 109 numerická viskozita: 26 objekt: 46 objemová viskozita: 18 oceán: 81

ochlazování: 137 odstředivé zrychlení: 81 ohřívání: 137 okrajové podmínky: 28, 50, 58, 61, 73, 140, 159oktupól: 49 opacita: 100, 115, 166 opacita atmosféry: 102 opacita plynu: 104 opacita prachu: 105 operátor: 177 operátor Λ : 109 optická konstanta: 106 optická tloušťka: 100, 144 otevírací úhel: 48 otevřená hvězdokupa: 137 otevřený vesmír: 127 parametr α : 90 parametr θ : 62 párově nestabilní supernova: 147 Pauliho vylučovací princip: 167 P Cygni: 139 Planckova funkce: 18 Planckova intenzita: 101 Planckova opacita: 18, 115 planetární embryo: 27 planetesimála: 27 planparalelní atmosfére: 159 plasticita: 40 plochý vesmír: 127 počáteční podmínky: 28, 50, 140, 163 poddajné vztahy: 40 pohybová rovnice: 17, 73, 92 Poissonova rovnice: 18, 39, 153 Poissonův poměr: 73 polarizace: 143 polarizace B: 144 polarizace E: 144 poloprostorová intenzita: 161 populace III: 137 porucha: 41 poruchová funkce: 187 poškození: 41 post-AGB: 165, 167 posunutí: 73 potenciál: 152 potenciálová jáma: 140 pozitron: 153 p-proces: 167 prach: 142 Prandtlovo číslo: 82 praskliny: 40

prázdný vesmír: 127 pre-galaktický objekt: 141 pre-MS: 165 přenos energie: 154 přenos neutriny: 145, 154 přenos záření: 97, 140, 155 přerozdělení energie: 113 přestřelování: 158, 174 problém malého pozorovatele: 110 problém velké matice: 110 produkce párů: 147 profil čáry: 104 profil P Cygni: 113, 139 prostorové spektrum: 127, 144 protohvězda: 151, 163, 168 proton–protonový řetězec: 154 proud baryonické látky: 145 proudění: 154, 157 první hvězdy: 137 první integrál: 156, 160 pulzace: 147 Pythagorova věta: 120 radiační síla: 68 Ravleighova absorpce: 5, 106 Rayleighova–Taylorova nestabilita: 23, 24 Rayleighovo číslo: 82 Rayleighův rozptyl: 5, 100, 106 rázová vlna: 142, 147 RD: 165 reakumulační fáze: 51 Reduce: 122 reionizace: 138, 143 rekombinace: 99 rekurze: 47 Reynoldsovo číslo: 81 RGB: 165, 166, 167 RGB dip: 170 Ricciho skálar: 120 Ricciho tenzor: 120 Richardsonovo číslo: 82 Riemannův řešitel: 140 Riemannův tenzor: 120 Rossbyho číslo: 81 Rossbyho disperzní relace: 87 Rossbyho vlna: 86, 87 Rosselandova opacita: 18, 115 rotace: 178, 179 rotační přechod: 99, 141 rovina β : 86 rovnice hydrostatické rovnováhy: 73, 82 rovnice kontinuity: 39, 151 rovnice přenosu záření: 18, 100, 107

rovnice statistické rovnováhy: 107 rovnice tepelné rovnováhy: 17 rovnice vedení tepla: 57 rozlišený zdroj: 97 rozptyl: 98, 102 rozptyl na elektronech: 98 rozptyl na molekulách: 100 rozptýlený tok: 70 r-proces: 167 RSG: 165 RTE: 100 rudý posuv: 125, 137 Sachsův–Wolfův jev: 129 Sahova rovnice: 159 Salpeterova reakce: 167 samoabsorpce: 102 SASI: 147, 147 SBI: 25, 36 Schwarzschildova podmínka: 163 Schwarzschlidovo kritérium: 157 šedá atmosféra: 159 semiempirická konvekce: 90, 157 semikonvekce: 158, **174** SESAME: 39 sférické souřadnice: 180 SGB: 165, 166 síla oscilátoru: 104 Silkovo tlumení: 129 skalár: 177, 183 skalární pole: 177 skalární součin: 177, 181 skoro izotropní intenzita: 156 slabá formulace: 63, 74 slanost: 158 směrový kosinus: 145 směšovací délka: 90 SN: 165 snižování indexu: 184 Sobolevova metoda: 111 soubor fotonů: 108 souhybná vzdálenost: 140 souhybné souřadnice: 129 souřadnice: 183 spektrální klasifikace: 166 spektrum: 112 SPH: 42, 42, 52 spirála: 88 s-proces: 155 srážka: 39 srážkové rozšíření: 103 stacionární vlna: 87 standardní sluneční model: 157

statické rovnice stavby: 163 stavová rovnice: 18, 39, 82, 91, 125, 159 Stefanův–Boltzmannův zákon: 132 stínění: 68 stínová fotografie: 92 stojatá akreční rázová nestabilita: 147 Stokesův zákon: 20 střední intenzita: 109 střední molekulová hmotnost: 18, 166 střední volná dráha: 21 stupeň ionizace: 144 sumační pravidlo: 73 Sunyaevův–Zeĺdovičův jev: 129, 144 supernova: 147, 149, 172 supersonická turbulence: 142, 142 synchrotronová emise: 98 systemická rychlost: 113 tachoklina: 158 Taylorův rozvoj: 50, 86 temná energie: 125, 130 temná látka: 125, 130 tenzor: 181 tenzor energie a hybnosti: 120, 145, 182 tenzor malých deformací: 74, 182 tenzor momentu setrvačnosti: 182 tenzor napětí: 40, 73, 89, 182 tepelná difuzivita: 58, 82 tepelná vodivost: 18 tepelný tok: 70 termální rozšíření: 103 termální rychlost: 20, 21 termální vítr: 88 termohalinní cirkulace: 158, 174 termonukleární reakce: 153, 154, 155, 166 testovací funkce: 65, 74 TetGen: 68 Thomsonův rozptyl: 98, 143 Tillotsonova rovnice: 39 tlak: 145 tlaková níže: 84, 85 tlaková škála: 83, 90 tlaková výše: 85 tok: 145, 153 tok povrchem koule: 153 Toomreho kritérium: 27 tornádo: 84, 84 TP-AGB: 165, 167 transformace: 183 transverzální vedení tepla: 70 triangulace: 68 třída: 46 tromba: 84

tryskové proudění: 87 T Tauri: 168 turbulence: 142, 147, 154 turbulentní proudění: 81, 158 turbulentní viskozita: 36, 82 UMP: 137 úniková metoda: 111 uzavírací relace: 156, 161 uzavřený vesmír: 127 vakuum: 50 vedení: 154 vektor: 177, 183 vektorové pole: 177 vektorový součin: 177 Velký třesk: 127 Venuše: 84 vertikální střihová nestabilita: 23 vesmír vyplněný zářením: 127 vibrační přechod: 99, 141 víceprocesorové výpočty: 31 vír: 82, 93, 142 virtuální částice: 50 vítr: 81, 167 vlastní vzdálenost: 140 vlna: 154 vnitřní energie: 18 vodivost: 18 Voigtův profil: 103, 105 volný pád: 142 von Misesovo kritérium: 41 von Neumannovo kritérium: 61 VSI: 23, 36 výběrové pravidlo: 93 výduť: 137 vývojová stadia: 165 vývojové procesy: 166 vývojové rovnice stavby: 163 vztlak: 90 vztlaková nestabilita: 24, 92, 154 vztlaková vlna: 92 WD: 165 Wolfova–Rayetova hvězda: 138 WR: 165, 167 yielding: 40 YORP: 68 Youngův modul pružnosti: 40, 73 zákon čtverců: 97 zářivá difuze: 154 zdrojová funkce: 100, 101 zeslabení: 113 zorné pole: 97 zvuková vlna: 141, 147

zvyšování indexu: 184

Literatura

Učebnice

- [125] ARTMITAGE, P. J. Astrophysics of planet formation. New York: Cambridge Unviersity Press, 2010. ISBN 9780511691362.
- [126] CARROL B. W., OSTLIE D. A. An introduction to modern astrophysics. San Francisco: Pearson, Addison Wesley, 2007. ISBN 0321442849.
- [127] BROŽ, M., ŠOLC, M. Fyzika sluneční soustavy. Praha: MatfyzPress, 2013. ISBN 978807378-2368.
- [128] HARMANEC, P., BROŽ, M. Stavba a vývoj hvězd. Praha: MatfyzPress, 2011. ISBN 97880-73781651.
- [129] MIHALAS, D., MIHALAS, B. W. Foundations of radiation hydrodynamics. Oxford: Oxford Univ. Press, 1984. ISBN 0195034376.
- [130] SHORE, S. N. Astrophysical hydrodynamics. Weinheim: Wiley-Vch, 2007. ISBN 978352740-6692.

Reference

Předchozí reference [1] až [124] byly uvedeny u jednotlivých kapitol.