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The Galilean satellites 10, Europa, and Ganymede interact through several stable orbital 
resonances where A, - 2h, + 6, = 0, A, - 2A, + 6, = 180”, A, - 2AS + I& = 0 and A, - 3A2 + 2AS = 
180’, with A, being the mean longitude of the ith satellite and (3, the longitude of the pericenter. The 
last relation involving all three bodies is known as the Laplace relation. A theory of origin and 
subsequent evolution of these resonances outlined earlier (C. F. Yoder, 1979b, Nature 279, 747- 
770) is described in detail. From an initially quasi-random distribution of the orbits the resonances 
are assembled through differential tidal expansion of the orbits. 10 is driven out most rapidly and 
the first two resonance variables above are captured into libration about 0 and 180” respectively 
with unit probability. The orbits of 10 and Europa expand together maintaining the 2: 1 orbital 
commensurability and Europa’s mean angular velocity approaches a value which is twice that of 
Ganymede. The third resonance variable and simultaneously the Laplace angle are captured into 
lihration with probability -0.9. The tidal dissipation in 10 is vital for the rapid damping of the 
libration amplitudes and for the establishment of a quasi-stationary orbital configuration. Here the 
eccentricity of IO’S orbit is determined by a balance between the effects of tidal dissipation in 10 and 
that in Jupiter, and its measured value leads to the relation k,f,/Ql = 900kJ/QJ with the k’s being 
Love numbers, the Q’s dissipation factors, and f a factor to account for a molten core in 10. This 
relation and an upper bound on Qi deduced from IO’S observed thermal activity establishes the 
bounds 6 x 10’ < Q, < 2 x 108, where the lower bound follows from the limited expansion of the 
satellite orbits. The damping time for the Laplace libration and therefore a minimum lifetime of the 
resonance is 16OOQ, years. Passage of the system through nearby three-body resonances excites 
free eccentricities. The remnant free eccentricity of Europa leads to the relation Qo/f ;2 2 x lo-’ 
QJ for rigidity h = 5 x 10” dynes/cm*. Probable capture into any of several stable 3 : 1 two-body 
resonances implies that the ratio of the orbital mean motions of any adjacent pair of satellites was 
never this large. 

A generalized Hamiltonian theory of the resonances in which third-order terms in eccentricity 
are retained is developed to evaluate the hypothesis that the resonances were of primordial origin. 
The Laplace relation is unstable for values of IO’S eccentricity e, > 0.012 showing that the theory 
which retains only the linear terms in e, is not valid for values of e, larger than about twice the 
current value. Processes by which the resonances can be established at the time of satellite 
formation are undefined, but even if primordial formation is conjectured, the bounds established 
above for Q, cannot be relaxed. Electromagnetic torques on 10 are also not sufficient to relax the 
bounds on QJ. Some ideas on processes for the dissipation of tidal energy in Jupiter yield values of 
QJ within the dynamical bounds, but no theory has produced a QJ small enough to be compatible 
with the measurements of heat flow from 10 given the above relation between Qr and Q,. Tentative 
observational bounds on the secular acceleration of IO’S mean motion are also shown not to be 
consistent with such low values of QJ. IO’S heat flow may therefore be episodic. Q, may actually be 
determined from improved analysis of 300 years of eclipse data. 

i Permanent address: Department of Physics, University of California, Santa Barbara, Calif. 93106. 
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1. INTRODUCTION 

The Galilean satellites 10 (l), Europa (2), 
and Ganymede (3) interact through several 
orbital resonance locks. The most well 
known lock involves the mean motions n, of 
the three satellites which satisfy the rela- 
tion 4 = n, - 3n, + 2n, = 0 in a time- 
average sense to less than one part in lo*. 
(We have listed all notation in an Appendix 
for easy reference.) The corresponding re- 
lation among the mean longitudes A( is $J = 
A, - 3X, + 2X, = 180”, with a libration 
amplitude &, = 0.066 ? 0.013” and a period 
of 2074 days (Lieske, 1980). The other sets 
of resonance variables involve the 2 : 1 near 
commensurabilities of the mean motions of 
the inner pair and outer pair respectively 
and the forced precession of the longitudes 
of pericenter, ti, and &. The mean daily 
motion of &I and & is -0.7395” day-‘. 
Sinclair (1975) and Chao (1976) noted that 
the arguments A, - 2X2 + (3,, A1 - 2Az + & 
and A, - 2A3 + & execute small-amplitude 
librations about either 0 or 180”. In fact, it is 
just the interaction of the last pair of varia- 
bles which predominantly controls the 
three-body couple. 

The stability of these resonances has 
been understood since the time of Laplace 
(1805), but the establishment of the reso- 
nances and the efficient damping of the 
libration amplitudes has only recently been 
unraveled. Sinclair (1975) investigated the 
reduction of the amplitude of the Laplace 
libration from the effect of differential tidal 
expansion of the satellite orbits increasing 
the magnitude of the restoring acceleration 
in the pendulum equation describing the 
libration. The lib&ion action is adiabati- 
cally conserved in such an evolution and 
the amplitude could not be reduced to less 
than 30” over the age of the solar system. 
This cast doubt on the capability of tidal 
torques from Jupiter establishing the orbital 
resonances. However, Yoder (1979b) 
showed how the relative expansion of the 
orbits by tidal torques from Jupiter together 
with dissipation in IO (Peale ef al., 1979) led 
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to a self-consistent explanation of the origin 
of the various resonance locks and their 
subsequent evaluation to the present 
configuration (also see Lin and Papaloizou, 
1979). 

This article describes in more detail in 
Section 4 the dynamical model outlined in 
Yoder’s (1979b) paper after preliminary de- 
velopment of the effects of tidal dissipation 
in Section 2 and a more comprehensive 
Hamiltonian theory of the resonance inter- 
actions in Section 3. The latter theory al- 
lows the systematic incorporation of terms 
up to third order in eccentricity, which 
must be included if eccentricities larger 
than twice the current values are consid- 
ered. The principal results of the earlier 
paper confirmed in Section 4 depend on 
tidal torques from Jupiter being sufficient to 
expand the satellites by more than a few 
percent over the age of the solar system. 
The amplitude of the Laplace libration of 
OX66 may in fact be forced or may be the 
result of a recent asteroidal impact on one 
of the satellites. If this amplitude is not a 
remnant of the damping process, the reso- 
nance lifetime of 1600QJ years is only a 
lower bound. 

) ~~ _ _ I I 

In Section 5 we investigate the effects of 
passage through other orbital resonances. 
Probable capture into any of several 3 : 1 
two-body commensurabilities implies that 
the ratio of the mean motions for any 
adjacent pairs of satellites was never as low 
as 3: 1. We also show that the system 
passed through a series of three-body reso- 
nances just prior to its capture into the 
Laplace resonance which, although tidally 
unstable, excite significant free eccentrici- 
ties. Interpreting the existing free eccen- 
tricity of Europa as the remnant of tidal 
damping Ii-om the time of the establishment 
of the Laplace relation leads to a relation 
between Qz and QJ consistent with that 
between Q1 and QJ and the Laplace libra- 
tion of OX66 (Lieske, 1980) being a remnant 
of the tidal damping. 

Analysis of the hypothesis that the La- 
nlace relation is reallv nrimoridal is shown 
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in Section 6 not to relax the bounds on QJ 
established by the hypothesis that the reso- 
nances were assembled by differential tidal 
expansion of the orbits. This result agrees 
with that of Peale and Greenberg (1980), 
although this latter work used a theory 
linear in e , which is not valid for values of e 
larger than twice the current values. Stabil- 
ity of the resonant configuration as a func- 
tion of the magnitude of the forced eccen- 
tricities is determined here based on the 
generalized third-order theory developed in 
Section 3. The effects of tidal dissipation 
are incorporated into the higher-order the- 
ory to yield expressions for the tidal evolu- 
tion of the system which are valid for large 
eccentricity and which reduce to those of 
Section 4 when eccentricities approach cur- 
rent values. 

Because several theoretical analyses of 
dissipation in Jupiter yield values of QJ 
which exceed the upper bound established 
by the dynamics, we outline the work in 
this area in Section 7. Some recent ideas 
are consistent with the dynamical bounds 6 
x lo4 s QJ 5 2 x 106, although the 
relatively low values of QJ so derived are 
not very secure. None of these theories can 
yield a value of QJ sufficiently small to be 
consistent with the high heat flux estimates 
for 10 by Matson et al. (1981), Sinton 
(1981), and Morrison and Telesco (1980), 
where QJ is related to Q1 through a balance 
of effects on 10’s eccentricity. 

The possibility of an observational deter- 
mination of Q, and thereby whether or not 
the current high heat flux is episodic is 
evaluated in Section 8. Estimates of upper 
bounds on the secular acceleration of IO’S 
mean motion (Goldstein, 1975) are not se- 
cure but so far appear inconsistent with a 
QJ sufficiently low to accommodate the 
heat flow measurements for 10. Improve- 
ments in the determination of IO’S mean 
motion through analysis of a more complete 
set of 17th century eclipse observations are 
feasible (Lieske, private communication, 
1980). 

2. CONSEQUENCES OF TIDAL INTERACTION 

Tidal dissipation in a satellite in an eccen- 
tric orbit which is rotating synchronously 
with its mean orbital angular velocity arises 
fi-om two effects. The magnitude of the tide 
varies as the distance of the satellite from 
its primary changes, which is referred to as 
the radial tide, and the tidal bulge oscil- 
lates back and forth across the mean sub- 
primary point during each orbit period 
since the rotation is uniform but the orbital 
motion is not. The second effect actually 
results in somewhat more dissipation. At 
pericenter, where dissipation and the resul- 
tant torque are greatest, the orbital angular 
motion is n( 1 + 2e). As seen from the 
planet, the satellite seems to rotate retro- 
grade with angular velocity 

ORBITAL PARAMETERS FOR THE GALILEAN SATELLITES 

10 Europa Ganymede Callisto 

M/M, x IOJ 

n(olday) 
&(“/day) 
&~/day) 
dkm) 
efcmed (2: 1) 
eke 
sin Iti 

&km) 

d&m3 

4.684 ? 0.022 
203.4890 

0.161 
-0.134 
422,000 

0.0041 
1 k 2 x 10-S 

7.0 + 1.9 x 10-d 
1816 f 5 

3.53 

2.523 2 0.025 7.803 k 0.030 
101.1747 50.3176 

0.048 0.007 
-0.033 0.007 
671,400 1,071,OOO 

0.0101 0.0006 
9.2 k 1.9 x 10J 0.0015 

0.0082 0.0034 
1569 k 10 2631 k 10 

3.03 1.93 

5.661 2 0.019 
21.5711 

0.002 
-0.002 
1,884,OOO 

0.0073 
0.0049 

24OOk 10 
1.79 
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pation in the satellite causes a time delay 
(= l/en) of high tide leading to a displaced 
tidal bulge, which leads the instantaneous 
subplanet point. The torque by the planet 
acts to spin up the satellite but is prevented 
from doing so because of the existence of a 
permanent bulge. The effect of dissipation 
is to displace the rigid bulge until the result- 
ing torque by the planet exactly cancels the 
average tidal torque (cf. Goldreich and 
Peale, 1966). 

Table I contains some of the pertinent 
physical data used in the calculations 
herein: mass M (Null, 1976), radius R (Da- 
vies and Katayama, 1980), mean density p, 
semimajor axis a, mean daily motion n, 
both free and forced eccentricities e, and 
the free inclination Z of the orbit with re- 
spect to the Jovian equator (Lieske, 1980). 
The free or proper eccentricity represents 
that eccentricity which would remain if we 
could slowly remove all perturbing forces. 
The libration amplitude of the 2: 1 reso- 
nance (in radians) is equal to the ratio of the 
free to the forced eccentricity. 

Since the rotational energy of a synchro- 
nously rotating satellite cannot be dimin- 
ished, the tidal energy dissipated because 
of a nonzero eccentricity must come from 
its orbit. This rate of change of the orbital 
energy E(= - #Mn2a2, where M is the satel- 
lite mass) is given by the following formula 

dE/dt = 

-(21/2)(kflQ)M,n3a2(R/a)5e2 (1) 

to lowest order in e2 (cf. Cassen et al., 
1979a). The radial component of the tide 
accounts for only 3/7 of the total dissipa- 
tion. For small homogeneous satellites the 
Love number k 2: 3 pgR/( 19~4, where p is 
the density, g the surface gravity, and ZL the 
rigidity. The value of the rigidity ZA for the 
determination of k is probably in the range 2 
x loll-6 x 10” dynes/cm2. The low end of 
the range corresponds to the value for 
rocks typical of the Earth’s crust and the 
deep lunar interior; the high end corre- 
sponds to values of the Earth’s rigidity 
equivalent to 60 kbar pressure and to values 

appropriate to the outer layers of the Moon 
(Bullen, 1975; Nakamura et al., 1976; 
Cheng and Toksoz, 1978). For this range of 
ZA, 0.025 < kI < 0.088. We shall choose a 
nominal value of Z.L = 5 x 10” dynes/cm2 
with k = 0.035 for the calculations herein. 
If the satellite has a liquid core but with 
properties otherwise identical to those of 
the homogeneous, solid satellite, the dissi- 
pation per unit volume in the solid mantle is 
higher because of the greater deformation 
under a given tidal potential. This increase 
in volumetric dissipation can dominate the 
reduction in the volume of the mantle as the 
(nondissipative) core increases in size lead- 
ing to an increase in the total dissipation by 
a factor which Peale et al. (1979) have 
calledf. Generally f = 1 for a completely 
solid satellite, increases to a maximum as 
the core radius increases and drops to 0 in 
the limit of a completely molten body. For 
10, f - 10 at a core radius of about 0.95 R. 
The factorfalso depends on the parameter 
p/pgR as well as the core radius and de- 
creases with this parameter for a fixed core 
radius (Cassen et al., 1980). We find 

dE,/dt = 2.17 x 1021 ul/Q1) ergs/set (2) 

for 10. If the volumetric radiogenic heating 
of 10 is comparable to that of the moon 
(Cassen et al., 1979b), tidal heating exceeds 
the radiogenic heating rate of 6 x 1018 
ergs/set if Q1/f 5 370. The rate of change 
of the mean motion n due to tidal dissipa- 
tion in the satellite can be obtained from (2) 
using Kepler’s third law G(M, + M) = n2u3, 
where MJ is Jupiter’s mass and the expres- 
sion for orbital energy (- GM, M/2a). The 
corresponding rate of change of the eccen- 
tricity is found by relating de/dt to du/dt 
through the conserved orbital angular mo- 
mentum, 

2 = M[G(MJ + M)a(l - e”)]““. 

From these considerations, the equations 
describing the evolution of the satellite or- 
bit due to both the inelastic planetary and 
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tides are (Kaula, 1964) 

dn --= 
n dfT 

-c(l - (70 - 12.75)$), (3) 

de2 
dt, = -3c(70 - 4.75)e2, (4) 

D = t (E-(%r %j-, (5) 

(6) 

The Jovian whole-body kJ = 0.38 (Gavrilov 
and Zharkov, 1977), although different 
values have been adopted by other investi- 
gators. Note that dissipation in Jupiter 
tends to increase e, whereas dissipation in 
the satellite tends to reduce e . We find c1 = 
4.6 x lo-l3 QJ-l set-l, while c2 -CI 0.026 c1 if 
there is no marked change in Q, with the 
change in either tidal frequency or ampli- 
tude. Thus the Jovian tidal torque acting on 
Europa is negligible compared to that act- 
ing on 10. We should perhaps point out here 
that the tide raised on Jupiter by 10 can 
cause a secular acceleration of Europa pro- 
portional to e, because of their nearly com- 
mensurate mean motions. IO similarly re- 
sponds to the tide raised by Europa. 
However, these accelerations are - 10m3- 
10m4 smaller than the principal tidal acceler- 
ation. 

The parameter D is the ratio of the tidal 
scale factor of a satellite to that of Jupiter. 
We find D, = 2000 if we adopt “plausible” 
values for Q, = 4 x l(r and Q1 = 100 andf, 
= 1. We shall argue later that D, = 4200- 
4600. The Jovian contribution to the tidal 
equations (3,4) proportional to e2 have been 
calculated assuming that QJ is independent 
of frequency. Although this premise is un- 
likely to hold true, we find that the Jovian e2 
contribution is negligible compared to the 
effect of the satellite tide and shall hereafter 
be ignored. The frequency dependence of 
the satellite Q factors is not critical, since 
the most important terms in the expression 
for the dissipation all have periods equal to 
the orbit period. 

3. DYNAMICAL EQUATIONS 

The perturbed orbital motion of satellites 
about their primaries is usually described in 
terms of a variation of the Keplerian ellipse 
involving the set of variables {a, e, Z, A, (3, 
and a}. Here n refers to the ascending 
node of the orbit on some reference plane 
(the primary equator for close satellites). In 
the strictly two body problem the mean 
longitude A is a linear function of time and 
is related to the true anomaly v by X = D + 
(3 + 2e sin v if e is small. If the gravitation- 
ally interacting satellites are well spaced 
and have relatively small masses compared 
to their primary, then the major variations 
in the perturbed orbit can be expected to 
occur on time scales which are long com- 
pared to their orbital periods if not small in 
magnitude. 

The simplest form of the dynamical equa- 
tions involves the canonical set {L, A; r, (3; 
Z, fil 

L = M(/.#‘2; CL = GM + MI 

r = L[( 1 - e2)lj2 - l] 

Z = L(1 - e2)1’2(cos Z - l), (7) 

where L contains a factor M not usually 
included in the definition in order to sim- 
plify the following development (cf. Hagi- 
hara, 1972). 

The equations of motion are expressed in 
terms of the partial derivatives of a disturb- 
ing function R. 

dL/dt = aRIaA; 
dA/dt = n - aR/aL 

dI’/dt = aR/atii; 
d&/d? = - azzlar 

dZ/dt = aR/an; 
di-k/dt = - aR/aZ (8) 

The dynamic response of an inner satel- 
lite (subscript “1”) to the gravitational 
action of anouter satellite (“2”) is obtained 
from the following disturbing function 

R,’ = GMJ42(A-1 - z . <r,-3), (9) 

where A = I< - y2] is the distance of 
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separation. Both masses have been in- 
cluded in (9) such that R,’ has the dimen- 
sions of energy consistent with our 
definition ofL in (7). The terms in R propor- 
tional to A-’ and T1 . y’r2+ are known as the 
direct and indirect parts, respectively. The 
direct part ofR corresponds to the negative 
of the potential energy. The indirect part 
results from the transformation from an 
inertial to a planet-centered reference 
frame. This transformation is required 
since the Keplerian variables are defined 
with respect to this frame. The disadvan- 
tage of this formulation is that the “outer” 
disturbing function R12, obtained by inter- 
changing the subscripts in (9), does not 
equal R,l. 

The expansion of R is formally 

x cosb(A, - A,) + h(h, - 6,) 

+ w!%? - ~2)l (10) 

for noncrossing coplanar orbits. We shall 
show later that the restriction to coplanar 
orbits is a good approximation. Also, n 2 
j/z1 and m z Ikl. The coefficient CLhk ((u) is a 
sum of Laplace coeficients b,,J(cu), and 
their derivatives, and the bl,&z) are in turn 
an infinite series in (Y = al/a2 (cf. Brouwer 
and Clemence, 1961; Newcomb, 1895). 

The inner and outer coefficients 
C&(a), corresponding to the cosine argu- 
ment A, - 2A2 + &, are not equal in general 
because of the unequal contribution from 
the indirect part. For example, 

CL,(~) = t( 3 + ff & b1,zYo) ) 

- l/2@ (Outer), 

C&,-l(~) = t( 3 f a $ &2w ) 

-2LY (Inner). (11) 

The numerical values of these coefficients 
are equal only if (Y = (0.5)2’3 = 0.63. The 
observed ratio is slightly smaller since the 
commensurability is not exact. We shall 
ignore this small difference and evaluate 
C&,&z) at (Y = 0.63. Given these approxi- 
mations we find R12 = R,’ if we restrict R to 
those terms which depend on the 2: 1 com- 
mensurable argument V, = A, - 2A2. We 
show in Section 6 that variations involving 
aR/aa are relatively small, and the fact 
that aR12/dai f aR,l/aai is unimportant 
since these derivatives are never used. This 
allows us to display only the ei and the 
angle variables explicitly in the following 
expressions for R12 = R,’ through third 
order in the eccentricities, and the variations 
of both the inner and outer satellites are 
derivable from the same disturbing func- 
tion. 

R = (Git!f,&/f.l,){(-l.19 - 0.20e12 + 0.87e2”)e, COS f& 

+ (0.43 + 2.20e12 + 1.17e22)e2 cos &. - 0.58ele2 cos (41 - &J 

+ 1.70e12 cos 24, - 4.97e,e, cos($~~ + 42) + 3.59e22 cos 2$~~ 

- 1.65ele22 cos(26 - &) - 0.75e12e2 cos(24, - +.J 

- 2.97e13 cos 34, + 13.13e12e2 cos(24, + I&) 

- 19.25ele22 cos($, + 262) + 9.35e23 cos 362). (12) 

Here +I = V, + L& and & = V, + G2. We coefficients C$Y) due to smaller (Y = (0.63)2. 
shall also ignore the direct gravitational The principal reason we have retained 
interaction between 10 and Ganymede. The third-order terms in e even though the 
4: 1 interaction is third order in the eccen- observed eccentricities 10.01 is that we 
tricities and has considerably smaller shall explore the consequence of the relaxa- 
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tion model in Section 6, which presumes 
that the orbital eccentricities may have 
been considerably larger in the past. 

The Europan disturbing function equals 
RI2 + Rs2. Since in our model 10 and 
Ganymede do not directly interact, we can 
deduce that the motions of all satellite 
variables can be obtained from the com- 
bined disturbing function R = RI2 + Ra2. 
Next, we can add the following zero-order 
Hamiltonian 

(13) 

from which the secular motions of A and (3 
can be obtained. A dot over a symbol 
implies d/df. The dynamical equations are 
now completely canonical; i.e., 

dr/dt = aH/a+; d4/dt = aHlax, (14) 

where {x, +} represent any pair of canoni- 
cal variables defined in (7) and H = Ho + R. 
The primary contribution to the “secular” 
pericenter motion is caused by the Jovian 
oblateness. 

L 
m,i = B J2(Wai)2ni. (15) 

We find & = 0?16/day, hs2 = 0?036/day, 
and & = 0%07/day at their present posi- 
tions if we include the purely secular inter- 
satellite contributions plus terms which are 
second order in the mass ratios M,/M, 
which are important because of the 2: 1 
commensurabilities (Chao, 1976). The sec- 
ular motion of the node & due to Jovian 
oblateness is = - &. 

The Hamiltonian H = Ho + R is a con- 
stant of the motion in the absence of dissi- 
pation. By restricting the problem to copla- 
nar orbits we have eliminated Zi and a, as 
variables and are left with six action and six 
angle variables. However, the Hamiltonian 
depends only on the following four angle 
variables 

41 = A, - 2A, + 61, 

$J~ = A, - 2A, + W2, 

43 = A2 - 2A, + &j2, 

44 = A2 - 2A3 + &, (16) 

which suggests that we transform to this set 
of angle variables plus two more linearly 
independent variables &, &. For example, 
we can choose & = A, and & = A,. Since H 
# H(&,, &) the conjugate action variables 
corresponding to these angles are constants 
in the absence of tides and the problem is 
thereby simplified to effectively four de- 
grees of freedom. The action variables xi 
conjugate to the 4i are most easily found by 

requiring d4,/dt = -a H/ax* = x (a HIaL,) 

(aL,/ax,) + (afzlar,) (ar,lax:). Explicit 
expressions for d&/dt follow from (16) and 
(8) which fix aLi/axf and X,/ax, and 
thereby the following relations between the 
sets xt and Lt, Ti. 

L, = Ll() + x1 + x2 + x5, 

L, = L,o - 2(x, + x2) + x3 + x, + x3, 

~53 = ~530 - 2(X3 + X4), 

rl = rlo + x1, 

r2 = rzo + X, + x3, 

r3 = r30 + x4, (17) 

where Li,, and Ito are constants and the xi 
represent small variations caused by the 
resonant interactions. The action variables 
x5 and x6 are explicitly included in (17) since 
they are not constant once tides are added. 
Their presence is essential for a correct 
description of the effect of tides on the rate 
of evolution of the resonance configuration 
developed in Section 6. 

The Hamiltonian formalism developed 
here proves to be a useful tool in determin- 
ing the stability of the system when the 
eccentricities are relatively large and the 
resonance variables are strongly interact- 
ing. It shall form the basis of the study on 
the relaxation hypothesis. If the eccentrici- 
ties are very small, then R can be restricted 
to just the linear terms in e . We find that in 
this case an adequate description can be 
developed based on the dynamical equa- 
tions for n and the Poincare eccentric varia- 
blesp = e exp(-&) andq =p*, is 

complex of This is 



8 YODER AND PEALE 

approach adopted by Yoder (1979b) where 
the dynamical equations are 

(18) 

& 2i 8R _= - 
dt MnaZaq’ (19) 

In the next section we shall use these 
equations to describe the simple tidal sce- 
nario for the formation and evolution of the 
two-body and Laplace resonances. 

4. CLASSICAL TIDAL SCENARIO 

Suppose that 10 were formed well inside 
the orbit of Europa about 4.6 by ago. An 
initially free eccentricity would be quickly 
damped by tides raised by Jupiter on 10, 
and IO’S orbit would thereafter expand, 
driven by the dissipative tide it raises on 
Jupiter. Europa’s orbit would also expand, 
but because of IO’S greater mass and 
smaller orbit, 10 would spiral out faster. 10 
will approach six possible 2: 1 resonance 
interactions with Europa involving the an- 
gle variables 2V, + 24, 2V, + fl, + &, 
2V, + 2%, VI + &, 2V, + & + &, and VI 
+ (3, with relative strengths or restoring 
accelerations proportional to sin2 Z1, sin Z1 
sin I,, sin2 Z,, e2, ele2, e,, respectively. 
These resonances are encountered in the 
given order if the secular motion of the 
nodes and pericenters are dominated by 
Jovian oblateness. However, the reso- 
nance-induced retrograde motions of the & 
are relatively small and nearly constant as 
the resonances are approached whereas &, 
are proportional to - l/e*. Because the ec- 
centricities are initially damped to very 
small values, the rates v1 + r& and y1 + h2, 
vanish first (since u1 is positive) and the 
corresponding angle variables VI + k1 and 
VI + k2, are automatically captured into 
libration (Yoder, 1973). The frequencies of 
the remaining resonance variables remain 
sufficiently far from zero that we need 
retain only the terms with arguments V, + 
cG1 and V, + h2 in R, which is equivalent to 
considering only coplanar orbits in Section 

3. The near-resonant interaction is thus 
adequately described by the following set 
of differential equations [(3)-(6), (12), (13), 
(18), (1911. 

dn,/dt = 3(M,/M,) n22a-2 

[ e,C, sin( VI + (3,) + e2C2 sin(V, 

+ &2)1 + dn,ldt,, (20) 

dn2/dt = - 6(M,/M,) r~,~ 

[ e,C1 sin( VI + (3,) + e2C2 sin(V, 

+ G2)1 + dn214, (21) 

&ldt 
= - in, c@“(M2/MJ) C, exp iv, 

- (3&c, + i&)pl, (22) 

dpzldt = - in,(M,/M.,)C, exp iv, 

- (PD2c2 + iks2)p2, (23) 

where C, = - 1.19 and C, = +0.43. The 
effect of the tidal contribution dn,/dt, is 
small and was omitted in the earlier anal- 
ysis. 

A solution for the forced motion ofp can 
be obtained by assuming that V1 = v1 varies 
slowly such that V/y2 is small. This approxi- 
mation is valid as long as v/n is large 
compared to (eMl/MJ)l’z or the free eccen- 
tricity is small compared to the forced 
eccentricity. From (22), the formal solution 
for the forced motion of p1 is simply 

p1 = (d/dt + 3_ D,c, + i&)-’ 

x (-in, ~Y-~‘~(M,/M,) Cl exp iv,). (24) 

If v1 were constant, the correct solution is 
obtained by replacing d/dt by iv,. This 
suggests that we replace the operator d/dt 
+ $D,c, + i6,, with (d/dt - ivJ + (iv, + 8 
D,c, + i&J in (24) and expanding in powers 
of (d/dt - iv,). For p1 and p2, we find 

p1 = e12 exp WI + 61 - &/YI~) 

+ elo exp(-if&, - y16,)t, (2.5) 

P2 = -e21 exp i(V, + a2 - til/yz2) 

+ ezo exp( -ic&, - y2yzsZ) t. 

The forced eccentricities e12 and ezl and the 
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phase lags 6, and a2 are given by 

e12 = 
M2 4 ----(y 

MJ ~1 

-1/2c 
19 

e21 = !!.%!I2 c,, 

MJ ~2 

61 = 3_mlY,-', 

62 = 3 D2c2~2-l, (26) 

with y1 = v1 + & and y2 = v1 + hs2. 
Since p = e exp -i&j, we find from (25) 

that the longitudes of the pericenters are 
approximately described by 

01 = - (V, + S,), 

62 = - (V, + 8,) + 7r, (27) 

if the small V/y2 and free eccentricity terms 
are neglected. Since VI increases linearly 
with time, the mutual perturbation leads to 
a forced retrograde motion of the pericen- 
ters. In the absence of satellite dissipation 
we find conjunction (i.e., A1 = A2) exactly 
occurs when 10 is at its pericenter [i.e., r, = 
al( 1 - el)] and Europa is at its apocenter. 
This configuration tends to maximize the 
mean distance of separation of this pair of 
satellites. Dissipation in 10 induces a phase 
lag 6, > 0 in IO’S pericenter. Thus conjunc- 
tions occur when 10 is slightly past its 
pericenter. This can be understood from a 
physical point of view since the forced 
motion &/dt is proportional to - l/e and 
satellite dissipation tends to reduce e. If 
conjunctions occurred exactly at the orbit 
extremes, the components of the intersatel- 
lite force which are tangent to the orbit 
average to zero and no net angular momen- 
tum is transferred. In the case where dissi- 
pation is occurring in the satellites, the 
satellites are closer together after conjunc- 
tion and the differential angular velocities 
are reduced, so a larger tangential force is 
applied for a longer period after conjunc- 
tion than before (e.g., Peale, 1976a). Thus, 
dissipation in the satellites tends to cause a 
net transfer of angular momentum from 10 
to Europa. 

Substituting the above solutions for p1 
and p2 into (20) and (21) for & and %, we 

obtain 

dn,/dt = -3(M,/M,) ct-2n22 

{ Cle12(h - Ch12) 
- &/Y22)I 

dn,/dt = +6(Ml/MJ)n22 

{ Ge12(~1 - &lr12) 

- ~1lr23~ 

- C2e2,V2 
+ Wdh (28) 

- C2e2,(S2 
+ dn214, (2% 

The dynamical equation for v1 is (3)-(6), 
(26)-(29) 

dv, (1 + KJ x = - n,c,[l - 35D,e,22] 

+ n,c,[l + 12D2ez12] = - n,c,[0.97 

- (350, + 0.086D2(y,ly2)2)e1221, (30) 

where we have used c2 = 0.026 c1 and e21 = 
0.53 ‘)r1e,2/y2. The parameter K, is 

K, = 3.4 x 10-B(n2/y,)3 

+ 6.5 x 10-s(n&2)3 

= (86e,2)3 + (93e21)3. (31) 

K1 is small as long as y1 and y2 = y1 + hos2 - 
(3,, are greater than n,/310 and n,/%O, 
respectively. 

As 10 tidally evolves outwards, IO’S 
forced eccentricity increases until it 
reaches the critical value -l/(35 D,)1/2 = 
0.0026, where V, vanishes (D, = 4200 is 
determined later). Europa’s limiting eccen- 
tricity is -0.0014. Thereafter, the relative 
outward acceleration of Europa maintains 
its mean motion at half that of 10. This 
stable state is maintained until Europa en- 
counters the 2: 1 commensurability with 
Ganymede. The 4: 1 commensurability of 
10 with Ganymede is third order in the 
eccentricities and represents a considerably 
weaker interaction. Like the dissipation in 
10 which caused a net transfer of angular 
momentum to Europa, the inelastic tide 
raised on Europa will repel Ganymede. 
Still, the acceleration of Europa by 10 is so 
great that Europa’s forced eccentricity 
would have to be at least three times larger 
than its present value (0.0101) for this 
mechanism to push Ganymede out so that 
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ri, = 2ti3. Before Europa’s eccentricity can 
be pumped up to this value the 2: 1 fre- 
quency u, = n2 - 2n, of the outer pair 
approaches that of the inner pair, v1 = It1 - 
2nz. The vanishing of the difference fre- 
quency (vl - PJ describes the presently 
observed three-body resonance. 

The near-resonant gravitational couple 
between Europa and Ganymede can be 
obtained by increasing the subscripts (20)- 
(29) by one. If we neglect dissipation in 
Europa, then the resulting distortion in the 
shape of Europa’s orbit by both 10 and 
Ganymede is 

pz = -ezl exp(iV, - iti,/y,2) 

+ ez3 exp(iV, - iV,/yz2), (32) 

where eS = -(“3/MJ) a C,b,h,), v2 = h2 

- 2$, v2 = V, = n, - 2n,, and y3 = v2 + 
; 

%2* 

Equation (20) for dn,/dt remains un- 
changed but (21) is replaced by 

dn,/dt = -6(Ml/A4J)n22[e, Cl sir@, 
+ (3,) + e2 C2 sin(V, + h2)] 

+ 3(M3/MJ)n,2 a [e2C, sin(V, 

+ 02) + e,C, sin(V, + G3)] 

+ dn2/dtT. (33) 

In addition 

dn,/dt = -6(M2/MJ)n32[e2C1 sin(V2 
+ W2) + e3C2 sin(V, + G3)3. (34) 

When (32) is substituted back into (20), 
(33), and (34), we obtain the interaction 
involving the resonance argument 4 = VI - 
V,, where only the dissipative terms for 10 
are retained. 

V, + (A, - 2A2)n22 sin r#~ 

+ n,c,(l - 35D,e,22) + K2tiI 

+ K3C2 = 0, (35) 

I$ + An22 sin 4 + n,c,(l - 45D,e,22) 

+ K,i, + J&j2 = 0. (36) 

The coefficient A eqI.EdS A, - 3A2 + bi3 

and the A, are 

A, = 3C1C2(Y-1 Mez, 

A, = -3C1C20 v (3 + 3), 
Y3 x 

A3 = ~C,C~OY~ M1M2 n2 . 

M.I~ ~2 
(37) 

The coefficients K, are: 

K2 = (86eJ3 + (1 + 1.1 cos +)(93e21)3, 

K3 = -(l + 0.9 cos +)(47e23)3, 

K, = (95f~?,~)~ + (1 + 1.4 cos +)( 103e21)3, 

K, = -(l + 0.7 cos 4)(57e,)3. (38) 

We assume that the 2: 1 resonance be- 
tween 10 and Europa has reached the equi- 
librium configuration by the time the reso- 
nance with Ganymede is approached. Free 
eccentricities are also likely to be damped 
such that librations about the resonance are 
small and v1 is nearly constant. However, 
as the resonance with Ganymede is ap- 
proached, the growing perturbations will 
introduce a variation in vl, proportional to 
4, which can be found from (35) and (36). 
The variation in v1 is important since it 
defines the scheme by which the system is 
captured into the three-body Laplace reso- 
nance. For current values of the parame- 
ters, the coefficients K, = 0.049, K, = 

-0.001, K, = 0.060, and K, = -0.023, and 
they were smaller in the past. Hence, for 
our present purposes, we can neglect these 
terms. 

If we eliminate the sin 4 term from (35) 
and (36) we find 

_&06& du 
dt * dt 

- 0.32C,n,(l - 13D,e,22), (39) 

where the numerical coefficient multiplying 
d$J/dt equals (A, - 2A,)/A. Integration of 
(39) yields 

VI = Q + 0.68 4, (40) 

where Q, is only slowly varying due to the 
dissipative term in (39). Define 6v = 0.68 
S$, where S$ is the periodic part of 6. 
Clearly, the periodic variation of the mean 
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motions an, equals (A,/A)6& if the KI are an applied torque slowly reducing the mag- 
small. We find 6n1 = 0.125&$, 6~ = nitude of the angular velocity. The dynami- 
-0.27664, i3n, = 0.023&$, and 6v, = cal equation describing the motion and tidal 
-0.32&$. evolution of the three-body resonance is 

The pendulum equation (36) depends on nearly identical to that of spin-orbit reso- 
v1 and v2 through the parameters A and e12. nance (Goldreich and Peale, 1966; Yoder, 
If we replace vI and vi0 + Svi in the relations 1979a). 
[( 26)) (37)] defining A and e I2 and expand to Like the spin orbit case, capture into 
hrst order, we find that their variations libration is not certain but depends on con- 
proportional to SC& are ditions as the equivalent pendulum passes 

6A = O.O42Ay,-‘64, over the top of its support the last time 

8elZ2 = - 1 .36e,22Y1-16+. (41) 
before reversing directions. Since these 
conditions cannot be known precisely, the 

The variation in A is relatively small com- capture is probabilistic in general. 
pared to that in e122 and can be shown to As the system passes through the reso- 
increase capture probability and damping nance the mean value of 4 is nearly zero 
by less than 1%. If we include only the e122 and S4 = 4. If we thus replace SC$ by 4, (42) 

variation in the pendulum equation, we find is now identical to that of Goldreich and 

4 + An22 sin 4 = -n,c,(l - 45D1e123 
Peale (1966) except for the form of the 

- 61~~n,D,e~~~y~-~S& (42) 
coefficients and the initial sign of 4, and we 
can use their expression for the capture 

where the 84 dependence is now removed probability P,. 

from v1 in the definitions of A and eX2. 
Equation (42) is that for a pendulum with an 
applied torque which is valid for 4 being 

PC = 1 + (~,4)(&U,h22, ‘j2) . (44) 
either an angle of circulation (pendulum Here 4, = -n,c, [l - 45Dle,22] is the 

rotating around its support) or an angle of constant part of the tidal acceleration and u 

libration. Incidentally, the linearized solu- = 61n1c1y,-‘Dle122 is the coefficient of the 

tion for the three-body restoring force (= 4 term in (42). 

An22 sin 4) as given by (37) is too large by Ife12 = 1/(35D,)1’2 at the time of capture 

-40%. The primary source of this reduc- we find 

tion involves both the K, contributions to 2 
the acceleration and the e 2 terms of R (2 : 1) pc = 1 + (0,/3700)3’4 (45) 
in (12). 

Initially, 4 = v1 - v2 < 0 since v2 = n2 - and capture into resonance is certain if D, 

2n3 must be large. The resonance ((4) = 0) < 3700. P, is only weakly dependent on D, 

can only be approached if the first term on if e 12 had attained its 2 : 1 equilibrium value 

the right-hand side of (42) is ,positive (i.e., prior to transition. After capture into the 

(4) > 0), which requires (1 - 45D1elz2) < 0 resonance the fact that the C$ term in (42) 

or always opposes the motion of the equiva- 

er2 > 1/(45D,)1’2. (43) 
lent pendulum means the librations will be 
damped to zero by the continuing dissipa- 
tion. 

But this is assured since the equilibrium 
value of e12 = 1/(35D,)1’2 in the 2: 1 Io- 

Returning to Eq. (39) we see that within 

Europa resonance is reached before the 
the resonance C$ is periodic and (4) = 0. 

Ganymede resonance is approached. The 
Thus, v1 continues to decrease until e12 has 

situation is thus reduced to that of a pendu- 
reached a new equilibrium value 

lum rotating over the top of its support with Cl2 = 1/(130,)“2 (46) 
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after which i, = 0. The current value of e12 
is 0.0041. If this is the equilibrium value, 
(46) yields 

D1 = 4600, (47) 

which is consistent with almost certain cap- 
ture (45) of the system into the Laplace 
libration. The remaining forced eccentrici- 
ties are ezl = 0.0026 and eB = 0.0075, up 
from 0.0014 and 0.0040 respectively at the 
time of capture into the Laplace resonance. 

The damping of the libration amplitude is 
most conveniently described by the action 
I 

J = $ &A (W 

where the integration is over one libration 
cycle with all slowly varying quantities held 
constant. Note that J += 0 with the ampli- 
tude of libration. The general solutions to 
the integral in (48) are expressed in terms of 
complete elliptic integrals (Yoder, 1979a). 
The action is clearly not an adiabatic invari- 
ant here as it decreases with the amplitude 
of libration from the dissipative term in 
(42). The reason for choosing the action to 
describe the damping rather following the 
amplitude &, directly is that an elegantly 
simple equation for J(f) is obtainable which 
avoids the singularity when &, nears 180”. 

If we multiply (42) by 4 (&$I = C$ in 
libration) and integrate with respect to 
time, we obtain 

E = E, + &#a - I’ cr&dt 

- I ’ nZ2 cos 4 (dA/dt)dr, (49) 

- n22 $ [$ij+ cos 4 d+ 

- cos 4 $ c$-’ d4], (50) 

where we have replaced dE/dt by &$J - 
a@ - n22 cos 4 dA/dt ti-om (49). The time 
average of dJ/dt over one libration cycle is 
defined as 

where the libration period T = $ 4-‘d+. 
Taking the time average of (50), we find that 
the terms multiplied by dA/dt and & re- 
spectively vanish, with the result 

= -CT (J). (.5 2) 

The solution to (52) 

J(t) = J(0) exp - ji ~7 dt (53) 

describes the secular variation of J with 
time. 

Since the forced e,, increases from 
1/(35Dl)1’2 to 1/(13Dl)1’2, the coefficient m 

OC Yl -3 varies from -250~~ up to 1100~~. An 
explicit solution to the integral in (52) can 
be found if we change the integration varia- 
ble from t to z = rl/rl through Eq. (39) 
(dy,/dt = dv,/dt), where q, is the equilib- 
rium value of yl obtained from (27) with F12 
= 1/(13Dl)1’2 being the three body equilib- 
rium value of e12. We find 

where E. is a constant, E = l/2 @ - An22 dt = 
’ 

(54) 
cos 4 is the libration energy. The last term 
in (49) accounts for the variation in A, since 15.2 dz 
A is a function of the mean v and v con- 

udt = 
z(1 - z”)’ (55) 

tinues to decrease untile,, = l/( 13D,)1’2. In 
(48) C$ = &E,A), where E and A would be If we ignore the small variation in clnl 
constant in the absence of the dissipation as during the damping, integration of (54) and 
would J. Hence, (55) yield 
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t=ih- ( 2, - z 
1 1 

+ $1” [(%)(+‘)I}; (56) 

(57) 

The Laplacian resonance was established 
at time t = 0 when z = z. = (35/13)1/z = 
1.63. At this time 4, = 180” and @ = 
21Anz2)( 1 - cos 4). From (48) we find J(0) = 
16~A(0)n,2~1’2. The estimate for the current 
value of #J,,, = OX66 (Lieske, 1980), and for 
small +,,,, J(t) = 4mIA(t)n22(1’2 sin2 + 4,. If 
we substitute these expressions into (53) 
along with (57), we obtain, for small &,, 

= [ :;;‘1’ _-;;)I’.’ . (58) 

From (37) we see A a l/-y2 = l/(rl - & + 
ks2) andNt)/NO) = [z. - (& - &2)/%1/[z 
- (&, - &)/j$] such that (57) can be 
solved for the value of z corresponding to 
the current amplitude of libration. We find z 
= 1.047 for &, = 0%66. For a remnant I?ee 
libration of this amplitude, the equilibrium 
value for IO’S forced eccentricity PI2 = 
ze12(t = now) or 

e12 - = 0.0043, 

and since D, = I/( 1%,22) 

(59) 

D1 = 4200. (60) 

If the observed value of 4, is bogus or 
due to a recent impact perturbation, then z 
= 1.00. The current eccentricity is the 
equilibrium value and D = 4600 as given by 
(46). It is seen that whether or not the 
observed $J, is a remnant free libration has 
little effect on the value of D since +,,, is so 
small. However, the nature of this libration 
does have a profound effect on estimates of 
the age ofthe resonance. From (56), we find 
the age of the Laplace resonance to be 

t = 16OOQ, years (61) 

where z = 1.047 was used. Of course if &,, 
= 0.066 is not a remnant-tree libration, the 
age of the Laplace relation cannot be deter- 
mined in terms of Q,. There are at least two 
other possible explanations for the ob- 
served &,. 

Consider the impact on one of the three 
satellites of a mass M, with velocity V, = 12 
km/set relative to Jupiter (v, 2: uj). Gravi- 
tational focusing by Jupiter increases V, to 

VP ’ = 27.4, 22.9, and 19.6 km/set respec- 
tively for IO’S, Europa’s, and Ganymede’s 
distance from Jupiter. The largest momen- 
tum impulse is transmitted if ?p is antiparal- 
lel to the satellite orbital velocity z which is 
about 17, 14, and 11 km/set for 10, Europa 
and Ganymede, respectively. The inelastic, 
angular momentum impulse M,u(u~ + u) 
will change the mean motion at time t = 0 
by an amount 

&Z(O) z 3 !jj (+) n (62) 

if we neglect the effect on &z/n of the 
instantaneous change in e which is of order 
e&/n. Here the symbol 6 refers to the 
instantaneous change in n immediately af- 
ter impact. The impact not only excites the 
periodic three-body liberation, but also 
changes the average mean motion of these 
satellites by an amount An,. The An, must 
satisfy the condition An, - 2An2 = An, - 
2An, = Au. Otherwise the three-body lock 
is not maintained. The variation in h,(t) 
following impact approximately satisfies 
the set of equations 

h,(t) = An, + 0.1274, wL cos uLt, 

&z,(t) = An, - 0.2761#~, oL cos o,t, 

h,(t) = An, + 0.0234, oL cos wLtr (63) 

where wL = 21r/2074 days is the three-body 
libration frequency. The amplitude of the 
forced eccentricities is changed by an 
amount - - (Av/v)e(forced). Since Q(O) 
= @(forced) + &(free) -0, we find that 
the mean change in Y alters the amplitude of 
the free eccentricities by -( Av/u)e 
(forced). The free eccentricities are the 



14 YODER AND PEALE 

source of additional periodic variations in 
ant(t) with frequencies P + &,i omitted 
from (63). However, these terms have little 
effect on the amplitude &,. If we solve Eq. 
(63) at time t = 0, we find 

f& = 8&O)wr,-1, (64) 

where the initial S&O) = &r,(O) - 3&(O) + 
2&(O). The &z,(O) are either zero or are 
determined by (61). 

The minimum-sized body required to ex- 
cite -O?l libration involves the impact of 
-l&km-diameter body on Europa. This 
estimate is based on an asteroidal density 

PP = 2 g/cm3. The excitation of a O?l 
libration from impacts on IO and Ganymede 
require bodies which are three and nine 
times more massive, respectively than for 
Europa, given the same initial conditions. 
An impact frequency of an l&km asteroid 
on the Moon with an impact energy of 4 x 
103l ergs is estimated to occur once every 6 
X 10’ to 1 x log years. The range in impact 
rates reflects the uncertainty in the crater 
diameter versus energy scaling law (cf. 
Peale, 1976b). Shoemaker (private com- 
munication, 1980) estimates that the impact 
rate of asteroidal and cometary material on 
the Galilean satellites is comparable to that 
on the Moon. It should also be kept in mind 
that such impact caused increments of O?l 
for &,, will probably occur even less often 
than the above global rates for the Moon 
since we have chosen an optimum direction 
of approach for the colliding object. The 
time constant for decay of the small incre- 
ment in J is l/o from (53) or 2/(r for C& 
since J a 4,” for small c&. Since (T is now 
approximately 1 lOOc,, the time constant for 
exponential decay of small-amplitude libra- 
tions is about 130 Q, years = 6.5 x 10’ 
years for Q, = 5 x 105. Although damping 
times are likely to be less than the mean 
times between collisional excitations of &, 
= O’?l, that the currently observed 4, is the 
result of a recent collision is not entirely out 
of the question. 

Another possibility is that the inferred 
free-libration amplitude is actually a forced 

libration. In the expansion of the Sun- 
satellite gravitational interaction, a forcing 
term exists with argument 2AJ - Sr, - $ and 
a period of 2076 days which is very near the 
libration period of 2,074 + 10 days (J. 
Lieske, personal communication, 1979). & 
refers to the node of Ganymede’s orbit and 
I/J to the node of Jupiter’s equator on the 
Jovian orbit. The amplitude of the forcing 
term is very sensitive to the difference in 
these periods. The uncertainty of the free- 
libration period primarily results from the 
uncertainty in the masses of 10, Europa, 
and Ganymede. A reduction in the uncer- 
tainty of the satellites’ masses from the 
analysis of Voyager data may resolve this 
latter possibility. 

Once the three-body lock is established, 
the secular variation of IO’S mean motion is 
described by 

dn, = 2.0 A - 0.23~ n 
dv 

dt dt 1 1' (65) 

Based on the interpretation of the observed 
&, as a tidally damped remnant, we fmd 
from (65) that IO’S semimajor axis has in- 
creased by less than 0.7% since formation 
of the Laplace resonance. We find in retro- 
spect that the approximation of holding 
clnl aal -* constant in (56) when estimating 
the age of the resonance introduces an error 
of only -3% into (61). 

Even if Lieske’s estimate for 4, is only 
an upper bound of the remnant amplitude, 
we can use it to obtain an upper bound on 
Q,. Since the amplitude I$,,, must have 
damped in the age of the solar system, from 
(56) we find 

Q, 5 3.5 x 106. (66) 

This estimate is of the same order as that 
based on the minimum tidal heating re- 
quired to explain the observed surface ac- 
tivity (Yoder, 1979b). 

One important consequence of the recent 
establishment of this resonance lock is that 
Europa’s forced eccentricity was increased 
from -0.003 up to -0.010 in -5 x IO8 years 
if we adopt a “plausible” Q, 2 4 x 105. 
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This time scale may be as short as - 1 x lOa 
years. The tides of Europa may be respon- 
sible for many irregular linear features seen 
in Voyager images of Europa (Helfenstein 
and Parmentier, 1980). Also, Europa’s sur- 
face is apparently quite young (- IO8 years) 
based on the identification of only three to 
eight craters or crater-like features and 
estimates of impact rates (Lucchitta and 
Soderblom, 198 1). 

5. EFFECTS OF OTHER 
COMMENSURABILITIES 

The purpose of this section is to investi- 
gate the possible consequences of other 
resonance interactions which these satel- 
lites may have encountered prior to the 
establishment of the three-body lock. First, 
the effects of a second order, Laplace-like 
resonance is discussed which was almost 
surely encountered if the tidal scenario 
developed in the previous section is a cor- 
rect description. The main consequence of 
these resonance encounters is the excita- 
tion of free eccentricities whose remnants 
may still persist at least for Europa’s orbit. 

Next, we describe the possible effects of 
resonances associated with the two-body 
3: 1 commensurability on the orbital incli- 
nations of the several satellites. We find 
that capture into any one of several possi- 
ble resonance interactions is reasonably 
likely, leading to rapid growth of the forced 
inclination. Disruption of these resonances 
will excite large free inclinations which are 
incompatible with the long tidal damping 
time scales and the small free inclinations 
observed in the present orbits. We infer 
that these resonance interactions could not 
have been encountered and that the primor- 
dial ratio of semimajor axes of any pair of 
satellites was 20.48. 

The Laplacean lock satisfies the condi- 
tion that the 2 : 1 frequency + = n 1 - 2n, on 
average equals v, = n2 - 2n,. After the 
formation of the IO-Europa 2: 1 lock and 
prior to the establishment of the three-body 
lock, we expect than v2 > vl. During this 

time interval the frequency r+ maintains a 
nearly constant value = 1’?2/day, while vt is 
progressively decreased as the tidal torques 
pushes the locked pair, IO-Europa, out- 
ward. The tidal scenario suggests that the 
trio of satellites should have evolved 
through a sequence of Laplacean-like inter- 
actions involving the frequencies: jv, - v,: j 
=. . .3,2,1. The j = 2 case corresponds to 
the last and strongest interaction encoun- 
tered prior to the establishment of the j = 1 
lock. 

Recall that the Laplacean frequency, v1 
- r+, in the longitude equation resulted 
from the substitution of the first-order solu- 
tion for the 2: 1 forced motion of the Euro- 
pan eccentric variable pz into the equations 
for h,, ri,, and ti3 which only included 
terms in the disturbing function R [see Eq. 
(12)] that were linear in the eccentricities. 
This suggests that the frequency 2v, - vz 
may result horn the cross coupling of terms 
which are quadratic in e in R. We should 
note that the angle variable S = 2 VI - V, = 
2X, - 5Az - 2A, does not satisfy the condi- 
tion of rotational invariance and therefore 
cannot result from the cross coupling of 
periodic variations derived from R . The set 
of variables which do satisfy this require- 
ment are: 

I& = s + (3,, 

Jig = s + 62, 

$3 =s + C&j. (67) 

If capture into resonance could occur for 
any of these interactions such that 3 van- 
ishes, then the system could not evolve into 
the observed configuration, given that 3 s 
0 at some time in the past. The existence of 
such a nearby, stable resonance lock would 
place severe constraints on the range of 
tidal evolution of the three satellites prior to 
formation of the observed three-body lock 
and severely undermine the plausibility of 
the scenario for resonance formation devel- 
oped in Section 4. 

We demonstrate in this section that cap- 
ture into resonance for any of these possi- 
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ble variables in (67) does not halt the tidal 
acceleration of S. These resonance locks 
eventually become unstable, cease librating 
and begin circulating. 

Furthermore, transition excites sizable 
free eccentricities in the orbits of 10 and 
Europa. These free eccentricities can easily 
be damped to their observed values, even if 
formation of the present three-body 
configuration occurred relatively recently 
(61). In fact it is somewhat easier to inter- 
pret the observed tree eccentricity of 
Europa as a tidally damped remnant of this 
excitation rather than a tidally damped rem- 
nant of a primordial free eccentricity. 

From (4)-(6), we find that the exponen- 
tial damping rate of eccentricity by satellite 
solid-body friction is 7-l (e) = 10.5n 
(MJ/M)(R/a)5 kflQ. If the tidal change in 
the semimajor axis is neglected, then the 
value of e at time t is: e = e. exp - t/r. 
Since the orbits may have been consideta- 
bly closer to Jupiter in the past, an upper 
bound in the effective r(e) over the past 4.6 
by is obtained by using the present values 
for a and n and setting p = 5 x 10” dyne- 
cm in evaluating k (1). 

71 = 6.5 x lo4 (Ql/fi>year, 

TV = 2.9 x lo6 (Qz/fi)year, 

73 = 1.1 x 10’ (Q,/f)year, 

r4 = 6.4 x lOa (Q,/f,)year. (68) 

The free eccentricity of 10, if any exists, is 
likely to be the result of a very recent 
impact. We see from Table I that the ob- 
served value is one-half the uncertainty of 
the estimate. The remaining satellites have 
significant free eccentricities that are much 
too large to be the result of impacts. If the 
free eccentricities listed in Table I are the 
remnant amplitude of a primordial free e < 
0.1, we find that r2 > 0.7 by, r3 > 1.2 by, 
and 74 2 1.8 by. We can transform (68) to 
lower bounds on Q*/fi using these lower 
bounds on Tim 

edh 2 230, 
Q3/f 2 100, 

Q4& 2 3. (69) 

Given that most other solid, planetary 
bodies have Q s lo*, Europa’s lower bound 
is large and suggests that the observed free 
e *( = e 20) may not be a remnant of a primor- 
dially established eccentricity. We shall ar- 
gue later that the observed e20 may instead 
be the remnant of a free eccentricity which 
was induced in Europa’s orbit about 2 x IO3 
Q, years ago. This excitation was the result 
of passage through the three-body reso- 
nance which is described above. 

Peale et al. (1980) in discussing the effect 
of tidal heating of the satellites of Saturn 
believe that the rigidity of icy satellites may 
be closer to /+e = 4 x lOlo dyne-cm*. The 
corresponding Q/f must be increased by a 
factor of 10: Q3/f = 103 and Q4/’ = 30. 
Again, we are faced with a lower bound of 
Q/ffor Ganymede which appears to be too 
high when compared with estimates appro- 
priate to a rocky body. Unless there exists 
a nearby orbital resonance that was en- 
countered in the recent past which could 
account for the observed e,(free) we must 
conclude that h % pice. 

For the analysis of these earlier reso- 
nances, the dynamical equations contain 
contributions which are second order in the 
eccentricities. If the tidal contributions are 
ignored, the equations of motion for nt are 

drill _ 3M2 --- 
dt M, 

~,*cY-* { - l.l9e, sin( VI 

+ 01) + 0.43e2 sin( VI + hi*) 

+ 3.4e,* sin 2( VI + (3,) 

- 5.0e,e2 sin(2V, + (3i + W2) 

+ 7.2e2* sin(2V, + Z,)}; (70) 

dn3 _ 644, --- 
dt 

M n2*03 {- 1.19e2 sin( V2 
J 

+ (3*) + 0.43e3 sin( V, + 03) 

+ 3.4e2* sin(2V2 + 2&i,) 

- 5.0e,e2 sin(2V2 + 0, + W3) 

+ 7.2e3* sin(2V2 + 2&)}; (71) 

dn2 _ -- 

dt 
_ 2M,a2dn, 

M, dt 

- fr 2 cy-* 2. (72) 
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The dynamical equations for pi are 

dp, M 
dt + i&p1 = -inzff-1’2 $ 

J 

X { - 1.19 exp iv, + 3.4q, exp i2V, 

- 5.0q2 exp i2V,}; (73) 

dp, Ml dt + ihs2p2 = - in, M 
J 

X {+0.43 exp iv, + 7.2q2 exp i2V, 

- 5.04, exp i2V,}; (74) 

M3 - in,a - 
MJ 

X {- 1.19 exp iv2 + 3.4q2 exp i2V2 

- 5.Oq, exp i2V,}; 
43 
x + i&p, = -i&l2 2 

J 
x {+0.43 exp iv2 + 7.2q3 exp i2V2 

- 5.0q3 exp i2V2}. (75) 

The usual technique for solving a set of 
nonlinear equations such as these, where 
the resonant interaction lies buried in the 
coupling of “fast” periodic variations, is 
based on an ordered expansion of the varia- 
bles in terms of the relative frequencies. 
The aim of this expansion is to successively 
solve for the fast periodic variations and 
eliminate these terms in the dynamical 
equations. The result of this process is a set 
of equations of motion involving only the 
slow variables. We expect that the lowest- 
order solution (in e) for the “fast” periodic 
variation of pr is still given by (25), (32). 
Besides this contribution, there is also a 
significant “fast” periodic variation in the 
mean longitudes resulting from the circula- 
tion of the three-body variable t#~ = VI - V,. 
Replace V, by Vt + 6 V, andp, by p f + 6p, 
in (70)-(72). Here Vf andpf depend on the 
slow variables I@, while 6 V, and Sp, corre- 
spond to the fast periodic parts. From (35)- 
(37) the lowest-order solution for the fast 
periodic variations for 8 VI and 6 V, are 

SV, = 0.68 B sin @, 

SV, = -0.32B sin c#J*, (76) 

where B = A(~z~/@)~. The first-order solu- 

tion (in e) for pi are (25) (32): 

6p, = e,, exp iv:, (77) 

6p2 = -e21 exp iv; + em exp iv,*, (78) 

8p3 = -e32 exp iv;. (79) 

The next step is to expand the left-hand 
side of (70)-(75) through first order in SV, 
and 6p,. The equations of motion for the 
slow variables n r and p T obtained from the 
appropriate mixing of periodic terms are 

dnc 
- = 3n2he2 2 {- (5.0e, 

dt J 

- 0.4OB)e: sin(S* + $) + (14.4~~~ 

- O.l5B)e,* sin(S* + Op)}, (80) 

dnf _ _22+W - - 
dt M, dt (81) 

d& 
dt 

+ i&p: = in2a-l’2 2 

x (5.0e23 - 0.4OB) exp is*, (82) 

dp2* Ml 
dt 

+ is2pz = -in2M 
J 

x (7.2e, - 0.15B) exp is*. (83) 

We find from inspection of (70)-(75), (76)- 
(79) that no slow terms affecting ng and pf 
result from the coupling of the linear contri- 
butions SV, and Sp, with other periodic 
terms in (70)-(75). Thus neither resonance 
variable I/J: nor t,t~z can transfer angular 
momentum to Ganymede’s orbit and v2 
continues to tidally decrease whether or not 
either of these “locks” is established. Prior 
to the encounter, the frequency 6 = 2~: - 
v; is negative and is gradually increased by 
the tidal torque. Unlike the 2 : 1 lock on the 
total pericenter motion we find that the 
initial resonant response induces a slow 
prograde motion in the slow components 
Csz and (3;. The approximate solution forp z 
and p 2* are 

pr = -e$(l - itj/(S + t,,)2) 

X exp iS + elo exp - if&, 

pf = e&(1 - ii/(6 + t,2)2) 
X exp iS + e20 exp - ihs2, (84) 
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where { = dS/dt, 

and 

C&i = &,(t - to) 

4 n2 ,o;* = - - 

MJ (t + &2) 

(7.2e22 - O.lSB). 

(85) 

Here e,, and e20 are included for the stabil- 
ity analysis. Since & % ks2, we find that 
the frequency 5 + &,, increases more rap- 
idly than 5 + (3,, if both are at some time 
negative. From (85) we find that the forced 
eccentricity e:2 increases more rapidly than 
e& if 6 + & < 0. Near the encounters (f + 
0), we find em = 0.0025, B = e=, and vf = 
+v; = $.P = 1?2/day. If we substitute these 
solutions for p;” and pij into the second- 
order equation for S*, we obtain 

(1 - K*) d$ = h-%,2 2 
J 

x 1 + 5a2 2 
( 

{(S.Oe,, 
2 > 

- 0.40B)el,, sin(S* + (3,,) - (14.4eD 

- O.l5B)e,, sin(S* + Gs2)}. (86) 

The parameter K* is given by 

K* = (0.0025/e,) 

x ((630ez2)3 + (560ezJ3) (87) 

and is positive if either ,$ + & < 0 or r + 
hs2 < 0 and le + c&~[ Q le + &,I. We find 
from (85), (87) that when e”;2 = l/630 that 5 
+ B,, = -0?002/day while e& - 0.01et2. 
This indicates that the interaction involving 
the two resonance variables JI;” and Jlz” very 
nearly decouple near each resonance and 
thus can be analyzed separately. 

The solution for the periodic variation 
SS* of the secularly increasing S* is 

&!3* -& 
x {(630e1,J(630et)’ sin(S* + &) 

- (560e2,)(560ef2)2 sin(S* + fGs2)}, (88) 

which is adequate if e,, 4 (1 - K*)/630 or 

e2,, Q (1 - K*)/560. The existence of non- 
zero free eccentricities corresponds to a 
libration of either I,@ or Jlz* if either e,, 4 ef2 
or e20 Q e&, respectively. The fact that v2 
and therefore 5 continue to tidally decrease 
even if either angle variable librates implies 
that K* continues to increase. As 1 - K” 
tends to vanish unimpeded by the tides, this 
solution eventually breaks down no matter 
how small we choose e,, or e20. This sug- 
gests that this interaction is unstable and 
that once 6s” - O(1) that the appropriate 
resonance variable ceases to librate and 
begins circulating. 

We shall use the Hamiltonian formalism 
developed in Section 3 to derive an esti- 
mate of the excited e,, associated with 
transition from libration to cirulation. The 
one-dimensional Hamiltonian in this case is 

H = -(Z + &~2)X” 

+ &/z,,x”~ + h,et cos Jlz*, (89) 

where h, = 12( 1 + 5a2M,/M,)/M,a22 and h, 
= 7 M,u,~ (M2/MJ)n22e23. The action varia- 
ble X canonically conjugate to e2* is re- 
lated to nt, nf, and e& by the relations 

nf =n 10 - 6x*/M,a12, 

ng = n20 + 15x”/M,~,~, 
*2 - 

e2 - e20 2 - 2x”/M2n2a22. (90) 

These relations can be verified by compar- 
ing the dynamical equations generated by 
the Hamiltonian (14), (89) with (80)-(83), 
omitting the contribution due to e,,. Again, 
let us consider the limit where the forced ez 
% e20. From a stability analysis, we find that 
the stationary center at $J; = 0 is unstable 
for a critical, forced ef which satisfies 

e 2c = (h1/hOL22)1’3 2: l/560. (91) 

From (89) we find that two solutions exist if 
ez = e2C at I,@ = 0. The first is the (unstable) 
stationary solution and the second is a 
periodic solution where I@ circulates. Eval- 
uating (89) in the limit where e; = e2= and 
e20 + e2c at q2 *=O,wefindthaty=x*/x;- 
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(ez/e2c)2 obeys the equation 

H = $hoezc4Lz2 

= hoezc4Lz2(-+y + 9” + Y”~ cos t+Qi. (92) 

The action integral J for this example is 

J = $ x”dJI;. (93) 

If we momentarily ignore the tidal damping 
of the free eccentricity, we can determine 
the amplitude of the excited e20 by evaluat- 
ing the action integral (92) at both transition 
and far past transition when 5 % 0. At 
start of circulation, J = 127r x,* . In the circu- 
lating case, the periodic component of x* is 
proportional to the forced ez while the con- 
stant part is proportional to e20. Once tran- 
sition into the circulating phase has oc- 
curred, the tidal torque continues to 
increase the frequency 5 and decrease ef. 
The action integral (93) asymtotically ap- 
proaches the time average value of x* times 
21~ as 5 + a. From (90) we find the excited 
e20 = (- 4~ (x” ) /it42n2u22)1’2 far past transi- 
tion. The action integral (93) can be evalu- 
ated explicitly at transition in the limit e20 
+ 0 prior to passage (Yoder, 1973, 1979a). 
We find 

e,,(excited) = 61’C2, = 0.0043. (94) 

The decrease in the forced eg as 5 increases 
is more rapid than the tidal damping of e20. 
In each case, passage through each reso- 
nance excites a free eccentricity that is 6112 
larger than the critical forced e, which 
causes the factor (1 - K*) to vanish in (88). 
IO’S free eccentricity elO, once !Vr begins 
circulating, is -0.0039 and is reduced to 
less than 1 x 10e5 in 4 x 105 Q1/fi years by 
tidal dissipation in 10 (68). Even though this 
excitation may have occurred only 2 x lo3 
Q, years ago, the remnant free e10 is well 
below the observational limit, --lo+. On 
the other hand, Europa’s e20 is -0.0043 
immediately after passage. The observed 
e 2. = 0.00009 may well be a remnant of this 
event. We find from (68) that the elapsed 
time necessary to tidally reduce e2,, is 13.9 
r2(e2) = 1.1 x 10’ Q2/‘* years. We can 
compare this damping time with the upper 

bound for the time since passage based on 
the three body libration amplitude. We iind 
Q,/f 5 2 x 10m4 Q,. This lower bound on 
Q2/f seems more plausible than the earlier 
estimate (69) and is consistent with the 
hypothesis that the three-body lock is rela- 
tively young and the Jovian Q is relatively 
small (-few x 105). 

The interaction involving the Ganyme- 
dan variable $s arises from terms in R 
which are third order in the eccentricities 
and second order in 6 V,. We estimate that 
passage in this case excites a free e30 - 
10m4. Since the observed e30 is considerably 
larger (-O.OOlS), we conclude that the ob- 
served Ganymedan eccentricity is most 
likely the tidal remnant of a primordially 
established e30. Still, we should point out 
that these subtle interactions involving the 
frequency 8 are sufficiently complex that 
we may have missed some contribution. 
which could account for the observed e30. 

Before the sequence of three-body reso- 
nances was approached, it is possible that 
the ratios of the semimajor axes of adjacent 
orbits were small enough (~0.48) that at 
least one pair of satellites was driven 
through a two-body resonance in which 
ni : nj = 3 : 1. Potentially three distinct 3 : 1 
encounters may have occurred in the dis- 
tant past. The first two involve the pairs Io- 
Europa and Europa-Ganymede. Since the 
tidal rate of change of the semimajor axis is 
a u-11’2 we find that either of these encoun- 
ters must have happened within the first 
billion years after planetary formation. The 
third candidate is Ganymede-Callisto for 
which the present ratio of semimajor axes is 
0.57. Since the tidal expansion of the three- 
body lock is the only mechanism which can 
substantially alter the ratio a3/a4, this last 
encounter could only have happened if the 
three-body lock is very old. 

The six resonance variables associated 
with this commensurability for the Io- 
Europa pair are X1 - 3A, + 2R,, A, - 3h2 + 
n,+&,A,-3X2+2&,X,- 3x,+ 2&,A1 
- 3A, + (3, + 02, and A1 - 3X2 + 2&, with 
relative strengths sin2Z1, sinZ,sinZ,, sin2Z2, 
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e2’, e1e2, and e12 respectively. The corre- 
sponding frequencies vanish in the same 
order as n, - 3n, is decreased by the tides, 
since the resonance induced motion of both 
fli and 6, are small compared to the fre- 
quency spacing (unlike the 2 : 1 resonance). 
The reasonably large frequency spacing 
compared to the libration frequency also 
ensures that the variables only weakly in- 
teract as one of the variables vanishes 
(undergoes transition into resonance), so 
the resonances associated with the 3: 1 
commensurability can be considered one at 
a time. 

Yoder (1973) has shown that capture of 
any of the two-body resonance variables 
into a liberating mode from a circulating 
mode depends on the value of the corre- 
sponding free eccentricity or free inclina- 
tion. For a free eccentricity or inclination 
below a critical value capture is certain, 
whereas capture is probabilistic otherwise 
and depends on the initial conditions as the 
resonance variable begins its last circula- 
tion before reversing its direction. An anal- 
ogous situation arises in the three-body 
resonance discussed above if we assume 
that s is initially positive and slowly de- 
creasing as the resonance is approached. 
That is, the system is initially circulating 
with some free eccentricity. 

The excited free eccentricity given by 
(94) now assumes the role of the critical 
eccentricity separating certain from proba- 
bilistic capture. If the free eccentricity is 
smaller than this critical value, capture of 
the three-body resonance from this ap- 
proach from positive values of $ is certain 
and probabilistic otherwise. 

Subsequent to capture of a resonance 
variable into libration the corresponding 
eccentricity or inclination is forced to larger 
values as tides drive ni - 3nj closer to exact 
commensurability (see Section 4). With 
these ideas we can infer the consequences 
of encounters with the 3: 1 resonances by 
the Galilean satellites. 

Table II contains estimates of the critical 
free eccentricities and inclination for the 

TABLE II 

CRITICAL INCLINATIONS I, AND ECCENTRICITIES e, 

FOR THE SIX 3: 1 TWO-BODY RESONANCE 

INTERAC~IONS~ 

Io-Europa Europa- 

Ganymede 

Ganymede- 

Callisto 

Z,,(Z,2) 0.0021 0.0064 0.0036 

Z,AZ,Z*) O.O021K, 00061K, 00034K, 

Z*,(Z,ZA 0.0026~,-’ o.O014K-’ 00033K,-’ 

k(Zz?) 0.0027 0.0014 0.00434 

e&5’) 0.0038 0.0020 0.0048 

e&eA 00067K,-’ 00035K,- 0.0083~,-’ 

e,,(e,eJ 0.0053K, 0.0156~, 0.0087~~ 

e&,*) 0.0020 0.0060 0.0034 

a If the free Z, 5 Z, or free e,, 5 e, then the capture 

probability P, = 1 for the appropriate interaction. The 

factors K1 = (Zzo/Z10)1’2 and K, = (e20/e10)1’2. The 

subscripts “1” and “2” refer to the inner and outer 

member of the pair, respectively. 

3: 1 resonance variables (Yoder, 1973). 
Two complementary estimates are obtained 
for the mixed-e- and mixed-Z-type reso- 
nances. Here the critical values for, say, Z1 
and e, are based on the assumption that Zz 
and e2 are relatively large, whereas Z1 and e, 
are assumed large when estimating the criti- 
cal values of Z2 and e2. Comparison of 
Tables I and II shows that the critical e’s 
and Z’s are of the same order as their 
present values. But the encounters (if they 
occurred) happened in the distant past, 
when the free-orbital eccentricities and in- 
clinations may have been substantially 
larger. We have seen in Section 4 that tidal 
friction within the satellites themselves is 
very efficient in damping the eccentricities 
of at least 10 and Europa but tidal damping 
of orbital inclinations is given by 

T(Z) = 37(e) (sin Z/sin E)~, (95) 

where E is the relative obliquity of the 
satellite spin axis to the orbit normal. The 
factor (sin Z/sin E)~ equals -500, 100, 100, 
and -10 for 10, Europa, Ganymede, and 
Callisto. These estimates were obtained 
using the hydrostatic value of the satellite’s 
.Z2 and C,, and the present values of the 
semimajor axis to determine the obliquities 
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in Cassini state 1 (see Peale, 1977). Except 
for 10, this eliminates satellite solid friction 
as a significant mechanism which tidally 
reduces the orbital inclinations. On the 
other hand, if any of the satellites had a 
large fluid core for a significant fraction of 
the age of the solar system, core-mantle 
friction might have plausibly reduced the 
satellite orbital inclinations. If core-mantle 
friction is not an important process, present 
values of Z are more nearly representative 
of primordial values, and we shall concen- 
trate on the Z-type interactions. 

Since the primordial inclination is uncer- 
tain, we can adopt a “plausible” upper 
bound of I0 5 0.01 so that we can proceed 
with estimates of the probability PC for cap- 
ture into libration (Yoder, 1973). Figure 1 is 
a graph of PC versus the lo/Z, for two 
distinct types of interactions. Curve A de- 
scribes the capture probability for the vari- 
able A, - 3& + 4 + &. The capture 
probability for the variables X1 - 3A, + 2fi2, 
and A, - 3A, + 2% are obtained from curve 
B. We find that the probability that the sat- 
ellite pairs IO-Europa, Europa-Ganymede 
and Ganymede-Callisto evaded capture 
into any one of the three possible Z-type 
locks is ~0.5, 50.2, and ~0.4, respec- 

0.0 2.0 3.0 4.0 

I /I 
0 c 

FIG. 1. Probability of capture for order 1 (curve A) 
and order 2 (curve B) type resonance interactions 
versus Z&ee)/Z,. 

tively, if we assume each Z(free) ~0.0 1 dur- 
ing the encounter. 

It seems probable that at least one of the 
three Z-type interactions should have been 
engaged for each 3: 1 commensurability. 
Once engaged, the lock tends to pump up 
the appropriate orbit inclination unimpeded 
by tidal friction in either the satellite or 
planet. It may be that the 3 : 1 Z-type locks 
become unstable for sufficiently large Z 
such that the resonance partners disengage. 
More study is required to resolve this possi- 
bility. Even if this occurs, the disengage- 
ment would result in the excitation of a free 
Z of the same order as the forced I. The fact 
that all Z(fiee) are now small and could not 
have been much larger in the past is offered 
as evidence that the ratios of the mean 
motions nl/nz, n2/n3, and n3/nq have al- 
ways been less than 3 and the correspond- 
ing (Y > 0.48. This limitation on the maxi- 
mum primordial spacing between the 
Galilean satellites is consistent with the 
observed spacing for both the planets and 
other satellite systems. 

6. RELAXATION HYPOTHESIS 

The tidal scenario for the origin of the 
Galilean satellite resonances presumes the 
existence of a strong tidal torque acting to 
expand IO’S orbit over time. We have ar- 
gued that the observed configuration was 
formed and is maintained by the competing 
forces arising from tidal dissipation in 10 
and Jupiter and the resonant gravitational 
interactions. However, there is no compel- 
ling observational evidence, as yet, that 
IO’S orbit is expanding or that a mechanism 
exists which accounts for significant tidal 
dissipation in Jupiter. The present state of 
affairs regarding these questions is dis- 
cussed in the following two sections. If the 
Jovian tidal torque is indeed small, then the 
Galilean system may not be in quasi-sta- 
tionary equilibrium but may be relaxing 
from a more tightly bound orbital con- 
figuration where v is closer to zero and 
the forced eccentricities are larger. 

A simple estimate of maximum energy 
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available from the relaxation of the three- 
body lock can be obtained from the change 

in the total orbital energy AE, = - 2 

EiAai/ai where Ei = t M,n,2a~ and i = 1, 1, 
3. Since tidal dissipation in any of the 
satellites conserves the sum of their orbital 
angular momenta .ZeT, the tidal change in 
the semimajor axes can be converted into a 
variation in the orbital eccentricities and the 
2: 1 frequency Y = n1 - 2n, = n, - 2n, 
using UT = 0. The result is 

AET = E,{O.56 (Au/nz) - 0.46Ae12 

- 0.31Aez2 - 1.22Aea2}, (96) 

where Aei2 = ei2 (initial) - et2 (final) and Au 
= Y (initial) - v (final). 

Reasonable upper bounds are e (initial) < 
0.1 and Au < 0?74/day. We find ET < 0.024 

E1 - 3 x 10% ergs. Even if this energy were 
uniformly dissipated over time, the upper 
bound on the tidal heating rate is 2 x 1019 
ergs/set. We shall argue here that a more 
reasonable upper bound on ET s 0.004 El. 

Recall that the Hamiltonian (12)-( 14) is a 
constant of the motion in the absence of 
dissipation. We can also verify that the 
condition that all the angle variables (16) 
are stationary (i.e., are constant) represents 
a local energy extreme. This is equivalent 
to the condition that the free eccentricities 
vanish. For small eccentricities and posi- 
tive Y, the stable libration centers are lo- 
cated at & = 0, c#+ = r, 6 = 0, and h = n. 
The variables +I and r& correspond to the 
perturbation of the “inner” by the “outer” 
satellite. The condition that C#J~ and & = 0 
means that pairwise conjunction occurs at 
“inner” satellites’ pericenter. The “outer” 
satellite variables 6 and +d = r, and mu- 
tual conjunction occurs at the outer satel- 
lites’ apocenter . 

In order to evaluate the hypothesis that 
the resonances are primordial and we are 
watching them decay due to dissipation in 
the satellites, the stability must be ascer- 
tained at the higher forced eccentricities 
inferred for the past. The current 

configuration of the satellites is almost a 
stationary solution in the sense that c$~, c$~, 
& are librating respectively about C& = 0, 
C& = P, and 6 = 0. Only & is circulating 
due to the fact that the current free eccen- 
tricity of Ganymede exceeds the forced 
eccentricity. However, our immediate pur- 
pose is to test the stability of the resonant 
configuration at higher forced eccentricities 
where the forced eccentricity of Ganymede 
may be sufficiently high to make +d a librat- 
ing variable. A test of the stability of the 
complete stationary solution is thereby ap- 
propriate. 

The stability of the stationary solutions 
can be determined by expanding the dy- 
namical equations about the stationary 
values of the variables. If we replace xi by 
xi0 + 6x, and C#J* by +io + 64, in (14) and 
expand to first order in the small variations 
6Xi and 6+, we obtain 

6ii = Him wm + Hmi 6X,, 

84, = Him 84 - Hi, 6X,, (97) 

where Him = S2H/&#@#+,,, H,, = 
62H/SxiSxmy and H,’ = 62H/S~,6c$~, eval- 
uated at c#+ = r#~*~. Summation over the 
repeated indices is understood. The mixed 
partials H,* = Him vanish if 4to = 0 or r. 
The time derivative of the && equation 
yields 

s& + M*, SC+, = 0, 

M,, = HuH1”‘. (98) 

If a solution of the form SC#J = 8$maxeLu’ is 
assumed, the frequencies w must satisfy the 
equation 

det (M - w21) = 0. (99) 

The various stationary positions are stable 
if the appropriate u2 as determined by (99) 
are positive definite. 

The evaluation of H” = R” in Mi, follows 
easily from (12). However, Ht, is consider- 
ably more complicated although much 
simplification of the complete expressions 
is possible. We can write 
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where from (17) we have, for example, 

&=?$-?&+!o!!$ 
1 aLlaL, 

2a2H &H aZH --- - 
+ ar,aL, ar,aLz + ar,2* 

From (7) the right-hand side of (100) can be 
expressed in terms of a H/au,, a2H/aa,aaj, 
aH/ae*, a2H/i3eiaej, and a2H/aa,aej. The 
evaluation of these last partial derivatives 
shows that all terms involving aR/aa,, 
a2R/aa,aa,, a2R/aa,ae, are smaller by fac- 
tors of at least ei2 than a2R/aTi2 and smaller 
by at least a factor of e, than a2R/ar,arj. AS 
every alaL* contains a/&*, we can there- 
fore neglect all aR/aLf. This elimination of 
alaa, in fact allowed the simplification used 
in Section 2, where RI2 = R,’ was assumed. 
The fact that aR12/aa, f aR,l/aa, is not 
relevant since these terms are relatively 
small. Finally, from the form of Ho (13), 
only d2Ho/aLt2 are nonzero. The only 
terms which need be kept in the expres- 
sions for Hl, ( 100) are a2Ho/aLi2, a2R /Wr2, 
and a2R /ar,ar, . 

The forms of M, are now determined but 
their numerical values require the station- 
ary values of ef. These can be determined 
from 4 = 0 at r&, r#+, 6, @a = 0,7r, 0,~ 
respectively or perhaps more directly from 
the condition &, = h2 = &,. The stationary 
values of the ei as a function of Y are given 
in Fig. 2. 

For the current values of the forced ec- 
centricities the eigenfrequencies obtained 
from (99) are or = W899/day, o, = 
0?785/day, o, = @749/day, and o, = 
O.l79”/day. The first three are essentially 
the frequencies of oscillation of the et about 
their stationary values (V + & with Y = 
0?74O/day) and the last is the libration fi-e- 
quency of the Laplace angle A1 - 3h, + 2X,, 
which corresponds to a period of 2011 days. 

The match of these eigenfrequencies to 
those obtained from theories first order in et 
shows that whether or not C#B, is circulating 
has little effect. The eigenfrequencies wr, 
02, o, decrease monotonically as v is de- 
creased (force el increased) and w1 de- 
creases monotonically after a maximum at 
e, = 0.0055. Fore, > 0.012, (e2 > 0.035, v 
< O? 14/day) oq2 < 0 and the Laplace libra- 
tion is unstable. Hence, for larger values of 
e, the condition v1 = V, can no longer be 
assumed and e, = 0.012 is an upper bound 
beyond which the current configuration 
cannot exist. In other words v1 = 0?14/day 
is as deep into the existing set of reso- 
nances that the system could have started if 
it had had a primordial origin. On the other 
hand, it may be possible to capture the 
system into the present configuration as it 
decays from some higher energy state. 

“= n, - 2n2 (degrees/&y) 

FIG. 2. The 2: 1 forced eccentricities of 10, Europa, 
and Ganymede versus Y for Y > 0. The solid part of 
each curve corresponds to stable three-body libration 
while the dashed line indicates instability. 
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We can determine the time of relaxation 
from this initial condition to the present 
configuration by adding the effects of tidal 
dissipation as a perturbation in the Hamil- 
tonian formalism involving the conjugate 
variables xi and & Equations (17) can be 
solved for the xt and the tidal contributions 
to u!x,/dt determined by the tidal variations 
in Lt and I’{ which follow from (3)-(7) and 
the relations dL/dt = -L(dn/dt)/(3n) and 
dI’/dt = -L(de2/dt)/2. We find 

dx, _ dr, _ aR dI’, ---_- 
dt dt a4, + dt,’ 

dra _ aR & _ _ + dL, 

dt dt dt a&’ 
dx, _ dFt _ aR 
-----9 dt dt && 

dx, _ dL, dT, dr, 
-------I dt dt, dt, dt, 

dx6 _ dLz + 2dr, + 2dr2 --- - 
dt dt, dt, x’ 

with 

dL, = !i$! [l - 7D,e,7, 
dt, 
drt _ 7LictDte, -- 
dt , 3 ’ 

where the subscript T indicates a variation 
due to tidal dissipation. In (102) we have 

(101) 

(102) 

neglected the constant coefficient of et2 
compared with Dt, and in (101) we have 
neglected the tidal effects on Ganymede as 
being negligibly small. Note that x5 and x6, 
formerly constants of the motion, are now 
time variable in the presence of the dissipa- 
tion. 

As the forced value of e, (or u) com- 
pletely specifies the remaining variables 
given the constraints of the resonances with 
damped librations, our goal is to find the 
tidal variation of either of these parameters. 
From (13) (7) and (17) 

aH” aH” 2aw L 
PC---- 

ax, aL, aL2 %I 

=- n, + 2n, - t,, 

and horn 

; (n, - 2n, + f&,) = 3 = 

and similar relations, we have 

dvi _ -- 
dt 

- d aH” -- 
dt ax, 

(103) 

wherei = 1 form = 1 or 2andi = 2form = 
3 or 4. 

If we assume the librations are com- 
pletely damped or, alternatively, we aver- 
age over libration periods, we have d&/dt 
= -aHlax* = 0. In addition, 

wh _ -- 
dt2 

0=-xH,$ 
1 

=T-H$- RUz. (104) 

From (103) and (104) 

wherei = lform = 1 or 2andi = 2form = 
3 or 4. 

From the discussion immediately follow- 
ing (100) it can be shown that R,, and R,, 
are negligibly small. Also with RI2 = R,, = 
d2R/aI’,aI’, and dI,/dt = - L*(deF/dt)/2 we 
have from (100) and (lOl), 

dvi Ll de12 
dt= -RnaTT 

- Rm2+$ff - R+$ (106) 

wherei= lform = lor2andi=2form = 
3 or 4 and et2 are understood to be the 
forced values. Since R, = R%, j = 1, 2, 4, 
the right-hand sides of (105) for i, m = 1, 2 
and i, m = 2, 3 are identical, and dv,/dt = 
dv,/dt, another condition for maintaining 
the resonance, follows from dL&/dt2 = 0 
and dG#+Jdt2 = 0. Equating the right-hand 
sides of the three independent forms of 
(106) provides two equations from which 
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From (107) we can write 

de,’ _ L, de12 -_ 
dt Xl2 L,T' 

k2 _ L, de12 -_ 
dt x13 -g Jj-Y (107) 

$ = [R,, + x12R12] + g. (109) 

where 

&& - && - R,& 
‘I2 = R22R44 - R12Rea + R,,R2, - R2,2’ 

RnRm - R,,R, + RnR, - Rl22 

'12 = R22R4 - R12R, - R12RM - RH2’ 

(108) 

In the two independent relations for 
dv/dt in (103), Hy, # Hi3, Hi5 and H& are 
not small and dx,/dt and dx,/dt appear 
explicitly. We can eliminate dxJdt = 
- (dLJdt)/2 - dT,/dt from these two equa- 
tions and obtain dv/dt in terms of dei2/dt 
and the tidal change in x5 and x6. Combining 
this result with (109) together with (101) and 
(102) yields 

de12 _ 

with R,, = R,, = 0 being used. 

dt 
-X[n,c,(l - 13Dle12) 

+ O.O94n.& 1 - 94Dzez2)], (110) 

where 

25 

x= 
0.646 

L,[R,, + x1242 + (1.134/M2az2) (1 + x12 + x12)1' 

(111) 

In ( 110) and (111) functions of H”, have been 
evaluated explicitly using a2H”/aLi2 = 
3/(M&) in (100) with a = 0.63 and M,/M, 
taken from Table I. Equation (1 IO) reduces 
essentially to the equivalent of (39) (with 
(d+/dt) = 0) when we restrict R to first- 
order terms in et, with de12/dt being ex- 
pressed in terms of dv,/dt from (26). 

Equation (110) can be integrated numeri- 
cally for the case where the torque from 
Jupiter vanishes (Q;a) in order to find the 
minimum time required for the system to 
relax from e, = 0.012 to the current e, = 
0.0041. Dissipation in Europa has only a 
modest effect since clDl = 0.03@~ and 
e,/e, < 3, so we find for the relaxation time 
( k, = 0.035) 

At = 3.4 x lo6 Q1/fi years. (112) 

With At = 4.6 x lo9 years Qlfi = 1400. 
This bound is comparable to that obtained 
by Peale and Greenberg (1980) even though 
the latter analysis incorrectly extended the 
theory linear in e, to values of ei where it is 

invalid. The reason for the near agreement 
is that the system spends most of the time 
near the smaller ei where the first- and 
third-order analyses converge. 

We can determine the total energy dissi- 
pated from (96) since Av and Aet2 are 
known. 

AE, s 4.1 x 10-3E, 

= 5.5 x 1035 ergs, (113) 

with nearly all of the energy being depos- 
ited in 10. On the other hand, the observa- 
tion of IO’S elevated interior temperatures 
(Morabito et al., 1979) and inferences that a 
considerable fraction may be melted (Peale 
et al., 1979a) means that tidal dissipation 
has surely exceeded the total energy input 
due to radioactive decay in 10 over the 4.6 
x log-year time span. Only in this way 
could we account for the drastic difference 
between the thermal state of IO and that of, 
say, the Moon. Radioactive element distri- 
butions from lunar samples and current 
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heat flow are folded into a model of lunar 
thermal history which allows estimates of 
primordial and current heating by radioac- 
tive decay (Cassen ef al., 1979). The cur- 
rent average heating rate estimated in this 
model is 6.9 x 10e8 erg g-l set-* with 2.6 x 

lo-’ erg g-l see-’ being the initial rate 4.6 x 

lo9 years ago (P. Cassen, private communi- 
cation, 1980). The same distribution of ra- 
dioactivity in 10 leads to a total heat input 
of 1.6 x 1O3s ergs over solar system history. 
About the same total heating would result if 
10 had the radioactive element content of 
carbonaceous chondrites and 2.1 x 1O36 
ergs would result from ordinary chondritic 
composition. These values exceed that in 
( 113) by a factor of 3 or 4, and we therefore 
infer that the tidal dissipation in 10 has been 
considerably larger than that necessary to 
relax the system from the most extreme 
primordial values of the parameters in the 
resonance to the current values in the ab- 
sence of any torques supplied by Jupiter. 

The only way this dissipation can be 
accommodated is for Jupiter to supply 
torque to retard the relaxation, otherwise 
the system would have relaxed to smaller 
eccentricities (larger V) than we now ob- 
serve. This same conclusion was reached 
by Peale and Greenberg (1980). Moreover, 
this latter analysis is valid for values of e, 
approaching the current value. Since the 
total relaxation time from a hypothesized 
deep primordial resonance is about the 
same for the two analyses involving first- or 
up to third-order terms in the eccentricity, 
we conclude with Peale and Greenberg that 
the current eccentricity of lo’s orbit is very 
close to the equilibrium value, where dv/dt 
vanishes whether or not the resonance 
configuration was primordial. The upper 
bound Q, 5 3.5 x lo6 (66) obtained earlier 
still applies. 

Therefore, even though the primordial 
origin of the existing resonance is not ruled 
out, the system cannot be stored deeper in 
this resonance for the age of the solar 
system in hopes of accommodating a larger 
QJ as suggested by Greenberg (1981). The 

observed high dissipation rate in 10 requires 
that Jupiter supply a significant torque to 
prevent the system from decaying too far in 
the age of the solar system. 

There is, however, another stable sta- 
tionary solution to (12)-( 14) which offers 
the possibility of longer storage times. This 
case occurs when v 4 0 with rj~~ = & = 6 
= n and h = 0 (Sinclair, 1975). Forced 
eccentricities as a function of negative v are 
shown in Fig. 3. The libration about &, 
becomes unstable when e, > 0.012 or v 2 
-OYO/day . If we use data from Fig. 3 in 
(96) we find that less negative v and larger ei 
corresponds to a state of lower total en- 
ergy. This means that dissipation within the 
satellites tends to drive the system toward 
the resonance whereas a torque from Jupi- 
ter drives v more negative and hence away 
from the resonance. If the Jupiter torque is 
negligibly small while the system is locked 
in resonance with v << 0, dissipation in the 
satellites would cause the system to fall 
deeper into the resonance. However, un- 
like the case for v > 0, the dissipation and 
hence the rate of evolution could be initially 
small since the ei would be small. If the 
system is to reach the current configuration 
fiom.this initial state it must pass through 

10-I 
8 

6 

4 / / ‘O/ , 
‘/ 

‘/ ‘0 ,‘, EUROPA 3 

-1.0 -0.8 -0.6 -0.4 -0.2 -0.0 

“= n, - 2n2 (degrees/dray) 

FIG. 3. The 2: 1 forced eccentricities of 10, Europa 
and Ganymede as a function of Y, where v < 0. 
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the instability which occurs when e, > 
0.012 and reassemble itself on the other 
side of the resonance with Y > @ 14/day and 
e, < 0.012. Whether or not this scenario is 
even possible requires a detailed analysis 
which is beyond the scope of this. paper. 
We must regard the scheme as highly im- 
probable in any case since the system must 
be precisely started with eccentricities 
large enough to ensure the equality of & 
and & and to guarantee that dissipation in 
the satellites is sufficient to dominate the 
evolution of V, but still as small as possible 
so the evolution does not accelerate too 
fast. This constraint suggests that the mini- 
mum initial value of v - -Y/day based on 
a maximum effective QJ = 1 x 10’ and Q1/fi 
= 100 appropriate to an initially cold 10. 
The upper bound on QJ is the equivalent for 
the present electromagnetic torque on IO. 
As e, increases, tidal heating of 10 is ex- 
pected to lead to core formation, thereby 
increasing fi and accelerating the increase 
in Y. From (96), the maximum available 
energy for this process is -0.02& = 3 x 

1O3s ergs or about twice that available from 
the decay of radioactive material within IO 
over a 4.6 x log-year time span. 

Passage through the instabilities for v 
near zero will also excite sizable free eccen- 
tricities of order 0.01 or greater in their 
orbits (Section 5). The relaxation time of 
the system to the present configuration 
from the instability point (112) would likely 
be no greater than lOa years for reasonable 
values of Q1/fi. But the damping times of 
free eccentricities shown in (68) (particu- 
larly for Europa) are too large to be com- 
patible with the relaxation time if it is as 
short as a few tens of millions of years. 

If current estimates of the flux of energy 
from 10 of 1000-2000 ergs/cm2 set (Matson 
et al., 1981; Sinton, 1981; Morrison and 
Telesco, 1980) are representative of the 
current rate of tidal dissipation, the effec- 
tive (Q&) = 3 to 6 leading to a decay time 
from (112) of only 9.4 x lo6 to 1.9 X 10’ 
years. The resonance would thus have just 
jumped the instability gap and settled into 

the current configuration if in fact its origin 
were primordial. Moreover, the rate of de- 
cay would mean iz, = 0.9 to 1.8 x 1O-22 
rad/sec2 (= 185 arcsec/Cy2 to 370 
arcsec/Cy2) and V, = 4.5 to 9 x 1O-23 
rad/sec2. The contraction of IO’S orbit 
would lead to eclipses of 10 being 25-50 set 
too soon after 100 years. In Section 8 we 
show that careful analysis of the old eclipse 
data should produce a tighter constaint on 
Z, which should allows us to discern 
whether the system is indeed relaxing or in 
a nearly equilibrium configuration. 

Given the improbability of the sequence 
of events necessary for long storage of the 
three satellites in the Laplace resonance 
with v < 0 before the current configuration 
appeared, even if this sequence is physi- 
cally possible, it seems that it should not 
have occurred. Storage with u > 0 is incom- 
patible with the observed high dissipation 
in 10 if there are no significant Jupiter 
torques. There appear therefore to be no 
compelling arguments showing that a pri- 
mordial origin of the orbital resonances can 
reduce the torques from Jupiter from those 
values which allow the assembly of the 
resonances and their subsequent evolution 
from initially random orbits. 

7. DISSIPATION IN JUPITER 

Tidal dissipation in Jupiter can be de- 
scribed by the following “solid-body” for- 
mula 

_ _ # kJ E n2a2 d& _ 
dt QJ MJ ( > % 5(aJ - n). (114) 

Here, kJ is the Jovian second harmonic 
potential Love number, Q the dissipation 
function, and @ the Jovian rotation rate. 
M, n , and a refer to the mass, mean angular 
velocity or mean motion, and semimajor 
axis of the tide-raising satellite. The torque 
N, on the satellite orbit equals 

N, = d+ (fiJ - n)-‘. (115) 

The planetary Q is related to the geometric 
phase lag S of the tide by Q-l = sin 26. 
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Also, Q is frequently defined as the ratio of 
the tidal strain energy divided by 27r times 
the energy dissipated per cycle. We see 
from (114) that the energy dissipation rate 
depends on both k, and Q,. It happens that 
k, has varied in different models of Jovian 
dissipation. The Love number k equals #for 
a homogeneous, incompressible liquid and 
this value was adopted by Goldreich and 
Soter (1966) in their study of dissipation. 
Either rigidity or radial density structure 
can substantially reduce this upper limit to 
k. Peale et al. (1979a) find k, = 0.5 by 
equating k to the “secular” Love number k, 
and using the formula Jz = k,fi2R3/3 GM 
which relates the second harmonic gravity 
coefficient to rotational distortion (cf. 
Munk and MacDonald, 1960). Gavrilov and 
Zharkov (1977) find that the bulk k, = 0.38 
from an explicit calculation of the effect of 
tides on Jupiter and this is the value 
adopted in this paper. The explicit equation 
relating dissipation and Q, is therefore 

dE,/dt = 1.34 x 1026Q,-1 ergs/set. (116) 

for the tide raised by 10. We can obtain 
lower bounds on Q, based on the tidal 
evolution of the three resonantly locked 
satellites using the expression for the total 
orbital angular momentum 

ZLpT = 2 Miniai2(1 - ei2)1’2 (117) 
i=l 

and the Jovian tidal torque (115). If we 
assume that the three-body resonance 
configuration has been maintained for 4.6 
by (i.e., al/a2 = a2/a3 = 0.63 and the 
eccentricities are constant), we find that the 
required Q, to tidally evolve 10 from just 
above synchronous orbit at a, - 2.4R, is 
-6.6 x 104. If the three-body lock is recent 
but the IO-Europa lock has similarly 
evolved, then Q, is -1.7 x 105. 

The Jovian tidal torque is not the only 
mechanism acting to expand IO’S orbit. An 
alternative mechanism involves the electro- 
magnetic interstion of IO with Jupiter’s 
magnetic field Z3, which not only expands 

IO’S orbit but also can potentially heat its 
interior. The relative motion of IO with 
respect to Jupiter’s rotating magnetic field 
generates a voltage drop of -400 kV across 
IO’S diameter. In the models of Piddington 
and Drake (1968) and Goldreich and Lyn- 
den-Bell (1969), current flows in two loops 
through or around 10, along opposite sides 
of the tube of force containing 10 to close in 
Jupiter’s ionosphere in the northern and 
southern hemispheres. The resulting torque 
from the J-x B force acting on 10 drives 10 
outward, J being current density in 10. The 
counterbalancing torque decreases Jupi- 
ter’s spin rate. However, because of Jupi- 
ter’s much greater spin angular momentum 
as compared to IO’S orbital angular momen- 
tum, this latter deceleration is minute. 
Goldreich and Lynden-Bell find that the 
electromagnetic torque NEMF acting on 10 is 
2: nZRJB.,a, where B, at IO’S distance = 
0.02 G. The original estimate from Voyager 
data on the current Z flowing through the 
northern loop of 5 x lo6 A (Ness et al., 
1979) has since been revised downward to 
-2.8 x IO6 A (Acuna et al., 1980). If the 
current flows through 10, the ohmic dissipa- 
tion in the interior must be less than 
dE/dtEMF = (i& - n) NEMF -2 x 10’9 
ergs/set. For comparison, a lower bound 
on tidal dissipation would be comparable to 
this upper bound on ohmic dissipation for a 
homogeneous 10 (fi = 1) of the highest 
reasonable rigidity (k, = 0.025) and Q, = 
100. Current radiogenic heating is esti- 
mated to be about 5 x 1018 ergs/set (Cas- 
sen et al., 1981). Colburn (1980) argues that 
electrical heating must be considerably 
smaller than this upper bound due to the 
relatively high conductivity of IO’S iono- 
sphere and low conductivity of the surface 
layers. Even with good conductivity 
through IO’S surface layers, only a fraction 
of the total power could be dissipated 
within 10. The recent models of Goertz 
(1980), Neubauer (1980), and Southwood et 
al. (1980) also lead to relatively little electri- 
cal dissipation within IO. 

The Jovian magnetic dipole is tilted - lo” 
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with respect to its spin axis giving rise to a 
periodic component in the magnetic field as 
seen by 10. Colburn also estimated the 
resulting electrical heating within 10 associ- 
ated with this periodic component of B, and 
found it to be negligible. 

Finally, the electromagnetic torque zEMF 
expands IO’S orbit by only -0.3% in 4.6 by 
while the lower bound on the orbital expan- 
sion set by the upper bound on the remnant 
libration amplitude is 0.7%. Thus the elec- 
tromagnetic interaction plays at most a 
minor role in either heating IO’S interior or 
tidally evolving the observed resonance 
locks as compared to the Jovian tidal 
torque. However, there seems to be some 
skepticism that tidal friction in Jupiter is 
significant based in part on Goldreich and 
Nicholson’s (1977) estimate of the effects of 
eddy viscosity. 

Goldreich and Soter (1966) originally sug- 
gested that dissipation in the major planets 
is confined to the upper atmosphere of 
depth 5 - IO3 km. Their model assumed 
that the major source of dissipation in- 
volved turbulent skin friction generated by 
the differential tidal velocity SZ;, of the light 
atmosphere overlaying a heavier liquid in- 
terior. The turbulent stress is -0.002 p Ia?t[ 
Si; and is independent of the molecular 
viscosity if the Reynold’s number is 
sufficiently large. They estimated that S ut - 
(Q - n)R&c;, where n is the equilibrium 
tide height = 3 (M/M,)(RJ4/a3). The actual 
tidal velocity depends on the differential 
equilibrium tide height between R, - 5 and 
R, (Houben, private communication, 1980). 
If the atmosphere is relatively light com- 
pared to the interior then 7 - $ (M/M,) (RJ4 
- (R, - ()‘)/a” and the dissipation rate 
+-‘;,lSZt2 is both much weaker than 
Goldreich and Soter’s original estimate and 
is also insensitive to the exact depth 5. 

Hubbard (1968) argued that a solid-liquid 
interface, if it exists, occurs at a depth of 
- 1.5 x lo4 km and would involve the 
transformation of hydrogen to its metallic 
phase. Hubbard calculated the shear asso- 
ciated with a quasi-laminar tidal flow im- 

bedded in a convecting fluid whose turbu- 
lent motions are presumably driven by 
internal heat sources or gravitational con- 
traction. Dissipation is proportional to a 
turbulent “eddy viscosity” related to the 
internal convection. Hubbard obtained Q, 
- 5 x 10s. Goldreich and Nicholson (1977) 
reconsidered Hubbard’s calculations and 
argued that he overestimated the turbulent 
viscosity by a factor of 10’. 

It may be that Goldreich and Soter’s 
original model in which tidal energy is 
dissipated in a turbulent boundary layer 
may be closer to the truth if Jupiter is 
sufficiently stratified. The thermal energy 
radiated per unit area by Jupiter and which 
drives internal convection is - 104 
ergs/cm2-set or -5 X 1O24 ergs/set overall 
(Chase et al., 1974). It is possible that the 
organized convection that is obvious in the 
upper Jovian atmosphere is also operating 
at one or more internal boundary layers. If 
the typical convective boundary layer shear 
velocity is See and 8; 9 6<, then the tidal 
stress is a~Si#~t. Dissipation is =lS&~Si&2 
and would require Si?’ - 10 m/set in a 1.5 
x 104-km-deep atmosphere to dissipate - 
1020 ergs/set if p - 1 g/cm3 at depth 5. Of 
course, rigorous analysis may reveal that 
this estimate, like that of Goldreich and 
Soter, is grossly inflated. However, there 
exist other models which predict as much 
dissipation. 

Houben and Gierasch (unpublished) have 
estimated the amount of tidal energy dissi- 
pated in an isothermal Jovian atmosphere. 
They find that the tide raised by 10 can 
dissipate - 1018 ergs/set through the excita- 
tion of inertial gravity waves which propa- 
gate radially upward. Dermott (1979) ar- 
gues that significant tidal dissipation can 
occur in the small rocky cores of the major 
planet if their cores are solid. Dermott is 
unable to resolve whether Jupiter’s core is 
solid given our uncertain knowledge of the 
melting point at core pressure. Assuming 
that it is solid, he estimates -2 x 1020 
ergs/set could be dissipated within the 
Jovian core three times the Earth’s volume 
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given a plausible Q - 30 within the core. 
This core Q is equivalent to a bulk QJ of -7 
x 105 which lies between the bounds on QJ 
established by the dynamical analysis in 
Sections 4 and 6. Finally Stevenson (1980) 
has proposed that tides raised on Jupiter by 
10 induce a phase transition at the molecu- 
lar-metallic hydrogen phase boundary. A 
hysteresis depending on thermal diffusivity 
during the periodic phase adjustments can 
lead to sufficient dissipation of tidal energy 
for an effective QJ below the upper bound 
established in Sections 4 and 6 provided the 
phase transition is first order. 

None of the models yielding relatively 
high dissipation of tidal energy (low QJ> can 
account for a dissipation in Jupiter as high 
as 3 x 1021 ergs/set inferred from the 
Ionian heat flow estimates of Matson et al., 
1981, Sinton ( 1981), and Morrison and Te- 
lesco (1980) and the condition that e, is the 
equilibrium value. It thus appears that theo- 
retical estimates of the dissipation of tidal 
energy in Jupiter may be sufficient to ac- 
commodate the assembly of the resonances 
by differential tidal expansion of the orbits, 
although none of the estimates is very se- 
cure. The much higher dissipation in Jupi- 
ter implied by the high heat flux measure- 
ments for 10 remains an enigma unless the 
measured values are not representatives of 
the time average. 

8. HEAT FLOW AND ri,o 

The plume volcanoes are the most ob- 
vious manifestations of internal activity on 
10, but the thermal anomalies or “hot- 
spots” appear to be radiating more energy. 
Matson et al. (1981) estimate that IO’S heat 
flow is 48 + 24 Fal/cm2/sec. This implies 
that the net heat flow is -8 x 1020 erg/set 
and from (2), Q1 - 3fi. Their estimate is 
based on the cooling and heating curves 
obtained from measurements of the infra- 
red brightness of 10 at wavelengths 8.4, 
10.6, and 20 pm as 10 moves in and out of 
Jupiter’s shadow. Their model assumes 
that most of the radiation is emitted from 
hotspots at a typical temperature of 200°K 

and covering - l-2% of IO’S surface. Sinton 
(1981) obtains similar results for the heat 
flow (- 1800 + 600 ergs/cm3 using similar 
data which also includes recent measure- 
ments at 2.2, 3.8, and 4.8 pm. Sinton’s 
model differs from Matson et al in that he 
introduces two sets of hot spots at tempera- 
tures of 600 and 300°K with fractional areas 
of 2 x 10” and 4 x 10e3, respectively. The 
measurements at different wavelengths 
used by Matson et al. and Sinton were not 
taken simultaneously and are not necessar- 
ily from the same hemisphere. This means 
that the temperature distribution over the 
surface was most likely unique for each 
observation given the observed high vari- 
ability of thermal activity (Smith et al., 
1979). These derivations of heat flow may 
therefore be revised by more appropriate 
data sets. However, Pearl and Sinton ( 198 1) 
obtain a similar estimate for the Ionian heat 
flow based on a preliminary analysis of the 
Voyager flyby IRIS data, and Morrison and 
Telesco (1980) find a heat flow of 1500 ? 
300 ergs/cm2-set by obtaining a complete 
spectrum from 3 to 30 pm, while 10 was in 
eclipse thereby eliminating most of the am- 
biguities of the earlier techniques. 

If we now assume this last measurement 
of the heat flux to represent the current rate 
of tidal dissipation in 10 and that the system 
orbits are expanding in a quasi-stationary 
configuration (e, = equilibrium value), Q., 
= 4 x lo4 and IO’S orbit is expanding at a 
rate of 2.4 cm/year. This value of QJ is 
almost a factor of 2 below the lower bound 
imposed by IO’S proximity to Jupiter after 
4.6 x IO9 years of tidal evolution in the 
Laplace resonance, so it cannot represent a 
time-averaged value. 

The implied secular acceleration of 10 is 
n, = 220 arcsec/Cym2 or about 10 times that 
of the Moon. This rate of expansion implies 
that IO’S orbital position falls behind by 
alAy = 3 a,ri,At2 = 230 km (At/Cy)2. From 
IO’S orbital velocity -17.3 km/set, we can 
deduce that the predicted time discrepancy 
AT = AA,/n, of eclipse times separated by 
time At is -13.3 set (At/Cy)2. Goldstein 
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(1975) finds Ar(Af = 2.4 Cy) = 15 + 39 set 
based on a comparison of elipse timings 
which span -2.4 Cy. The earliest observa- 
tions were made by the 17th century astron- 
omers Picard and Roemer during the years 
1668-1690. The individual timings appear 
to be accurate to 30-60 sec. Goldstein 
compared this data with Innes’ observa- 
tions made during the period 1905-1925. 
Goldstein placed an upper bound on the 
tidal change in the timing of IO’S eclipses of 
- 100 set over 2+ Cy which is marginally 
consistent with the acceleration inferred 
from estimates of IO’S heat flow. Gold- 
stein’s upper bound is -24 times the for- 
mal uncertainty of his estimate of the tidal 
change in eclipse timings and in part 
reflects the widely disparate estimates of 
the lunar acceleration that were then cur- 
rent in the literature. 

It happens that the uncertainty in the 
lunar acceleration can significantly affect 
clock corrections which must be applied to 
the old data. The clocks used by the 17th 
century astronomers were apparently peri- 
odically reset using high noon as a bench- 
mark. Thus their timings are based on 
Earth rotation and hence measure solar or 
Universal Time (i.e., UTl). The Earth is far 
corn a perfectly uniform clock. The Earth 
rotation rate is affected by aperiodic 
sources such as weather, ocean currents, 
convection in the fluid core, etc. in addition 
to the uniform tidal deceleration. The con- 
version from UT1 to a more uniform clock 
based on the orbital motion of the Moon 
involves an additional data set of timings 
such as lunar occultations taken during the 
same time span as the Galilean satellite 
observations. 

Goldstein uses Brouwer’s (1952) estimate 
of the clock correction AUTl which must 
be added to the old observations. Brouwer 
relies on Spencer-Jones’ (1939) estimate of 
lunar acceleration: ri, = - 22’!4/Cy*. There 
has been some controversy over the last 
decade concerning this value. Some “re- 
cent” determinations have been as high as 
--40”/Cy2 (e.g., Oesterwinter and Cohen, 

1972). The present consensus is that the 
Spencer-Jones measurement is actually 
closer to the actual value although it may be 
a little low. Williams et al. (1979) find fi, = 
-23.8 + 4”/Cyz based on an analysis of 
lunar laser ranging data. Morrison and 
Ward (1975) find hi, = - 26.0 + 1’/Cy2 from 
classical astronomical observations of the 
moon and planets. The moon moves CY!54 in 
longitude in 1 set of time. Therefore a 
decrease of -4”/Cy2 in lunar acceleration 
results in a change in UT1 -30 set over 3 

CY. 
The quality of these 3-Cy-old timings is 

reflected in the fact that the error in the 
lunar tidal acceleration is a major source of 
error in estimating the secular acceleration 
of 10 and the other Galilean satellites. 
Lieske (private communication, 1980) has 
reexamined Picard and Roemer’s observa- 
tions by comparing the observed timings 
with those obtained Tom his semianalytic 
theory (Lieske, 1980). This theory does not 
presently allow for the tidal variation of the 
orbital periods of these satellites. Hence, 
any discrepancy in the observed minus 
calculated timings may be the result of the 
orbital expansion. His preliminary results 
confirm Goldstein’s findings. Lieske be- 
lieves that a more realistic upper bound on 
the differential change in timing of IO’S 
eclipses over 3 Cy is - +50 sec. This 
corresponds to Iri,l 5 90 arcsec/Cy2 and 
Q1/f z 10 for an equilibrium configuration. 
If Lieske is correct, then either the heat 
flow measurements are in error or the Io- 
nian heat flow is episodic on a time scale 
~10 years. Furthermore, the same bound 
implies that Q1/f, 2 30 if the system is still 
relaxing, unimpeded by either the Jovian 
tidal or electromagnetic torques. As men- 
tioned earlier, the heat flow estimates ap- 
pear to be inconsistent with a constant rate 
of tidal dissipation within Jupiter over the 
past 4.6 by. That is, if we integrate the 
Jovian system backwards in time, assume 
that the three-body lock is primordial and 
QJ = constant, we find that 10 is just above 
synchronous orbit -2 by ago. A similar 
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time scale problem arises when we attempt 
to integrate the lunar orbit backward in 
time assuming that the relative rate of tidal 
dissipation in the Earth is constant. The 
conventional wisdom is that since the 
oceans are the major source of tidal dissipa- 
tion, oceanic dissipation could have been 
considerably smaller in the past due to a 
different configuration of the continents 
(Brosche and Sundermann, 1977). It is not 
clear that an increase in the primordial QJ 
of Jupiter can be similarly invoked to ac- 
commodate the current heat flux measure- 
ments for 10. 

Our estimate (61) of age of formation of 
the three-body lock was based on the ques- 
tionable interpretation of the observed li- 
bration amplitude 4, = 0?066 (Lieske, 
1980) as a tidally reduced remnant. A more 
reliable estimate can be deduced from the 
secular acceleration of the 2 : 1 frequency i, 
= hi, - 2&. If c#+, = UX66 and e,, = 0.9.5& 
we find from (37), (66) that V, = O.l4ri,. 
This value may be too small to be observed, 
given the accuracy of the data. Still, the 
clock corrections for nearly simultaneous 
astrometric observations of both satellites 
tend to cancel, improving the relative accu- 
racy of this measurement of iz,. The relaxa- 
tion hypothesis predicts that ir, = 0.5 ri, and 
constraints on til may be a more powerful 
test of whether the system is still relaxing 
or is nearly in equilibrium. 

9. CONCLUDING REMARKS 

We have described in considerable detail 
the effect of dissipative tides in Jupiter and 
its satellites on the orbital evolution of the 
Galilean system. The accurate determina- 
tion of IO’S heat flow and secular accelera- 
tion will pose important constraints on both 
the scale of tidal expansion of the three 
orbits and the total heat input which has 
marked 10 as the most geologically active 
satellite in the solar system. The tidal sce- 
nario predicts a certain relationship be- 
tween these two measurements if both are 
constant in time. 

We have considered two different models 

of resonance formation. The most plausible 
sequence of events is in four stages. (1) All 
three satellites are in orbits far from either 
the 2: 1 commensurabilities or the three- 
body lock. The tide raised on 10 quickly 
damps down the free eccentricity on a time 
scale < 105 Q1 year. Only modest tidal heat- 
ing in 10 occurs. (2) The dissipative tide 
raised on Jupiter by 10 is dominant and 
causes IO’S orbit to spiral outward. No 
significant tidal heating occurs. 10 ap- 
proaches the 2: 1 commensurability with 
Europa in stage (3), where IO’S forced ec- 
centricity rapidly increases to the critical 
value - 1 /( 35 D)1’2 - 0.0026. Thereafter the 
resonant interaction forces the orbits of 10 
and Europa to expand together such that 
al/a2 = 0.63 is maintained. Tidal heating 
probably leads to the formation of a fluid 
core. Finally, (4) Europa approaches the 
2: 1 commensurability with Ganymede but 
instead of dissipation in Europa repelling 
Ganymede we find that 10 must work even 
harder using the three-body resonance to 
transfer angular momentum from Europa to 
Ganymede’s orbit. We again rapidly reach 
a steady state as e, approaches l/( 13 D,)1’2. 
The high dissipation of tidal energy in 10 is 
critical for the rapid evolution within the 
resonances. The assumption that the orbital 
spacings in the semimajor axes ratio (Y were 
initially less than 0.63 (but greater than 
0.48) implies that the Jovian torque must be 
sufficiently strong to push these satellites 
into the resonance locks. If the original 
value of LY were say 10% less than the 
current value, the upper bound on QJ re- 
quired to drive the satellites to their present 
configuration is -4 x 105. No existing 
model of Jovian dissipation suggests that QJ 
is as small as 4 x lo4 as suggested by the 
heat flow measurements of Matson et al. 
(1981), Sinton (1981) and Morrison and 
Telesco (1980). 

The second model assumed that estab- 
lishment of the resonance locks was con- 
temporaneous with satellite formation. We 
considered here the possibility that the 
original orbital configuration was initially 
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more tightly bound and then relaxed due to G 
dissipation in 10 only. We found that if the h,,, h, 
system is still relaxing, Q1 z 1400, and that Ho 
the tidal heating of 10 would be less than H 
one-half the expected radiogenic rate of -6 Z 
x lo’* ergs/set. The conclusion is that J 
either an electrical or tidal torque from ki 
Jupiter must prevent the system from relax- Ki 
ing unless the resonance “jumped the gap” 
from negative to positive v within the last 
lo’-lOa years. The estimated torque from J’ 

L, r, 2 
2 

x 5 forces is equivalent to a tidal torque MJ 
with QJ - 7 x lo6 and Q1 - 600 if the kfi 
system is in equilibrium. The heat flow M 
measurements suggest that Q1 - 3 and its 
although this may be in error, estimates of 
the energy associated with other processes 

hi, 
NJ 

such as the volcanic activity and the resur- i&r 
facing rate require power > 10lg ergs/set or p, 4 
Q1 < 200 to drive them. Primordial reso- PC 
nance formation is attractive in that it maxi- QJ 
mizes the tidal energy budget for 10. On the Qt 
other hand, we found no compelling argu- r, 
ments showing that such an origin would R, 
allow QJ to be larger than the upper bound Ri 
which allows the resonance assembly from R( 
initially random orbits. S 

Determination of the secular acceleration z, 
of IO’S mean motion would yield QJ and 21 
determine whether or not the current heat au, 
flux from 10 is episodic. 8% 

af 
Ai 

WW 
BJ 
C nmhk 
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APPENDIX: SYMBOLS 

Semimajor axis of ith satellite 
Three-body resonance 
coefficients 
Laplace coefficients 
Jovian magnetic field 
Coefficients in expansion of RI2 
Ratio of satellite to Jupiter tidal 
strength 
Eccentricity 
Free eccentricity. 
Forced e of ith due to jth satellite 
Equilibrium value of e,, 
Energy 
Dissipation enhancement factor 
Surface gravity 
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Gravitational constant 
Constants defined following (89) 
Bra-order Hamiltonian 
Hamiltonian 
Inclination, current 
Action, current density 
Satellite Love number 
Constants defined in (31), (38), 
(87) 
Poincare action variables 
Orbital angular momentum 
Jupiter mass 
Satellite mass 
Matrix defined in (98) 
Satellite mean motion 
Lunar tidal acceleration 
Jovian tidal torque 
Jovian electromagnetic torque 
Poincare eccentric variables 
Capture probability 
Jupiter dissipation factor 
Satellite dissipation factor 
Satellite orbital distance 
Jupiter radius 
Satellite radius 
Disturbing function 
2x, - 5h, + 2A, 
True anomaly 
Velocity 
Differential tidal velocity 
Shear velocity 
A, - 2A, 
A, - 2As 
Generalized canonical variables 
Function defined in (111) 
Z2Jezl 

ailaj 

n, - 2n, + (3,1 
Phase lag 
Distance of separation 
Satellite obliquity 
Jovian atmospheric depth 
Equilibrium tide height 
(~201w’2 

(e20/e10Y2 

Satellite mean longitude 
Rigidity 
4 - 2n, 
n, - 2n, 
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2v, - v, 
density 
Coefficient of 4 term in (40) 
Tidal damping time scale for e 
Tidal damping time scale for Z 
Laplace resonance variable 
Tidal acceleration of 4 
Libration amplitude of 4 
Coefficients defined in (108) 
s + o* 
Three-body libration frequency 
Orbital pericenter longitude 
Secular motion of pericenter 
Longitude of ascending node 
Jovian rotation rate 
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