DVOJHVĚZDY

Petr Harmanec, Pavel Mayer * & Petr Zasche
Astronomický ústav Univerzity Karlovy

Verze 10 24. března 2021

Obsah

1 Obecně o dvojhvězdách 4
 1.1 Proč studovat dvojhvězdy a zdroje informací o nich .. 4
 1.2 Pojem dvojhvězdy a rozsah fyzikálních vlastností .. 6
 1.3 Rocheův model .. 7
 1.4 Klasifikace dvojhvězd ... 12
 1.4.1 Klasifikace podle metody pozorování .. 12
 1.4.2 Klasifikace podle dynamické stability .. 15

2 Určování kvantitativních vlastností dvojhvězd a víceválcových soustav 15
 2.1 Úvodní úvahy .. 15
 2.2 Určování okamžiků minim zákrytové proměnné či jiných referenčních bodů na světelné či jiné fázové křivce: .. 17
 2.2.1 Kwee-van Woerdenova metoda a její zobecnění ... 18
 2.3 O−C diagramy a změna oběžných period dvojhvězd ... 20
 2.4 Určování elementů spektroskopických dvojhvězd ... 23
 2.4.1 Odhad velké poloosy oběžné dráhy dvojhvězdy ... 23
 2.4.2 Případ, kdy pozorujeme obě spektra ... 23
 2.4.3 Případ, kdy pozorujeme pouze jedno spektrum .. 26
 2.4.4 Hudba budoucnosti .. 28
 2.4.5 Lucyho a Sweeneyho test, zda je malá výstřednost dráhy reálná 28
 2.5 Určování elementů zákrytových dvojhvězd .. 30
 2.5.1 Zákryty v kruhové dráze při sklonu 90° .. 30
 2.5.2 Úplné zákryty při sklonu menším než 90° ... 30
 2.5.3 Okrajové ztemnění .. 33
 2.6 Periodické změny oběžné peridy .. 36
 2.6.1 Efekt rozdílné dráhy světla ... 37
 2.6.2 Dynamické efekty ... 40
 2.6.3 Rotace přímky apsid .. 44
 2.7 Neperiodické změny peridy .. 49
 2.8 Určování elementů vizuálních dvojhvězd .. 49
 2.9 Vícenásobné soustavy .. 51

*Dr. Mayer zemřel na své 86. narozeniny 7.11.2018
3 Metody určování radiálních rychlostí, profilů spektrálních čar jednotlivých složek a dráhových elementů pomocí digitalizovaných spektreů

3.1 Klasická měření na fotografických spektrech ... 57
3.2 Analogový spektrometr .. 57
3.3 Základní úvahy o elektronických spektrech .. 58
3.4 Porovnání profilů čar s Gaussovými funkcemi ... 60
3.5 Něco matematiky na připomenutí .. 60
3.6 Radiální rychlosti s použitím kroskorelační funkce ... 62
3.7 Určování radiálních rychlostí pomocí rozšiřovací funkce 64
3.8 Dopplerovská tomografie ... 65
3.9 Oddělení spektre individuálních složek (spectra disentangling) 65
3.10 Programy na řešení křivek radiálních rychlostí a světelných křivek
 3.10.1 W oodův program WINK .. 69
 3.10.2 Program WD Wilsona a Devinneyho .. 69
 3.10.3 Programy PHOEBE 1 a PHOEBE 2 ... 69
 3.10.4 Program BINSYN A.P. Linnella and I. Hubeneho ... 70
 3.10.5 Program SPEL .. 71
 3.10.6 Program FOTEL .. 71
 3.10.7 Některé další programy .. 71
 3.10.8 Na co je třeba při řešení dávat pozor .. 72

4 Vlastnosti a vývoj dvojhvězd

4.1 Statistiky dvojhvězd a vícečlených systémů ... 73
4.2 Formy přenosu a ztráty hmoty ve dvojhvězdách .. 74
4.3 Cirkumstelární a akreční disky ... 78
4.4 Dynamické jevy ve dvojhvězdách, cirkularizace a synchronizace 81

5 Dvojhvězdy s komplikacemi

5.1 Falešná výstřednost dráhy z křivek radiálních rychlostí .. 84
 5.1.1 Barrův jev ... 86
 5.1.2 Alternativní Barrův jev ... 86
 5.1.3 Vliv slapové deformace tvaru hvězdy ... 88
5.2 Nesprávně určená amplituda křivky radiálních rychlostí .. 88
 5.2.1 Vliv průmětu plynového proudu ... 88
 5.2.2 Chybná amplituda křivky radiálních rychlostí v důsledku fázově vázaných V/R změn dvojitých emisních čar z disku kolem jedné ze složek .. 90
 5.2.3 Chybné amplitudy křivek radiálních rychlostí způsobené nízkou rozlišovací schopností nebo blendováním čar ... 92
 5.2.4 Chybné amplitudy křivek radiálních rychlostí z absorpčních čar pocházejících z obálky kolem celé dvojhvězdy .. 94
5.3 Vliv plynového obalu kolem jedné ze složek na pozorované změny jasnosti soustavy .. 94
5.4 Jak si lze s některými problémy poradit .. 95

6 Různé konkrétní typy dvojhvězd

6.1 Dvojhvězdy typu Algol ... 97
6.2 Dvojhvězdy s hvězdou se závojem .. 98
 6.2.1 Symbiotické dvojhvězdy ... 98
6.3 Dvojhvězdy s veleobry
 6.3.1 Hvězdy typu ζ Aurigae a VV Cephei ... 100
1 Obecně o dvojhvězdách

1.1 Proč studovat dvojhvězdy a zdroje informací o nich

Dvojhvězdami se obvykle nazývají dvojice hvězd, které jsou k sobě v prostoru gravitačně vázány a obíhají kolem společného těžiště. Jak si v tomto textu vysvětlíme podrobněji, studium dvojhvězd a zvláštností jejich vzájemného ovlivňování, které může ovlivnit i vývoj jejich složek, je zajímavé samo o sobě. Dvojhvězdy jsou však užitečné pro astrofyziku obecně. V řadě případů totiž představují unikátní fyzikální laboratoře a s jejich pomocí lze dosud nejpřesněji určit základní fyzikální vlastnosti hvězd jako jsou hmotnosti, poloměry či zářivé výkony. Pomocí dvojhvězd lze zpřesňovat i základní škálu vzdáleností a kalibrovat jiné metody určování vzdáleností. Dnes se díky rostoucí výkonnosti velkých optických dalekohledů tato možnost stále více aplikuje i na blízké cizí galaxie.

Studium dvojhvězd má dlouhou tradici a v Mezinárodní astronomické unii (dále IAU dle anglického International Astronomical Union) až do roku 2015 existovaly dokonce dvě různé komise, které se jejich výzkumu věnovaly:

komise 26 Dvojhvězdy a vícenásobné soustavy (Double and Multiple Stars)

a

komise 42 Těsné dvojhvězdy (Close Binaries).

Na Valném shromáždění IAU roku 2015 byla schválena rozsáhlá reorganizace celé organizační struktury IAU, byly vytvořeny tzv. divize a pod jejich působností vznikly nové, často větší komise. Dvojhvězdy nyní patří pod divizi G Hvězdy a hvězdná fyzika (Stars and Stellar Physics) a nová komise G1 s názvem Dvojhvězdy a vícenásobné hvězdné soustavy (Binary and Multiple Star Systems) vznikla spojením dřívějších komisi 26 a 42. Webová stránka divize G je https://www.iau.org/science/scientific_bodies/divisions/G/

Pro každou hvězdu si lze vyhledat řadu užitečných informací o existujících pozorováních a o publikovanéliteratuře na webu Centra astronomických dat na univerzitě ve Strasbourgu, které původně založili manželé Jaschekovi.

http://simbad.u-strasbg.fr/simbad/sim-fid
Obecné vyhledávání publikovaných článků pak umožňuje ADS/NASA systém, buď podle autora či autorů práce

http://adsabs.harvard.edu/abstract_service.html
nebo podle citace práce
http://adsabs.harvard.edu/bib_abs.html.

Velmi užitečný je také odkaz na starší publikace různých observatoří a pracoviště, které v hlavním systému nejsou dostupné. Tuto historickou literaturu lze hledat na adrese
http://adsabs.harvard.edu/historical.html.

http://keplerEBs.villanova.edu
si lze prohlížet nejen samotný katalog, ale i získané světelné křivky.

Od dubna 2018 získává velmi přesnou fotometrii další astronomická družice: TESS (Transiting Exoplanet Survey Satellite).

Díky fotometrickým přehlídkám oblohy bylo rovněž objeveno velké množství zákrytových dvojhvězd v Magellanových mračnech. I tyto přehlídky byly zpravidla motivovány primárně jinými záměry, než je studium a objevování nových dvojhvězd.

Katalog z přehlídky MACHO (The Massive Compact Halo Object Project) je k dispozici na webové adrese
a katalog proměnných hvězd objevených v projektu OGLE (The Optical Gravitational Lensing Experiment) na adrese
http://ogledb.astrouw.edu.pl/ogle/CVS/.

Určitým problémem je ovšem to, že vzhledem k obvyklé malé jasnosti nově objevených systémů lze jejich soustavnou spektroskopii získávat většinou jen s pomocí největších současných optických dalekohledů. Přesto ale již byla celá řada podrobných studií konkrétních zajímavých soustav publikována.

Fotometrická, spektroskopická i další pozorování získaná astronomickými družicemi jsou systematicky archivována v databázi MAST (Barbara A. Mikulski Archive for Space Telescopes) na webové adrese
https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html,

kde jsou volně dostupná. Je ovšem třeba upozornit na to, že dobrá redukce družicové fotometrie není vždy jednoduchá a nulový bod přístrojů není dostatečně monitorován, takže se často ztrácí informace o proměnnosti objektů na delších časových škálách.
1.2 Pojem dvojhvězdy a rozsah fyzikálních vlastností

Jak již bylo řečeno, dvojhvězdu nazýváme dvojici hvězd, které jsou k sobě gravitačně vázány a obíhají kolem společného těžiště po eliptické nebo kruhové dráze. Hvězdám, které takovou dvojici tvoří, říkáme složky dvojhvězdy. Pojmem **primární složka** nebo jednoduše **primár** se obvykle označuje jasnější z obou hvězd. V teoretických úváhách se však označuje tímto pojmem hvězda hmotnější. Její partnere se pak říká **sekundární složka** nebo **sekundár**.

Někdy jsou na obloze pozorovány v těsné blízkosti u sebe dvě hvězdy, pro něž však podrobnější studium ukáže, že jde o dvě tělesa ve zcela různých vzdálenostech od nás a nijak spolu nesouvisejících. Těm se říká **optické dvojhvězdy**. Z hlediska našeho výkladu jsou nezajímavé a za dvojhvězdy je nebudeme považovat.

Ačkoliv dosavadní znalosti musíme stále pokládat za značně neúplné, je zřejmé, že ve dvojhvězdách se vyskytuje velké procento hvězd. Vzácné nejsou ani trojhvězdy, čtyřhvězdy a vícenásobné systémy. Vzhledem k tomu, že kosmické sondy při průletu kolem velkých planet sluneční soustavy, Jupitera a Saturna, zjistily, že jistá část záření těchto těles pochází z jejich gravitačního smršťování a není pouhým odraženým slunečním světlem, lze ostatně s trochu nadsázky označit za trojhvězdy i naši sluneční soustavu.

Pozorování dvojhvězd a určování jejich fyzikálních vlastností ukazuje, že se mohou vyskytovat velmi pestré a snad skoro všechny myslitelné kombinace. Za teoretickou dolní mez můžeme na základě našich současných znalostí považovat v této době kombinaci dvou po době neutronových hvězd o hmotnostech $M_1 = M_2 = 1.4 M_⊙$ a poloměrech 10 km, které obíhají po kruhové dráze tak, že se jejich povrchy prakticky dotýkají, tedy, že vzdálenost jejich středů $a = 20 \text{ km}$. Jestliže vyjedeme ze 3. Keplerova zákona ve tvaru

$$a^3 = \frac{G}{4 \pi^2} P^2 (M_1 + M_2)$$

a upravíme jej numericky tak, abychom mohli hmotnosti primáru M_1 a sekundáru M_2 udávat v nominálních hmotnostech našeho Slunce $M_⊙$, oběžnou periodu P ve dnech a velkou poloosu dráhy a v nominálních slunečních poloměrech $R_⊙$, dostaneme užitečný pracovní vztah

$$a^3 = \frac{G}{4 \pi^2} P^2 (M_1 + M_2)$$

a můžeme si snadno spočítat, že oběžná perioda výše uvažované dvojhvězdy by činila pouhých 0,00092 sekundy.

1 Nominální hodnoty slouží k přesnému převodu do SI soustavy a byly zavedeny resolucí B3 Mezinárodní astronomické unie roku 2015 – podrobněji viz apendix na konci tohoto textu.

2 Všechny numerické konstanty použité v těchto skriptech vycházejí z hodnot fyzikálních a astronomických jednotek shrnutých v apendixu na konci skript.

Maximální dosud zjištěná hmotnost složek se pohybuje někde kolem 60 M_\odot, povrchové teploty od asi 1000 K do teplot řádu 100000 K a nejdelší oběžná perioda je asi 32000 let. V zásadě lze říci, že dvojhvězdy se mohou vyskytovat v kombinacích od těles, která se dotýkají až po vzdálenosti, souměřitelné se středními vzájemnými vzdálenostmi hvězd v dané části prostoru od sebe.

1.3 Rocheův model

Vzhledem k výrazné koncentraci hmoty směrem k centru hvězdy lze ke studiu dvojhvězd velmi úspěšně využít Rocheův model (Roche 1859). Předpokládáme opět, že hmotnost primární i sekundární složky je soustředěna do hmotných bodů o hmotností M_1 a M_2, $\omega = 2\pi/P$ označuje úhlovou oběžnou rychlost soustavy v kruhové dráze s oběžnou periodou P a $q = M_2/M_1$ je hmotový poměr.

Zvolme pravoúhlou souřadnou soustavu pevně spojenou se soustavou, která má počátek v bodě M_1 a jejíhož osa X míří od M_1 k M_2, osa Y je na ni kolmá a leží v oběžné rovině a osa Z je kolmá na oběžnou rovinu, přičemž vzdálenost a mezi oběmi hmotnými body zvolíme za jednotku vzdálenosti. Označme vzdálenost x_1 a x_2 dvojice $x_1/x_2 = M_2/M_1$ a $x_2 = 1 - x_1$, z čehož dostaneme $x_1 = M_2/(M_1 + M_2)$ (viz obr. 1).

Na infinitesimální tělísko o hmotnosti m nacházející se v obecném bodě (x, y, z) budou působit tři síly: přitažlivosti obou hmotných bodů a odstředivá síla oběžného pohybu. Tyto síly mají tvar:

$$\vec{F}_{M_1} = -G \frac{m M_1}{|\vec{r}_1|^3} \vec{r}_1, \quad \vec{F}_{M_2} = -G \frac{m M_2}{|\vec{r}_2|^3} \vec{r}_2, \quad \vec{F}_\omega = m \omega^2 \vec{r}_3,$$

$$\vec{r}_1 = (x, y, z), \quad \vec{r}_2 = (x - 1, y, z), \quad \vec{r}_3 = (x - \frac{M_2}{M_1 + M_2}, y, 0) = (x - \frac{q}{1+q}, y, 0).$$

Označíme-li ještě

$$r_1 = |\vec{r}_1|, \quad r_2 = |\vec{r}_2|, \quad r_3 = |\vec{r}_3|$$

lze celkový potenciál oněch tří sil zapsat ve tvaru

$$W = \frac{GM_1}{r_1} + \frac{GM_2}{r_2} + \frac{1}{2} \omega^2 r_3^2.$$

Jestliže pro zjednodušení zápisu vyjádříme úhlovou oběžnou rychlost pomocí 3. Keplerova zákona

$$\omega^2 = G(M_1 + M_2) a^{-3}, \quad a = 1 \rightarrow \omega^2 = G(M_1 + M_2) = GM_1(1 + q),$$

a zavedeme poměr hmot q, můžeme dále psát

$$\frac{W(x, y, z)}{GM_1} = \frac{1}{r_1} + \frac{q}{r_2} + \frac{1 + q}{2} (1 + q) r_3^2 =$$

$$\frac{1}{r_1} + \frac{q}{r_2} + \frac{1 + q}{2} (x^2 + y^2) - qx + \frac{q^2}{2(1+q)}.$$

7
Všimněme si, že potenciál je funkce jediné proměnné, poměru hmot q. Jak si uvědomil Kopal (1959), lze proto poslední člen zavisející pouze na q při vyšetřování tvaru ekvipotenciálních ploch vynechat a zavést nový potenciál

$$\Omega = \frac{W}{GM_1} - \frac{q^2}{2(1 + q)} = C,$$

kde C je konstanta odpovídající konkrétní ekvipotenciální ploše.

Pro poloměry sekundární složky je třeba uvažovat souřadnou soustavu s počátkem ve středu sekundáru, což vede i na jiný výraz pro potenciál. Souřadnice vektorů \vec{r}_1 a \vec{r}_2 zůstanou stejné (viz rovnice 3), zatímco pro \vec{r}_3 bude platit

$$\vec{r}_3 = (x - \frac{M_1}{M_1 + M_2}, y, 0) = (x - \frac{1}{1 + q}, y, 0).$$

a vztah pro úhlovou rychlost bude

$$\omega^2 = G(M_1 + M_2) = GM_2(1 + q)/q.$$ \hspace{1cm} (9)

Fyzikální potenciál W' v této souřadné soustavě můžeme proto psát jako

$$W' = \frac{GM_2}{r_1} + \frac{GM_1}{r_2} + \frac{1}{2} \omega^2 r_3^2$$

a po explicitním rozepsání absolutní hodnoty vektoru \vec{r}_3 je tedy

$$\frac{W'}{GM_2} = \frac{1}{r_1} + \frac{1}{q r_2} + \frac{1}{2GM_2} \omega^2 r_3^2$$

$$= \frac{1}{r_1} + \frac{1}{q r_2} + (x^2 + y^2) \frac{1 + q}{2q} - \frac{x}{q} + \frac{1}{2q(1 + q)}. \hspace{1cm} (11)$$

Kopalem zavedený potenciál pro sekundární složku Ω' proto bude

$$\Omega' = \frac{W'}{GM_2} - \frac{1}{2q(1 + q)}.$$ \hspace{1cm} (12)

Pro oba fyzikální potenciály W a W' můžeme proto psát

$$W = GM_1 \left(\Omega + \frac{q^2}{2(1 + q)}\right)$$

$$W' = GM_2 \left(\Omega' + \frac{1}{2q(1 + q)}\right)$$

a z požadavku, aby si oba fyzikální potenciály byly rovné ($W = W'$) pak plyne pro potenciál sekundární složky Ω' interně používaný např. v programu Wilsona a Devinneyho (viz podkapitola 3.10.2)
\[\Omega' = \frac{\Omega}{q} + \frac{(q - 1)}{2q}. \] (14)

Někdy se také přechází od pravoúhlých souřadnic \((x, y, z)\) ke sférickým souřadnicím \((r, \varphi, \vartheta)\), kde \(r\) je radiální vzdálenost od počátku souřadnic, úhel \(\varphi\) se měří od osy \(X\) v rovině \(XY\) v rozsahu \((0, 2\pi)\) a úhel \(\vartheta\) od osy \(z\) v rozsahu \((0, \pi)\), lze zavést směrové kosíny \(\lambda, \mu, \nu\) pomocí zřejmých vztahů

\[x = r \cos \varphi \sin \vartheta = r\lambda, \] (15)
\[y = r \sin \varphi \sin \vartheta = r\mu, \] (16)
\[z = r \cos \vartheta = r\nu \] (17)

a pomocí nich přepsat potenciál \(\Omega\) do tvaru

\[\Omega = r^{-1} + q \left(\frac{1}{(1 + r^2 - 2r\lambda)^{1/2}} - r\lambda \right) + \frac{1 + q}{2} r^2 (1 - \nu^2). \] (18)

Můžeme se ptát po místech, ve kterých je výsledná síla působící na testovací tělísko nulová. Pro ně platí

\[\frac{\partial \Omega}{\partial x} = \frac{\partial \Omega}{\partial y} = \frac{\partial \Omega}{\partial z} = 0. \] (19)

Z konkrétních výrazů pro uvedené derivace rovnice (8) plyne, že uvedená podmínka je pro druhé dvě rovnice splněna na ose \(X\). Z první podmínky dostáváme rovnici

\[\frac{\partial \Omega(x, 0, 0)}{\partial x} = \frac{-x}{|x|^3} + \frac{q(1-x)}{|1-x|^3} + (1+q)x - q = 0. \] (20)

V každém z intervalů \((-\infty, 0), (0, 1)\) a \((1, \infty)\) lze odstranit absolutní hodnoty a přepsat rovnici (20) jako algebraickou rovnici 5. stupně v \(x\) a parametrem \(q\). Dá se ukázat, že v každém z uvedených intervalů existuje právě jedno reálné řešení, takže na ose existují tři místa s nulovou výslednou silou. Těm se obvykle říká Lagrangeovy body \(L_1\) – bod \((x_1, 0, 0)\) na spojnici mezi oběma hmotnými body, \(L_2\) – bod \((x_2, 0, 0)\) ležící vně méně hmotného bodu \(M_2\), a \(L_3\) – bod \((x_3, 0, 0)\) ležící vně hmotnějšího bodu \(M_1\). Rozborem druhých dvou rovnic lze zjistit, že další dva Lagrangeovy body \(L_4\) a \(L_5\) leží pro libovolný poměr hmot v oběžné rovině na vrcholech rovnostranného trojúhelníka s oběma hmotnými body.

Význam ekvipotenciálních ploch spočívá v tom, že rovnovážná hvězda zaujme tvar některé z nich. Zvláště významná je kritická plocha obsahující bod \(L_1\) – často zvaná Rocheova mez – která představuje mez dynamické stability dvojhvězdy. Ekvipotenciální plochy Rocheova modelu jsou těž snadné jako plochy nulové rychlosti z prací Hilla (1902).

Vztah (18) platí v případě, že obě složky rotují synchronně a dráha je kruhová; Wilson (1979) uvádí složitější výraz pro obecný případ. Pro dané \(\Omega\) lze spočítat \(r\) např. Newton-Raphsonovou metodou.
Výsledkem některých programů na řešení světelných křivek dvojhvězd (viz kapitola 3.10) jsou právě hodnoty potenciálů Ω a Ω' a ty je třeba převést na odpovídající poloměry složek (viz obr. 2):

- r_{pole}: polární poloměr ve směru osy Z,
- r_{side}: rovníkový poloměr ve směru osy Y,
- r_{point}: poloměr ve směru ke druhé složce podél osy X a
- r_{back}: poloměr podél osy X na straně odvrácené od druhé složky.

Dosazením odpovídajících souřadnic do výrazu pro potenciál (18) (např. pro polární poloměr r_{pole} je $x = y = 0$ a $z = r_{\text{pole}}$) dostáváme pro primární složku

\[
\Omega = \frac{1}{r_{\text{pole}}} + \frac{q}{(1 + r_{\text{pole}}^2)^{1/2}} \quad (21)
\]
\[
\Omega = \frac{1}{r_{\text{point}}} + q \left(\frac{1}{1 - r_{\text{point}}} - r_{\text{point}} \right) + \frac{1 + q}{2} r_{\text{point}}^2 \quad (22)
\]
\[
\Omega = \frac{1}{r_{\text{side}}} + \frac{q}{(1 + r_{\text{side}}^2)^{1/2}} + \frac{1 + q}{2} r_{\text{side}}^2 \quad (23)
\]
\[
\Omega = \frac{1}{r_{\text{back}}} + q \left(\frac{1}{1 + r_{\text{back}}} + r_{\text{back}} \right) + \frac{1 + q}{2} r_{\text{back}}^2 \quad (24)
\]

Pro Newton-Raphsonovu metodu je třeba znát i derivace těchto vztahů (Wilson 1979).

Střední poloměr složky dvojhvězdy se určuje jako poloměr koule o stejném objemu, jako má odpovídající ekvipotenciální plocha. Výpočet objemu ekvipotenciální plochy se získá pomocí rozvoje příslušných integrálů do řad. Vhodné rozvoje podrobně shrnuli Pathania a Medupe (2012).
Obrázek 1: Ilustrační schema k odvozování vztahů popisujících Rocheův model.
1.4 Klasifikace dvojhvězd

1.4.1 Klasifikace podle metody pozorování

Vzhledem k obrovským vzdálenostem mezi jednotlivými hvězdami v Galaxii vidíme v dalekohledu jen malé procento dvojhvězd jako dva oddělené světelné body. Jde obvykle o tělesa hodně vzájemně vzdálená, s oběžnými periodami nejméně několik let. Takovým dvojhvězdám se říká *visuální dvojhvězdy* a při jejich trpělivém pozorování můžeme časem přímo vidět v průmětu na obloze jejich vzájemný oběžný pohyb. Pro visuální či fotografická pozorování je praktickou dolní hranici, do které můžeme ještě dvojhvězdu pozorovat jako visuální, úhlová vzdálenost na obloze asi 0′′1 – 0′′2. Nověji používaná metoda skvrnkové interferometrie (speckle interferometry) umožňuje s existujícími optickými dalekohledy o průměru zrcadel 4 m pozorovat jako visuální dvojhvězdy i méně vzdálené dvojice až do hranice asi 0′′03 a pro nové interferometry sestávající
z celé sítě několika dalekohledů spojených opticími vlákny se tato mez v posledních letech trvale snižuje. Např. Davis a kol. (2005) zobrazili s pomocí interferometru SUSI (Sydney University Stellar Interferometer) oběžnou dráhu dvojhvězdy β Cen, která má oběžnou periodu 357 dní, pohybuje se ve velmi výstředně dráze a průmět velké poloosy její dráhy činí pouhých 0,02530. Pro visuální dvojhvězdy se měřeními v různých časech obvykle určuje jejich okamžitá úhlová vzdálenost, posiční úhel jejich vzájemné polohy v průmětu na nebeskou sféru a někdy i jasnost jednotlivých složek. Elektronické katalogy s údaji o pozorováních visuálních dvojhvězd metodou skvrnkové interferometrie i visuálními metodami, které jsou průběžně doplňovány o nová měření, lze nalézt na adrese http://ad.usno.navy.mil/wds observatoře amerického námořnictva.

Pokud je sekundární složka visuální dvojhvězdy mnohem méně jasná než složka primární, její světlo nepozorujeme a na přítomnost druhého tělesa můžeme usoudit pouze z rozboru periodických poruch jejího prostorového pohybu za delší období, hovoříme o dvojhvězde astrometrické.

Pokud je oběžná rovina dvojhvězdy v prostoru orientována tak, že v ní naše sluneční soustava zhruba leží, budeme pozorovat vzájemné zákryty obou složek dvojhvězdy a hovoříme o dvojhvězdě zákrytové. Zákryty se projeví především při fotometrických pozorováních, a to pravidelně se opakujícími poklesy jasnosti.
Historicky byly rozlišovány tři typy světelných křivek:

- **Světelná křivka typu Algol** se označuje podle první objevené zákrytové dvojhvězdy Algol (β Persei). Vyznačuje se zejména konstantním světlem mimo zákryty a během totálních částí zákrytu.

- **Světelná křivka typu β Lyrae** je shodou okolností nazývána podle druhé objevené zákrytové dvojhvězdy a je pro ni příznacné, že jasnost soustavy se plynule mění ve všech orbitálních fázích, i mimo vlastní zákryty, přičemž hloubka minim je výrazně odlišná.

- **Světelná křivka typu W UMa** je charakterizována dvěma podobnými minimy, krátkou oběžnou periodou a rovněž plynulými změnami ve všech fázích orbitální periody.

Efekty zákrytů ve spektrech jsou složitější. Budou-li se např. složky dvojhvězdy lišit svou povrchovou teplotou, může se stát, že během zákrytu zesílí čáry jedné nebo druhé složky a vzhled spektra se výrazně změní. Pokud některá z hvězd rychle roteruje, lze ve fázích na začátku a na konci zákrytu pozorovat tzv. rotační efekt. Při začátku zákrytu je totiž postupně zakrýván disk jedné ze složek, takže nakonec vidíme světlo jen z jednoho okraje. Pokud je směr rotace shodný se směrem oběhu složek (a tak tomu zpravidla bývá), projeví se část nezakrytého disku rotační efekt. Při začátku zákrytu jsou diskovité části hustě zafarbovány, takže je vidět jen z jednoho okraje. Po skončení zákrytu je vidět jedna složka, takže se vidí, že se zkrátky září jen část disku a pozorujeme anomální pokles radiální rychlosti.

V některých případech se stává, že pozorujeme nepříliš velké plynulé světelné změny definující dvojité oběh s oběžnou periodou dvojhvězdy, tedy něco jako světelnou křivku typu β Lyrae, ale s malou amplitudou (pod 0,1). Ukazuje se, že to je případ hvězdy, které jsou složení složení a nemají sférický tvar, takže se během jejich vzájemného oběhu mění plocha jejich disků promítnutá na nebeskou sféru a tudíž i jejich jasnost. Takovým dvojhvězdám se říká *elipsoidální proměnné*. Nedochází u nich ke geometrickým zákrytům a sklon jejich dráhy je zpravidla někde mezi asi 30° a 70°.

Posledním typem světelné křivky je **světelná křivka s výrazným vlivem reflexe (odrazu světla od druhé složky)**. Takový jev je zřetelně pozorovatelný při velkém rozdílu povrchových teplot složek, pokud nejsou daleko od sebe (tj. u krátkoperiodických dvojhvězd) a může se pozorovat jako pro zákrytové, tak nezákrytové soustavy. Zpravidla se takový jev pozoruje pro kombinaci velké chladné složky a horké složky, která svým zařením ohřeje povrch chladné hvězdy na straně k ní přivrácené. To se projeví zjasněním chladné složky ve fázích její horní konjunkce.
1.4.2 Klasifikace podle dynamické stability

Již Kuiper (1941) poukázal na to, že k úvahám o dynamické stabilitě konkrétní dvojhvězdy se velmi dobře hodí Rocheův model krátce popsaný výše. Jak už víme, tvar ekvipotenciálních ploch Rocheova modelu závisí pouze na poměru hmotností obou hmotných bodů. Příslušné ekvipotenciální plochy jsou nejprve uzavřené kolem obou hvězd, ale pro určitou kritickou hodnotu potenciálu se slévají v jakési brýle s úhlem velmi přibližně 57° vůči spojnici obou center. Další ekvipotenciální plochy již obklopují obě hvězdy, poté se postupně otvírají nejprve za méně hmotnou a poté za hmotnější složkou, a ve velké vzdálenosti se limitně blíží sfěrickým plochám kolem celé dvojhvězdy. Ona kritická „brýlovitá” ekvipotenciála se nazývá Rocheova mez. Připomeňme také, že v oběžné rovině existuje celkem 5 bodů, nazývaných Lagrangeovy body, ve kterých je výsledná síla působící na testovací tělí skonulá. Jeden z nich, \(L_1 \), leží na spojnici mezi oběma hmotnými body, další dva leží také na spojnici obou hmotných bodů, ale větší méně hmotné \(L_2 \) a větší hmotnější \(L_3 \) složky. Je jasné, že vzrostlé rozměr hvězdy tak, že hvězda zaplní Rocheovu mez, stane se dynamicky nestabilní a plyn z její atmosféry může volně přetéká směrem ke druhé složce. Klasifikace dvojhvězd podle polohy vůči Rocheově mezí, jejíž základy položili kromě Kuipera také Parenago a Wood, byla podrobně propracována Kopalem. Dvojhvězdy se podle ní dělí na

- **oddělené systémy**, jejichž obě složky jsou spolehlivě uvnitř kritické Rocheovy mez, dále na
- **polodotykové systémy**, u kterých je jedna složka uvnitř Rocheovy mez a druhá ji právě vyplňuje, a na
- **kontaktní systémy**, pro něž obě složky vyplňují či spíše přesahují Rocheovu mez a mají společnou atmosféru.

2 Určování kvantitativních vlastností dvojhvězd a vícehnásobných soustav

2.1 Úvodní úvahy

Definujme si nejprve základní pojmy, které se budou během celého výkladu často opakovat:

- Změna nějaké proměnné veličiny se nazývá periodickou, jestliže se hodnoty, jež veličina postupně nabývá, zcela pravidelně opakují podle určitého zákona (funkce). Délce opakovacího intervalu se říká perioda změn; budeme ji zde důsledně označovat symbolem \(P \).
Často je výhodné (z důvodů, které vyplynou z dalšího výkladu) pracovat s převrácenou hodnotou periody. Této veličině se říká frekvence a budeme ji označovat symbolem f. Platí tedy:

$$f = 1/P.$$

(25)

Pro jednoduše periodické děje bývá výhodné měření zobrazit ve fázovém diagramu, tj. poskládat v čase rozložená data tak, jako by byla všechna získána během časového intervalu odpovídajícího délce jedné periody. Pro měření získané v čase t spočteme cyklus a fázi c a normovanou fázi φ vůči periodě P podle vztahů

$$c = (t - T_0)/P,$$

$$\varphi = \frac{c}{P}.$$

(26)

(27)

(Funkce $\frac{x}{P}$ nabývá hodnoty zlomkové části x pro nezáporná x, a hodnoty $[1 - \text{absolutní hodnota zlomkové části } x]$ pro $x < 0$. Tedy na př. pro $x = 3.77$, $\frac{x}{P} = 0.77$; pro $x = -3.77$, $\frac{x}{P} = 0.23$, atd.) T_0 označuje počátek fázi: je to nějaký referenční časový bod, pro který se rozhodneme (na př. okamžik maxima či minima studované změny); pokud nás takový okamžik nezajímá, lze pro jednoduchost zvolit $T_0 = 0$. Snadno uvážíme, že vztah (27) transformuje každý čas měření do intervalu hodnot od 0 do 1, a to tak, že stejné hodnoty proměnného děje s periodou P budou mít stejnou hodnotu fáze. Pro konkrétní případ proměnných hvězd se fázovému diagramu obvykle říká světelná křivka. Pro hvězdy s proměnnou radiální rychlostí hovoříme o křivce radiálních rychlostí.

Každé pozorování jasnosti, radiální rychlosti, centrální intenzity nebo kterékoliv jiné fyzikální veličiny se zaznamenaným časem měření představuje jeden bod časové řady pozorování sledovaného objektu. Je to tedy dvojice čísel (t, m), kde m označuje jasnost změřenou v čase t. Pokud se jasnost mění, bude nás přirozeně zajímat, zda jsou tyto změny pravidelné či nepravidelné a vůbec, jaký je jejich charakter. V případě pravidelných změn je prvním úkolem nalézt periodu, se kterou se změny jasnosti opakují. Vzhledem k povaze astronomických pozorování v optickém oboru to nemusí vždy být snadný úkol. Rotace Země (opakovaní dne a noci) a nepravidelné změny oblačnosti způsobují, že časové řady astronomických pozorování mají své charakteristické zvláštnosti:

- Při pozorování z jednoho místa nutně obsahují 'vzorkovací periodu' jednoho hvězdného dne.
- Jsou velice nepravidelně rozložena v čase (dvě měření mohou po sobě následovat za 1 minutu, ale také třeba za 2 roky).

Správná a úplná analýza časových řad astronomických pozorování je proto i v době výkonných počítačů činostní, kterou nelze dělat zcela mechanicky. Je třeba určitého citu pro věc a klidného zvážení, co lze z daných pozorovacích dat určit a co ne.

Prvním krokem analýzy by vždy mělo být grafické zobrazení studované proměnné veličiny v závislosti na čase. Z něj získáme prvotní představu o tom, co můžeme od analýzy dané časové řady očekávat a jakou strategii zvolit.
Jestliže máme k dispozici bohatý soubor měření, která následují dostatečně hustě po sobě, může se dokonce stát, že již z tohoto grafu odhadneme skutečnou periodu změn. To je ovšem v praxi spíše výjimečný, než typický případ. Každopádně ale z grafu poznáme, zda nedochází k trvalému poklesu či růstu studované veličiny nebo zda nejvýraznější změny nejsou sice plynulé, ale zcela očividně neperiodické, nepravidelné.

Pokud časová řada, kterou zkoumáme, sestává z měření, pořízených několika různými pozorovateli či přístroji, je vždy užitečné je v grafu odlišit různými symboly, abychom se přesvědčili, zda mezi jednotlivými pozorovateli neexistují systematické rozdíly v hodnotách měřené veličiny.

Uveďme několik dalších, skoro banálních, ale důležitých závěrů, které lze při prvotním zkoumání dané časové řady učinit:

1. Z dané řady měření nelze prokázat přítomnost periody, která je delší, než délka celé série pozorování. Že je změna skutečně periodická, zjistíme teprve z dat, která budou pokrývat několik cyklů.

2. V principu lze zjistit, zda v daných datech není přítomna perioda kratší než minimální časová vzdálenost dvou pozorování studovaných dat. Musíme si ale být vědomi, že i když nějakou takovou periodu nalézeme, může jít o periodu zdaňlívou, vzniklou pouze v důsledku fázového skládání. Představme si pro ilustraci, že bychom měřili konstantní jasnost. Lze snadno uvážit, že taková pozorování nevyvolávají, ani anedokují přítomnost periodického děje s periodou 0,1, 0,33333, atd.) Abychom zjistili, zda je zmiňovaná perioda zdaňlívou, nízká časová vzdálenost dvou pozorování má pouze jedno maximum a minimum nebo zda je složitější (jako např. světelná křivka zákrytového nebo elipsoidálního proměnného). To již nikdo není možné určit, pokud se nejde o periody kratší než minimální časová vzdálenost dvou pozorování.

Z toho, co bylo řečeno, vyplývá, že začínáme-li zkoumat proměnnost nějakého objektu, o jehož změnách není dosud nic známo, měli bychom začít pozorování nejprve hustými celonočními řadami měření, abychom si učinili prvotní představu o tom, jaké nejkratší měřitelné změny jasnosti můžeme pro zkoumaný objekt očekávat. Pokud na př. spolehlivě vyloučíme měřitelnou změnu během noci, bude nadále stačit získávat 1–3 měření za noc, atd.

2.2 Určování okamžiků minim zákrytové proměnné či jiných referenčních bodů na světelné či jiné fázové křivce:

K určování či zpřesňování hodnoty oběžné peridy a k vyšetřování jejích případných časových změn potřebujieme z pozorovacích dat získat nějaké referenční body. Pro zákrytovou dvojvěžte bývá zvykem určovat okamžiky středu a minimu. Pro křivky radiálních rychlostí jsou dobrými referenčními body okamžiky maximální a minimální rychlosti. Ty můžeme získat třeba porovnáním s nějakou modelovou křivkou. Pro středy zákrytů by bylo možné použít třeba parabolu s osou kolmou k časové přímce. Zvláště pozornost si ovšem zaslouží metoda Kwee-van Woerdenova.
2.2.1 Kwee-van Woerdenova metoda a její zobecnění

I v současnosti velmi často užívanou metodou přesného určování okamžiků minim z pozorování konkrétního zákruty nějaké zákrytové proměnné je metoda, kterou publikovali holandští astronomové Kwee a van Woerden (1956). Její podstata je následující: Předpokládejme, že jsme získali N pozorování během sestupné i vzestupné fáze minima, tedy N uspořádaných dvojic \((t_j, m_j)\) \((j = 1, 2...N)\) měření hvězdných velikostí \(m_j\) v časech \(t_j\). Lineární interpolací z nich vytvoříme \((2n + 1)\) nových uspořádaných dvojic s ekvidistantním časovým krokom \(\Delta t\), a to tak, aby \((2n + 1)\) bylo přibližně rovno počtu původních měření \(N\) a aby jeden z ekvidistantních bodů, řekněme k-tý, odpovídal předběžnému odhadu času minima \(T\) (który můžeme vzít např. jako bod s nejnižší měřenou jasností nebo odhadnout z grafického zobrazení minima). Poté pro všechny ekvidistantní body minima symetricky vůči zvolenému odhadu středu minima počítáme rozdíly magnitud odpovídajících bodů

\[
\Delta m_j = m_{(k+j)} - m_{(k-j)}, \quad j = 1, 2...n
\]

a sumu jejich čtverců

\[
S(T) = \sum_{j=1}^{n} (\Delta m_j)^2. \tag{29}
\]

Poté zvolíme ještě dva další odhady středu minima v časech \(T - \Delta t\) a \(T + \Delta t\), kde \(\Delta t\) je nějaký rozumně zvolený časový interval, např. časový rozdíl mezi dvěma ekvidistantně interpolovanými body nebo jeho celočíselný násobek, a spočtěme odpovídající sumy čtverců \(S(T - \Delta t)\) a \(S(T + \Delta t)\) pro tyto nové středy symetrie.

Pokud byl původní odhad okamžiku minima dobrý, mělo by platit

\[
S(T) < S(T - \Delta t) \quad \text{a} \quad S(T) < S(T + \Delta t). \tag{30}
\]

Pokud tomu tak není, zvolíme za odhad okamžiku minima čas odpovídající nejmenší sumě čtverců a celý postup opakujeme.

Jakmile získáme tři sumy čtverců, z nichž časově střední je nejmenší, aproximujeme skutečný průběh funkce \(S(T)\) polynomem druhého stupně

\[
S(t) = a \cdot t^2 + b \cdot t + c, \tag{31}
\]

jehož koeficienty \(a, b\) a \(c\) spočteme ze třech hodnot sumy čtverců, které jsme získali.

Za hledaný okamžik minima \(T_0\) přijmeme poté minimum této funkce dané řešením kvadratické rovnice:

\[
T_0 = -\frac{b}{2a}. \tag{32}
\]

Kwee a van Woerden udávají také odhad střední chyby \(\sigma\) takto určeného minima:

\[
\sigma^2 = \frac{4ac - b^2}{4a^2(Z-1)}, \tag{33}
\]
kde Z označuje maximální počet nezávislých párů magnitud, které byly použity. Podle jejich analýzy je správné zvolit $Z = 0,25N$ v případě lineárně interpolovaných bodů a $Z = 0,5N$ pokud již měření sama byla získávána v ekvidistantních časových intervalech.

Harmanec (nepublikováno) zjistil, že přesnost odhadu minima se výrazně zvýší, pokud sumy čtverců spočtěme ne pouze ve třech, ale více, třeba i 50 okamžicích považovaných za odhady středu minima a koeficienty a, b a c v rovnici (31) spočtěme metodou nejméně čtverců. Tento postup je aplikován v programu HEC 34, který lze získat na webové adrese

Jiří Horn a Petr Harmanec rovněž prakticky ověřili, že metodu lze úspěšně aplikovat i na jiné problémy, např. k určování středu spektrálních čar.

Deeg (2021) publikoval vylepšení Kwee-van Woerdenovy metody, neboť zjistil, že pro velmi přesná druhová pozorování, konkrétně z družice TESS, může dojít k tomu, že minimum sumy $S(T)$ vyjde maličko záporné a záporný vyjde i člen $4ac - b^2$, takže při odmocňování při výpočtu σ z rovnice (33) dojde k numerické chybě.

Deeg proto doporučuje z pozorovacích dat odhadnout průměrnou pozorovací chybu individuálních měření magnitudy či toku μ a místo funkce $S(T)$ použít obvyklou χ^2 statistiku pro páry měření, tedy

$$\chi^2(T) = \frac{S(T)}{2\mu^2}. \quad (34)$$

Za předpokladu, že tok ze studované dvojhvězdy bude dokonale symetrický vůči okamžiku minima T_0, bude suma v minimu v zásadě dána pozorovacími chybami. Deeg dovozuje, že minimální hodnota $\chi^2(T_0)$ pro $T = T_0$ je určena počtem stupňů volnosti Z tak, že

$$\chi^2(T_0) = Z - 1. \quad (35)$$

Z rovnice (34) pak plyne vztah

$$S(T_0) = 2\mu^2(Z - 1). \quad (36)$$

V Deegem navržené modifikované metodě se po prvotním určení koeficientů a, b a c suma $S(T_0)$ přijme dle rovnice (36) a hodnota c

$$c = 2\mu^2(Z - 1) + \frac{b^2}{4a}. \quad (37)$$

Po dosazení této revidované hodnoty c do původního vztahu (33) pro chybu minima dostaneme jednoduchý vztah.

$$\sigma_{T_0}^2 = \frac{2\mu^2}{a}. \quad (38)$$

Deeg rovněž nezávisle došel ke stejnému závěru jako Harmanec, tedy že přesnost určení okamžiku minima se zvýší, když se použije větší počet posuvů na obě strany od odhadnutého okamžiku minima.
2.3 \(O - C\) diagramy a změna oběžných period dvojhvězd

Samostatným a zpravidla prvním úkolem při studiu konkrétní dvojhvězdy bývá vyzkoušet její jasnost nebo radiální rychlost určit dostatečně přesnou a spolehlivou hodnotu její oběžné periody \(P\). K samotnému nalezení periody můžeme v zásadě použít některou z metod, které jsme si vyložili v základním kurzu AST007. Je to přímočaré, pokud máme měření jasnosti zákrytové nebo elipsoidální proměnné. Pokud ale ve spektru pozorujeme čáry dvou složek dvojhvězdy podobných spektrálních typů, nemusí být celá věc jednoduchá, neboť na počátku nevíme, která čára které složce náleží.

Pokud se již zdařilo nějaký odhad periody nalézt, můžeme zjišťovat periodu zpřesňovat pomocí dalších pozorování, případně s využitím starších, dříve publikovaných pozorování. Je zřejmé, že periodu určíme tím přesněji, čím delší pozorovací řada bude při dané přesnosti pozorování k dispozici. Uvažme například jednoduchý případ pozorování křivky radiálních rychlostí dvojhvězdy s konstantní oběžnou periodou 2,5 dne. Pokud máme pozorování radiálních rychlostí např. z období 50 dní, pak mezi prvním a posledním pozorováním vykonalá dvojhvězda právě 50/2,5=20 oběhů. Fázový posuv o 0,03 ve fázi mezi prvním a posledním bodem bude tedy představovat změnu periody o 2,5 – (50/20.03)=0,00374 dne. Budou-li pozorování pokrývat třeba 500 dní, tedy 200 oběhů, bude stejný fázový rozdíl na konci intervalu pokrytého daty představovat již jen 2,5 – (500/200.03)=0,000375 dne.

Klasickou metodou, jak zpřesňovat hodnotu oběžné periody (osamotně i periody fyzikálních proměnných hvězd) a jak se přesvědčit, že perioda je dlouhodobě stálá nebo se nějakým způsobem mění, je konstruovat tzv. \(O - C\) (z anglického ’observed – computed’; pozorovaný – vypočtený) diagram okamžiků minim či maxim, maxim radiální rychlosti a podobně. Pro stručnost buď dále mluvíme o okamžicích minim, ale vše stejným způsobem platí i pro jiné definované body světelné křivky či křivky radiální rychlosti. Okamžiky minim se určují lokálně, pokud je to možné, přímo z pozorování jednoho konkrétního minima, jak o tom bude řeč níže, nebo alespoň ze složení dat z jednoho kratšího období do fázového diagramu s nejlepší známo hodnotou periody \(P\).

Konstrukce \(O - C\) diagramu je ovšem možná pouze tehdy, známe-li hodnotu periody s dostatečnou přesností a máme-li k dispozici dostatečně hustou řadu okamžiků minim. Jinak totiž narázíme na problém ročních aliasů a nám konstruovaný \(O - C\) diagram může být chybný a zavádějící. Příklady takových omylů lze nalézat i v publikovaných pracech.

Pokud o dlouhodobém chování periody námí studované proměnné nemáme žádné dřívější informace, začínáme obvykle s lineární efemeridou

\[
T_{\text{min}} = T_0 + P \cdot E,
\]

kde \(T_0\) je zvolený referenční okamžik minim. Pro každý z pozorování určený okamžik minima \(O\) odhadneme odpovídající číslo cyklu neboli epochu \(E\) podle vztahu

\[
E = \text{int} \left(\frac{O - T_0}{P} \right)
\]

a očekávaný okamžik minima poté spočteme ze vztahu

\[
C = T_0 + P \cdot E.
\]

Pro všechny okamžiky minim, které takto získáme, poté nakreslíme to, čemu se říká \(O - C\) diagram, totiž průběh funkční závislosti \(O - C = f(E)\) a ten vyhodnotíme.
Pokud je hodnota periody, kterou jsme při konstrukci $O-C$ diagramu použili, stálá a v mezích chyb pozorování i dostatečně přesná, budou body v $O-C$ diagramu ležet v okolí přímky rovnoběžné s osou X a rozptyl bodů bude odpovídat chybám určení jednotlivých okamžiků minim.

Je-li perioda stálá, ale je-li její hodnota poněkud delší než ta, kterou jsme při konstrukci diagramu použili, budou se pozorované body v $O-C$ diagramu kmit opět kolem přímky, která ale bude s rostoucím E stoupat, tj. bude mít kladnou směrnici. Analogicky je-li skutečná perioda kratší než ta, kterou jsme použili, budou se body v $O-C$ diagramu kmit kolem přímky se zápornou směrnicí.

V obou těchto případech lze $O-C$ diagram využít ke zpřesnění hodnoty periody. Předpokládejme pro jednoduchost, že určení okamžiků minim není zatíženo žádnými chybami a předpokládejme dále, že zatímco jsme $O-C$ diagram konstruovali pro periodu P, správná hodnota periody je $P + \Delta P$. Pro danou epochu E bude pak

$$O - C = (T_0 + (P + \Delta P) \cdot E) - (T_0 + P \cdot E) = \Delta P \cdot E. \quad (42)$$

Jinými slovy: směrnice přímky v $O-C$ diagramu, kterou můžeme určit třeba metodou nejmenších čtverců, je algebraicky rovna opravě ΔP námi použité periody P.

Jiný $O-C$ diagram dostaneme, pokud se perioda studovaného objektu se časem mění. Typickým případem je parabolický průběh odchylek, přičemž osa paraboly je rovnoběžná s osou Y. Pokud má parabola minimum pro $E = 0$, jedná se o prodlužování periody, dosahuje-li pro $E = 0$ maxima, perioda se zkracuje.

Velmi často se lze v podobných případech dočíst, že parabolický průběh $O-C$ diagramu znamená lineární změnu periody. To je pravda jen přibližně. Pro okamžiky minim totiž platí vztah

$$T = T_0 + P_0 \cdot E + a \cdot E^2, \quad (43)$$

kde P_0 je perioda v čase referenčního minima T_0, tj. pro $E = 0$. Pokud budeme epochu E chápat jako reálné číslo charakterizující cykl a fázi, pak T bude čas odpovídající příslušné fázi v daném cyklu. Okamžitá perioda pak zřejmě bude

$$P = \frac{dT}{dE} = P_0 + 2aE \quad (44)$$
a změna periody v daném čase \dot{P} bude

$$\dot{P} = 2a \frac{dE}{dT} = \frac{2a}{\dot{T}}. \quad (45)$$

Vidíme tedy, že pro kvadratickou efemeridu se perioda mění lineárně s epochou E, ale nikoliv s časem. Pro kladná a rychlost změny periody s časem klesá.

To je ovšem situace, se kterou se podle současných představ setkáváme u dvojhvězd ve stádiu výměny hmoty poté, co se již role složek vyměnila. Kvadratická efemerida je proto velmi dobrým popisem reálné situace v podobných případech.

V astronomické literatuře můžeme najít příklady popisu změn periody ve formě polynomické závislosti na epoše do třetího i vyššího stupně polynomu, viz např. práci Wooda a Forbese (1963). Význam podobných efemerid je ale poněkud sporný, neboť představují pouze matematicky popis konečné řady pozorování a zkušenost ukazuje, že jejich predikční hodnota je zpravidla velmi malá.
Obrázek 3: $O-C$ diagram okamžiků minim zákrytové dvojhvězdy V346 Cen naznačující skokovou změnu oběžné periody.
Jinou možností je, že $O-C$ diagram ukazuje periodické změny. Z toho lze usoudit na přítomnost třetího tělesa v soustavě nebo na postupné stáčení výstředné oběžné dráhy v prostoru, jak o tom bude ještě řeč později.

Posledním typem $O-C$ diagramu je nespojitý průběh odchylek s výrazným skokem. V principu jistě nelze vyloučit situace, kdy se např. po období stability perioda v důsledku nějakého eruptivního procesu (třeba krátkodobé ztráty hmoty ze soustavy či chvílkové výměny hmoty mezi složkami) prakticky skovkově změní. Než však podobný závěr učiníme, je dobré se i v těchto případech přesvědčit, zda nedošlo k chybě v počítání jednotlivých daty pokrytých cyklů. Dobře doložený případ skovkové změny oběžné peridy ukazaný na obr. 3 je převzat z práce Mayer, Harmanec, Wolf a kol. (2016).

2.4 Určování elementů spektroskopických dvojhvězd

2.4.1 Odhad velké poloosy oběžné dráhy dvojhvězdy

Povšimněme si nejprve, že již znalost oběžné periody a představa o hmotnosti primární složky nám pro libovolnou dvojhvězdu dovoluje učinit si docela dobrou představu o rozměrech celé soustavy. Protože předpokládáme $M_2 \leq M_1$, platí, že

\[M_1 \leq (M_1 + M_2) \leq 2M_1, \tag{46} \]

takže dostáváme s pomocí 3. Keplerova zákona (2) odhad velké poloosy soustavy ve tvaru

\[4,208278(P^2(M_1))^{1/3} \leq a \leq 4,208278(2P^2(M_1))^{1/3} \tag{47} \]

Jestliže tedy např. podle vzhledu spektra či podle barvy primární složky můžeme zhruba odhadnout hmotnost primáru, vidíme, že nerovnost (47) dává velmi slušný odhad rozsahu soustavy, neboť horní a dolní mez velké poloosy soustavy se liší pouze o $2^{1/3} \approx 1,26$.

2.4.2 Případ, kdy pozorujeme obě spektra

Pokud ve spektru pozorujeme spektra obou složek (v novější literatuře se lze pro takové dvojhvězdy občas setkat se zkratkou SB2: a spectroscopic binary with two components visible), získáme dvě křivky radiálních rychlostí a jejich poloviční amplitudy K_1 a K_2. Z toho hned můžeme určit poměr hmotností obou těles, neboť platí, že

\[\frac{M_2}{M_1} = \frac{K_1}{K_2}. \tag{48} \]

Určení dalších veličin není už tak jednoduché. Poloviční pozorovaná amplituda křivky radiálních rychlostí je totiž součinem skutečné oběžné rychlosti příslušné složky dvojhvězdy se sinem sklonu oběžné dráhy i.

V dalším textu budeme využívat vztahy odvozené v nebeské mechanice (viz např. Klioner 2016). Pro obecný případ eliptické dráhy s výstředností ($excentricitou$ e se obvykle předpokládá, že složky dvojhvězdy obíhají kolem společného těžiště po drahách odpovídajících řešení problému dvou těles, tedy s průvodičem

\[r_{1,2} = \frac{a_{1,2}(1 - e^2)}{1 + e \cos v(t)}, \tag{49} \]
z čehož lze pro radiální rychlost j-té složky dvojhvězdy RV_j, $j = 1, 2$ jako funkci času t odvodit vztah
\[
RV_j = \gamma + (3 - 2j)K_j(\cos(\omega_j + v(t)) + e \cos \omega_j),
\]
(kde γ je radiální rychlost celé soustavy vůči nám a ω_j je délka periastra j-té složky měřená od výstupného uzu dráhy.\(^3\) Platí přirozeně, že $\omega_2 = \omega_1 + 180^\circ$. Pro pravou anomalii $v(t)$ jako funkci excentrické anomálie $E(t)$ platí
\[
\text{tg} \frac{v(t)}{2} = \sqrt{1 + e \over 1 - e} \text{tg} E(t) = \sqrt{1 + e \over 1 - e} \text{tg} \left({2} \pi P \left(t - T_0 \right) + e \sin E(t) \right).
\]

Excentrickou anomálii vypočteme z času pozorování pomocí Keplerovy rovnice
\[
E(t) = {2 \pi \over P}(t - T_0) + e \sin E(t),
\]
(kde T_0 je čas průchodu hvězdu periastrum a P siderická oběžná perioda dvojhvězdy.

Pro úplnost ještě dodejme, že rovnoměrný úhlový pohyb bývá často označován výrazem *střední anomálie* $M(t)$. Platí tedy
\[
M(t) = {2 \pi \over P}(t - T_0),
\]
a Keplerovu rovnici (52) lze formálně přepsat do tvaru
\[
E(t) = M(t) + e \sin E(t),
\]
(kde γ je radiální rychlost celé soustavy vůči nám a ω_j je délka periastra j-té složky měřená od výstupného uzlu dráhy.\(^3\) Platí přirozeně, že $\omega_2 = \omega_1 + 180^\circ$. Pro pravou anomalii $v(t)$ jako funkci excentrické anomálie $E(t)$ platí
\[
\text{tg} \frac{v(t)}{2} = \sqrt{1 + e \over 1 - e} \text{tg} E(t) = \sqrt{1 + e \over 1 - e} \text{tg} \left({2} \pi P \left(t - T_0 \right) + e \sin E(t) \right).
\]

Poznamenejme, že Keplerovu rovnici lze docela snadno řešit iteračně. Zvolíme počáteční hodnotu $E(t) = M(t)$ a z rovnice (54) vypočteme nový odhad $E(t)$ a tak pokračujeme až do dosažení požadované přesnosti.

Geometrický význam pravé, střední a excentrické anomalie je ilustrován obrázkem 4.

Všechny parametry rovnic (50) – konkrétně K_j, e, P, T_0, ω_1 a γ – se z pozorovaných měření radiálních rychlostí určí metodou nejmenších čtverců. Z nich pak už můžeme spočítat dolní odhad vzdáleností složek od těžiště soustavy a_j z 2. Keplerova zákona
\[
a_j \sin i = \frac{P}{2 \pi} K_j (1 - e^2)^{1 \over 2}.
\]

Pokud budeme opět i vzdálenosti od těžiště udávat v nominálních poloměrech Slunce, amplitudy křivek radiální rychlosti v km s$^{-1}$ a periodu ve dnech, lze rovnice (55) přepsat do tvaru
\[
a_j \sin i = 86400 \cdot 1000 \over 2 \pi \cdot 695700000 K_j P(1 - e^2)^{1 \over 2} = 0.01976569 K_j P(1 - e^2)^{1 \over 2}.
\]

Sešetřením obou rovnic (55) dostáváme také
\[
a \sin i = (a_1 + a_2) \sin i = \frac{P}{2 \pi} (K_1 + K_2)(1 - e^2)^{1 \over 2} = 0.01976569(K_1 + K_2) P(1 - e^2)^{1 \over 2}.
\]

\(^3\)Prakticky ve veškeré světové literatuře týkající se elementů dvojhvězde se délku periastra nazývá úhel mezi výstupným uzlem dráhy při průmětu oběžné dráhy na nebesku (šíři) a polohou periastra dráhy; v učebnicích nebeské mechaniky je ovšem tomuto úhlu říká argument periastra, zatímco délku periastra ω se rozumí složený úhel měřený jednak v referenční rovině (Ω) a poté v oběžné rovině (ω), tedy $\tilde{\omega} = \Omega + \omega$. Proto pozor na možnou záměnu při konkrétním použití!
Obrázek 4: Diagram vysvětlující geometrický význam pravé (v), excentrické (E) a střední (M) anomálie při pobytu tělesa vůči ohnisku elipsy.
Z definice těžiště a s použitím 3. Keplerova zákona (2) můžeme dále psát

\[
M_j = \frac{a_3 - j (M_1 + M_2)}{a} = \frac{PK_{3-j}(1-e^2)^{1/2}}{2\pi a \sin i} \frac{4\pi^2 a^3}{GP^2} = \frac{2\pi a^2 K_{3-j}(1-e^2)^{1/2}}{GP \sin i} \frac{P^2(1-e^2)(K_1 + K_2)^2}{4\pi^2 \sin^2 i},
\]

(58)
takže pro hmotnosti obou složek dostáváme vztahy

\[
M_j \sin^3 i = \frac{1}{2\pi G} K_{3-j} (K_1 + K_2)^2 P (1-e^2)^{1/2}.
\]

(59)

Pro hmotnosti vyjádřené v nominálních hmotnostech Slunce \(M_{\odot} \), periodu ve dnech a poloviční amplitudy křivek radiálních rychlostí v \(\text{km} \, \text{s}^{-1} \) dostaneme numerickou konstantu v rovnicích (59) ve tvaru

\[
\frac{86400 \cdot 1000^3}{2\pi \cdot 1,3271244 \times 10^{20}} = 1,036149... \times 10^{-7}
\]

(60)
a tedy

\[
M_j \sin^3 i = 1,036149... \times 10^{-7} K_{3-j} (K_1 + K_2)^2 P (1-e^2)^{1/2}.
\]

(61)

2.4.3 Případ, kdy pozorujeme pouze jedno spektrum

Pokud pozorujeme křivku radiálních rychlostí pouze jasnější složky dvojhvězdy, např. složky 1, můžeme z parametrů popisujících křivku získat pouze \(a_1 \sin i \) a veličinu, které se říká funkce hmoty \(f(M) \), a která je definována vztahem

\[
f_j(M) = \frac{4\pi^2 a_3^3 \sin^3 i}{GP^2} = \frac{M_{3-j}^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{q^3}{(1 + q)^2} M_j \sin^3 i,
\]

(62)
kde \(q = M_{3-j}/M_j \) označuje poměr hmot.

Všimněme si, že pro \(q \leq 1 \) nám funkce hmoty dává horní odhad největší možné hmotnosti soustavy. Platí totiž zřejmě (pro \(q = 1 \) a tedy \(M_1 = M_2 \) a pro \(i = 90^\circ \)), že

\[
f(M) \leq \frac{1}{4} M_1 = \frac{1}{8} (M_1 + M_2).
\]

(63)

Z veličin, které určíme přímo z křivky radiálních rychlostí primáru, se funkce hmoty vypočte pomocí vztahu

\[
f_j(M) = \frac{1}{2\pi G} K_j^3 P (1-e^2)^{1/2}.
\]

(64)

Pro jednotky použité výše, bude opět numericky

\[
f_j(M) = 1,036149... \times 10^{-7} K_j^3 P (1-e^2)^{1/2}.
\]

(65)
Můžeme-li nějak, např. podle vzhledu spektra odhadnout hmotnost ve spektru pozorované složky, lze pomocí funkce hmotnosti odhadnout pro daný sklon dráhy i hmotnost sekundární složky. Porovnání rovnic (62) a (65) vede na vztah

$$M_3 - j \sin i = \left(\frac{1}{2\pi G}\right)^{1/3} K_j (M_1 + M_2)^{2/3} P^{1/3} (1 - e^2)^{1/2}. \quad (66)$$

Pro oběžnou periodu ve dnech, poloviční amplitudu křivky radiálních rychlostí v km s$^{-1}$ a hmotnosti složek v nominální sluneční hmotnosti M_N^N lze tento vztah přepsat do tvaru

$$M_3 - j \sin i = 1000 \left(\frac{86400}{2\pi (G M_N^N)}\right)^{1/3} K_j (M_1 + M_2)^{2/3} P^{1/3} (1 - e^2)^{1/2} = 0,004696858... K_j (M_1 + M_2)^{2/3} P^{1/3} (1 - e^2)^{1/2}. \quad (67)$$

Rovnici (67) můžeme snadno pro zvolený sklon dráhy řešit iterativně s tím, že zvolíme nějakou počáteční hmotnost $M_3 - j$, třeba velmi malou nebo i nulovou, což se zejména hodí pro aplikace na extrasolární planety.

Existuje ještě jedna zajímavá možnost, jak využít funkci hmotnost k určení individuálních hmotností obou složek. Pokud je pro dvojhvězdu známa paralaxa p a pokud byla dvojhvězda rozlišena jako visuální a bylo možno pro tuto dráhu určit úhlový rozměr velké poloosy dráhy a'' a sklon dráhy i (jak je vysvětleno v dalším výkladu), je možno využít vztah mezi paralaxou, úhlovým a lineárním rozměrem ve tvaru

$$a'' = \frac{a(R_N^N) p}{215,0322...} \quad (68)$$

k určení velikosti velké poloosy dráhy v nominálních slunečních poloměrech $a(R_N^N)$. Ze 3. Keplerova zákona (2) dostaneme celkovou hmotnost

$$M_1 + M_2 = \left(\frac{a}{4,208278...}\right)^3 \frac{1}{P^2}, \quad (69)$$

ze vztahu (62) lze pak vypočítat hmotnost

$$M_3 - j = \left(\frac{f_j (M) (M_1 + M_2)^2}{\sin i}\right)^{1/2} \quad (70)$$

a pomocí vztahu (69) tedy i druhou individuální hmotnost. Je třeba ovšem upozornit na to, že tento postup povede na určení realistických hmotností pouze v případě, že je k dispozici dostatečně přesná paralaxa i parametry visuální dráhy.

Všimněme si, že uvedený postup lze také obrátit. Pokud můžeme rozumně odhadnout hmotnost složky, pro kterou je k dispozici křivka radiálních rychlostí a tedy funkce hmoty, je možné z hmotností složek a parametrů visuální dráhy naopak odhadnout paralaxu a tedy vzdálenost soustavy od nás.
2.4.4 Hudba budoucnosti...

Zucker a Tal (2007) publikovali studii, ve které poukázali na to, že pokud bude možno měřit radiální rychlosti složek dvojhvězdy s přesností 1 m s\(^{-1}\) a lepší, projeví se již měřitelně relativistické efekty a pomocí nich bude možné určit sklon dráhy i pro nezákrytové soustavy a tím získat i jejich skutečné hmotnosti. Dosažení potřebné přesnosti ale nebude snadným technickým problémem, i když není pochyb, že se přesnost měření radiálních rychlostí i díky velkému zájmu o výzkum extrasolárních planet rychle vyvíjí.

2.4.5 Lucyho a Sweeneyho test, zda je malá výstřednost dráhy reálná

Lucy a Sweeney (1971) upozornili na to, že v katalogu spektroskopických dvojhvězd se vyskytuje mnoho dvojhvězd s výstřednými drahami o velmi malé výstřednosti pod 0,1. To je vedlo k podezření, že mnohé tyto dvojhvězdy mají ve skutečnosti kruhové dráhy, a že zjištěná výstřednost dráhy je jen důsledkem pozorovacích chyb v kombinaci s omezeným počtem pozorování. Provedli proto podrobnou statistickou analýzu, aby zjistili, jaká je pravděpodobnost toho, že metodou nejmenších čtverců bude pro kruhovou dráhu nalezena nenulová výstřednost. Předpokládali, že pozorování ve všech oběžných fázích má stejnou váhu a odvodili pravděpodobnost toho, že řešením pozorovaného kruhového oběžného pohybu bude zjištěna zdánlivá výstřednost dráhy s hodnotou \(\hat{e} \). Z pravděpodobnostního rozložení zdánlivé výstřednosti \(\hat{e} \) je dána vztahem

\[
\hat{e}_o = \frac{\sigma}{K} \sqrt{\frac{\pi}{N}},
\]
\[(71)\]

kde \(\sigma \) označuje střední kvadratickou chybu jednoho pozorování radiální rychlosti o jednotkové váze, \(K \) je počet měření, \(\pi \) Ludolfovo číslo. Budeme-li např. předpokládat vcelku typickou situaci, že bylo pořízeno 30 měření radiální rychlosti, \(K = 40 \) km s\(^{-1}\) a chyba jednoho měření činí 5 km s\(^{-1}\), zjistíme ze vztahu (71) hodnotu \(\hat{e}_o = 0,04 \).

Pravděpodobnost toho, že při řešení pohybu po kruhové dráze dostaneme metodou nejmenších čtverců výstřednost převyšující hodnotu \(\hat{e} \) lze vyjádřit vztahem

\[
P(\varepsilon > \hat{e}) = \exp \left(-\frac{\hat{e}^2}{2\sigma_e^2} \right),
\]
\[(72)\]

kde střední kvadratická chyba určení hodnoty výstřednosti \(\sigma_e \) je dána vztahem

\[
\sigma_e = \frac{\sigma}{K} \sqrt{\frac{2}{N}}.
\]
\[(73)\]

Pokud – jak Lucy a Sweeney doporučují – přijmeme pětiprocentní hladinu význačnosti, pak z rovnice (72) vyplývá, že

\[
P(\varepsilon > \hat{e}) = 0,05 \quad \text{pro} \quad \hat{e} = 2,45\sigma_e.
\]
\[(74)\]

To tedy znamená, že podle tohoto testu můžeme výstřednost dráhy považovat za reálnou pouze když \(\hat{e} > 2,45\sigma_e \). To je mnohem přísnější kritérium, než kriterium \(\hat{e} = \sigma_e \), které bývalo v některých starších studiích používáno a které odpovídá pravděpodobnosti \(P(\varepsilon > \hat{e}) = 0,61 \).
Určitý problém je ovšem v tom, že chyba jednoho měření radiální rychlosti není předem známa. Při použití metody nejmenších čtverců dostaneme pouze její odhad podle vztahu

\[\sigma = \sqrt{\frac{\sum_{n=1}^{N} w_n (O_n - C_n)^2}{N - M}}, \quad (75) \]

kde \(M \) je počet elementů určovaných v případě kruhové dráhy (\(M=6 \), konvergujeme-li i periodu) a \(w_n \) je váha \(n \)-tého měření.

S použitím statistických metod navrhli Lucy a Sweeney proto následující statistický test významnosti nenulové výstřednosti dráhy, který není na odhadu chyby závislý:

Nechť \(S \) je váhovaná suma čtverců odchylek od řešení metodou nejmenších čtverců, tedy

\[S = \frac{\sum_{n=1}^{N} w_n (O_n - C_n)^2}{N - M}. \quad (76) \]

Označme \(S = S_k \) pro kruhovou a \(S = S_e \) pro výstřednou dráhu, Účinnost, s jakou dva dodatečné elementy, \(e \cos \omega \) a \(e \sin \omega \), přispívají ke zmenšení \(S_e \) vzhledem k \(S = S_k \) lze měřit parametrem

\[F = \frac{N - M}{2} \frac{S_k - S_e}{S_e}. \quad (77) \]

Označime-li \(\beta = \frac{1}{2} (N - M) \), pak statistická pravděpodobnost \(p \) toho, že hodnota parametru \(F \) dosáhne hodnoty \(\hat{F} \) je dáná výrazem

\[p = \left(1 + \frac{\hat{F}}{\beta} \right)^{-\beta}. \quad (78) \]

Pokud opět přijmeme pětiprocentní hladinu významnosti a z řešení pro výstřednou dráhu určíme výstřednost \(\hat{e} \), pak jako správné řešení přijmeme

\[e = \hat{e} \quad \text{pokud} \quad p < 0,05 \quad \text{a} \]

\[e = 0 \quad \text{pokud} \quad p \geq 0,05. \quad (79) \]

Lucy a Sweeney ilustrovali aplikaci jejich metody na příkladu dvojhvězdy \(\mu \) UMa, pro kterou bylo publikováno dráhové řešení s výstřednou dráhou a \(e = 0,063 \pm 0,033 \). Bylo konvergováno všech šest elementů a dráha byla určena ze 34 pozorování radiálních rychlostí.

Již aplikace prvního testu naznačuje, že výstřednost nemusí být reálná, neboť hodnota výstřednosti je pouze dvakrát větší, než střední kvadratická chyba jejího určení. Lucy a Sweeney proto aplikovali druhý test. Pro kruhovou dráhu dostali \(S_k=21.7 \) (km s\(^{-1}\))^2 a pro dráhu výstřednou \(S_e=18.8 \) (km s\(^{-1}\))^2. V daném případě je zřejmě \(\beta = 14 \). Z toho tedy plyne \(F = 2,160 \) a po dosazení do rovnice (78) vychází \(p = 0,134 \). Pokud tedy přijmeme pětiprocentní hladinu význačnosti, je nalezená výstřednost dráhy zcela jistě nereálná a dráha uvažované dvojhvězdy je ve skutečnosti kruhová.
2.5 Určování elementů zákrytových dvojhvězd

Určování kvantitativních údajů ze světelné křivky je dostisložitá úloha a příslušné postupy a metody řešení jsou i v současnosti nadále vyvíjeny a vylepšovány. Zde se proto omezíme jen na některé jednodušší principy a vztahy, abychom si vysvětlili, jaké informace a díky čemu lze ze světelné křivky získat.

2.5.1 Zákryty v kruhové dráze při sklonu 90°

Uvažujme nejprve nejjednodušší případ dvojhvězdy se sklonem dráhy \(i = 90° \), tj. takové, jejíž oběžná rovina přesně prochází sluneční soustavou. Budeme dále předpokládat, že složky dvojhvězdy jsou kulová tělesa s rovnoměrným rozložením jasu po celému povrchu, která kolem sebe obíhají po kruhových drahách. Budeme-li uvažovat relativní dráhu složky 2 kolem složky 1, pak je zřejmé, že složka 2 urazí za jeden oběh dráhu \(2\pi a \).

Označme \(R_1 \) a \(R_2 \) poloměry obou hvězd, \(D \) celkovou dobu trvání zákrytu a \(d \) dobu trvání úplného zákrytu nebo totality, kdy hvězda 2 celou plochou svého disku zakrývá část disku hvězdy 1 – viz obr. 5. Budeme-li čas \(t \) měřit od středu primárního zákrytu a zavedeme-li tzv. fázový úhel

\[
\vartheta = \frac{2\pi}{P} t,
\]

pak zřejmě platí

\[
R_1 + R_2 = a \sin \vartheta_2 = a \sin\left(\frac{2\pi D}{P}\right),
\]

\[
R_1 - R_2 = a \sin \vartheta_1 = a \sin\left(\frac{2\pi d}{P}\right).
\]

Úpravou těchto vztahů dostáváme

\[
r_1 = \frac{R_2}{a} = \frac{1}{2} \left(\sin\left(\frac{x D}{P}\right) + \sin\left(\frac{\pi d}{P}\right) \right),
\]

\[
r_2 = \frac{R_2}{a} = \frac{1}{2} \left(\sin\left(\frac{x D}{P}\right) - \sin\left(\frac{\pi d}{P}\right) \right).
\]

Je tedy zřejmé, že z námi uvažované světelné křivky lze určit oběžnou periodu a dobu trvání totality a celého zákrytu a pomocí nich pak spočítat relativní poloměry složek, tj. poloměry vyjadřené v jednotkách vzdálenosti mezi středy obou hvězd.

2.5.2 Úplné zákryty při sklonu menším než 90°

Výrazně složitější je již případ, kdy sice ještě dochází k úplnému zákrytu hvězdy 1 hvězdou 2, kdy ale \(i \neq 90° \). Nyní již musíme uvažovat světelnou křivku po dobu celého trvání zákrytu. Budeme chtít nalézt modelovou funkci, která popisuje změnu jasnosti soustavy v závislosti na čase. Označme \(L_1 \) a \(L_2 \) svítivosti složek, \(L_0 \) svítivost celé soustavy v době úplného zákrytu, \(L = L(t) \) celkovou svítivost soustavy v obecném okamžiku během zákrytu a \(S = S(t) \) plochu té části disku hvězdy 1, která je v daném okamžiku během zákrytu zakryta složkou 2. Platí zřejmě

\[
L = L_1 + L_2 - \frac{S}{\pi R_1^2} L_1.
\]
V době úplného zákrytu platí vztah
\[
L_0 = L_1 + L_2 - \frac{\pi R_2^2}{R_1^2} L_1. \tag{85}
\]
Porovnáním obou rovnic a po zavedení relativní svítivosti, vyjádřené v jednotkách celkové svítivosti soustavy mimo zákryt
\[
l = \frac{L}{L_1 + L_2}, \tag{86}
\]
dostáváme vztah
\[
1 - l = (1 - l_0) \frac{S}{\pi R_2^2}. \tag{87}
\]
Zakrývanou plochu \(S \) lze vyjádřit pomocí vztahu
\[
S = \frac{\varphi_1}{\pi} \pi R_1^2 - (R_1 \sin \varphi_1)(R_1 \cos \varphi_1) + \frac{\varphi_2}{\pi} \pi R_2^2 - (R_2 \sin \varphi_2)(R_2 \cos \varphi_2), \tag{88}
\]
(viz obr. 6) přičemž zřejmě platí
\[
R_1 \sin \varphi_1 = R_2 \sin \varphi_2. \tag{89}
\]
Obrázek 7: Geometrie úplného zákrytu při sklonu menším než 90°.
Označíme-li ještě poměr poloměrů
\[k = \frac{R_2}{R_1} = \frac{r_2}{r_1}, \]
(90)
můžeme pro okamžitou zdánlivou vzdálenost středů obou složek \(v \) psát
\[v = R_1 \cos \varphi_1 + R_2 \cos \varphi_2 = R_1(\cos \varphi_1 + k \cos \varphi_2). \]
(91)
Funkční závislost na čase můžeme zavést za pomoci fázového úhlu \(\vartheta \), který byl zaváděn vztahem (81). Z geometrických úvah (viz obr. 7) plyne vztah
\[v^2 = a^2(\sin^2 i \sin^2 \vartheta + \cos^2 i). \]
(92)

Kdybychom tedy znali relativní poloměry složek a sklon oběžné dráhy, mohli bychom teoretickou světelnou křivku během zákrytu počítat následovně: Pro zvolený čas \(t \) bychom úhly \(\varphi_1 \) a \(\varphi_2 \) vypočetli z rovnic
\[r_1(\cos \varphi_1 + k \cos \varphi_2) = \sqrt{\cos^2 i + \sin^2 i \sin^2 \left(\frac{2\pi t}{P}\right)}, \]
\[\sin \varphi_1 = k \sin \varphi_2 \]
(93)
a z nich již pomocí vztahu
\[1 - l = \frac{1}{\pi}(1 - l_0)\left(\frac{\varphi_1 - \sin \varphi_1 \cos \varphi_1}{k^2} + \varphi_2 - \sin \varphi_2 \cos \varphi_2\right) \]
(94)
bychom počítali teoretickou světelnou křivku.

Je samozřejmě možné tuto úlohu otočit a hledat parametry rovnic (93) a (94), tedy relativní poloměry složek \(r_1 \) a \(r_2 \) a sklon dráhy \(i \) tak, abychom dosáhli co nejlepší shody pozorované a vypočetěné světelné křivky.

2.5.3 Okrajové ztlumení

Okrajové ztlumení popisuje, jak se mění intenzita v dané vlnové délce do směru k pozorovateli v závislosti na úhlu \(\vartheta \), který svírá normála k povrchu hvězdy v uvažovaném místě se směrem zorného paprsku.

Pro jednoduchý model atmosféry (Milne 1921) lze pokles intenzity spojitého záření ve vlnové délce \(\lambda \) jako funkci úhlu \(\vartheta \) od středu směrem k okrajů disku zapsat ve tvaru
\[I_\lambda(\vartheta) = I_\lambda(0)(1 - u_\lambda + u_\lambda \cos \vartheta). \]
(95)

To znamená, že mimo zákryty můžeme součet příspěvků z disku sférické hvězdy o relativním poloměru \(r \) vyjádřit jako integrál z příspěvků z infinitesimálních mezíkruží o poloměru \(x \) a tloušťce \(dx \) vztahem
\[L_\lambda = \int_0^r 2\pi x I_\lambda(\vartheta)dx = \int_0^r 2\pi x I_\lambda(0)(1 - u_\lambda + u_\lambda \cos \vartheta)dx. \]
(96)
Obrázek 8: Ilustrace k výpočtu lineárního okrajového ztmutnění
První dva členy lze integrovat přímo a třetí také, pokud si uvědomíme, že z geometrie plyne (viz obr. 8), že
\[x = r \sin \vartheta \] a tedy
\[dx = r \cos \vartheta \, d\vartheta. \]
Dostáváme tedy
\[
L_\lambda = I_\lambda(0) \left(\pi r^2 - \pi r^2 u_\lambda + 2 \pi r^2 u_\lambda \frac{\vartheta}{3} \right) \int_0^\pi \sin \vartheta \cos^2 \vartheta \, d\vartheta.
\]
Dostáváme tedy
\[
L_\lambda = I_\lambda(0) (1 - \frac{u_\lambda}{3}).
\] (97)

Se zlepšováním modelů atmosfér se ale postupně ukázalo, že jednoduchý zákon lineárního okrajového
ztemnění nevyhovuje. Objevovaly se proto další empirické zákony. Označíme-li, jak se často činí,
\[\mu = \cos \vartheta, \]
je lineární zákon okrajového ztemnění (95) zapsat ve tvaru
\[
I_\lambda(\vartheta) = I_\lambda(0)(1 - \mu)
\] (98)

a kvadratický zákon použitý v rovněž často používaných tabulkách Wadeho a Rucińskeho (1985) ve tvaru
\[
I_\lambda(\vartheta) = I_\lambda(0)(1 - a_\lambda(1 - \mu) - b_\lambda(1 - \mu)^2).
\] (99)

Další autoři uvažovali vyšší člen s odmocninou ve tvaru
\[
I_\lambda(\vartheta) = I_\lambda(0)(1 - c_\lambda(1 - \mu) - d_\lambda(1 - \mu^{1/2})).
\] (100)

a navržen byl i logaritmický zákon
\[
I_\lambda(\vartheta) = I_\lambda(0)(1 - e_\lambda(1 - \mu) - f_\lambda \ln \mu).
\] (101)

Ve své disertační práci Dochází Díaz-Cordovés (1990) k závěru, že pro horké hvězdy lépe vyhovuje odmocniný zákon (100), zatímco pro chladnější se lépe hodí kvadratický zákon (99).

Nejnovější hodnoty koeficientů okrajového ztemnění pro různé zákony podrobně tabeloval Claret (2000)
pro vlnové délky odpovídající měřením v UBVRI a uvby na základě nových modelů atmosfér. Hodnoty
těchto koeficientů se pohybují asi kolem 0,8–0,9 pro chladné hvězdy spektrálních typů K a M, 0,5–0,6 pro
hvězdy spektrálního typu A0 a 0,25–0,35 pro hvězdy B0, pokud hovoříme o jednoduchém lineárním zákonu
a optickém oboru spektra. Claret ovšem navrhovat nový vlastní zákon tak, aby dobře platil přes celý rozsah
možných efektivních teplot hvězd. Tento zákon má 4 koeficienty \(a_\lambda(1)\) až \(a_\lambda(4)\) a lze jej zapsat ve tvaru
\[
I_\lambda(\vartheta) = I_\lambda(0)(1 - f \sum_{k=1}^{4} a_\lambda(k)(1 - \mu^{2k})).
\] (102)

Claret (2007) analyzoval možný vliv ozáření atmosféry druhou složkou dvojhvězdy na hodnoty okrajového ztemnění. Došel k závěru, že vliv je třeba uvažovat a určit, jaké korekce je v podobných situacích brát
v úvahu a to v závislosti na relativním toku z druhé složky dvojhvězdy.

Je třeba upozornit, že někteří autoři stále používají koeficienty okrajového ztemnění tabelované Wade
a Rucińskim (1985), a to z tohoto důvodu, že jsou spočteny pro větší rozsah vlnových délek od 136 do
Kuruczových modelů spočítal monochromatické koeficienty okrajového ztměnění pro lineární, logaritmický a odmocniný zákon ve 1221 hodnotách vlnových délek od 9,09 nm do 160 µm. V jeho práci jsou tabelovány koeficienty integrované pro různé standardně používané fotometrické filtry (Johnsonovy UBVRIJKLMN, Strömgrenovy uvby).

V poslední době se ovšem při řešení světelných křivek začínají používat předem spočtené modely atmosféř, z nichž se přímo bere intenzita do daného úhlu, čímž se použití koeficientů okrajového ztměnění zcela eliminuje.

2.6 Periodické změny oběžné periody

V současné době se lze v této problematice často setkat s obecným označením ETV (neboli Eclipse Timing Variations) označující jakékoliv změny v okamžicích zákrytů. Toto označení se používá i při studiu tranzitujících exoplanet a zkoumání jejich změn periody.

Periodické změny periody mají v zásadě tři příčiny:

- **Efekt rozdílné dráhy světla (light-time effect, LITE, někdy též označován jako LTTE - light-travel time effect)**, který je obdobou efektu, využitého již O. Römerem v r. 1675 k určení rychlosti světla – skutečná oběžná perioda zůstává stejná, pozorovaná perioda ale různá podle toho, zda se dvojhvězda při oběhu kolem společného těžiště s další složkou od nás vzdaluje nebo se k nám přibližuje. (Jde o čistě geometrický efekt.)
- **Dynamické efekty působení třetí složky na zákrytový pár.** Jde o skutečné dynamické působení na složky zákrytového páru. Celá škála těchto efektů má dvě periodicity – jednak tu shodnou s periodou oběhu třetí složky P_2, a pak také mnohem delší úměrnou P_2^2 / P_1, viz níže.
- **Rotaci přímky apsid, k níž dochází u dvojhvězd s nekruhovou dráhou.** Stáčení přímky je jednak relativistické, jednak je způsobeno odchylkou tvaru složek dvojhvězdy od kulového tvaru a průběhem hustoty uvnitř tělesa.

Rozlišit tyto příčiny je poměrně snadné: v prvních dvou případech se primární i sekundární minima v $O-C$ diagramu chovají stejně, v posledním leží na různých křivkách. Ve skutečnosti často pozorujeme různé kombinace těchto efektů, jejichž příspěvky se sčítají.
2.6.1 Efekt rozdílné dráhy světla

Efekt rozdílné dráhy světla (dále LITE) byl teoreticky popsán koncem 19. století, neboť tehdy už byla známa proměnnost periody některých dvojhvězd. Pozorován byl u hvězdy Algol, ale až poté, kdy trojhlavěznost tohoto systému byla zjištěna ze spektroskopie a astrometrie (další hvězdou pak byla až IU Aur, kde byl efekt objeven fotometricky).

Existence LITE tedy znamená, že “dvojhvězda” není dvojhvězdou, ale trojhlavězdou (nebo má složek i více, například třetí člen může být též dvojhvězdou). Oběžná pera o třetího tělesa kolem společného těžiště

![Diagram: Porovnání Römerova efektu LITE a dynamického členu, viz Rappaport a kol. (2013).](image-url)

je přitom zpravidla mnohonásobkem periody dvojhvězdy, často se proto mluví o “krátké” a “dlouhé” periodě či dráze. Nyní jsou již známy stovky hvězd, které vykazují LITE, s periodami od desítek dní do sta let (pro zajímavost uvedme, že stejného LITE efektu lze využít i pro jinou třídu hvězd s periodickým chováním – rychle pulsující hvězdy, které jsou složkami dvojhvězdy, např. pulzary či hvězdy typu β Cep). Krátké periody lze velmi těžko detekovat, protože bychom potřebovali kontinuální pozorování dané hvězdy – což ovšem před časem umožnila např. družice Kepler (viz třeba Borkovič a kol. 2016). U pozemských pozorování je to mnohem obtížnější. Dobrým příkladem je zákrytová soustava λ Tau s nezákrytovou třetí složkou, jejíž dlouhá perioda \(33,953\) d je jen osminásobkem periody krátké \(3,953\). LITE u ní nelze objevit, protože přesnost určení okamžíků minim je nedostatečná. Naopak peridy delší než časový interval pokryté existujícími daty a jsou tedy zatím neprokazatelné.

Na obr. 10 je $O - C$ diagram soustavy označované jako V819 Her. Zdánlivá variace oběžné periody vnitřní dvojhvězdy má periodu 5,5 roku. Stejnou periodicitou ovšem vykazuje také její visuální dráha, což je známo díky tomu, že existují interferometrická data již od jejího objevu roku 1980. Obě dvě hypotézy se tedy skvěle doplňují a ukazuje se, že právě takový kombinace známé variace LITE současně s visuální dráhou vede k nezávislému určení vzdálenosti daného systému. Ta je v tomto případě určena přesněji, nežli z družice Hipparcos.

Uvažujme základní rovinu kolmou k zornému paprsku a procházející těžištěm celého systému. Vzdálenost těžiště zákrytové dvojhvězdy od této roviny je

$$z(t) = r \sin i \sin(v(t) + \omega),$$

dle \(v(t)\) je prává anomálie (viz obr. 4).
Zaveďme ještě rovinu rovnoběžnou se základní a jdoucí středem (obecně nekruhové) dráhy dvojhvězdy kolem těžiště systému. Vzdálenost obou rovin je

\[a_{12} \epsilon \sin \omega \sin i, \]

časový rozdíl v dráze světla je tedy

\[\tau = \frac{r \sin i \sin(v + \omega) + a_{12} \epsilon \sin \omega \sin i}{c} \]

a lze psát vztah

\[O - C = T - (T_0 + P_1 \cdot E) = \frac{a_{12} \sin i}{q} \left[\frac{1 - \epsilon^2}{1 + \epsilon \cos v} \sin(v + \omega) + \epsilon \sin \omega \right], \]

(103)

který popisuje chování hodnot \(O - C \). Zde \(P_1 \) je střední perioda zákrytové dvojhvězdy ve dnech, \(a_{12} \) (v au), \(e, \omega \) a \(i \) jsou parametry dráhy zákrytové dvojhvězdy kolem společného těžiště.

Tak zvaná semiamplituda (poloviční amplituda) tohoto LITE je potom

\[A_L = \frac{1}{2} [(O - C)_{max} - (O - C)_{min}] = \frac{a_{12} \sin i \sqrt{1 - \epsilon^2 \cos^2 \omega}}{q} \]

a udává nám rozměr dráhy dvojhvězdy (tedy její hlavní poloosu \(a_{12} \)) kolem společného těžiště v jednotkách "světelného dne". Proto onen koeficient

\[q = \frac{299792,458}{149597870,700} = 173,14463267 \]

pro převod na au. Můžeme zavést poměr hmotností \(M_3/(M_1 + M_2) \), pak hlavní poloosa dráhy třetího tělesa je zřejmě \(a_3 = a_{12} \cdot (M_1 + M_2)/M_3 \).

Podobně jako u spektroskopické dráhy dvojhvězdy lze též definovat funkci hmotnosti třetího tělesa jako

\[f(M_3) = \frac{(a_{12} \sin i)^3}{P_2^2} = \frac{(M_3 \sin i)^3}{(M_1 + M_2 + M_3)^2} = \frac{1}{P_2^2} \cdot \left[\frac{q \cdot A_L}{\sqrt{1 - \epsilon^2 \cos^2 \omega}} \right]^3, \]

kde \(P_2 \) je oběžná perioda třetího tělesa v rocích. Funkce hmotnosti třetího tělesa poskytuje také odhad jeho minimální hmotnosti. Známe-li totiž hmotnosti \(M_1 \) a \(M_2 \) a za předpokladu koplanární dráhy (tedy \(i = 90^\circ \)) lze \(M_3 \) získat řešením rovnice

\[f(M_3) = \frac{(M_3)^3}{(M_1 + M_2 + M_3)^2}. \]

Všechny elementy dané dráhy je nutno hledat metodou nejmenších čtverců, přičemž je potřeba zahrnout i oběžnou periodu dvojhvězdy a okamžik základního minima (dohromady tedy 7 neznámých). Pro výše zmíněný systém V819 Her vyšly následující elementy dráhy:

<table>
<thead>
<tr>
<th>(P_1)</th>
<th>(JD_0)</th>
<th>(P_2)</th>
<th>(A_L)</th>
<th>(e)</th>
<th>(\omega)</th>
<th>(T_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2296330 d</td>
<td>2448546,5954</td>
<td>5.519 roků</td>
<td>0.0090 d</td>
<td>0.687</td>
<td>223.8°</td>
<td>2452621.6</td>
</tr>
</tbody>
</table>

39
Z tohoto řešení potom můžeme vypočít i hodnotu funkce hmotnosti \(f(M_3) \), která zde vyjde \(f(M_3) = 0.193 \, M_\odot^N \), což při známém sklonu dráhy \(i \) vede k odvození hmotnosti třetího tělesa \(M_3 = 1.86 \, M_\odot^N \).

Oběh samotné dvojhvězdy kolem společného těžiště je doprovázen změnou rychlosti jejího těžiště:

\[
v_\gamma = K \left[\cos(v + \omega) + e \cos \omega \right],
\]

kde poloviční amplituda této variace \(K \,[\text{km} \cdot \text{s}^{-1}] \) může být také spočítána z LITE parametrů \(A_L[d], p_3[\text{roky}], e \) a \(\omega \) díky rovnici:

\[
K = \frac{A_L \cdot Q}{P_2 \sqrt{(1 - e^2)(1 - e^2 \cos^2 \omega)}},
\]

kde \(Q \) je jen koeficient převodu \(Q = 2 \pi c / 365.24219 = 5157.2672 \ldots \). Platí samozřejmě také, že podobně jako těžiště zákrytové soustavy se mění i radiální rychlost třetího tělesa samotného. Vzorec výše lze použít i pro tuto složku, jen s tím rozdílem, že \(\omega' = \omega + 180^\circ \) a amplitude bude jiná podle poměru hmotností \(K_{12}/K_3 = M_3/M_{12} \).

Tuto metodou klasického geometrického LITE bylo za posledních několik desetiletí objeveno již několik set kandidátů na vícečlenné soustémy (LITE produkuje pouze kandidáty, konečné potvrzení musí přijít jinou metodou, nejčastěji spektroskopicky). Většina těchto soustém má periody v řádech let nebo desítek let. Díky moderním přehlídkám a družicovým měřením jsme dnes schopni detekovat i systémy s periodami pod 100 dní.

Pro úplnost dodejme, že daná metoda LITE se v dnešní době uplatňuje již i u hvězd mimo naší Galaxii. Navíc se ukazuje, že u výjimečných soustém s kvalitními daty a delším časovým pokrytím jsme dnes schopni detekovat vedle třetího i čtvrtého tělesa dvojitou aplikací LITE (potom je nutno řešit komplexně problém celkem \(2+5+5=12 \) parametrů).

Třetí těleso se v mnohých případech projevuje i jako “třetí světlo” (někdy je ale funkce hmotnosti velmi malá a proto je světlý příspěvek třetího tělesa zanedbatelný). Odečtením takového příspěvku se hloubka zákrytů zvětší, tedy vyjde i větší sklon dráhy dvojhvězdy. Třetí světlo ovšem může pocházet i od objektu, který není se soustémem gravitačně vázan, nebo pro příliš krátkou či dlouhou periodu se LITE nepozoruje. Při řešení světelných křivek by tedy vždy měl být proveden test na možnou přítomnost třetího světla.

To, že pomocí LITE lze nalézt zejména trojhvězdy s dlouhou periodou od roku po desítky let má význam pro statistiku četnosti těchto period. Spektroskopicky lze spíše objevit krátké periody, visuální dvojhvězdy pak mají převážně delší periody. Objevování vícečlenných soustav má význam i pro statistiku četnosti takových soustav, a tedy i pro úvahy o vzniku a vývoji dvojhvězda v vícečlenných soustavách, viz níže kapitola 7.

2.6.2 Dynamické efekty

Jak již bylo ukázáno na obr. 9, pokud má třetí těleso kratší oběžnou periodu, nemůžeme zanedbat jeho dynamické působení na zákrytový pár a tento efekt dokonce převaží nad klasickým geometrickým efektem LITE. Zejména v poslední době díky kontinuálním přehlídkám oblohy a družicovým datům můžeme nalézat i takovéto dynamicky zajímavé soustémy pouze za pomocí fotometrie.

Dána problematica pohybu a vlivu třetího tělesa na zákrytovou dvojhvězdu byla zkoumána v průběhu celého 20. století několikrát. Viz například práce Brown (1936), Söderhjelm (1975), nebo novější práce
Borkovits a kol. (2015). Jedná se o složitou problematiku, nicméně lze udělat některé obecné závěry i při použití mírnějších předpokladů o dráze či hmotnosti třetího tělesa. Již Brown ve své práci z roku 1936 rozdělil celkové působení vzdáleného tělesa na vnitřní pár na celkem 3 různé kategorie:

- Krátkoperiodické perturbace – typická perioda variací s oběžnou dobou dvojhvězdy P_1 a typickou amplitudou na úrovni $(P_1/P_2)^2$.
- Středněperiodické perturbace – typická periodicitá s periodou oběhu třetí složky P_2 a amplitudou (P_1/P_2).
- Dlouhoperiodické perturbace – periodicitá úměrná P_2^2/P_1 a amplituda až 1.

Obrázek 11: Ukázka systémů se změnou periody detekovaných na datech z družice Kepler, červeně celkový fit, modře geometrický LITE, zeleně dynamický člen (Rappaport a kol. 2013).

Již při pohledu na výše uvedené je jasné, že efekty krátkoperiodické jsou prakticky nedetekovatelné díky jejich mizivé amplitudě. Středněperiodické jevy jsou dobře detekovatelné. A dlouhoperiodické jevy mají obvykle velice dlouhé periody (stovky let) a i přes svou vysokou amplitudu byly detekovány pouze u malého počtu hvězd díky nedostatku dat na dlouhé časové škále, viz níže v této kapitole.

Obecně platí, že perioda oběhu je delší pokud je v systému přítomno třetí těleso, nežli by tomu bylo v případě, že by byl systém izolovaný. Efekty prvního řádu jsou nulové pokud se třetí těleso pohybuje
po kruhové dráze, která je koplanární s rovinou oběhu zákrytové dvojhvězdy. Pokud tomu tak ale není, mění se vzdálenost třetí složky od těžiště vnitřní dvojhvězdy a to způsobuje slapové síly a taktéž změny periody. Platí, že pokud je okamžitá vzdálenost třetí složky nejmenší, zákrytová perioda je nejdelší, a naopak. Obecně lze ale říci, že třetí těleso ovlivňuje všech šest orbitálních parametrů vnitřního páru.

Podobně jako ve vzorci (103) lze i zde pro střednědobý efekt psát jeho vliv na zpoždění okamžiků minim (za předpokladu kruhové vnitřní dráhy) jako:

\[
(O - C)_{\text{dyn}} = \frac{3}{4 \pi} \frac{M_3}{M_1 + M_2 + M_3} \frac{P_1^2}{P_2^2} (1 - e^2)^{-3/2} \left[\left(\frac{2}{3} - \sin^2 \iota_M \right) \cdot \mathcal{M} + \frac{1}{2} \mathcal{S} \sin^2 \iota_M \right],
\]

kde funkce \(\mathcal{M}\) a \(\mathcal{S}\) jsou pouze funkce v, \(\omega\) a e až do požadované mocniny výstřednosti e a úhel \(i_M\) je vzájemný sklon roviny oběhu zákrytové dvojhvězdy a třetí složky (viz obr. 12). Za obecných předpokladů nekoplánárních drah, nekruhové vnitřní dráhy, atd. se dané vzorce velice komplikují a pro numerické výpočty je třeba brát pouze prvních několik členů rozvoje v excentricitě, viz např. Borkovits a kol. (2015). Nutno poznat, že dynamickým působením nedochází jen ke změně periody a dalších parametrů vnitřní dráhy, ale mění se také dráha vnější. Nicméně detekovat tyto změny je zatím většinou nemožné a prakticky vždy se uvažuje pouze vliv na orbitální elementy vnitřního tělesa.

Oba dva efekty, jak klasický LITE, tak dynamický člen se projevují současně a je proto nutné pro systémy s kratší periodou \(P_2\) zahrnout do analýzy oba dva jevy a sečíst, jak je ukázáno i na obr. 11.

Přítomnost třetího tělesa se projevuje i dalšími pozorovanými jevy, které spadají do třetí kategorie – tedy dlouhoperiodických úměrných \(P_2^2/P_1\). U několika objektů objevených jako zákrytové dvojhvězdy se v novější době nepodařilo potvrdit změny jasnosti; možným vysvětlením je, že se změnil sklon dráhy a proto k zákrytům již nedochází. U několika objektů byly zjištěny systematické změny hloubek minim, vysvětlitelné jen změnou sklonu (změna jiného parametru soustavy – třeba poloměru nebo teploty jedné složky – pozorované změny vysvětlit nemůže, a změny obou složek jsou asi nemyslitelné). Změna sklonu je pak dobře pochopitelná jako precese drah; ta je nutně přítomná, pokud krátká a dlouhá dráha jsou nekoplánární. Jde tu tedy o jevy dobře známé v nebeské mechanice a pozorovatelné třeba v systému Země-Měsíc-Slunce. Mechaniku takového systému, jeho popis a příslušné vzorce lze nalézt např. v článku Söderhjelma (1975).

V obecném trojném systému existuje neměnná fundamentální rovina (viz obr. 12), vůči níž jsou krátká a dlouhá dráha skloněny o úhly \(i_1\) a \(i_2\), přičemž \(\sin i_1 / \sin i_2 = G_2 / G_1\), kde \(G_i\) jsou momenty hybnosti dané dráhy. Vzhledem k podstatně většímu rozměru dlouhé dráhy je \(G_2 > G_1\), a tedy sklon krátké dráhy může být značný, kdežto rovina dlouhé dráhy se nemusí příliš lišit od fundamentální roviny. Kolem této invariantní roviny se obě dvě dráhy pomalu (s periodou \(P_2^2/P_1\)) otáčejí a my můžeme detekovat některé projevy tohoto efektu.

Například nejznámějším jevem je perioda precese (rotace uzlu dráhy v ročích):

\[
P_{\text{nodal}} = \frac{4}{3} \left(1 + \frac{M_1 + M_2}{M_3} \right) \frac{P_2^2}{P_1^2} (1 - e^2)^{3/2} \left(\frac{C}{G_2} \cos j \right)^{-1},
\]

kde \(C = G_1 \cos i_1 + G_2 \cos i_2\) je celkový moment hybnosti systému a \(j\) je úhel mezi rovinami krátké a dlouhé dráhy \(j = i_1 + i_2\). Nicméně většinou je sklon dlouhé dráhy neznámý, proto se častěji využívá zjednodušený tvar závislosti sklonu zákrytové dvojhvězdy na čase jako:

\[
\cos i_1 = \cos i_0 \cdot \cos j_1 - \sin i_0 \cdot \sin j_1 \cdot \cos(2\pi(t - t_0)/P_{\text{nodal}}),
\]

42
Obrázek 12: Geometrie trojnásobného systému.

kde i_0 je sklon invariantní roviny vůči nebeské sféře, i_1 je pozorovaný sklon zákrytové dvojhvězdy a j_1 je úhel mezi invariantní rovinou a dráhou zákrytové dvojhvězdy (viz obr. 12). Perioda rotace uzlové přímky P_{nodal} bývá ovšem velice dlouhá, a proto se tento jev zatím pozoruje jen u několika desítek systémů, viz obr. 14. S tím jak se mění sklon zákrytové dvojhvězdy, se také ovšem nutně (vzhledem k zákonu zachování celkového momentu hybnosti) mění i sklon dráhy třetího tělesa. Na obr. 13 je zobrazeno, jak se mění sklon zákrytové dvojhvězdy i třetí složky v systému.

Patrně nejznámějším objektem s pozorovanou změnou sklonu je dvojhvězda V907 Sco, která má vůbec nejkratší nodální periodu 68 let ze všech dosud známých systémů. Díky tomu již byla zachycena dvě období bez zákrytů a dvě se zákryty. LITE ale pozorován nebyl, neboť “dlouhá” perioda je příliš krátká (asi 100 dní) a amplituda LITE je proto malá.

S efektem působení třetí složky na samotný zákrytový pár také souvisí jev, který se obvykle označuje jako tzv. Kozaiovy cykly, nebo také Kozai-Lidovův mechanismus (Kozai 1962, Kiseleva a kol. 1998). Jeho podstata spočívá v tom, že při svém pohybu po velmi výstředné dráze se třetí složka může dostat natolik blízko k samotné dvojhvězdě, že při průchodu periastrem již nelze zanedbat vzájemné slapové působení složek. Tento proces pomalu vede k excitaci excentricityvnitní dráhy, slapové působení sílí a dvojhvězda se brzdí a přibližuje, v důsledku čehož se při zachování celkového momentu hybnosti musí třetí složka
Aby k podstatnému slapovému působení při průchodu periastrum došlo, je nutno aby byla splněna podmínka

\[a_3 (1 - e) \geq 5 a_1, \]

dle \(a_3 \) a \(a_1 \) jsou poloosy oběhu třetí složky a dvojhvězdy. Případně převedeno na periody to odpovídá

\[P_2 (1 - e)^{3/2} \geq 14 P_1. \]

Aby se vůbec tyto Kozaiovy cykly aktivovaly, je nutno aby orientace obou dráh byly v určitém vzájemném nastavení, konkrétně, aby pro vzájemný sklon platilo, že \(\sin^2 i_M > 2/5 \), neboli aby

\[39^\circ 2 \leq i_M \leq 140^\circ 8. \]

2.6.3 Rotace přímký apsid

U zákrytových proměnných poznáme nekruhovost dráhy většinou snadno, fáze sekundárního minima se liší od 0.5. Pokud by ale přímká apsid směřovala k pozorovateli, fáze by sice byla 0.5, ale lišilo by se trvání zákrytů (lze si ovšem představit případ, že i trvání zákrytů je stejné, pokud je sklon dráhy odlišný od 90°; při sklonu < 90° v nekruhové dráze jedno z miním dokonce ani nemusí existovat). U spektroskopických dvojhvězd je nekruhovost obtížněji prokazatelná, též z důvodů vlivu okolovězodí hmoty, viz dále.
Byly již uvedeny oba důvody rotace přímky apsid. Je třeba uvažovat dvě různé hodnoty oběžné periody: siderickou P_s, což je doba mezi dvěma shodnými polohami obou složek vzhledem ke hvězdám, a anomalistickou P_a, což je doba mezi dvěma průchody periastrem. Vždy je $P_a > P_s$. Perioda rotace přímky apsid je $U = \frac{360}{\dot{\omega}}$, kde $\dot{\omega}$ je změna délky periastra ve stupních, např. za jeden rok – pak U je též v ročích. Snad obvyklejší je uvádět $\dot{\omega}$ v radiánech za dobu jedné periody, pak platí

$$P_s = P_a(1 - \frac{\dot{\omega}}{2\pi}).$$ (104)

Jak už bylo zmíněno výše, rychlost stáčení přímky apsid je dána jednak relativistickým členem $\dot{\omega}_r$ a jednak klasickým členem v důsledku nehomogenního rozložení hmoty ve hvězdách $\dot{\omega}_c$. Je $\dot{\omega} = \dot{\omega}_r + \dot{\omega}_c$; příslušné vzorce viz učební text P. Harmance AST014 (Stavba a vývoj hvězd). Zde je efekt ilustrován na obr. 15, ukazujícím $O-C$ pro dvojhvězdu Y Cyg, která má poměrně krátkou periodu apsidálního stáčení U. Nekruhové dráhy jsou běžné u oddělených dvojhvězd, a jen výjimečně se mohou vyskytovat u polodotykových dvojhvězd. Dlouho např. probíhal spor o to, zda dráha Algolu má či nemá malou excentricitu. Dnes se tato dráha pokládá za kruhovou. Existují katalogy dvojhvězd s apsidální rotací (Petrova & Orlov 1999, Bulut a Demircan 2007); u téměř poloviny objektů je ale zařazení do tohoto katalogu sporné. Periody rotace apsid u dvojhvězd s „normálními“ složkami (tj., nekompaktými) začínají u asi 20 roků a mohou ovšem být i velmi dlouhé a tedy neurčitelné.

Z $O-C$ diagramu je možné určit U, e, ω a T_0. Ve vzťazích vystupuje i sklon i, ten je zpravidla znám z řešení světelné křivky. Jsou dvě cesty k určení parametrů:

1. buď optimalizujeme parametry prostřednictvím Keplerovy rovnice, tj. pro dané parametry počítáme
předpokládaný čas každého minima (podrobně viz Lacy 1992),

2. nebo použijeme rozvoj střední anomalie podle sinu pravé anomalie (který je běžně užíván v nebeské mechanice, viz Gimenez & Garcia-Pelayo 1983).

Jak je zřejmé z obr. 16, minimum nastává, když

\[v = \theta - \omega + \pi/2 \]

(105)

Pokud je \(i = 90^\circ \), \(\theta = 0 \) v případě primárního minima a \(\theta = \pi \) v případě sekundárního minima. Při \(i \neq 90^\circ \) se okamžik minima – kdy je pozorovatelná vzdálenost obou složek dvojhvězdy nejmenší – poněkud liší od okamžiku konjunkce (příslušný výraz viz Gimenez & Garcia-Pelayo 1983).

Je poučné uvažovat alespoň dva členy rozvoje (zde pro \(i = 90^\circ \)):

\[T_{\text{pri}} = T_0 + P_s E - \frac{\epsilon P_a}{\pi} \cos \omega + \frac{3\epsilon^2 P_a}{8\pi} \left(1 + \frac{\epsilon^2}{6}\right) \sin 2\omega \]

(106)

a

\[T_{\text{sec}} = T_0 + P_s E + \frac{P_a}{2} + \frac{\epsilon P_a}{\pi} \cos \omega + \frac{3\epsilon^2 P_a}{8\pi} \left(1 + \frac{\epsilon^2}{6}\right) \sin 2\omega . \]

(107)

Tato druhá metoda je užitečná hlavně u malých výstředností, kdy postačuje člen lineární v \(\epsilon \) a hodnota výstřednosti je okamžitě zřejmá z amplitudy \(\epsilon P_a/\pi \). Je také zřejmé, že při malé výstřednosti jsou křivky v \(O-C \) diagramu symetrické sinusovky, kdežto při větší výstřednosti se symetrie ztrácí, jak plyne ze znamének členů s \(\epsilon^2 \).

Existují případy, kdy se u dvojhvězd s apsidálním pohybem nedaří popsat \(O-C \) odchylky pouze apsidálním pohybem a kdy se pozoruje i LITE či jiné efekty. Příkladem může být soustava V346 Cen. Drobeck a kol. (2013) využili toho, že rozdíl mezi blízkými primárními a sekundárními minimy daný vztahem

\[\Delta T = T_{\text{min.I}} - T_{\text{min.II}} + P_a/2 \]

(108)

není ovlivněn LITE a lze jej využít k separaci obou jevů. Podle rozvojů, které publikovali Giménez a Garcia-Pelayo (1983) a Giménez a Bastero (1995) závisí rozdíl v čase ch minim pouze na okamžité hodnotě délky periastra \(\omega \), apsidální periodě \(P_a \), výstřednosti \(\epsilon \) a slabě na sklonu oběžné dráhy \(i \). Platí, že

\[\Delta T = -A_1 \frac{\epsilon P_a}{\pi} \cos \omega + A_3 \frac{\epsilon^3 P_a}{4\pi} \cos(3\omega) - A_5 \frac{\epsilon^5 P_a}{16\pi} \cos(5\omega), \]

(109)

kde \(A_1, A_3 \) a \(A_5 \) jsou složitými funkcemi sklonu dráhy \(i \) a výstřednosti \(\epsilon \) – viz rovnice (16), (18) a (20) v práci Giménez a Bastero (1995). (Pro případ \(i = 90^\circ \) se ale výrazy redukují na \(A_1 = 2, A_3 = 4/3 + \epsilon^2/2 \) a \(A_5 = 6/5 \).) Za předpokladu lineárně narůstající délky periastra s časem

\[\omega = \omega_0 + \dot{\omega} \times E \]

(110)

a pro sklon dráhy získaný řešením světelné křivky lze z funkce \(\Delta T(E) \) určit \(\omega_0, \dot{\omega} \) a \(\epsilon \).
Obrázek 16: Okamžiky minim v eliptické dráze (Gimenez & Garcia-Pelayo 1983).

line of sight
2.7 Neperiodické změny periody

Byly už uvedeny příklady např. trvale se prodlužující periody (β Lyr); různé změny periody jsou zřejmě mj. v databazi minim a O – C diagramů průběžně udržovanou Sekcí pozorovatelů proměnných hvězd v Brně. Je dostupná na adrese

Bylo již uvedeno, že takové změny vysvětluje procesy přenosu nebo ztráty hmoty z jedné či obou složek. Pokud se při přenosu z jedné složky na druhou žádná hmota ze systému neztrácí a neztrácí se ani úhlový moment, mluvíme o konservativním přenosu. Pro kruhovou dráhu platí

\[
\frac{\Delta P}{P} = 3 \frac{q}{1 - q^2} \frac{\Delta M}{M},
\]

(111)

kde \(q = M_1/M_2\); hmota se přenáší z hvězdy 1 na hvězdu 2. Podobně se mění i velká poloosa dráhy, jen koeficient v rovnici je 2 místo 3. Numericky vycházejí největší hodnoty přenosu hmoty až 10\(^{-4}\) M\(_\odot\) za rok.

Zjednána v počátečních rychlých stádiích dochází velmi pravděpodobně k nekonservativnímu přenosu hmoty a ztrátám hmoty a momentu hybnosti ze soustavy. U isotropní ztráty hmoty získá druhá složka jen malý díl hmoty, většina zmizí ze systému a oběžná perioda u tohoto typu ztráty hmoty trvale roste. Zřejmě je ztrátá hmoty zářením, vliv na periodu je ale pod přesností pozorování. Výraznější je ztrátá hmoty hvězdí významným větrem, k níž dochází hlavně u velkých hmotných hvězd. Ke ztrátě hmoty víceméně náleží dochází u nov a supernov. Při takové náhle ztrátě hmoty jedné složky dochází k růstu výstřednosti dráhy. Při výbuchu supernovy v soustavě se dráha může dokonce změnit na hyperbolickou a dojde tak ke rozpadu dvojhlídek. Druhá složka si přitom podrží svou orbitální rychlost, která může dosahovat stovky km s\(^{-1}\); tímto procesem se vysvětluje existence některých rychle se pohybujících hvězd (mj. pulsarů).

2.8 Určování elementů vizuálních dvojhlídek

K výpočtu dráhy je třeba mít měření (v podobě čas T, pozicní úhel \(\alpha\), promítnutá úhlová vzdálenost \(\rho\) v úhlových vteřinách), která pokrývají pokud možno celou dráhu; z takových dat je zřejmá oběžná perioda. Není-li dráha pokryta celá, jsou perioda i další dráhové elementy nejisté a řešení může být víceznačné nebo neurčitelné. Pozorovaná dráha je průměrem skutečné dráhy do tečné roviny ke sféře. Běžná mikrometrická měření nebo měření skvrnkovou interferometrií poskytují relativní vzdálenosti složek kolem jásnější; mají-li složky podobnou jasnost a perioda je krátká, může být problém s identifikací složek. Pokud lze měřit absolutní dráhy, dostane se i poměr hmotností složek.

z geometrie skutečné a promítané dráhy. Pojďme si uvěsit jednu možnou metodu, založenou právě na iteračním optimalizování daných orbitálních elementů. Výpočetní rychlost současných počítačů dovoluje použití optimalizačních metod i pro velké datové soubory či vysoké výstřednosti dráhy.

Na počátku mějme měření v čase \(T_0 \). Stejně jako pro spektroskopické dvojhvězdy můžeme spočítat střední anomálii \(M \) pro každý čas pozorování \(t \) ze vzorce (53) a z ní řešením Keplerovy rovnice (52) excentrickou anomálii \(E \). Tu pak použijeme pro výpočet pravé anomálie \(v \) ze vztahu (51). Pro úhlovou vzdálenost platí

\[
r = a \cdot \frac{1 - e^2}{1 + e \cos v},
\]

z čehož už lze vypočíst úhlovou polohu na obloze

\[
\tan(\theta - \Omega) = \tan(v + \omega) \cdot \cos i
\]

\[
\rho = r \cdot \cos(v + \omega) \cdot \sec(\theta - \Omega).
\]

Tyto úhlové veličiny \(\theta \) a \(\rho \) lze posléze převést na pravoúhlé souřadnice \(X \) a \(Y \) pomocí:

\[
X = A \cdot (\cos E - e) + F \cdot (\sqrt{1 - e^2} \sin E),
\]

\[
Y = B \cdot (\cos E - e) + G \cdot (\sqrt{1 - e^2} \sin E).
\]

Konstanty \(A, B, F \) a \(G \) bývají také někdy označovány jako Thiele-Innes constants, a lze je jednoduše spočítat pomocí elementů dráhy \(\omega, \Omega, a \) a \(i \). Touto metodou lze tedy iteračně spočítat orbitální elementy \(P_2, a, T_0, e, \omega, \Omega \) a \(i \) ze zadaných astrometrických měření.

Při řešení dráhy visuální dvojhvězdy se tedy získá úhlový rozměr hlavní poloosy \(a/d \) a sklon dráhy. Víme ovšem, že z řešení křivky radiální rychlosti se – při známém sklonu dráhy – získá hlavní poloosa v lineární míře. Pokud tedy je pro visuální dvojhvězdu měřitelná některá část křivky radiálních rychlostí, dostáváme i paralaxu objektu. Problémem ale je, že pro dráhy s dlouhou periodou nelze křivku radiálních rychlostí měřit příliš přesně (má malou amplitudu) a navíc potřebujeme pozorovat spektra po dlouhou dobu. V několika případech, kdy excentricita dosahuje vysokých hodnot \((e > 0.9) \), lze ale měřit důležitou část křivky radiálních rychlostí v okolí průchodu periastrem. Situace se změnila až s růstom úhlového rozlišení současných interferometrů, která dovolila jako visuální rozlišit i dvojhvězdy s kratšími periodami. Stejnou možnost jako využití křivky radiálních rychlostí nabízí i použití LITE. Ten také poskytuje lineární rozměr hlavní poloosy. V současnosti je známo více než 10 případů, kdy objekt s LITE byl měřen interferometricky – vedle V819 Her stojí za zmínku řeči \(\xi \) Tau (Nemravová, Harmanec, Brož a kol. 2016).

2.9 Vícenásobné soustavy

Co se týče jejich uspořádání či architektury, dělí se vícenásobné hvězdy do dvou základních skupin: soustavy typu Trapez a tzv. hierarchické systémy. V prvním případě platí, že jednotlivé objekty jsou ve srovnatelných vzájemných vzdálenostech (a mají tedy podobné oběžné peridy). Tak je tomu třeba u samotného prototypu - systému Trapez v Orionu. Daloč častější ale je, že dvojhvězda obíhá kolem společného těžiště ve vzdálenou třetí složku, neboli že poměr poloh oběžných drah vnitřní dvojhvězdy a třetí složky je velký.

Je jisté zajímavé vědět, v jakých poměrech period (nebo, což je velmi podobné, na jakých poměrech poloos oběhu) kolem sebe tělesa v trojihvězdu obíhá. Z teoretických úvah plyne, že existuje jisté omezení na poměry period \(P_2 \) a \(P_1 \) takového systému stabilní. Mardling & Aarseth (2001) např. zjistili, že

\[
\frac{P_2}{P_1} \geq 4.7 \left(\frac{M_1 + M_2 + M_3}{M_1 + M_2} \right)^{1/10} \frac{(1 + e)^{3/5}}{(1 - e)^{s}}, \tag{112}
\]

kde faktor \(s \) udává roven 1.8. Naproti tomu Sterzik & Tokovinin (2002) odvodili jeho hodnotu faktoru \(s \) rovnou 3.5 a Tokovinin (2007) došel k ještě přesnějšímu observačnímu kritériu \(s = 3.0 \).

Objekty, které nesplňují tato kritéria jsou dlouhodobě nestabilní, tj. nemohou být starší než je určitá charakteristická doba oběhu; mezi objekty s \(P_2 \) kratší než asi 10000 let se takové objekty nepozorují, s delším \(P_2 \) to jsou soustavy typu Trapez, jejichž stáří nemůže být velké. Modelové výpočty ukazují, že běžný vývoj takových soustav vede k úniku jedné ze složek ze systému a k tomu, že zbylá dvojice hvězd se stane kompaktnější.

Jinou zajímavou otázkou u vícenásobných soustav je, zda jejich oběžné dráhy leží v jedné rovině, tj. zda jsou nebo nejsou koplanární. Viděli jsme u soustav vykazujících LITE, že u řady z nich se mění hloubka minima, tj. krátké a dlouhé dráhy nejsou koplanární. Koplanaritu lze studovat i

\(^4\)http://ad.usno.navy.mil/wds/orb6.html
u jiných víceváločných soustav, např. pokud jedna složka vizuální dvojhvězdy s určenou druhou je sama
spektroskopickou dvojhvězdu. Bohužel v současné době je známo jen asi 10 takovýchto vhodných systémů,
pro něž byly s dostatečnou přesností určeny dráhové elementy obou drah, aby tak bylo možné zjistit jejich
vzájemný sklon.

Uveďme si jeden pozoruhodný příklad:

Zajímavá je \(\zeta \) Cnc (Griffin 2000) – jde o visuální dvojhvězdu, vzdálenost slunce je 6\(''\), oběžná doba
260 let. Obě složky jsou dvojhvězdy: jedna, se vzdáleností 1\(''\), má oběžnou dobu 20 let, druhá (u ní ale
jedna ze složek není vidět) má oběžnou dobu 17 let. Pro druhou dvojhvězdu byla získána křivka radiálních
rychlostí, semiamplituda je 4 km/s. Je známa přesná paralaxa (Hipparcos: 0,0391) a lze počítat hmotnosti;
všechny tři viditelné složky jsou podobné Slunci, neviditelná složka (nedetekovaná ani v UV, ani v IR oboru)
může být chladný bílý trpaslík.

V e známém “Trapezu” jsou dobře viditelné čtyři hvězdy: \(\theta \) Ori A, B, C (ta je nejjasnější a nejranější,
O6) a D. Z nich jsou \(\theta \) Ori A a B zákrytovými proměnnými V1016 Ori a BM Ori, pro \(\theta \) Ori A, B a C pak
byly skvrnkovou interferometrií nalezeny další složky (u \(\theta \) Ori B dokonce dvě). Nejzajímavější je nález
složky u \(\theta \) Ori C, neboť její úhlová vzdálenost je jen 0,040 a oběžná doba pravděpodobně 9 let; oběh se
projevuje i měřitelnými změnami radiální rychlosti. Trapez má tedy minimálně 10 složek.

Souborný přehled, jaké konkrétní elementy lze z daných dat získat je uveden v tabulce 1.

<table>
<thead>
<tr>
<th>(a_1 \sin i) nebo (a_2 \sin i)</th>
<th>Pouze (o)</th>
<th>Pouze (o)</th>
<th>Pouze (o)</th>
<th>Pouze (o)</th>
<th>Vizuální</th>
<th>Vizuální</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>LC</td>
<td>RV</td>
<td>SB1</td>
<td>RV</td>
<td>SB2</td>
<td>LC</td>
</tr>
<tr>
<td>(a_1 \sin i, a_1 \sin i, a_1 \sin i, M_1 \sin^2 i, M_2 \sin^2 i)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(a, \alpha_1, \alpha_2, M_1, M_2, R_1, R_2, L_1, L_2, d)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(q)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(q, a_1, a_2, L_1/L_2, g_1/g_2, A_1, A_2, F_1, F_2, x_1, x_2, x_3)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\gamma, P)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(q, a_1, a_2, L_1/L_2, g_1/g_2, A_1, A_2, F_1, F_2, x_1, x_2, x_3)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(\gamma, P)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Vysvětlivky: \(a_1 \) a \(a_2 \) jsou poloosy oběhu, \(i \) sklon oběhu, \(\alpha \) hmotnost, \(R_1 \) a \(R_2 \) poloměry složek, \(L_1 \) a \(L_2 \) bolometrické luminozity, \(q \) je hmotový poměr, \(q \) je rychlost těžiště, \(\gamma \) je hmotový poměr, \(L_1 \) a \(L_2 \) jsou monochromatické
luminozity, \(g_1 \) a \(g_2 \) gravitační ztemnění, \(A_1 \) a \(A_2 \) albeda, \(F_1 \) a \(F_2 \) rotační parametry \(F_i = \frac{\omega_i}{\omega} \), \(x_1 \) a \(x_2 \) jsou koeficienty okrajového
ztemnění, \(l_3 \) třetí světlo, \(T_2 \) teplota sekundáru (\(T_1 \) fixováno) a \(D \) je vzdálenost systému.
Obrázek 17: Vizuální dráha systému V819 Her. Jednotlivá měření (černě) jsou spojena s jejich teoretickými pozicemi na vizuální dráze. Zákrytová dvojhvězda umístěna v bodě [0,0] a čárkovaná a tečkovaná čára představují uzlovou přímku a přímku apsid.
Obrázek 18: Ukázka závislosti rozdílu magnitud na vzdálenosti složek pro 4 m dalekohled SOAR, viz Tokovinin a kol. (2010).
3 Metody určování radiálních rychlostí, profilů spektrálních čar jednotlivých složek a dráhových elementů pomocí digitalizovaných spektre

3.1 Klasická měření na fotografických spektrech

V době fotografických spektre se radiální rychlosti měřily obvykle s pomocí komparátoru s mikrometrickým vlákmem a přesným šroubem. Astronom nastavoval v mikroskopu střed čáry a odečítal lineární polohu na desce. Zkušený pracovník měřil jedno spektrum nejméně hodinu. Kromě časové náročnosti bylo nevýhodou i to, že nastavení bylo do určité míry subjektivní a provádělo se přirozeně na spektrech, která byla zaznamenávána v densitách a nebyla rektifikována, což mohlo vznést určité chyby.

Později se na některých hvězdárnách zvláště v USA začal používat komerčně vyráběný osciloskopický přístroj nazývaný Grant machine, který pomocí kmitajícího zrcátka a opticko-elektrického systému zobrazoval na obrazovce osciloskopu malý úsek přímého a zrcadlově převráceného spektra. V přístroji bylo opět fotografické spektrum uloženo na transportní podložce spojené s mikrometrickým šroubem. Ten dovoloval pohybovat spektrem tak, aby přímý a převrácený obraz splynul. To umožnilo nastavovat mnohem objektivněji střed čáry a pokud byly ve spektru vidět čáry druhé složky dvojhvězdy, měřit lépe i je. Spektrum se ovšem opět zobrazovalo jako nerektifikované a v densitách, což vedlo k určitým chybám v místech s velkým gradientem v průběhu kontinua.

Princip toho přístroje v pozdější době dovedl k dokonalosti ondřejovský astronom dr. Jiří Horn. Ten vytvořil program SPEFO umožňující (kromě kompletních redukci spektrogramů) měřit radiální rychlosti srovnáním přímého a převráceného obrazu spektra na rektifikovaných spektrech zobrazených již v relativních tocích na obrazovce stolního počítače. Pokud byl k dispozici i vhodný mikrodensitometer umožňující digitalizaci fotografických spektre, šlo podobným způsobem měřit i digitalizovaná fotografická spektra. Přístoj na digitalizaci spektre byl řadu let v provozu i na ondřejovské observatoři, nyní je takové zařízení již v místech s velkým gradientem v průběhu kontinua.

Princip toho přístroje v pozdější době dovedl k dokonalosti ondřejovský astronom dr. Jiří Horn. Ten vytvořil program SPEFO umožňující (kromě kompletních redukci spektrogramů) měřit radiální rychlosti srovnáním přímého a převráceného obrazu spektra na rektifikovaných spektrech zobrazených již v relativních tocích na obrazovce stolního počítače. Pokud byl k dispozici i vhodný mikrodensitometer umožňující digitalizaci fotografických spektre, šlo podobným způsobem měřit i digitalizovaná fotografická spektra. Přístoj na digitalizaci spektre byl řadu let v provozu i na ondřejovské observatoři, nyní je takové zařízení již v místech s velkým gradientem v průběhu kontinua.

3.2 Analogový spektrometr

Když se objevily technické prostředky na získávání spektre v digitalizovaném tvaru, začaly se objevovat i nové, objektivnější způsoby měření radiálních rychlostí. Za průkopníka v tomto směru lze označit britského astronoma Rogera Griffinu, který již v šedesátých letech 20. století zkonstruoval a uvedl do provozu foto-elektrický spektrometr na měření radiálních rychlostí (Griffin 1967). Princip jeho přístroje spočíval v tom,
že se spektrum studované hvězdy srovnávalo s maskou, na které bylo zaznamenáno spektrum hvězdy podobného spektrálního typu. Maska se mohla posouvat ve vlnové délce a fotoelektrický fotometr registroval světlo hvězdy prošlé maskou. Polohu masky, při které byl signál maximální, bylo možné kalibrovat tak, aby odpovídala rozdílu radiální rychlosti hvězdy vůči vzorovému spektru masky. Griffin se svým přístrojem dosahoval velmi dobré přesnosti v určení radiální rychlosti a do současné doby publikoval přes sto prací s nově měřenými křivkami radiálních rychlostí mnoha spektroskopických dvojíhvězd.

Griffinův spektrometr byl ovšem ještě analogovým zařízením, nicméně jako první určoval radiální rychlost nikoliv pomocí měření polohy jednotlivých spektrálních čár, nýbrž s využitím celého úseku spektra.

3.3 Základní úvahy o elektronických spektrech

Elektronické detektory Reticon a CCD umožnily stabilní a nízkošumový záznam spekter ve zcela digitálním tvaru, což otevřelo cestu k použití nových objektivních metod měření radiálních rychlostí.

Digitalizovaná a plně redukovaná a rektifikovaná spektra lze obvykle zapsat ve tvaru uspořádaných dvojic

\[\text{vlnová délka } \lambda \quad \text{relativní tok } I(\lambda) \]

setříděných vzestupně ve vlnové délce. Někteří autoři doporučují použít místo vlnové délky \(\lambda \) jako nezávislou proměnnou její přirozený logaritmus \(\ln \lambda \), a to z následujícího důvodu: Oběžné rychlosti naprosté většiny hvězd, které pozorujeme, jsou mnohem menší než rychlost světla ve vakuu a proto lze pro určení radiální rychlosti \(RV \) použít nerelativistický Dopplerův jev ve známém tvaru

\[\lambda = \lambda_0 \left(1 + \frac{RV}{c}\right). \]

(113)

Logaritmováním této rovnice dostaneme

\[\ln \lambda = \ln \lambda_0 + \ln \left(1 + \frac{RV}{c}\right). \]

(114)

Pro \(RV << c \) lze druhý člen na pravé straně rovnice (114) nahradit Taylorovým rozvojem se zanedbáním všech vyšších členů a psát

\[\ln \left(1 + \frac{RV}{c}\right) \approx \frac{RV}{c}, \]

(115)

Rovnici (114) můžeme pak přepsat do diferenciálního tvaru

\[c \cdot \Delta \ln \lambda \approx \Delta RV, \]

(116)

ze kterého výplývá, že posun \(v \ln \lambda \) po vynásobení rychlostí světla je velmi přibližně přímo mírou rozdílu radiálních rychlostí mezi dvěma spektry.

Uvědomme si ale, co zanedbání vyšších členů Taylorova rozvoje představuje numericky pro praktické aplikace. Vlnová délka podle přibližného vztahu (115) \(\lambda_{\text{approx}} \) bude po dosazení z (115) do rovnice (114)

\[\lambda_{\text{approx}} = \lambda_0 e^{\frac{RV}{c}}, \]

(117)
takže odpovídající rozdíl v radiálních rychlostech bude

$$RV - RV_{\text{approx}} = RV - c \left(\frac{\lambda_{\text{approx}}}{c} - \frac{\lambda_0}{c} \right) = RV - c \left(\frac{RV}{c} - 1 \right). \quad (118)$$

Vidíme tedy, že chyba v radiální rychlosti, která takto vznikne, nezavírá na vlnové délce. Např. pro $RV = 400 \text{ km s}^{-1}$ činí tato chyba 0,267 km s$^{-1}$ a pro $RV = 1000 \text{ km s}^{-1}$ již 1,67 km s$^{-1}$. To pro opravdu přesné určování radiálních rychlostí nejsou zcela zanedbatelné hodnoty.

Bylo by přirozeně možné uvažovat i vyšší členy Taylorova rozvoje, ale lepší je následující postup: Uvědomme si, že původní spektrum bylo zaznamenáno na detektor, který má konstantní rozestup s mezi středy jednotlivých detekčních elementů. Disperzní element (mřížka či hranol) změní tuto škálu na nelineární škálu ve vlnových délích. Té je ale možné změnit na škálu, pro níž zůstane konstantní rozlišovací schopnost R daná vztahem

$$R = \frac{\lambda}{\Delta \lambda} = \frac{\lambda}{W \cdot s}, \quad (119)$$

kde W je lineární disperse a s vzdálenost středu sousedních elementů detektoru ve směru disperze. Tím bude přeškálované spektrum lineární v radiální rychlosti bez jakékoliv aproximace.

Čistě prakticky lze přeškálování provést tak, že vlnovou délku odpovídající prvnímu detekčnímu elementu zachováme a označíme λ_1, zvolíme konstantní krok v radiální rychlosti ΔRV a ze vztahu (113) pak plyne, že vlnová délka n-tého přeškálovaného elementu λ_n bude

$$\lambda_n = \lambda_1 \left(1 + \frac{\Delta RV}{c} \right)^{-1} \quad (120)$$

Je ovšem třeba, abychom vždy správně uvážili, jaký krok v radiální rychlosti zvolíme, abychom nezhoršili rozlišovací schopnost původního spektra a na druhé straně, abychom nevolili krok příliš malý, neboť interpolací mnoha bodů mezi dva sousední elementy použitého detektoru již novou informaci nepřidáme a pouze prodloužíme čas případného dalšího zpracování.

Pro ilustraci: v coudé ohnisku 2-m dalekohledu v Ondřejově se v kameře s ohradním 702 mm od roku 1992 do července 2000 používal detektor Reticon 1872RF, ze kterého bylo podél disperze využito pro záznam spektra 1696 detekčních elementů, jejichž středy byly od sebe vzdáleny o 0,015 mm. V současné době se ve stejném ohnisku používá CCD detektor SITE-005 o rozměru 2030×800 detekčních elementů, ze kterého se na záznam spektra podél disperze využívá 1997 elementů vzájemně od sebe vzdálených také o 0,015 mm. V nejčastěji používané červené oblasti spektra v rozsahu od 6255 do 6767 Å činí rozdíl mezi sousedními dvěma elementy ve vlnové délce asi 0,25 Å a rozdíl v radiálních rychlostech klesá od krátkovlnného k dlouhovlnnému okraji spektra asi od 12,3 do 11,35 km s$^{-1}$. To platí v obou případech, ač to třeba upozornit na jeden rozdíl mezi oběma typy spekter. Spektra z detektoru Reticon byla plně redukovaná v programu SPEFO a hodnoty jejich relativních toků jsou uloženy pro původní detekční elementy. To znamená, že pokud si zobrazíme tato spektroskopicky vlnové délce, pak jednotlivé hodnoty vlnových délek přesně odpovídají vlnovým délkám jednotlivých detekčních elementů 1 až 1696 podle disperzního vztahu. Naproti tomu počáteční redukce nynějších CCD spektrej (mj. kalibrace relativního toku, převedení na jednorozměrné spektrum a proložení disperzního polynomu) je prováděna v progratuem IRAF a v archivu pro uživatele jsou spektra uložena již ve škále vlnových délek e ekvidistantním krokem λ. To se jeví jako poněkud
nešťastné, neboť – v této chvíli zbytečně – je původní spektrum interpolováno do bodů ležících obecně mezi jednotlivými původními detekčními elementy a zřejmě tak, že se poněkud ztrácí původní rozlišení, neboť je uloženo opět spektrum obsahující pouze 1997 bodů. (Abychom původní rozlišení neztratili, měli bychom za ekvidistantní krok v λ přijmout nejmenší vzdálenost ve vlnové délce mezi dvěma sousedními elementy, což je na dlouhovlnném konci spektra.) Pro naše účely je ale užitečné si povšimnout, že použijeme-li vztah (120), budou oba typy spekter převedeny správně do škály ekvidistantní v radiální rychlosti.

3.4 Porovnání profilů čar s Gaussovými funkcemi

Ukazuje se, že pozorované profily spektrálních čar lze dobře modelovat Gaussovou funkcí

$$g(x) = ae^{-\frac{(x-b)^2}{2c^2}},$$

kde reálné konstanty a, b a c představují volitelné parametry. Parametr a představuje výšku vrcholu Gaussovy funkce (viz obr.21), parametr b definuje polohu vrcholu v souřadnici x a parametr c souvisí s šířkou Gaussovy funkce v poloviční výšce FWHM vztahem

$$FWHM = 2\sqrt{2\ln 2 \cdot c}.$$

Takto zapsaná funkce představuje emisní čary, je ale jasné, že použitím záporného parametru a z intervalu $(0,1)$ a přičtením konstanty 1 lze popsat absorbční profily v rektifikovaných spektrech.

V aplikaci na dvojhvězdy či vícenásobné soustavy lze postupovat tak, že pro spektra z fází, kdy je např. dvojhvězda v elongaci, určíme vhodné parametry Gaussových funkcí popisující dobře profily jednotlivých složek dvojhvězdy a ve fázích, kdy se profily překrývají (blendují) se snažíme vhodným posuvem ve vlnové délce nalézt nejlepší shody mezi pozorovaným spektrem a součtem zvolených Gaussových funkcí. Program na měření radiálních rychlostí dvou či více složek vícenásobného systému vytvořil a používal jeden z autorů tohoto textu Pavel Mayer.

3.5 Něco matematiky na připomenutí

Než budeme mluвит o různých metodách numerické manipulace se spektry, bude užitečné si připomenout několik fakt o Fourierově transformaci a souvisejících matematických operacích a zobrazeních.

Obecně platí, že Fourierovou transformaci funkce $F(x)$ proměnné x se nazývá funkce $f(y)$ nové proměnné y, která je dána vztahem

$$f(y) = \int_{-\infty}^{+\infty} F(x)e^{2\pi ixy}dx,$$

přičemž pro zpětnou transformaci platí

$$F(x) = \int_{-\infty}^{+\infty} f(y)e^{-2\pi ixy}dy.$$
Obrázek 21: Příklady průběhu Gaussovy funkce. Hodnoty parametrů a, b a c jsou uvedeny v závorkách u každé funkce.
Funkci \(f(y) \) se někdy říkává Fourierův obraz funkce \(F(x) \).

Fourierova transformace je lineární a dá se také dokázat, že
\[
\int_{-\infty}^{+\infty} |f(y)|^2 dy = \int_{-\infty}^{+\infty} |F(x)|^2 dx. \tag{125}
\]

Delta funkci \(\delta(x) \) proměnné \(x \) nazýváme speciální funkci, pro níž platí
\[
\delta(x) = \begin{cases} 0 & \text{pro všechna } x \neq 0 \\ \int \delta(x) dx = 1. \end{cases} \tag{126, 127}
\]

Bude-li \(x_1 \) nějaký konkrétní bod na ose \(x \), platí zřejmě, že funkce \(\delta(x - x_1) \) bude nenulová pouze v bodě \(x_1 \). Fourierova transformace delta funkce bude proto zřejmě
\[
f(y) = \int_{-\infty}^{+\infty} \delta(x - x_1)e^{2\pi i xy} dx = e^{2\pi i y_1} \int_{-\infty}^{+\infty} \delta(x - x_1) dx = e^{2\pi i y_1}. \tag{128}
\]

Konvoluce \(K(x) \) dvou funkcí \(F(x) \) a \(G(x) \) je definována vztahem
\[
K(x) = \int_{-\infty}^{+\infty} F(u)G(x - u)du, \tag{129}
\]
což se někdy zkráceně zapisuje ve tvaru
\[
K(x) = F(x) \ast G(x). \tag{130}
\]

Pro nás významnou vlastnost konvoluce je to, že její Fourierův obraz \(k(y) \) je prostým součinem Fourierových obrazů \(f(y) \) a \(g(y) \) uvažovaných funkcí \(F(x) \) a \(G(x) \), tedy
\[
k(y) = \sqrt{2\pi f(y) \cdot g(y)}. \tag{131}
\]

3.6 Radiální rychlosti s použitím kroskorelační funkce

Použití kroskorelační funkce (cross-correlation function; c.c.f.), využívané delší dobu v jiných oborech, k měření radiálních rychlostí a rotačního rozšíření spektrálních čar jako první navrhl Simkin(ová) (1974) a dále je rozpracovali Da Costa a kol. (1977) a Tonry a Davis (1979). V jistém smyslu jde o jakousi digitální verzi analogového postupu použitého Griffinem. Spektrum studované hvězdy, v tomto případě ale již kompletne redukované (tj. rektifikované a v heliocentrické škále vlnových délek) se srovnává se vzorovým spektrum hvězdy podobného spektrálního typu. Mnoho autorů doporučuje spektrální čary vzorového spektra rotačně rozšířit tak, aby se i šířkou co nejvíce podobaly čáram studované hvězdy. Oproti tomu např. kanadský astronom David Holmgren (soukromé sdělení) doporučuje pro lepší kontrast použít vzorové spektrum...
s úzkými čarami. Pokud jsou jak vzorové, tak studované spektrum na lineární škále v radiálních rychlostech (jak jsme to diskutovali dříve), pak je zřejmé, že takový vzájemný posuv obou spekter z, který povede k jejich nejlépsí shodě, je přímo mírou rozdílu v radiálních rychlostech obou spekter. Za vzorové spektrum lze zvolit buď spektrum hvězdy podobného spektrálního typu jako má studovaná hvězda, které bylo získáno stejným spektrografem nebo syntetické spektrum v rozlišení, které použitímu spektrogramu odpovídá. Výhodou použití skutečného pozorovaného spektra je jeho nesporná blízká podobnost spektru studované hvězdy. Naopak syntetické spektrum je bez šumu, což se také může ukázat jako výhoda. Za vzorové spektrum můžeme v principu zvolit i jedno ze spekter studované hvězdy, pak ale musíme počítat s tím, že radiální rychlosti získáme jen relativně, bez určení jejich nulového bodu.

Označíme-li funkci popisující pozorované specifikované spektrum hvězdy jako \(I(x)\) a funkci popisující vzorové spektrum jako \(V(x)\), kde souřadnice \(x\) je lineární v radiální rychlosti, pak jejich kroskorelační funkce je definována vztahem

\[
C(z) = \int_{-\infty}^{\infty} V(x)I(z+x)dx = V(z) \ast I(z) \tag{132}
\]

a dosahuje maxima pro hodnotu \(z_0\) odpovídající rozdílu v radiálních rychlostech obou spekter. Používáme si, že kroskorelace je operace, která se od konvoluce liší pouze znaménkem integrační proměnné ve druhé funkci. Označuje se symbolicky podobně jako konvoluce, ale jiným typem hvězdičky (pěticípou).

Reálná elektronická spektra jsou ovšem souborem diskrétních hodnot

\[
I(x_i) \quad (i = 1, N) \quad a \quad V(x_j) \quad (j = 1, M)
\]

rovnoměrně vzorkovaných v lineární škále radiálních rychlostí s krokem \(\Delta x\). Kroskorelační funkce (132) se tak změní v soubor kroskorelačních koeficientů (kterým se ovšem někdy také říká kroskorelační funkce).

Pro diskrétní posuvy spektra vůči vzorovému spektru \(z_l = l \Delta x\) (kde \(l\) může nabývat záporné i kladné hodnoty) jsou tyto koeficienty definovány vztahem

\[
C_j(z_l) \equiv \frac{1}{j} \sum_{i=1}^{j} V(x_i)I(x_i + z_l). \tag{133}
\]

Maximum kroskorelační funkce můžeme určit některou numerickou metodou, třeba pomocí proložení vhodné funkce.

Ve většině praktických aplikací se ovšem kroskorelační funkce nepočítají přímo, ale provádí se Fourierova transformace, která integrování v kroskorelační funkci změní na násobení Fourierových obrazů v prostoru frekvencí. Poté je provedena inverzní Fourierova transformace, což ovšem vzhledem k periodickému charakteru funkcí v prostoru frekvencí může vést při zpětné transformaci k falešným jevům. Bránit se lze dvěma vhodnými manipulacemi se spektrem. Za prvé bývá zvykem místo původní funkce \(I(x)\) použít novou funkci \(F(x) = 1 - I(x)\), která z očekávaných absorpčních čar učiní čary emisní, ale hlavně bude mít úroveň kontinua v ideálním případě rovnou nule. Druhou manipulací je tzv. tapering. Může se totiž stát, že na okrajích spekter jsou spektrální čáry, které by při dvou Fourierových transformacích mohly vést ke vzniku falešných vysokořetkněních artefaktů v kroskorelační funkci. Tapering znamená přidání asi 10 procent bodů na obou okrajích spektra tak, aby případné nenulové hodnoty funkce \(F(x)\) na obou okrajích intervalu přesly spojité na hodnoty nulové.

Program vytvořený na principu programu TODCOR nezávisle na psal belgický astronom Yves Frémat pod názvem astODCOR a je na našem pracovišti k dispozici.

3.7 Určování radiálních rychlostí pomocí rozšířovací funkce

Metodu využití rozšířovací funkce navrhl a rozpracoval Rucinski (1992, 1998). Kdyby v atmosférách hvězd neexistovaly žádné procesy vedoucí k rozšíření spektrálních čar, byly by absorbční čáry odpovídající vázaným atomárním přechodům souborem delta funkcí. Takové rektifikované spektrum $F_0(\lambda)$ upravené transformací $S_0(\lambda) = 1 - F(\lambda)$ by se tak dalo zapsat ve tvaru

$$S_0(\lambda) = \sum_j k_j \delta(\lambda_j),$$

(134)

kde sumace přes j zahrnuje všechny spektrální čáry vyskytující se v uvažovaném úseku spektra. Ve skutečnosti jsou i čáry nerotující hvězdy rozšířeny různými mikroскопickými atomárními procesy (tepelné rozšíření, mikroturbulence a podobně) a k určitému rozšíření dochází díky nenulové šířce štěrbiny i v samotném spektrografi. Označíme-li všechny tyto procesy působící malé rozšíření spektrálních čar jako $T(\lambda)$, je zřejmé, že pozorované spektrum bude konvolucí spektra $S_0(\lambda)$ s rozšířovací funkcí $T(\lambda)$:

$$S(\lambda) = S_0(\lambda) \ast T(\lambda).$$

(135)

Spektrum ovšem může být rozšířeno vnějšími vlivy, buď rotací hvězdy s nerovnoměrným rozložením jasu na povrchu ("hvězdné skvny") nebo pohytem v oběžné dráze kolem společného těžiště. Při rotaci osamocené hvězdy bez skvrn bude ovšem rozšířovací funkce v čase konstantní, zatímco v ostatních uvedených případech se bude měnit buď s časem nebo s fází oběžní periody a pro případ dvojhvězdy může v elongacích nabývat i podobu dvou oddělených vrcholků nebo dvou vrcholků, které se částečně překrývají. I v tomto případě budou šířky obou částí rozšířovací funkce záviset na promítaných rotačních rychlostech složek dvojhvězdy. Je ovšem jasné, že středy obou vrcholů rozšířovací funkce budou opět pro daný čas odpovídat radiálním rychlostem složek dvojhvězdy.

Označíme-li právě diskutovanou rozšířovací funkci symbolem $B(\lambda)$, lze výsledně pozorované spektrum $F(\lambda)$ v každém okamžiku zapsat jako konvoluci

$$F(\lambda) = S(\lambda) \ast B(\lambda) = S_0(\lambda) \ast T(\lambda) \ast B(\lambda).$$

(136)

Podobně jako u kroskorelační metody je možné spočítat kroskorelační funkci mezi spektrem nerozšířeným rozšířovací funkcí $B(\lambda)$ a mezi spektrem pozorovaným (pozor opět na správné rozlišení a použití symbolů $*$ a \ast). Dostaneme
\[C(\lambda) = S(\lambda) \times F(\lambda) \]
\[= S(\lambda) \ast (S(\lambda) \ast B(\lambda)). \]

(137)

Označíme-li symbolicky operaci Fourierovy transformace symbolem \(\mathcal{F} \) a inverzní Fourierovu transformaci symbolem \(\mathcal{F}^{-1} \), platí zřejmě

\[\mathcal{F}[F(\lambda)] = \mathcal{F}[S(\lambda)] \cdot \mathcal{F}[B(\lambda)] \]

(138)
a odhad rozšířovací funkce lze v principu získat z operace

\[B(\lambda) \sim \mathcal{F}^{-1}[\mathcal{F}[F(\lambda)]/\mathcal{F}[S(\lambda)]]. \]

(139)

Ve skutečnosti se ale ukazuje, že tento postup zavádí do úlohy velký šum a je třeba úlohu formulovat jako diskrétní sumaci a řešení soustavy lineárních rovnic metodou nejmenších čtverců, přičemž je třeba využít důmyslné numerické metody.

Podrobný výklad o praktickém použití metody lze získat na webové stránce Dr. Rucinského http://www.astro.utoronto.ca/ rucinski a na této adrese lze nalézt i program v jazyce IDL či odkaz na realizaci programu Dr. Nelsonem v prostředí Windows.

3.8 Dopplerovská tomografie

3.9 Oddělení spektér individuálních složek (spectra disentangling)

Jeho program dovoluje určovat dráhové elementy jen pro dvojhvězdu
Předpokládejme, že pozorované spektrum \(I(x, t) \) je funkce relativního posuvu v radiální rychlosti \(x \) a času \(t \) a že vzniká skladáním spekter \(I_j (j = 1, \ldots, n) \) pocházejících z \(n \) různých hvězd, která jsou sama o sobě nevaditelné a pouze se vůči sobě posouvají v radiální rychlosti.

Pak zřejmě můžeme výsledné spektrum v libovolném čase vyjádřit jako konvoluci spekter jednotlivých hvězd s delta funkcí ve tvaru

\[
I(x, t) = \sum_{j=1}^{n} I_j(x) \ast \delta(x - RV_j(t)).
\]

(Tento zápis se může zdát jako poněkud samoučelný, protože by bylo jednodušší napsat

\[
I(x, t) = \sum_{j=1}^{n} I_j(x - RV_j(t)).
\]

Má to ale svůj dobry význam, jak hned z dalšího výkladu vyplynout.)

Označme Fourierovu transformaci spektra \(I \) symbolem \(J \) a spekter \(I_j \) symboly \(J_j \). Pro spektrum zapsané v souřadnici \(x \) pomocí rovnice (140) bude mít jeho Fourierova transformace v konkrétním bodě \(y \) tvar

\[
J(y, t) = \sum_{j=1}^{n} J_j(y)e^{iyRV_j(t)}.
\]

Povšimněme si, že Fourierův obraz je zde zapsán jako součin Fourierových obrazů obou funkcí a že faktor \(2\pi \) v exponenti je ‘zanedbán’, což je ale přípustné, neboť to pouze znamená jinou normalizaci proměnné \(y \).

Jestliže pozorováním získáme \(k \) spekter (\(k > n \)) v časech \(t_i \), \((i = 1, \ldots, k) \), která jsou složením spekter dvou nebo více spekter hvězd, tvořících soustavu, a posunutých vzájemně o různé radiální rychlosti \(RV_j(t_i) \), můžeme se pokusit nalézt jak jednotlivá spektra, tak jejich odpovídající radiální rychlosti metodou nejmenších čtverců. Jak Simon a Sturm (1994), tak Hadrava (1995) určují při výpočtu místo samotných radiálních rychlostí přímo dráhové elementy soustavy.

Odpovídající suma čtverců odchylek, kterou je třeba minimalizovat, má tedy tvar

\[
S = \sum_{i=1}^{k} \int_{-\infty}^{\infty} |J(y, t_i) - \sum_{j=1}^{n} J_j(y)e^{iyRV_j(t_i,p)}|^2dy,
\]

kde \(p \) schematicky označuje dráhové elementy \(P, T_0, K_1, M_2/M_1, e, \omega \) a případně časovou změnu periody \(\dot{P} \) či změnu délky periastra \(\dot{\omega} \) způsobenou apsidálním pohybem.
Abychom si uvědomili, proč je výhodné provádět řešení ve Fourierových obrazech původních funkcí, uvažujme případ, kdy výsledné spektrum vzniká pouze skládáním dvou spektér dvojhvězdy. Suma (143) bude mít v tom případě tvar

\[
S = \sum_{i=1}^{k} \int_{-\infty}^{\infty} \left| J(y, t_i) - \frac{J(y) e^{i y R V_1(t_i, p)} - J_2(y) e^{i y R V_2(t_i, p)}}{2} \right|^2 dy,
\]

(144)

Předpokládejme také, že dráhové elementy známe a že chceme získat pouze spektra obou složek dvojhvězdy. Číslo komplexné sdružené k číslu \(\alpha\) označme neznámých.

Sečteme-li ještě první dvě a druhé dvě podmínkové rovnice, došlo by k podobné separaci proměnných a museli bychom řešit obrovskou soustavu rovnic o mnoha neznámých.

Vidíme tedy, že pro daný bod Fourierova obrazu pozorovaného spektra se problém redukuje na řešení dvou lineárních rovnic o dvou neznámých. Kdybychom tedy přímo řešili přímo pro původní spektra, nedošlo by k podobné separaci proměnných a museli bychom řešit obrovskou soustavu rovnic o mnoha neznámých.

Hadrava (1997) metodu zobecnil ještě zavedením předpokladu, že intenzita kteréholiv spektra se může spektrum od spektra měnit. To se v reálných situacích často stává. U zákrytových dvojhvězd se tak děje v průběhu zákrytů. Zahrneme-li do řešení i telurické čáry, které během roku zdárně obklady ve škále heliocentric-kých vlnových délek odrážejí oběh Země kolem Slunce, pak jejich intenzita se mění jak se stavem ovzduší, tak i se vzdusnou hmotou, ve které v dané chvíli objekt pozorujeme. Mírné zdárné změny intenzity čár mohou konečně nastávat i v případech ne zcela dokonalé rektifikace spektra.

Označíme-li intenzitu \(j\)-tého spektra v čase \(t\) symbolem \(s_j(t)\), lze rovnice (140) a (142) zobecnit do tvaru

\[
I(x, t) = \sum_{j=1}^{n} s_j(t) I_j(x) \ast \delta(x - RV_j(t))
\]

(152)

\[
J(y, t) = \sum_{j=1}^{n} s_j(t) J_j(y) e^{i y R V_j(t)}
\]

(153)
a příslušně upravit i podmínkové rovnice. Výsledkem řešení mohou tak být i uvažované intenzity spektér jednotlivých složek v časech expozic všech použitých spektrogramů.

Pozoruhodným důsledkem této možnosti je zjistit fázově vázané změny jasnosti složek dvojhvězdy či vícenásobné soustavy bez fotometrických měření, čistě ze spektér, která dokonce nejsou absolutně kalibrována v hodnotách toku. Lze rovněž jednoznačně rozhodnout, která hvězda je během daného zákrytu zakrývá.

KOREL – jak už bylo řečeno – může řešit hierarchickou soustavu až 5 hvězd a výsledkem řešení jsou i dráhové elementy soustavy. Pro takový případ se ovšem v sumě čtverců, kterou je třeba minimalizovat, vyskytují i nelineární členy a program k minimalizaci sumy čtverců v těchto nelineárních členech používá metodu simplexu publikovanou Kallrathem a Linnellem (1987). Ta pracuje tím způsobem, že v prostoru parametrů spočte sumu čtverců ve třech různých bodech a poté se čtyřmi možnými operacemi snaží nahradit bod s nejhorší sumou čtverců bodem jiným. Možné operace jsou následující:

A. Zrcadlení – Nový bod se zvolí na opačné straně vůči spojnicí dvou bodů s lepší sumou čtverců a ve stejně vzdálenosti od ní.

B. Dělení – Nový bod se zvolí na stejné straně vůči spojnicí dvou bodů s lepší sumou čtverců, ale v poloviční vzdálenosti od ní, než původní bod.

C. Násobení – Nový bod se zvolí na stejné straně vůči spojnicí dvou bodů s lepší sumou čtverců, ale v dvojnásobné vzdálenosti od ní, než původní bod.

D. Stažení – Dva body s horší sumou se přiblíží na polovinu původní vzdálenosti k bodu s nejmenší sumou čtverců odchylek.

Program KOREL průběh konvergence může zobrazovat a jednotlivé operace identifikuje písmeny A až D podle právě uvedeného schematu.

3.10 Programy na řešení křivek radiálních rychlostí a světelných křivek

Při skutečném moderním řešení křivek radiálních rychlostí a světelných křivek se uvažuje celá řada různých dynamických a fyzikálních jevů: pohyb v obecně výstředné dráze, nesférický tvar hvězdy a s ním spojený rozdíl mezi optickým a gravitačním težištěm obou těles, reflexe záření, tzv. Rossiterův či rotační jev (deformace křivky radiálních rychlostí v době začátku a konce zákrytu u zákrytových dvojhvězd s rychleji rotujícími složkami), případně nerovnoměrné rozložení jasu na povrchu ve formě hvězdných skvrn a další jevy. Výpočet je pak přirozeně mnohem složitější a také většinou náročný na výpočetní čas. Problémem může být i jednoznačnost řešení a silná korelace mezi některými určovanými elementy.

Z toho, co jsme si dosud povědomí, je ovšem již zřejmé, že pokud zákrytovou dvojhvězdu současně pozorujeme spektroskopicky jako dvojhvězdu spektroskopickou, můžeme kombinací obou řešení získat všechny základní fyzikální vlastnosti obou složek dvojhvězdy i celé soustavy: jejich hmotnosti, poloměry, relativní tok záření jednotlivých složek v jednotkách celkového toku soustavy v maximu jasnosti v efektivních vlnových délkách, ve kterých byla světelná křivka získána a přirozeně i parametry popisující dráhu a její orientaci v prostoru. Pokud získáme buď z barevných indexů jednotlivých složek nebo z modelování profilů spektrálních čar spolehlivý odhad efektivních teplot obou těles, můžeme určit i jejich zářivé výkony a zářivý výkon celé soustavy. Jeho porovnáním s pozorovanou zdánlivou jasností soustavy nám v principu rovněž dovolí určit velmi přesně vzdálenost soustavy od nás, jak jsme ukázali již v kapitole o fotometrických měřeních.
Zákrytové dvojhvězdy jsou proto zdrojem našich nejpřesnějších znalostí o hmotnostech, poloměrech a zářivých výkonech hvězd.

Rozvoj programů na řešení světelných křivek s pomocí minimalizačních metod začal s nástupem elektronických počítačů a za zmínku stojí, že jeden z prvních takových programů vytvořil již resnulý brněnský astronom Dr. Tomáš Horák (Horák 1966, 1970).

3.10.1 W oodův program WINK

Program WINK (Wood 1971) je dalším z dosud používaných počítačových programů. Obě složky dvojhvězdy modeluje jako tříosé elipsoidy a je připraven i na modelování dvojhvězd ve výstředné dráze. Pracuje nejen s okrajovým ztemněním, ale i s gravitačním zjasněním a s reflexí.

3.10.2 Program WD Wilsona a Devinneyho

Použití programu nebylo po dlouhou dobu úplně snadné, uživatel např. musel po každé iteraci znovu na klávesnici počítače napsat všechny konvergované údaje před započetím další iterace. Program je ovšem trvale vyvíjen a jeho vývoj je dostatečně dokumentován.

3.10.3 Programy PHOEBE 1 a PHOEBE 2

Uživatelsky přijemnou nástavbou WD programu s grafickým rozhraním vytvořil po dohodě s Dr. Wilsonem slovinský astronom Andrej Prša ve spolupráci se svým původně školitelem Tomazem Zwitterem (viz Prša Zwitter 2005). Postupně program zdokonaloval jak z hlediska dobré konvergence, tak dodáváním nových možností, které původní WD program neposkytuje. Program je pod názvem PHOEBE 1 (PHysics Of Eclipsing Binaries) volně dostupný na webové stránce http://phoebe-project.org/1.0.
Na uvedené stránce je i webový odkaz na originální WD program R.E. Wilsona a několik dalších volně dostupných programů na řešení světelných křivek.

Dr. A. Prša po svém příchodu do USA začal postupně v týmové spolupráci s dalšími kolegyněmi a kolegy budovat zcela nový program PHOEBE 2, který již není založen na WD programu. Program je psán v jazyce Python a je neustále vyvíjen. Díky zlepšené volbě sítí bodů na povrchu složek by měl věst k přesnějšímu řešení světelných křivek i křivek radiálních rychlostí. Měl by navíc poskytovat mnoho nových možností jako je modelování hierarchických soustav včetně apsidálního pohybu drah, modelování hvězdných oscilací, disků a možnost použít na vstupe i interferometrická pozorování. Beta verzi programu si lze nyní stáhnout i s podrobnou dokumentací a návodem na hlavní stránce projektu http://phoebe-project.org.

3.10.4 Program BINSYN A.P. Linnella and I. Hubeneho

Linnell a Hubeny (1996) zobecnili již celou sadu programů o možnost modelovat a akreční disk kolem jedné ze složek dvojhvězdy a počítat jak vliv disku na světelnou křivku, tak i výsledné syntetické spektrum v různých oběžných fázi.

Při aplikaci na dvojhvězdu β Lyr Linnell (2002) doplnil program o možnost použít libovolné (třeba i tabulkově zadané) optické tufky disky včetně jednoduchého modelování absolutně černým tělesem.

Dr. Linnell svůj základní program doplnil i o možnost modelovat dvojhvězdy ve výstřední dráze a pro kruhovou dráhu vytvořil verzi dovolující elementy soustavy na základě pozorovaných světelných křivek konvergovat. Tato sada programu je na Astronomickém ústavu UK k dispozici i s manuálem k použití. Určité praktické zkušenosti s tímto programem má např. Mgr. Pavel Chadima a vlastní verzi programu v Linuxu s řešením inverzní úlohy vytvořil chorvatský astronaut Dr. Davor Sudar ze Zagrebu.

Vývoj tohoto programu je bohužel pravděpodobně ukončen, neboť Dr. A.P. Linnell zemřel 20. ledna 2017 ve věku 94 let.

3.10.5 Program SPEL

Již zesnulý český astronom Dr. Jiří Horn vytvořil dobrý program na řešení křivek radiálních rychlostí a určení dráhových elementů spektroskopické dvojhvězdy s názvem SPEL (akronym pro SPektroskopické ELementy). Program dovoluje libovolné elementy buď počítať nebo fixovat, pracuje interaktivně a poskytuje fázový graf a chyby jednotlivých elementů. Program nebyl nikdy veřejně publikován, je na něm ale založena celá řada publikovaných prací a lze si jej vyžádat buď od Dr. Pavla Kousbského ze stelárního oddělení v Ondřejově nebo od P. Harmance.

3.10.6 Program FOTEL

Českého původu je i velmi dobrý program FOTEL (akronym pro FOTometrické ELementy) (Hadrava 1990, 2004a), který byl již v době svého vzniku mimořádně koncepčně pokročilý a umožňoval věci, které se v ostatních programech objevily až mnohem později. FOTEL totiž počítá geometrické elementy ze světelných křivek ve všech fotometrických pásmech současně, umožňuje i určení změn oběžné periody soustavy, změn amplitudy křivky radiálních rychlostí, výpočet rychlostí stáčení přímky apsid a výpočet řešení pro trojhvězdu. Program dává uživateli i možnost modelovat změny poloměrů složek v důsledku ménící se vzájemné přitažlivosti při pohybu ve značně výstředné dráze.

FOTEL dovoluje i řešení křivky radiálních rychlostí a současně řešení obou křivek. Roku 2004 doplnil dr. Hadrava program FOTEL i o možnost konvergovat současně i astrometrická data (posílení úhel a promít-nutou úhlovou vzdálenost složek visuální dvojhvězdy) a také ke zpřesnění periody a jejich časových změn využít i pozorování okamžiků minimálního oběžného průchodu. To vše má tu velkou výhodou, že kritické elementy jako je perioda a její změna, čas průchodu periastru, výstřednost dráhy či délka periastra a její sekulární změna jsou určeny přesněji a konsistentně.

Program FOTEL v současné verzi není založen na geometrii Rocheova modelu (těbaže tento model je zčásti zpracován v čistě syntetické verzi programu a je i popsán v teoretické úvodní části návodu k programu), ale na modelu tříosých elipsoidů podobně jako program WINK. V současnosti také pracuje pouze s lineárním okrajovým ztemněním. Minimalizace sumy čtverců se ve FOTELu provádí pomocí simplexové metody, použité i pro program KOREL popisovaný výše.

3.10.7 Některé další programy

V literatuře se lze setkat i s dalšími programy. Jsou to např. program Mochnackého a Doughtyho (1972) založený také na Rocheově geometrii a budovaný s cílem modelovat světelné křivky kontaktních soustav typu W UMa, program LIGHT2 (Hill 1979) či program EBOP (Etzel 1981).

3.10.8 Na co je třeba při řešení dávat pozor

Závěrem několik praktických rad stran skutečných výpočtů s programy na řešení světelných křivek a křivek radiálních rychlostí.

1. Před samotným výpočtem je nezbytné, abychom určili dostatečně přesné vstupní hodnoty některých klíčových parametrů. Plát to především o oběžné periodě soustavy, ale také třeba o epoše průchodu periastrem a pokud dochází k sekulární změně periody, musíme odhadnout také její rychlost předem. Programy na řešení světelných křivek či křivek radiálních rychlostí nelze použít k nalezení, ale pouze ke zpřesnění těchto veličin. Periodu lze nalézt některou ze standardních metod hledání period. Změnu periody odhadneme tak, že pro časově odlehle a dostatečně bohaté soubory pozorovacích dat spočtěme řešení s volnou konvergencí periody a epochy průchodu periastrem. Pokud se hodnoty takto určené periody pro oba soubory liší nad rámec spočtených chyb, odhadneme změnu periody jednoduše jako

\[\dot{P} \sim \frac{P(T_2) - P(T_1)}{T_2 - T_1}. \] \hspace{1cm} (154)

Podobně lze odhadnout i případný apsidální pohyb ze změny délky periastra mezi časově odlehlymi daty.

3. Častou začátečnickou chybou bývá i to, že omylem dovolíme programu konvergencí elementů, které se z daných dat nedají určit, např. poloviční amplitudy křivky radiálních rychlostí pro fotometrická data. Program v tom případě havaruje a skončí chybovým hlášením.

4. Zvláštní pozornost vyjaduje současně řešení světelné křivky a křivky radiálních rychlostí. Pokud jsou oba typy dat dostatečně početné a kvalitní, je vhodné po počátečním zkoušení výpočtu změnit vzájemné váhy fotometrických dat a radiálních rychlostí tak, aby každý typ dat přispíval zhruba k polovině celkové sumy čtverců odchylek a měl tak srovnatelný vliv na výsledek.

4 Vlastnosti a vývoj dvojhvězd

Viděli jsme, že dvojhvězdy se vyskytují v nejrůznějších kombinacích a že mnoho hvězd se vyskytuje ve dvojhvězdách. Je proto zřejmé, že řada jevů, které u hvězd různých typů pozorujeme, tak či onak s jejich podvojností souvisí.
4.1 Statistiky dvojhvězd a vícenásobných systémů

Je přirozené vyšetřovat četnost výskytu rozsahu hodnot různých elementů dvojhvězd. Četnosti jsou samozřejmě velmi ovlivněny řadou výběrových jevů, např. do určité vzdálenosti od Slunce, či do určité zdánlivé hvězdné velikosti prakticky neexistují. Pravděpodobnost objevu dvojhvězdy závisí na velmi mnoha okolnostech, stále se např. objevují dvojhvězdy i mezi velmi jasnými hvězdami. Stejně tak dochází k novým objevům malo hmotných hvězd (jako jsou hnědě trpaslíci) i ve velmi blízkém slunečním okolí.

Zajímavou závislostí, která již byla zmíněna dříve, je vztah mezi multiplicitou a spektrálním typem, potažmo hmotností primáru. Multiplicitou máme na mysli, že daná hvězda je součástí vícenásobného systému. Tento diagram je ukázán na obr. (23).

Zřídka kdy ale máme dostatečně dobře pozorovaný vzorek hvězd, abychom mohli např. prohlásit, že jsme v něm našli všechny existující dvojhvězdy, a podobně. Ani v našem nejblížím slunečním okolí to do větší měřitelnosti neplatí. Proto hrají velkou roli výběrové efekty, které způsobují jisté omezení počtu nám detekovaných vícenásobných systémů. Je to předvedeno na obr. (24), kde byl naopak zkoumán vzorek těch (cca 4500) nejjasnějších hvězd oblohy a zaznamenávána četnost výskytu systémů s danou vícenásobností.

Jistě za pozornost stojí také nepřímý důkaz působení tzv. Kozaiových cyklů se slapovým třením (KCTF), které lze demonstrovat na zjištěném vzájemném sklonu oběžných rovin ve vícenásobných systémech. Bylo to demonstrováno např. na vzorku několika set zákrytových dvojhvězd se třetí složkou objevených družicí Kepler, kde je jasně vidět ostré maximum v oblasti vzájemných sklonů kolem 40° (viz obr. (25)), což je ve skvělé shodě s teorií (Kiseleva a kol. 1998).

Ze stejné práce lze také vybrat zajímavou závislost mezi hmotnostmi jednotlivých složek takovýchto systémů. Lze jistě diskutovat o metodě detekce a různé pravděpodobnosti, že objevíme tělesa daných vlastností. Nicméně i tak se ukazuje – viz obr. (26) – že častěji nalézáme systémy s méně hmotnými třetími složkami. Lze dokonce říci, že vícenásobné systémy mají tendenci vznikat se všemi složkami podobné hmotnosti a jen malé procento z nich má dominantní třetí složku.

Za zmínku jistě stojí i tzv. diagram perioda-perioda (P-P), kde je zkoumán vztah mezi periodami vnitřní a vnější dráhy u trojnásobných systémů. Tento graf je na obr. (27) a je z něj jasně vidět několik věcí. Jednak striktní pravidlo přípustných hodnot period díky vztahu (1 12), aby byl systém stabilní. A také rozdělení nalezlých period vícenásobných systémů s ohledem na použitou metodou. Krátké periody (do cca 100 dní) bývají nejčastěji objeveny spektroskopicky, zatímco dlouhé periody (nad asi 10000 dní) jsou nejčastěji objeveny díky interferometrii nebo obecně astrometrii či vlastním pohybům. Jistý nedostatek hvězd mezi nimi je dán neúplností pozorovacího materiálu, zejména jeho časovým omezením. Rolí v tomto rozdělení také mohou hrát ony Kozaiovy cykly, které mimo jiné produkují právě páry s krátkými periodami oběhu.

Za povšimnutí stojí i nedostatek systémů v samém levém spodním konci diagramu, kde téměř nenacházíme hvězdy s periodami vnější dráhy pod 100 dní (dnes se to díky druhému Kepler trochu změnilo, nicméně i tak je v těchto oblastech zatím neobjasněný nedostatek systémů).

A konečně poslední zajímavá závislost by mohla být ta, která zobrazuje rozdělení hmotových poměrů v závislosti na periodě u vnitřních párů trojnásobných systémů. Tento graf je ukázán na obr. (28). Jak je vidět, pozoruje se velmi rozdílné zastoupení různých poměrů hmotností pro krátkoperiodické a dlouhoperiodické systémy. Je otázku, nakolik je něco takového jen výběrovým efektem způsobeným např. tím, že detekovat málo hmotného průvodce na dlouhých drahách je velmi obtížné. I závislosti tohoto typu musí simulace vzniku a vývoje dvojhvězd a vícenásobných systémů zohledňovat, viz kapitola 7.

4.2 Formy přenosu a ztráty hmoty ve dvojhvězdách

Teorie vývoje dvojhvězd je podrobně probírána v přednášce AST014. Zde si proto něco o možném vývoji dvojhvězd řekneme jen stručně. Ukazuje se, že každá hvězda během svého nukleárního vývoje prodělá...
nejprve dlouhé, velmi stabilní období, kdy v jejím nitru dochází k přeměně vodíku na helium a kdy se její vlastnosti a zářivý výkon v čase mění jen nesmírně pomal. Podstatné ale je to, že poloměr hvězdy s časem dlouhodobě roste, a tento růst se po vyčerpání zásob vodíku v jádru prudce zrychlí. Pokud je taková hvězda složenkou dvojúhřezdy s kratší oběžnou periodou, nemůže růst jejího poloměru pokračovat neomezeně. Hvězda totiž v určitém okamžiku zaplní celou Rocheovu mez a další narůstání jejího poloměru nezbytně vede k přenosu hmoty směrem ke druhé složce. Výpočty ukázaly, že při takovém procesu předá hmotu ztrácející hvězda třeba i 80% své původní hmotnosti své partnerce. Celý proces se odehrává na škále desetitisíců až statisíců let, má ovšem jasné pozorovací důsledky. Mezi hvězdami existuje plynný proud, který je Coriolisovou silou strháván ve směru oběžného pohybu, takže často nedopadá na druhou hvězdu přímo, ale obtíží ji a vytváří kolem ní akreční disk, který se může projevit ve spektu přítomnosti emisních čar a dodatečných absorbčních čar v průmětu na disk hvězdy. U zákrytových dvojúhřezů můžeme v oběžných fázích před začátkem zákrytu hvězdy, ke které proud plynu směřuje, pozorovat i absorbční čáry z tohoto proudu promítaného na hvězdu. Protože průmět vidíme ve chvílích, kdy se plyn pohybuje směrem od nás, jsou čáry vznikající v plynném proudu posunuty i o několik set km s^{-1} do červené části spektra. Velmi dobré
Ize takové čáry pozorovat např. u dvojhvězd U Cep či S Equ.

Výměna hmoty nemusí probíhat pouze formou zaplnění Rocheovy meze. Jak jsme se již zmínili v oddíle o klasifikaci dvojhvězd, může se stát, že hvězda je rotačně nestabilní a může v oblasti rovníku přivračené ke druhé složce ztráct hmotu i když je hluboko pod Rocheovou mezí. Zde je ovšem třeba dodat, že tento únik hmoty může vést k vytvoření disku kolem hvězdy, ale patrně jen k velmi slabému přenosu hmoty. Je totiž třeba si připomenout, že úniková rychlost je asi 1,4-krát vyšší než rychlost kritické rotace. Unikat směrem ke druhé složce tedy v zásadě může pouze to malé procento hmoty, které v důsledku maxwellovského rozdělení rychlostí v plyně dosáhne únikové rychlosti: K úniku hmoty směrem k druhé hvězdě může rovněž dojít, pokud výron hmoty trvá dostatečně dlouho a dojde k zaplnění klasické Rocheovy meze.

U horkých hvězd a u chladných hvězd s hlubokými podpovrchovými konvektivními zónami může docházet k úniku hmoty formou hvězdného větru. Tento režim přenosu hmoty se často uvažuje u optických složek rentgenovských dvojhvězd, které mají vysokou svítivost. Rocheova geometrie vede i v takových případech k určité fokusaci normálně sféricky symetrického větru. Ve dvojicích hvězd o vysoké svítivosti dochází k současnému úniku hmoty hvězdným větrem z obou složek a tyto dva proudy spolu vzájemně kolidují a mohou také vést ke vzniku pozorovatelných emisních čar. Protože hvězdný vítr může dosahovat snadno nadúnikové rychlosti, vede u hvězda a dvojhvězdy k ztrátě hmoty z celého systému.

Teoretické argumenty vedou k domněnce, že u dvojhvězd s velmi krátkými oběžnými periodami může docházet k významnému gravitačnímu záření, které odnáší část energie ze soustavy a mělo by se proto projevit pozvolným zkracováním oběžné peridy.
Obecně řečeno – mechanismy ztráty a přenosu hmoty ve dvojhvězdách nejsou ještě zdaleka vyčerpávajícím způsobem prozkoumány. K jejich úplnému pochopení bude třeba ještě mnoho teoretického i observačního úsilí. Je třeba si uvědomit, že celá věc je komplikována tím, že kromě ztráty hmoty dochází také ke ztrátě úhlového momentu a tedy k vývoji oběžné dráhy dvojhvězdy, což má na ztrátu hmoty zpětný vliv.

4.3 Cirkumstelární a akreční disky

Úvodem chceme upozornit, že pojem cirkumstelárního disku je třeba odlišit od již dříve použitého termínu ‘disk’ ve smyslu do roviny promítnuté plochy kotouče samotné hvězdy, jak jsme o tom hovořili třeba u vzájemných zákrytů složek dvojhvězد.

Zde budeme chápat disk jako samostatnou entitu, plynovou strukturu obklopující hvězdu, která má zpravidla rozměry řádově vetší než průměr samotné hvězdy. Jedníný významným případem jsou disky kolem vznikajících hvězd, představující část materiálu, za kterého hvězda vznikla.
V souvislosti s naším tématem nás ale více budou zajímat disky vznikající během přenosu hmoty mezi složkami dvojhvěz. Jak to diskutoval již Kříž (1972), to zda během přenosu hmoty mezi složkami vznikne akreční disk nebo zda materiál bude přímo dopadat na hmotu přijímající složku, závisí na míře zaplnění odpovídající Hoqueovy mezí samotnou hvězdou, a tedy na poměru hmotností a oběžné periodě. V soustavách s kratšími oběžnými periodami vznikají stabilní akreční disky obtížněji a pozoruje se spíše přímý dopad. Situaci dále studovala např. Petersová (2007), u níž lze nalézt i diagram relativního poměru hmot hmot přijímající složky versus hmotový poměr \(q \) se zakreslenými konkrétními systémy ve stadiu přenosu hmoty.

Pozorovatelsky jsou cirkumstelární disky kolem normálních či kompaktních hvězd často velmi významné a mohou výrazně komplikovat snahu o určení základních fyzikálních vlastností takových dvojhvězd, jak je to diskutováno v dalších kapitolách.

4.4 Dynamické jevy ve dvojhvězdách, cirkularizace a synchronizace

U dvojhvězd s kratšími periodami a s kruhovou oběžnou dráhou obvykle pozorujeme dokonalou synchronizaci mezi oběžnou úhlovou rychlostí a úhlovými rotačními rychlostmi obou složek dvojhvězdy. Tato situace, často nazývaná též vázaná rotace, se pozoruje rovněž pro složky dvojhvězd, které vyplňují Hoqueovu mez.

Pro obvodovou rotační rychlost platí zřejmě

\[
\nu_S = \frac{2\pi R}{P} \tag{155}
\]

a pokud ji budeme udávat v \(\text{km} \, \text{s}^{-1} \), periodu \(P \) ve dnech a poloměr hvězdy \(R \) ve slunečních poloměrech, dostaneme užitečný pracovní vztah

\[
\nu_S = 50,58968 \frac{R}{P}. \tag{156}
\]

Jestliže je dráha dvojhvězdy výstředná, mění se přirozeně úhlová oběžná rychlost. Největší je při průchodu periastr, kdy je také vzájemné sloupové působení složek největší. Jak na příkladu dobře pozorovaných dvojhvězd se spolehlivě určenými vlastnostmi ukázal Harmanec (1988), dochází u mnoha takových dvojhvězd k synchronizaci úhlových rotačních rychlostí složek s úhlovou oběžnou rychlostí právě v periastru.
Obvodovou rotační rychlost odpovídající synchronizaci v periastru lze spočítat ze vztahu

\[v_{PS} \sin i = \frac{(1 + e)^2}{(1 - e^2)^{3/2}} v_S \sin i. \]

(157)

U některých dvojhvězd s hodně výstřednými drahami lépe vyhovuje pseudosynchronizace podle vztahu, který odvodil Hut (1981) a který vede na úhlové rychlosti odpovídající asi 80 % oběžné úhlové rychlosti v periastru.

Existují teoretické studie Zahna a Tassoula, ukazující, že zmíněné efekty vedou dlouhodobě k postupné cirkularizaci oběžné dráhy a k dosažení stavu vázané rotace.

U dvojhvězd s kratšími periodami, které se dosud pohybují ve výstředných drahách, vede periodická proměnnost úhlové rotace také k dalšímu jevu: ke stání přímky apsid ve směru oběžného pohybu. Rychlost stání souvisí s vnitřní strukturou hvězdy a jev lze proto využít k testování modelů vnitřní stavby hvězdy.

Dá se rovněž očekávat, že periodicky proměnné gravitační pole, kterým působí jedna složka dvojhvězdy ve výstředné dráze na druhou, může vyvolat vynucené oscilace atmosféry. Několik skupin zabývajících se studiem dvojhvězd začalo hledat důkazy takových vnitřních efektů, které by mohly být systematicky. Je zajímavé, že u několika dvojhvězd s mírně výstřednými dráhami jako je např. Spica se zdá, že úhlová rotační rychlost složek je právě dvojnásobek úhlové rychlosti oběhu, takže lze toto jev přisouvat jako důkaz přímo rychlého rostlinního pohybu.

Na okraj poznamenejme, že přenos hmoty vede i ke vzniku některých méně obvyklých struktur, např. bipolárních výtrysků, kolmých na oběžnou rovinu či „horkých skvrn“ v místě interakce proudu plynů s diskem. Horké skvrny jsou typické pro kataklamické proměnné, bipolární výtrysky byly nalezeny pro anomální hmotnou rentgenovskou dvojhvězdu SS 433, pro několik symbiótických hvězd jako CH Cyg a poměrně nedávno také trojhlavou hvězdu β Lyr.

K vzájemnému ovlivnění složek dvojhvězdy dochází i při jejich značně vzdálenosti. Tvary složek jsou ovlivněny vzájemnou gravitací – slabovými silami; ty vedou systém do rovnovážného stavu, kdy je dosažena cirkularizace dráhy, synchronizace rotace složek (perioda rotace každé složky je rovna oběžné periodě) a koplanarizace (rovnice rovník obou složek splývají s rovinou oběhu). Udávají se doby, potřebné k dosažení 1/e-tiny (zde e = 2.71828... původního stavu. Řekněme už nyní, že doba cirkularizace je zpravidla o dva či více řádů delší než obě zbývající doby. I když slabové působení počítal už Darwin (1879), až dosud nezjistili detaily procesu. Dvě konkurující teorie vedou k řádovým rozdílům v odhadu časového určení.

Nejší rotační perioda shodná s oběžnou, pak je slabové vzdušní obklopené po mezizem a oběžné moment, který se vznikl při oběžné dály, což snižuje celkovou energii rotace a dráhy. Výsledkem je asimilátorické přebíjování k rovnovážnému stavu, nebo zrychlený spirálovitý pohyb vedoucí ke kolapsu obou hvězd.

Detailní popis procesu může být komplikovaný vzhledem k možnostem, že složky budou oscilovat. Zavádí se tzv. model slabého tření, kdy se oscilace neuváží a předpokládá se, že obě složky se vztahují k výměně mezi oběžnou a oběžnou frekvenci Ω = n. To dvoje vyhovuje v obecném disipaci (k té ale ve hvězdě hmotě nedochází) a přiřadí do k vrstvách méně hvězdových hvězd.

V dalším odvozování se jedná o hvězdu pokládá za hmotný bod, tj. slapy jsou jen na jedné složce – což je v pořádku, je-li jedna složka kompaktním objektem; není-li, pak se složky prohledá a výsledný efekt je
aditivní. V úvaze je důležitý poměr orbitálního a rotačního momentu
\[
\alpha = \frac{h}{I\Omega_0} = \frac{q}{1 + qr_g^2} \left(\frac{a_0}{R}\right)^2;
\]
(158)

q je poměr hmotností \(M_2/M_1\), a je hlavní poloosa a hodnoty s indexem 0 platí pro rovnovážný stav. Celkový úhlový moment se při slapovém vývoji zachovává, a je
\[
L = I\Omega + h = M R^2 r_g^2 \Omega + G^{1/2} Mm(M + m)^{-1/2}a^{1/2}(1 - e)^{1/2}.
\]
(159)

Zde je \(r_g\) tzv. gyrační poloměr, definovaný vztahem \(I = M(r_g R)^2\), kde \(I\) je moment setrvačnosti primární složky. (Podobně jako \(k_2\), závisí \(r_g\) na rozdělení hustoty ve hvězdě a bývá uveden v tabulkách hvězdných modelů.)

Ukazuje se, že chování dvojhvězdy závisí na velikosti \(\alpha\). Rovnovážný stav může být dosažen jen při \(\alpha > 3\), a nastávají tři případy:

1. \(0 < \alpha - 3 \ll 1\): systém je na hranici stability, výstřednost a sklon rovník u jdou rychle k nule, synchronizace a změna hlavní poloosy probíhají dlouho;

2. \(4 \leq \alpha \leq 10\): i zde je rotační úhlový moment ještě srovnatelný s dráhovým momentem (sekundární složka je buď málo hmotná, nebo obíhá těsně u povrchu primáru), a všechny parametry se mění zhruba stejně rychle;

3. \(\alpha \gg 7\): dráhový moment je podstatně větší než rotační; sklon mizí a rotace se synchronizuje stejně rychle, výstřednost se ale zmenšuje jen pomalu (rotace se synchronizuje s úhlovou rychlostí v periastru).

Jak už bylo naznačeno, u hvězd s konvektivní (nutně turbulenní) vrstvou – což jsou hvězdy typu F a pozdější – je o proces vedoucí k efektivnímu působení slapů postaráno. Jak je to ale u hvězd ranějších? Tam Zahn (1977) zavádí radiační tlumení. Ukazuje se ale, že to je proces málo efektivní, zejména vadí jeho malá účinnost u vzdálenějších složek, neboť působí úměrně \(r^8\). Tassoul & Tassoul (ová) (1992) se domnívají, že ve složkách dvojhvězdních systémů existují meridionální proudy, jejichž turbulence znamená, že působení je úměrné \(r^6\). Tassoul (1988) uvádí vzorce pro synchronizaci a cirkularizaci:

\[
t_{\text{syn}}(\text{roků}) = 14,4 \times 10^{-N/4} \left(\frac{L}{L_\odot}\right)^{1/4} \left(\frac{M}{M_\odot}\right)^{1/8} \left(\frac{R}{R_\odot}\right)^{9/8} \left(\frac{a}{R}\right)^{33/8},
\]
(160)
nebo s využitím 3. Keplerova zákona (2),

\[
t_{\text{syn}}(\text{roků}) = 5,35 \times 10^{3-N/4} \frac{1 + q}{q} \left(\frac{L}{L_\odot}\right)^{1/4} \left(\frac{M}{M_\odot}\right)^{5/4} \left(\frac{R}{R_\odot}\right)^{3}(P_0[\text{dní}])^{11/4}.
\]
(161)

Je jistě zajímavé zjistit, jak rychle synchronizace a cirkularizace mohou probíhat. Viskosita plynu je nepatrná a samotná by vedla k dobám řádu 10^{12-13} let. Tassoul (1988) uvádí vzorce pro synchronizaci a cirkularizaci:
Odpovídající čas pro cirkularizaci je

\[t_{\text{cir}}(\text{roček}) = \frac{14.4 \times 10^{-N/4}}{r^2_g(1 + q)^{(11/8)} \left(\frac{L}{L} \right)^{1/4} \left(\frac{M}{M \odot} \right)^{1/8} \left(\frac{R}{R \odot} \right)^{9/8} \left(\frac{a}{R} \right)^{49/8}} \]

nebo s využitím 3. Keplerova zákona (2),

\[t_{\text{cir}}(\text{roček}) = 9.4 \times 10^{4-N/4} \left(\frac{1 + q}{r_g^2} \right)^{2/3} \left(\frac{L}{L} \right)^{1/4} \left(\frac{M}{M \odot} \right)^{23/12} \left(\frac{R}{R \odot} \right)^{5} \left(P_0[\text{dní}] \right)^{49/12}. \]

Faktor \(10^N\) je poměr makroskopické a mikroskopické viskosity. Při cirkularizaci dochází též ke zmenšení hlavní poloosy.

Je třeba říci, že u hmotnějších hvězd musí cirkularizace probíhat hlavně během života hvězdy na hlavní posloupnosti; po jejím opuštění rychle klesá \(a\), a i čas, který má hvězda k disposici jako obr či veleobr, je krátký. Zřejmě ovšem dochází k cirkularizaci, a to rychlé, též během přenosu hmoty.

Existence nekruhových drah tedy svědčí o rychlosti (resp. pomalosti) slapového vlivu. Pozorují se i zvláštní případy. Např. dvě složky sobě velmi podobné mají rozdílné rotační rychlosti nebo mají obě složky rotační peridy, které jsou celočíselným zlomkem peridy oběžné (např. \(\alpha\) Vir nebo V436 Per).

5 Dvojhvězdy s komplikacemi

Spolehlivé určení základních fyzikálních vlastností dvojhvězdy a jejích složek se stává problémem ve chvíli, kdy je v soustavě přítomna cirkumstelární hmota. Jak křivky radiálních rychlostí, tak světelné křivky jsou v takových situacích několika vzájemně souvisejícími vlivy deformovány a neodpovídají čistému dráhovému pohybu. Pokud se nám nezdaří podobná zkreslení správně identifikovat a vhodně korigovat, mohou formální řešení světelné křivky a křivky radiálních rychlostí vést k určení zcela nesprávných charakteristik soustavy.

Pokusme se nyní probrat některé typické případy takových vlivů.

5.1 Falešná výstřednost dráhy z křivek radiálních rychlostí

Některé typické struktury v mezihvězdné hmote ve dvojhvězde mohou způsobovat charakteristická zkreslení křivky radiální rychlostí, pravidelně se opakuje se z fází oběžné peridy.

Abychom podobným jevům dobře porozuměli, je užitečné si nejprve uvědomit, jak vypadají křivky radiálních rychlostí pro čtyři typické orientace výstředné dráhy uči pozorovatel. Na obrázku 29 jsou znázorněny křivky radiálních rychlostí pro čtyři různé hodnoty délky periastra \(\omega\). Jak vidíme, křivky pro \(\omega 0^\circ\) a \(180^\circ\) mají úzké extrémy kolem fáze maxima resp. minima radiální rychlosti. Naproti tomu křivky radiálních rychlostí pro \(\omega\) rovně \(90^\circ\) resp. \(270^\circ\) mají jednu strmu a jednu povolavnou větev při přechodu od maxima do minima a zpět a vyznačují se tím, že části křivky nad a pod \(\gamma\) rychlosti jsou zrcadlově symetrické. Všechny tyto skutečnosti je užitečné si uvědomit, máme-li porozumět různým možným typům zkreslení křivek radiálních rychlostí, které se vyskytují.

Zkusme pro názornost předpokládat, že uvažovaná dvojhvězda má kruhovou dráhu. Tak tomu také v případě interagujících dvojhvězd v mnoha případech bývá.
Obrázek 29: Křivky radiálních rychlostí dvojhvězdy ve výstředné dráze (e=0.5, γ=0) odpovídající čtyřem konkrétním hodnotám délky periastra ω.
5.1.1 Barrův jev

Partně nejlépe a nejdéle známý případ zkreslení křivky radiálních rychlostí je Barrův (1908) jev. Barr upozornil jako první, že se pozoruje mnohem více dvojhvězd s hodnotami ω mezi 0° a 120° než dvojhvězd s hodnotami ω mimo tento interval. Barr vyjádřil názor, že je krajně nepravděpodobné, že by existovala skutečná privilegována orientace výstředných drah v prostoru a navrhnil zkusmo dvě možná vysvětlení. Buď jsou spektrální čáry hvězd periodicky vychylovány ze svých normálních poloh vlivem mimořádných výchylek v tlaku či teplotě ve hvězdných fotosférách či okolních atmosférách nebo jsou disky pozorovaných hvězd nerovnoměrně jasně. Jeho práce byla publikována s pochybovávými komentáři tehdějších významných astronomů W. F. Kinga a J. S. Plasketta, nicméně další výzkum ukázal, že Barr měl v zásadě pravdu i přesto, že některé objekty z jeho statistického souboru byly později ze spektroskopických dvojhvězd překlasifikovány na pulsuující hvězdy. Dnes je obecně přijímáno vysvětlení, které jako první vyslovil Struve (1944): protožení křivky radiálních rychlostí v blízkosti maxima je způsobeno dodatečnou absorpcí v plynovém proudu mezi složkami, který se v těch oběžných fázích promítá na disk hmotu přijímající hvězdy. Vzniklé zkreslení skutečné křivky radiálních rychlostí dvojhvězdy v kruhové dráze pak připomíná křivku výstředné dráhy pro hodnoty ω v blízkosti 0°. Jak je schematicky ukázáno ve obrázku 30, průmět plynového proudu na disk hvězdy nastává někde mezi elongací, při které se hmotu přijímající složka od nás vzdaluje a mezi konjunkcí (směr A v obrázku). Protože plyn se v té chvíli pohybuje směrem od pozorovatele, jeho radiální rychlost zvyšuje pozorovanou radiální rychlost a tím právě vzniká protožení křivky v blízkosti maximální rychlosti. Charakter celého jevu přirozeně závisí i na sklonu dráhy. Pro dvojhvězdy, které nejsou zákrytové, se dá největší efekt očekávat v okolí elongace, kde je plynový proud hvězde nejlíže a aspoň zčásti se na její disk může promítá.

Struveho vysvětlení je bezesporu správné u zákrytových dvojhvězd ve stadiu výměny hmoty jako je např. U Cep. Méně jasná je situace u nezákrytových soustav, kde zkreslení křivky radiálních rychlostí často představuje pouze několik málo km s⁻¹. Musíme se ptát proč, jestliže typické rychlosti plynového proudu se pohybují v řádu stovek km s⁻¹.

Kříž a Harmanec (1975) upozornili na přítomnost sekundárního maxima na křivkách radiálních rychlostí řady dvojhvězd vykazujících Barrův jev a navrhli i možné vysvětlení: Jedná se o průmět stejného plynového proudu na disk hmotu přijímající složky dvojhvězdy, ale až poté, kdy plyn oblétne hvězdu a vrátí se zpět směrem k původnímu proudu mezi složkami, přičemž jeho rychlost značně poklesla. Na obr. 30 tomu odpovídá pohled podél směru C.

5.1.2 Alternativní Barrův jev

Kříž a Harmanec (1975) také přišli s názorem, že u dvojhvězd ve stadiu výměny hmoty, u kterých je hmotu ztrácíci složka jasnějším objektem v soustavě, musí docházet k průmětu plynového proudu mezi složkami na tuto hmotu ztrácící hvězdu podél směru B v obrázku 30. Podle Kříže a Harmance (1975) to musí vést na křivky radiálních rychlostí s falešnou výstředností a hodnotami ω mezi 180° a 220°. Harmanec (2003) podobnou situaci numericky modeloval a došel k názoru, že uvažovaný jev ve skutečnosti vede na zdánlivě výstřednou dráhu s délkou periastra kolem 140°.
Obrázek 30: Schematický obrázek dvojhvězdy s plynovým proudem mezi složkami a akrečním diskem.
5.1.3 Vliv slapové deformace tvaru hvězd

Už Sterne (1941) upozornil na to, že rozdíl mezi optickým těžištěm a skutečným těžištěm slapově deformované složky dvojhvězdy může věst na křivku radiálních rychlostí se zdánlivou výstředností a hodnotami ω v blízkosti $\pm 90^\circ$ nebo $\pm 270^\circ$.

Harmanec (2001) zobecnil tento postřeh a dokazoval, že jakékoliv zkreslení křivky radiálních rychlostí, které působí symetricky vzhledem ke spojnici obou hvězd, musí vést na křivky se zdánlivou výstředností a ω v blízkosti $\pm 90^\circ$ nebo $\pm 270^\circ$. Je to důležité charakterem křivek radiálních rychlostí pro tyto dvě konkrétní hodnoty délky periastra – viz obr. 29. Dobrým příkladem takového vlivu je fokusovaný hvězdný větr u horkých dvojhvězd, které téměř vyplňují Rocheovu mez.

5.2 Nesprávně určená amplituda křivky radiálních rychlostí

Jiným možným důsledkem přítomnosti okolohvězdné hmoty ve dvojhvězdě může být nesprávně určená amplituda křivky radiálních rychlostí složky, která je takovou hmotou obklopena.

Může to být způsobeno několika různými vlivy.

5.2.1 Vliv průmětu plynového proudu

Pokud vzdálenosti udáváme v jednotkách vzdáleností středů složek dvojhvězdy a volíme souřadnou soustavu rotující s dvojhvězdou tak, že počátek souřadnic je v centru složky 1 a osa X míří od složky 1 ke složce 2, lze souřadnice Lagrangeova bodu L_1 zapsat ve tvaru $(x_1, 0, 0)$, kde hodnota x_1 je jedním z řešení rovnice
\[x^{-2} - x + q(1 - x - (1 - x)^{-2}) = 0. \] (165)

V této rovnici $q = M_2/M_1$ označuje poměr hmotností. Uvedenou rovnici lze řešit iteračně, např. Newtonovou metodou, s tím, že jako počáteční hodnotu zvolíme $x_1 = 0, 5$, což zaručí, že pro libovolný hmotový poměr bude postup konvergovat k řešení pro bod L_1.

Jakmile známe x_1, můžeme vypočítat souřadnice (x_{12}, y_{12}) bodu, který definiuje největší rozměr Rocheovy meze v y-souřadnicí v rovině XY, z podmínky nulové derivace průmětu kritické plochy Rocheova modelu podle x:
\[\alpha d_1^{-1} + \beta(d_2^{-1} - x) + d_1^2 = \gamma, \] (166)
\[x(2 - \alpha d_1^{-3} - \beta d_2^{-3}) = \beta(1 - d_2^{-3}), \]

kde
\[d_1 = (x^2 + y^2)^{\frac{3}{2}}, \quad d_2 = ((1 - x)^2 + y^2)^{\frac{3}{2}}, \] (167)
\[\alpha = 2(1 + m)^{-1}, \quad \beta = \alpha \cdot m, \] (168)
\[\gamma = \alpha \cdot x_1^{-1} + \beta((1 - x_1)^{-1} - x_1) + x_1^2. \] (169)

Pro hvězdy zaplňující Rocheovu mezi odpovídá relativní fotometrickému poloměru r_2 určenému z řešení světelné křivky právě hodnota y_{12}. Pro úplnost dodejme, že řešením rovnic (166) pro hmotový poměr q můžeme zjistit i y-ový rozměr Rocheovy meze kolem složky 1 výpočtem souřadnic bodu (x_{11}, y_{11}).

Rovnice (166) lze snadno řešit pro libovolný hmotový poměr iteračně. Vyjdeme z počátečních hodnot $x = 1, 01$ a $d_1 = 1, 05$ a postupně počítáme
\[d_2 = \beta(\gamma + \beta x - \alpha d_1^{-1} - d_2^2)^{-1}, \] (170)
\[y = ((d_2^2 - (1 - x)^2))^{\frac{3}{2}}, \] (171)
\[d_1 = (x^2 + y^2)^{\frac{3}{2}}, \quad a \] (172)
\[x = \beta(1 - d_2^{-3})(2 - \alpha d_1^{-3} - \beta d_2^{-3})^{-1}. \] (173)

Pokud se následující iteračně určená hodnota $(|y_n - y_{n-1}|/y_n)$ liší od předchozí o více než požadovaný počet platných cifer, opakujeme další iteraci s novými hodnotami x a d_1.

Dodejme ještě, že pokud potřebujeme jen přibližný odhad, můžeme místo uvedeného výpočtu zjistit potřebnou hodnotu y_{12} interpolací v tabulkách Rocheova modelu, které publikovali Plavec a Kratochvíl (1964).

Nyní již můžeme porovnat absolutní poloměr Rocheovy meze
\[R_2^{\text{Roche}} = a \cdot y_{12}, \] (174)
který jsme dostali pro zkusmo zvolenou hodnotu hmotnosti M_2 s poloměrem určeným z pozorování pomocí vztahu (164) a pokud se neshodují, můžeme celý postup opakovat pro jinou hodnotu M_2, až se metodu pokusů a omylů ke shodě propracujeme.

5.2.2 Chybná amplituda křivky radiálních rychlostí v důsledku fázově vázaných V/R změn dvojitých emisních čar z disku kolem jedné ze složek

Z pozorování více dvojhvězd s emisními čarami je známo, že dvojité emise vznikající v disku kolem jedné ze složek dvojhvězdy vykazují fázově vázané změny V/R (violet to red) poměru intenzit obou vrcholků, a to jak pro čáry vodíku Balmerovy série, tak i pro čáry jiných iontů. Tyto změny jsou prakticky ve fázi s křivkou radiálních rychlostí, tj. poměr V/R je největší v okamžiku maximální radiální rychlosti a opačně, jak bylo zjištěno např. v pracech Peters(ové) (1972), Harmance a kol. (1976), Doazan(ové) a kol. (1982) nebo Harmance a kol. (2002).

Jak nedávno ukázali Harmanec a kol. (2002), přítomnost slabé a prakticky neznatelné emise ve zdánlivě fotosferických absorpčních čárách He I může v kombinaci s právě popsanými fázové vázanými V/R změnami vést k nadhodnocení skutečné amplitudy křivky radiálních rychlostí určené z těchto čar. Celý jev je schematicky znázorněn na obrázku 31: V maximu radiální rychlosti je $V/R > 1$, takže modré křídlo zdánlivě čistě absorpční čáry je zčásti zaplněno emisí a střed čáry je tím posunut směrem k červené části spektra. Měřením této čáry proto dostaneme radiální rychlost, která bude větší než skutečná rychlost dráhového pohybu. Právě opačná situace nastane v minimu radiální rychlosti, kdy je $V/R < 1$.

Úvaha je následující: Je velmi pravděpodobné, že rotační rychlost jakéhokoliv reálného plynového disku obklopujícího hvězdu klesá s rostoucí vzdáleností od hvězdy. Vzhledem k tomu, že ekvipotenciální plochy Rocheova modelu jsou více sférické v blízkosti hvězdy, lze očekávat, že vnitřní části disku budou s dostatečnou přesností osové symetrické a budou popisovat správně dráhový pohyb složky, kterou disk obklopuje. Vzhledem k předpokládanému rozložení rychlostí v disku se dráhový pohyb vnitřních částí disku projeví na vnějších křídlech emisní čáry, zatímco možné asymetrie vnějších částí disku se projeví v blízkosti středu emisních čar, např. již zmíněným změnám poměru V/R.

Z toho tedy vyplývá, že měření radiálních rychlostí na strmých vnějších křídlech silné emisní čáry jako je χα by mělo dát křivku radiální rychlosti, která dobře popisuje dráhový pohyb emisní složky dvojhvězdy.

Ihned je vidět, že amplitudy křivek radiálních rychlostí založené na měření křidel emisních čar jsou vždy menší, než amplitudy odpovídajících křivek pro čáry absorpční. To tedy patrně potvrzuje, že výše zmíněný jev u emisních dvojhvězd skutečně nastává, ať už je přičina fázově vázaných V/R změn jakákoliv.
Obrázek 31: Schematická ilustrace vlivu fázově vázaných V/R změn dvojitých emisních čar na měřenou radiální rychlost zdánlivě absorpčních čar neutrálního helia He I: Horní panely obrázku ukazují, jak vypadá emisní profil Balmerových čar vodíku ve dvou elongacích dvojhlavězd, zatímco spodní panely znázorňují téměř neznatelné ovlivnění zdánlivě čistě absorpčních čar He I. Vzhledem k tomu, že fázově vázané V/R změny nastávají ve fázi s křivkou radiálních rychlostí, je dlouhovlnné křídlo He I absorpce více zaplněno emisí ve chvíli, kdy $V/R < 1$ a naopak. Výsledný pozorovaný profil He I čáry (plná čára), který se stále jeví jako absorpční čára, je posunut jako celek směrem do krátkovlnné části spektra (tj. k zápornější radiální rychlosti vůči laboratorní poloze) ve chvíli, kdy je $V/R < 1$ a křivka radiálních rychlostí dosahuje minima, a do dlouhovlnné oblasti spektra, když je $V/R > 1$. To ve svém důsledku zvětšuje měřenou amplitudu křivky radiálních rychlostí.
Tabulka 2: Srovnání polovičních amplitud křivek radiálních rychlostí několika dvojhvězd s emisními čarami z měření na emisních křídlech vodíkových čar Balmerovy série a z měření na křídlech absorpčních čar.

<table>
<thead>
<tr>
<th>Dvojhvězda</th>
<th>HD</th>
<th>(P_{\text{orb}}) (d)</th>
<th>(K_{\text{emis}}) (km s(^{-1}))</th>
<th>(K_{\text{abs}}) (km s(^{-1}))</th>
<th>Zdroj</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma) Cas</td>
<td>5394</td>
<td>203(^{\circ})6</td>
<td>4.7</td>
<td>7.0</td>
<td>Harmanec a kol. (2000)</td>
</tr>
<tr>
<td>(\varphi) Per</td>
<td>10516</td>
<td>126(^{\circ})7</td>
<td>10.4</td>
<td>21.0</td>
<td>Božíč a kol. (1995)</td>
</tr>
<tr>
<td>(\kappa) Dra</td>
<td>109387</td>
<td>61(^{\circ})6</td>
<td>2.3</td>
<td>6.8</td>
<td>Juza a kol. (1991)</td>
</tr>
<tr>
<td>V839 Her</td>
<td>142926</td>
<td>46(^{\circ})2</td>
<td>4.8</td>
<td>8.0</td>
<td>Koubský a kol. (1997)</td>
</tr>
<tr>
<td>V832 Cyg</td>
<td>200120</td>
<td>28(^{\circ})2</td>
<td>13.0</td>
<td>27.2</td>
<td>Rivinius a Štefl (2000), Harmanec a kol. (2002)</td>
</tr>
<tr>
<td>V1931 Cyg</td>
<td>200310</td>
<td>146(^{\circ})36</td>
<td>9.0</td>
<td>12.0</td>
<td>Doubek (2006)</td>
</tr>
</tbody>
</table>

5.2.3 Chybné amplitudy křivek radiálních rychlostí způsobené nízkou rozlišovací schopností nebo blendováním čar

Zhoršená rozlišovací schopnost pro slabší objekty a silné blendování čar složek dvojhvězd s rychle rotujícími složkami a podobnými spektrálními typy jsou jevy, se kterými se lze setkat poměrně často, a to i v případech, kdy v soustavě není přítomen církmustelární hmota.

Existuje řada horkých dvojhvězd se složkami podobných spektrálních typů a s podobným, ač ne nutně stejným, rotačním rozšířením čar. U mnoha z nich může docházet k silnému blendování čar ve všech orbitálních fázích. V extrémních případech to může dokonce zabránit tomu, abychom mohli oběžný pohyb a identifikovat příslušný objekt jako spektroskopickou dvojhvězdou. To je např. případ dvojvězdy V436 Per = 1 Per, která byla po nějaký čas považována za fyzikální proměnnou a teprve díky fotometrickým záznamům byla identifikována jako zákrutyová dvojhvězda se oběžnou periodou 25\(^{\circ}\)9 a výšším záznamem. Obrázek 32 ukazuje srovnání křivky radiálních rychlostí V436 Per z klasických meření na středy čar s křivkou získanou pomocí spektrálního rozkladu programem KOREL a pomocí kroskorelační metody (viz Hill 1993 a Hill a Holmgren 1995) a je převzat z práce Harmance a kol. (1997). Je jeho zřejmé, že latínka klasické měření dává poloviční amplitudy křivky radiálních rychlostí pouze asi 10 km s\(^{-1}\) (a tím pádem i zcela nerealisticky odhad hmotností pro zákrutyovou soustavu), jsou skutečné křivky obou složek se silně blendovanými čarami blízké hodnotě 100 km s\(^{-1}\), o celý jeden řád větší. Takové amplitudy vedou na zcela normální hmotnosti obou těles. KOREL navíc dává lépe definované křivky s menším rozptylem, než kroskorelační metoda.
Obrázek 32: Srovnání křivky radiálních rychlostí V436 Per získané klasickým měřením polohy středu čáry (horní obrázek) a rozkladem spektra za pomoci programu KOREL (spodní obrázek). Radiální rychlosti primární složky jsou znázorněny plnými a sekundární prázdňními symboly.
5.2.4 Chybné amplitudy křivek radiálních rychlostí z absorpčních čar pocházejících z obálky kolem celé dvojhvězdy

V případech, kdy existuje plynová obálka kolem celé dvojhvězdy, může se stát, že pozorujeme absorpční čáry vznikající v materiálu obálky při projekci na jasnější složku dvojhvězdy. Budeme-li měřit radiální rychlost takových čar, dostaneme křivku radiálních rychlostí ve fázi s oběžnou periodou soustavy, ale se značně redukovanou amplitudou. Tuto situaci pro jednoduchý model popsali Thackeray (1971) a Kříž a Harmanec (1975):

Uvažujme dva hmotné body s hmotnostmi \(M_1 \) a \(M_2 \) obíhající po kruhových drahách kolem společného těžiště. Další předpokládejme, že absorbující vrstvu obálky kolem celé soustavy znázorníme jako válcovou slupku plynu v efektivní vzdálenosti \(d \) od těžiště, která kolem těžiště obíhá s kritickou rotační rychlostí \(v_e = \left(\frac{G(M_1 + M_2)}{d} \right)^{\frac{1}{2}} \). (175)

To je ovšem zjednodušení, které vychází z představy, že ve větších vzdálenostech můžeme na gravitační působení dvojhvězdy nahlížet jako na gravitační působení hmotného bodu o hmotnosti \(M_1 + M_2 \).

Pro radiální rychlost absorpční čáry vznikající při průmětu části takového plynového prstence na disk jasnější složky 1 dvojhvězdy zřejmě platí

\[RV_e = \left(\frac{G(M_1 + M_2)}{d^3} \right)^{\frac{1}{2}} a_1 \sin \vartheta \sin i, \] (176)

kde \(i, a_1 \) a \(\vartheta \) označují sklon oběžné dráhy, vzdálenost složky 1 od těžiště a fázový úhel složky 1 během oběhu měřený od její horní konjunkce (tj. okamžiku, kdy je hvězda nejdále od pozorovatele).

Radiální rychlost složky 1 samotné bude ve stejné chvíli rovna

\[RV_1 = \frac{2\pi a_1}{P} \sin \vartheta \sin i = \left(\frac{G(M_1 + M_2)}{a^3} \right)^{\frac{1}{2}} a_1 \sin \vartheta \sin i, \] (177)

kde \(a \) označuje vzdálenost středů obou hvězd. Je tedy zřejmé, že poměr radiální rychlosti absorpčních čar z uvažovaného plynového prstence a orbitální radiální rychlosti složky 1

\[\frac{RV_e}{RV_1} = \left(\frac{a^3}{d^3} \right), \] (178)

zůstává po celou dobu oběhu stejný, přičemž amplituda křivky čar z prstence je značně redukována. Je snadné si spočítat, že např. již pro obálku ve vzdálenosti o polovinu větší než vzájemná vzdálenost složek bude

\[\frac{RV_e}{RV_1} = 0.3. \] (179)

5.3 Vliv plynového obalu kolem jedné ze složek na pozorované změny jasnosti soustavy

Je zřejmé, že pro zákrytové dvojhvězdy s velkými a opticky tlustými disky kolem jedné ze složek musí být tvar světelné křivky výrazně přítomností disku ovlivněn a standardní řešení světelné křivky nemůže vést k určení správných poloměrů složek.

94
Tento problém byl poprvé rozpoznán a řešen pro známou zákrytovou dvojhvězdu β Lyr. Ještě začátkem padesátých let dvacátého století byla β Lyr považována za velmi hmotnou dvojhvězdu s primární složkou spektrálního typu B8II a sekundární složkou spektrální třídy A či F, což mj. vyplývalo ze standardního řešení světelné křivky. První skutečně kvantitativní model světelné křivky β Lyr, ve kterém byl uvažován i disk kolem sekundární složky, publikoval Wilson (1974). Ten modeloval disk jako velice rotačně zploštělý elipsoid a jasně ukázal, jak je záření z horké hvězdy ukryté v disku přerozdělováno a vysíláno převážně mimo oběžnou rovinu soustavy. Jinými slovy – Wilson ukázal, že v podobných případech je nutné striktně rozlišovat mezi pozorovaným tokem F_λ v nějaké oblasti spektra a mezi celkovou zářivostí uvažované složky dvojhvězdy $L_\lambda = 4\pi R^2 \sigma T^4_{\text{eff}}$.

5.4 Jak si lze s některými problémy poradit

Přesné paralaxy změřené pro řadu hvězd družicí Hipparcos (Perryman a kol. 1997) umožňují pro objekty, pro které lze získat dobrý odhad nezčervenalé hvězdné velikost ve žluté barvě V_0, nezávislý odhad poloměrů hvězdy. Postup se přirozeně hodí dobře pro objekty, které jsou členy hvězdokup, neboť paralaxa hvězdokup může být určena z mnoha nezávislých určení pro jednotlivé členy a je velmi přesná.

Spojením definice efektivní teploty T_{eff}

$$M_{\text{bol}} = (42,3532632(25) - 5 \log (R/R_\odot) - 10 \log T_{\text{eff}}$$ (180)

s modulem vzdálenosti a bolometrickými korekcemi BC

$$V_0 - M_V = -5 \log p - 5,$$ (181)

dostaneme pracovní vztah

$$\log (R/R_\odot) = 7,47379 - 2 \log T_{\text{eff}} - 0,2BC - V + A_V - \log p.$$ (182)

Povšimněme si příznivé okolnosti, že pro horké hvězdy se funkce $2 \log T_{\text{eff}} + 0,2BC$ mění jen zvolně s efektivní teplotou. To znamená, že i pro poměrně hrubý odhad T_{eff} lze získat značné spolehlivou hodnotu poloměru hvězdy za předpokladu, že máme k dispozici spolehlivé hodnoty visuální hvězdné velikosti V, zčervenalé A_V a paralaxy p.

Pro hvězdy, pro něž je znám z interferometrických měření úhlový průměr θ, opravený o okrajové ztěmňení, lze poloměr odhadnout při známé paralaxe aniž bychom museli činit nějaký odhad efektivní teploty hvězdy. Platí zřejmě

$$\frac{(R/R_\odot)}{p} = \frac{\theta}{p}.$$ (183)

Harmanec (2000) ukázal pro jasné emisní hvězdy, že porovnání obou metod vede k velmi uspokojivé shodě. Pro použití první metody je ovšem u emisních objektů kritickým bodem volba správné hodnoty

6Historie 200 let studia této dvojhvězdy je podrobně shrnuta v práci Harmance (2002).
Obrázek 33: Průběh funkce $2 \log T_{\text{eff}} + 0.2BC$ v závislosti na efektivní teplotě T_{eff} pro horké hvězdy. Bolometrické korekce byly získány lineární interpolací v $\log T_{\text{eff}}$ v tabulce empirických bolometrických korekcí publikovaných v práci Code a kol. (1976).
Tabulka 3: Srovnání hmotností a poloměrů emisních složek dvou zákrytových dvojhvězd získaných řešením světelných křivek a křivek radiálních rychlostí s poloměry R_{1}^{Hip} odhadnutými z paralaxy, změřené družicí Hipparcos a hvězdné velikosti V opravené o příspěvek sekundární složky. Rozsah hodnot, odpovídající udané chybě paralaxy, je uveden v závorkách.

<table>
<thead>
<tr>
<th>Binary</th>
<th>HD</th>
<th>log T_{eff}</th>
<th>M_1 (M_\odot)</th>
<th>R_1 (R_\odot)</th>
<th>R_{1}^{Hip} (R_\odot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Cep</td>
<td>5679</td>
<td>4.112</td>
<td>4.21</td>
<td>2.69</td>
<td>2.59 (2.33–2.91)</td>
</tr>
<tr>
<td>V360 Lac</td>
<td>216200</td>
<td>4.280</td>
<td>6.5</td>
<td>6.4–8.8</td>
<td>6.32(5.06–8.43)</td>
</tr>
</tbody>
</table>

Harmanec (2000) tabeloval hmotnosti a poloměry pro několik případů zákrytových dvojhvězd s emisními složkami, pro něž bylo možné tyto hodnoty dostatečně věrohodně určit ze světelné křivky a z křivky radiálních rychlostí. Pro dvě z těchto dvojhvězd jsou k dispozici i data dovolující odhad poloměrů emisních složek pomocí zde popsané metody s použitím vztahu (182). Srovnání je uvedeno v tabulce 3. Jak je vidět, oba postupy se v rámci uvedených chyb shodují.

6 Různé konkrétní typy dvojhvězd

Pojmosloví v oboru dvojhvězd je poměrně pestrou kombinací popisného třídění a pojmosloví založeného na základním pochopení fyzikální podstaty dané skupiny dvojhvězd. Ten, kdo se chce studiu dvojhvězd vážně věnovat, by se v tomto ‘živočichopise’ měl orientovat. Proto si zde stručně představíme četné konkrétní kategorie dvojhvězd, jak se vyskytují v současné astronomické literatuře.

6.1 Dvojhvězdy typu Algol

Tento pojem je zvlášť zrádný, protože se historicky vyvíjel a může znamenat několik zcela různých věcí. Kromě původní charakteristiky typu světelné křivky začal totiž být postupně užíván i k označení polodotykových soustav ve stádii přenosu hmoty mezi složkami (často též nyní nazývaných „interagující dvojhvězdy“). Tím se chápání pojmu „Algol“ postupně posouválo k fyzikálnější interpretaci. „Algolem“ v tomto smyslu je pak i prototyp druhého typu světelné křivky, známá interagující dvojhvězda β Lyr. Odtaut byl již jen krok k velmi nešťastnému termínu „nezákrytový Algol (non-eclipsing Algol)“, používanému některými astronomy pro spektroskopické dvojhvězdy, u nichž se lze podle nepřímých důkazů dohadovat
také o probíhajícím přenosu hmoty mezi složkami, a jejichž sklon oběžné dráhy je takový, že vůči nám
nedochází k zákrytům.

6.2 Dvojhvězdy s hvězdou se závojem

Existují dvojhvězdy, v jejichž spektrech nacházíme obvykle časově proměnné emisní čáry, které ve většině
případů souvisejí s jednou ze složek dvojhvězdy, obvykle hvězdou spektrálního typu O, B či A. Obecně se
soudí, že emisní čáry svědčí o přítomnosti cirkumstelární hmoty ve dvojhvězdi. Čistě popisně a historicky
bylo rozlišeno několik skupin emisních objektů. Asi nejnáznější jsou dvojhvězdy typu W Ser, mezi něž
se kromě zmíněného prototypu počítá i β Lyr, UX Mon, SX Cas, RX Cas a další. Jde většině o dvojhvězdy
s oběžnými periodami delšími, než mají klasické Algoly. Typické periody jsou asi od 10 do 300 dní. Hvězdy
typu W Serpentis byly Plavcem a Kochem jako třída zavedeny tak, že jde o objekty s řadou silných emisních
čar viditelných v družicové ultrafialové části spektra. Jedná se většině o polodotykové soustavy, u kterých
sekundární složka vyplňuje Rocheovu mez.

Po objevu rentgenovských zdrojů záření se ukázalo, že mnoho z nich jsou hmotné dvojhvězdy, jejichž
optickou primární složkou je právě hvězda se závojem, buď o vysoké svítivosti nebo hvězda hlavní posloup-
nosti.

Konečně jsou známy dvojhvězdy, kde sekundární složku emisní hvězdy tvoří horká heliová a málo
hmotná hvězda jako je tomu v případě ϕ Per.

Struktura cirkumstelární hmoty, ve které vznikají emisní a dodatečné absorpční čary a zřejmě i část spo-
jitého záření, jsou u těchto objektů často velmi proměnné, což se projevuje jak neperiodickými spektrálními
změnami, tak také ménícím se vzhledem světelných křivek. V některých případech je třeba pozorování
za mnoho oběžných cyklů, aby se vůbec podařilo prokázat periodicitu související s oběžným pohybem. Zcela
řešitelné v některých těchto dvojhvězdech nedochází k zákrytům složek dvojhvězdy, ale k zákrytům jedné
složky časově proměnnou cirkumstelární hmotou.

6.2.1 Symbiotické dvojhvězdy

Tento pojem byl zpočátku chápán zcela popisně, dnes je definován podle určitých spektrálních vlastností
přesněji, aby vymezoval fyzikálně homogennější třídu objektů. Jejich pozorovaná spektra jsou kombinací
dvou různých spekter: V optickém oboru zpravidla dominuje obět v chladná hvězda – rudý obr či veleobr.
Druhým spektrem je horká složka, buď normální hvězda hlavní posloupnosti nebo bílý trpaslík. V druhém
případě lze na takovou symbiotickou hvězdu pohlížet i jako na kataklysmickou proměnnou. Podmínkou
klasifikace je i přítomnost emisních čar včetně čar zakázaných.

Jedná se o dvojhvězdy s velmi dlouhými oběžnými periodami řádu několika stoviek dní, takže jejich
orbitální pohyb má malou amplitudu a není snadné jej spolehlivě prokázat. Chladné složky často i pulsují
a méně při tom svou jasnost, dochází též k dlouhodobým výrazným spektrálním změnám. Ty jsou často
mnohem nápadnější, než pravidelně související s oběžnou periodou, a proto trvalo až do osmdesátých
let 20. století, než byl obecně přijat názor, že všechny symbiotické hvězdy jsou dvojhvězdi. Je možné, že
všechny chladné složky symbiotických dvojhvězd zaplňují Rocheovu mez, jen pro několik z nich to však
dosud bylo dokázáno. Problém spočívá v tom, že efekty cirkumstelární hmoty, oscilací chladné složky a
obecně dlouhé oběžné periody velmi znesnadňují spolehlivé určení hmotností a poloměrů těchto dvojhvězd.
Předpokládá se ale, že horká složka přijímá hmotu z chladné s ložky, ať už klasickým přenosem hmoty
nebo ve formě hvězdného větru. Přenos hmoty je řádu 10^{-5}M_\odot ročně, teplota je v rozsahu 10^4 až 10^5 K, svítivost 10^3 až 10^4 L$_\odot$; takové vlastnosti mají i centrální hvězdy planetárních mlhovin. Vzhledem k již zmíněným malým amplitudám křivek radiálních rychlostí se spolehlivé důkazy oběžného pohybu často zakládají na fotometrii. Např. v UV mohou být zákryty žhavé složky dosti hluboké. Symbiotické hvězdy ale méní svou jasnost v mnoha časových škálovách (viz např. již zmíněné pulsace chladné složky nebo vzplanutí podobná výbuchům nov) a identifikace zákrytu proto nemusí být jednoznačná. Symbiotické hvězdy se dělí na typ S, u něhož je v IR oblasti pozorovatelné jen spektrum chladné složky, a typ D (zpravidla s delšími oběžnými periodami), kdy lze v IR oblasti nalézt emisi prachu o teplotě 400 až 1000 K. Kromě obou těles existuje ve systému i množství mezihvězdné hmoty a okolohvězdné hmoty, projevující se četnými efekty ve spektru. Hustota ionizované složky této mlhoviny je $N_e \geq 10^7$ cm$^{-3}$ u typu S, a je menší u typu D. Existuje diagnostika na odlišení od planetárních mlhovin. Jsou problémy s určením vzdálenosti, neboť kontinuum je špatné definováno, a mezihvězdná extinkce má i cirkumbinární složku.

Kříž a Harmanec (1975) upozornili na to, že na Algoly, dvojhvězdy s hvězdou se závojem a symbiotické hvězdy s chladnou složkou zaplňující Rocheovu mez lze pohlížet jako na podobné objekty, které se liší především délkou oběžné periody. U Algolů s kratšími oběžnými periodami není uvnitř Rocheovy mez dostatečné místo na vznik rosáhých obálek, proto se u nich nepozorují příliš silné emise. Naopak u symbiotických hvězd je Rocheova mez kolem chladné složky ta k velká, že tato složka světelně dominuje již v optické oblasti spektra.

6.3 Dvojhvězdy s veleobry

Skupina dvojhvězd, kde jedna složka je veleobr, je jistě důležitá pro určení hmotností veleobrů, i jako přechodný stav ke konečným fázím vývoje dvojhvězdy. Je tu ovšem značný výběrový jev: veleobr vzniká z hmotnější složky díky jejímu rychlejšímu vývoji, méně hmotná složka zůstává na hlavní posloupnosti a je tedy daleko slabší a menší – tudíž je obtížně zjistitelná, a to jak spektrálně, tak i fotometricky. Navíc se zdá, že řada členů dvojhvězd svou příslušnost k veleobrům jen simuluje (jde o hvězdy nižší svítivosti s obálkou, jejíž absorpční čáry se podobají spektru veleobra). Mezi nejranějšími hvězdami je známo několik případů takových dvojhvězd se zdávávě věleoběrními složkami (např. V1765 Cyg, V380 Cyg, δ Ori či V1007 Sco; mají vesměs výstředné dráhy s periodami 5 až 14 dnů a jejich hmotnost je dobře určeny, neboť efekty hvězdného větru se v mnoha případech lákají sekundární složkou této dvojhvězdy je ale záhadou (viz např. přehledová práce Guina a DeWafra 2002). Během fáze výměny hmoty (zpravidla případu B, kdy k výměně hmoty dojde při expanzi hvězdy po vyhoření vodíku v jejím jádru).

U dvojhvězd s veleoběrními a pozdními spektrálními typy je jasné, že výměna materie z veleobrů probíhá zpravidla jiným způsobem. Sekundární složkami jsou typu K, a v praxi je to často typu M; jde o hvězdy v konverzi, které mají větší obvody a jsou tedy dostatečně velké pro zajištění oběžného pohybu. Sekundární složka této dvojhvězdy je ale záhadou (viz např. přehledová práce Guina a DeWafra 2002). Během zákrytu v letech 2009-2011 byla ale získána interferometrická pozorování v optickém a infračerveném oboru, která potvrdila, že sekundární složka je ukryta v obrovském chladném disku, který samotný zánik zpravidla způsobuje (Kloppenborg a kol. 2010). Protože stále není k dispozici spolehlivě určená paralaxa, vedou se i spory o to, zda primární
složka je skutečně veleobr.

6.3.1 Hvězdy typu \(\zeta \) Aurigae a VV Cephei

Tak jsou označovány dvojhvězdy sestavující z chladného obra či veleobra spektrální třídy a z hvězdy hlavní posloupnosti se spektrálním typem B či A, u kterých dochází k atmosférickým zákrytům. Pokud je obří hvězda spektrálního typu M, mluví se též o hvězdách typu VV Cephei. Oběžné periódy těchto soustav jsou dlouhé nebo i velmi dlouhé, v několika případech skoro 10000 dní. Atmosférické zákryty složek na hlavní posloupnosti obřími hvězdami s velmi rozsáhlými atmosférami davají unikátní možnost studovat atmosféru studovat a protože k podobným zákrytům dochází vzhledem k dlouhým oběžným periodám jen zřidka, bývají k jejich sledování organizovány mezinárodní kampaně.

6.4 Dvojhvězdy s Wolfsovou-Rayetovou hvězdou

Wolfsovy-Rayetovy hvězdy jsou velmi horké hvězdy s nápadnými emisními čarami ionizovaného helia a kovů. Mnohé z nich (v určité době se soudilo, že možná i všechny) se nacházejí ve dvojici s hvězdou spektrálního typu O. Jejich spektrum je čistě emisní a vykazuje jasně známky silného hvězdného větru unikajícího vysokými rychlostmi ačkoliv některé z nich – např. V444 Cyg – jsou i zákrytovými dvojhvězdami, znalosti jejich hmotností a poloměrů jsou stále nejisté, neboť jak křivka radiálních rychlostí, tak světelná křivka jsou silně komplikovány přítomností cirkumstelární hmoty. Kromě toho existují přesvědčivé důkazy toho, že rozměry dynamických obálek kolem těchto hvězd se s časem mohou měnit. Kuhi a Schweizer (1970) zjistili, že u WR dvojhvězdy CV Ser zcela zmizely fotometrické zákryty, které předtím několik jiných astronomů pozorovalo.

6.5 Hvězdy chemicky pekuliární

Existují dvě třídy chemicky pekuliárních hvězd, o nichž se dnes dosti všeobecně soudí, že se vyskytují pouze ve dvojhvězdách, ačkoliv přímá souvislost podvojnosti a pekuliarity je dosud otázkou zkoumání. Jsou to Am hvězdy (pro něž čárky vápníku odpovídají ranému A typu, čárky ostatních kovů pozdnímu A typu a čárky vodíku střednímu A typu) a Ba hvězdy, s anomálně silnými čarami kovů a barya. Ukazuje se, že chemická pekuliarita obou skupin má mnoho společného. Kromě toho je podvojnost velmi častým jevem u hvězd typu HgMn s pekuliárními intensitami čar rtuti a manganu.

6.6 Hvězdy typu RS CVn

Jedná se o dvojhvězdy s chladnými složkami, u nichž jsou ve spektro pozorovatelné obě složky a u nichž dochází ke změnám jasnosti také v důsledku toho, že v jejich atmosférách vznikají a zanikají obří analogie slunečních skvrn. Pro tyto dvojhvězdy existují zvláště z družicových UV, rentgenových a radiových pozorování četné důkazy přítomnosti chromosféry, občasných mohutných erupcí a dlouhodobých cyklů aktivity, takže analogie s hvězdami slunečního typu je velmi hluboká.
6.7 Dvojhvězdy typu W UMa

Nejde o omyl. Typ W UMa je síce jedním ze základních typů světelné křivky, ukazuje se však, že popisuje i fyzikálně příbuznou skupinu hvězd, které jsou v takovém vývojovém stadiu, že buď kolem obou složek existuje společná atmosféra, která zaplňuje vyšší ekvipotentciál, než je Rocheova mez nebo jsou obě složky Rocheově kritické mezi velmi blízko. Jedná se zpravidla o dvojhvězdy s chladnými složkami spektrálních typů A-K, u nichž se podobně jako u hvězdu typu RS CVn pozorují skvny na jejich povrchu. Kromě toho však u nich dochází k nepravidelným změnám oběžného období. Často existuje rozpor mezi hmotovým poměrem určeným ze spektroskopie a z fotometrie. Popisně se tyto dvojhvězdy dělí na dva podtypy podle řešení světelné křivky: typ A, kdy je v hlubším minima zakrytá menší hvězda větší hvězdou, a typ W, kdy je tomu naopak.

6.8 Kataklamické proměnné (CV; novy, trpasličí novy a rentgenovské dvojhvězdy o malé hmotnosti)

Jedná se o dvojhvězdy, u nichž je přenos hmoty mezi složkami spojen s eruptivními jevy, zejména s nápadně zjasňováním celé soustavy v nepravidelných intervalech od týdnů až do desítek let. U těchto dvojhvězd se zpravidla poznávají i emisní čáry ve spektrech. Obvykle jsou tvořeny dvojicí chladné hvězdy naplnující Rocheovu mez a horké, velmi kompaktní hvězdy. Důležitou charakteristikou je, že k celkovému zářivému výkonu těchto soustav přispívá podstatnou měrou záření akrečního disku kolem horké složky. Pozorují se i zákryty v rentgenovském oboru a v některých případech periodické změny jasnosti na časové škále o řád delší, než oběžná perioda. U některých soustavexistují důkazy přítomnosti silného magnetického pole – systému typu AM Her.

Že některé novy (přesněji, postnovy) jsou dvojhvězdy, bylo známo už od padesátých let (DQ Her). Teprve v šedesátých letech se ale postnovy staly předmětem zájmu, a bylo zjištěno, že dvojhvězd mezi nimi je velmi mnoho, takže vlastně všechny musí být dvojhvězdami. To ovšem vedlo i k teoretickému vysvětlení jevu novy: jde o nukleární výbuch v atmosféře bílého trpaslíka, k němuž dochází - v různě dlouhých intervalech - díky akreci vodíku z atmosféry druhé složky.

U trpasličích nov je mechanismus zjasnění jiný: Zjasnění souviseji s nestabilitou akrečního disku po dosažení určité hustoty, kdy se v oblastech měnící se ionizace velmi prudce změní opacita disku (který je u trpasličích nov hlavním zdrojem záření celé soustavy). Tento model je podrobně popsán v přehledové práci Pringle (1981).

Observečně je tedy možné zjistit světelnou křivku postnovy; je řada případů, kdy jde o zákrytové dvojhvězdy. Světelné křivky jsou ale obtížněji dešifrovatelné než u „normálních“ hvězd, neboť významným příspěvatelem ke světu tu je i disk, dalej „jasná skvrna“ na disku, a i rozdělení jasu na složkách může být nepravidelné. Objekt přitom jeví změny jasnosti v řadě časových škál – mluví se o výbuších, supervýbuších, nízkém stavu (kdy zmizí akreční disk a je pozorovatelná fotosféra). Je ovšem možné i spektroskopické studium, opět komplikované emisemi, a tím, že jde o objekty slabé – přitom oběžné doby jsou většinou krátké a tedy expoziční dobou musí být též krátké.

CV lze rozdělit na řadu podtypů:
- novy (CN, classical nova);
- trpasličí novy (DN, dwarf nova);
• novám podobně proměnné (NL, nova like);
• magnetické CV (MCV).

Mezi méně zásadní typy patří např. hvězdy typu AM CVn, s velmi krátkou dobou oběhu (10 až 40 min.; sama AM CVn má 17 min) nebo typu ER UMa, což jsou velmi aktivní DN, s výbuchy každých několik dní.

Klasifikace závisí především na velikosti \(\dot{M} \) při dané periodě (na velikosti \(\dot{M} \) závisí i čas rekurence u UG a ZC). Protože ztráta úhlového momentu - na níž závisí i přenos hmoty - způsobuje i sekulární vývoj systému ke kratším periodám, je možné, že za změnami \(\dot{M} \) je stáří. CV jistě vznikají s různými periodami, rozptyl stáří při dané periodě je tedy značný.

6.8.1 Oběžné peridy CV

Velká většina CV má periody velmi krátké; důležitým jevem jsem je mezera v pozorované délce oběžné peridy („period gap“): periody v rozsahu \(2^{h}10^{m} \) až \(2^{h}52^{m} \) má jen několik málo objektů. Např. všechy CN mají periodu delší.

Perioda každé CV se ovšem obecně zkracuje, úhlový moment se ztrácí gravitačním vyzařováním, u MCV též „magnetickým brzděním“, v časové škále \(10^{9} \) roků. Obecně CV končí jako pár bílých trpaslíků, a u jistého procenta z nich už během Hubbleova času\(^7\) vyplnění měňe hmotný WD svou Rocheovu mez a s dalším poklesem úhlového momentu ji přeteče a vytvoří disk kolem hmotnějšího složky; ta disk postupně pohltí. Jedním z výsledků takového procesu jsou pravděpodobně „extrémně heliové hvězdy“ (na jejichž povrchu je jen nepatrně vodíku a kde logaritmus poměru svítivost-hmotnost (ve slunečních jednotkách) je větší než 4.

6.8.2 Trpasličí novy (DN)

DN, jinak též UG (typ U Gem), se dále dělí na:

• SS (SS Cyg) – v cyklu 10 až 1000 dní jejich jasnost stoupne o 2-4 mag. v 1-2 dnech, a během několika dnů klesne na normální;

• SU (SU UMa) – perioda pod mezermou (<2h 10m), má „normální“ a „super“ výbuchy;

• ZC (Z Cam) – mají též výbuchy, ale někdy mezi nimi jasnost neklesne na normální.

Obecně jsou ovšem pro poznání všech typů CV důležité objekty se zákryty. Zejména u DN jsou zákryty přínosem – dovolují studovat dramatické změny akrečního disku při výbuších a v obdobích klidu. Široký zákryt při erupci znamená, že je zakryván velký svítivý disk; v období klidu jsou na světelné křivce jen nevelké struktury připsatelné zákrytu WD a jasně skvrně na obvodu disku (Z Cha, HT Cas, OY Car). U typu SU jsou pozorovatelné tzv. superhumps: po světelné křivce přechází vlna svědčící o precesi eliptického disku (obr. 34).

\(^7\)Jako Hubbleův čas se označuje převrácená hodnota Hubbleovy konstanty \(H_{0} \).
Obrázek 34: Světelná křivka IY UMa (typ UGSU) ve třech obdobích po 48 hodinách během supervybuchu. Zřejmě jsou hluboké zákryty (perioda 0.073909 d), a vlna posouvající se po křivce. Zjevně v posledním období jsou zjevně i poklesy s vyšší frekvencí (Patterson a další 2000).

Fig. 2.—Three 48 hour segments of IY UMa light curve during the 2000 January superoutburst. Deep eclipses at \(P_{\text{super}} \) occur throughout. A prominent wave, the superhump, drifts slowly through the orbital light curve. The superhump amplitude and eclipse depth are periodically reduced when the superhump coincides with eclipse. Recurrent wiggles at higher frequency are also evident, especially in the last panel.
6.8.3 Magnetické kataklysmické proměnné (MCV)

Podle intensity magnetického pole bílého trpaslíka se dělí na typ AM Her (polary; 10 až 80 MG, i více), a typ DQ Her (intermediární polary), 1 až 10 MG. Patří k nim asi 1/4 všech CV. Rozpoznávacím rysem je zpravidla silná kruhová i lineární polarizace záření ve visuálním a blízkém IR oboru.

Většina záření je emitována v rentgenovém oboru, důvodem jsou akreční šoky na povrchu WD. MCV typu AM Her nemají akreční disky, akreovaný materiál je magnetickým polem veden na jeden, eventuálně oba magnetické póly. WD je magnetickým polem synchronizován s oběžnou periodou, jeho rotační perioda je tedy od 80 minut do 8 hodin. U typu DQ Her je rotační perioda obvykle kolem 1/10 peridy oběžné, a zpravidla je přítomen akreční disk. Intensita magnetického pole se dá určit z fotosférických spektřů – v tzv. nízkém stavu dominuje záření fotosféry nad akrečními šoky a diskom. U vyšších intensit pole jsou spektrální čáry nejen rozštěpené, ale i posunuté a deformované. Zdá se, že rekord 230 MG má AR UMa. Více o MCV viz Wickramasinghe & Ferrario (2000).

6.8.4 Novám podobné proměnné (NL)

U CV typu NL ztrácí hvězda hlavní posloupnosti pozdního typu hmotu na WD hlavně přes RLOF (přetokem Rocheovy meze, Roche lobe overflow). WD je bez silného magnetického pole a proud dopadá na disk, tam je jasná skvrna; na rozdíl od DN nemají NL kvaziperiodické výbuchy. U podtypu MV Lyr nedochází k nízkému stavu.

6.8.5 Předchůdci supernov typu Ia

Soudí se, že některé dvojhvězdy CV jsou předchůdci supernov. Supernovy typu Ia ve spektru nemají vodík (ani helium), a jejich absolutní visuální magnituda v maximu dosahuje pozoruhodně shodných hodnot:

\[M_V = -19.30 + 5 \log \left(\frac{H_0}{60} \right) \]

(kde \(H_0 \) je Hubbleova konstanta), s disperzí pouze 0.3 a \((B - V) = 0\) (i když je několik případů s odlišnější jasností). Předchůdci výbuchu nebyli objeveni. Tyto vlastnosti lze vysvětlit předpokladem, že supernova vzniká zhroucením bílého trpaslíka (typu C+O), jehož hmotnost akrecí vzrostla nad Chandrasekhárovo mez (asi 1,4 M_⊙; ovšemže akreci hmoty z druhé složky dvojhvězdy). Jiná verze, splynutí dvou bílých trpaslíků, by sotva mohla vysvětlit shodnost jasností ve maximu. Pozorované rychlosti expanze přítom odpovídají syntéze asi 1 M_⊙ C+O do prvků Fe skupiny a prvků s mezilehlou hmotou jako jsou Si a Ca; energetika radioaktivního procesu

\[56 \text{Ni} \rightarrow 56 \text{Co} \rightarrow 56 \text{Fe} \]

přitom velmi dobře vystihuje průběh klesající jasnosti objektu po výbuchu.

SN Ia se vyskytují ve spirálních i eliptických galaxiích, tj. vznik z hvězd s vyšší hmotností nepřipadá v úvahu (i když některé podtypy jsou jen ve spirálách).

Problémy ovšem jsou. Předně, při pomalé akreci vodíku dojde ke vzniku novy, a při tomto výbuchu se ztratí více hmoty než se v cyklu získalo. Při rychlé akreci by pak mělo dojít k trvalému hoření, takový systém by ale byl jasný a pozorovatelný (možná tak vypadá nějaký typ CV nebo symbiotiky).

104
6.9 Dvojhvězdy v posledním tažení

Tak jako jednotlivá hvězda končí svou aktivitu v podobě kompaktního objektu – tj. jako bílý trpaslík, neutronová hvězda nebo černá díra – tak i ke konci vývoje dvojhvězdy se jedna složka stane takovým objektem (mohou se jím ovšem stát obě složky, nebo se dvojhvězda může rozpadnout). Zopakujme:

- **WD** - poloměr kolem 10000 km, hmotnost menší než 1.4 M⊙;
- **NS** - poloměr kolem 10 km, hmotnost menší než asi 3.4 M⊙;
- **BH** - lze uvádět poloměr nejméně stabilní dráhy; hmotnost nad 4 M⊙.

Už z možných kombinací je zřejmé, že konečná stadia vývoje dvojhvězd mohou být velmi různorodá. Existuje řada klasifikací pozdních stadií dvojhvězd. Základní dělení je podle typu kompaktního objektu:

- bílý trpaslík (WD)+ „normální“ hvězda = kataklysmická dvojhvězda (CV),
- neutronová hvězda (NS)+ „normální“ hvězda = rentgenová dvojhvězda (XRB),
- černá díra (BH)+ „normální“ hvězda = rovněž rentgenová dvojhvězda.

To ale neznámená, že CV by nemohla být detekována jako rentgenový zdroj. Dvojhvězdy se ovšem projevují jako CV nebo XRB jen dochází-li k akreci na kompaktní objekt. Jsou-li složky velmi vzdálené, pak k interakci nedochází, např. u dvojhvězd typu Sirius (WD+MS).

I druhá složka může být kompaktní objekt, takže možných kombinací je řada. Je známo několik příkladů WD+WD, u nichž nedochází k interakci, ani není přítomna cirkumbinární hmota. Existují WD+NS, jsou to LMXRB s periodami 9 - 50 minut. Některé radiové binární pulsary jsou NS+NS.

Neutronová hvězda je ovšem obecně pulsar (vyzařující jen v kruželní, tedy nevždy jako pulsar pozorovatelná), a je proto možných více podob dvojhvězd s pulsarem. Některé dvojhvězdy spadají do více kategorií.

6.9.1 Vývoj dvojhvězdy se společnou obálkou

Takovým uznávaným procesem je vývoj ve společné obálce. Jestliže z jedné složky uniká více hmoty než je druhá složka schopna zachytit, atmosféra té druhé složky se zahřeje a rozšíří, až vyplní Rocheovu mez, a přetékající hmota se dostává do obálky obklopující obě složky. Tření při pohybu složek v plynu obálky vede ke spirálovitěmu vzájemnému přibližování složek a část uvolněné energie pak odnáší hmotu i rotační moment obálky mimo dvojhvězdu (Soberman a další 1997).

Tento proces nepochybně nastává u planetárních mlhovin (PN), pokud jsou jejich jádra dvojhvězdi (mnohé CV vznikly z PN), CV a jiných degenerovaných dvojhvězd. Může nastat i když nejde o únik z Rocheovy meze, ale o hvězdný vítr (což se opět týká PN, ale i dvojhvězdi s OB složkou). CV mají běžné periody jen v délce hodin. Jejich bílý trpaslík ale vzniká z jádra rudého obra, jedna složka tedy musí projít tímto stavem a původně tedy musí jít o rozměrný systém s dlouhou oběžnou dobou. Výsledkem tohoto „vývoje ve společné obálce“ pak jsou nejen CV, ale i XRB a SN.

Protože pravděpodobně všechny hvězdy s počáteční hmotou 8 M⊙ nebo menší končí jako bílý trpaslíci (pohledem ke stáří vesmíru ovšem ještě žádné hvězdy s hmotou menší než asi 1 M⊙ do stavu WD nemohly
dospět), měla by být prostorová hustota CV značná. Jsou ovšem dvojhvězdy, kde vzdálenost složek jsou (a byly) značné, a kdy WD+ „normální“ hvězda tvoří běžnou dvojhvězdu (visuální, viz již zmíněný „typ Sirius“). Tyto dvojhvězdy není snadné objevit; pokud je WD podstatně teplejší složkou, lze je objevit právě jako objekty s převahou UV nebo EUV záření. Takové objekty pak poskytují důležité informace o hmotnostech WD.

6.9.2 Rentgenové dvojhvězdy

Při identifikaci zdrojů rentgenového záření s optickými objekty bylo často zjištěno, že jde o dvojhvězdu (je známo na 200 takových dvojhvězd v Galaxii a několik v jiných galaxiích). Dvojhvězdy se liší: podobou druhé složky, časovou proměnností, mj. občasnými výbuchy, hmotností rentgenové složky, rentgenovým spektrum, sklonem dráhy. Složkou, která září v rentgenovém oboru, je ovšem neutronová hvězda nebo černá díra; získává hmotu akrecí, a září přeměnou gravitační potenciální energie (což je proces o řád účinnější než nukleární hoření).

Existují i dvojhvězdy zářící v rentgenovém oboru, kde obě složky jsou „normální“ hvězdy, kdy příčinou rentgenového záření jsou různé vlny ve hvězdném větru či atmosférické procesy (korona). Svítivost je v těchto případech o několik řádů menší.

Zásadní rozlišení je podle typu složky: LMXRB (low mass X-ray binary; složka s malou hmotností, přesněji spektrálního typu pozdějšího než A, event. bílý trpaslík), a HMXRB (high mass XRB), kdy u složky jde o typ O nebo B. V prvním případě má na optické záření podstatný vliv ohřev složky a akrečního disku rentgenovým zářením, a přenos hmoty se děje přetokem Rocheovy plochy (RLOF). V druhém případě je pro přenos hmoty důležitý hvězdný větr z O či B složky – jeho značnou část zachytí kompaktní složka. I zde ovšem může nastat RLOF. Při RLOF se přenáší významný rotační moment, vznikne tedy akreční disk.

HMXRB lze dále dělit na dvě skupiny: „normální“ složka je OB I-IIe veleobr (někdy se označují SXRB) nebo hvězda se závojem o nižší svítivosti BeXR (B V-IIIe). Někdy je luminositní klasifikace obtížná a dělení tedy není příliš spolehlivé. Je-li optickou složkou B V-IIe hvězda, vyskytují se dost často intenzivní rentgenové výbuchy (transients), a mimo ně jsou objekty nepozorovatelné; zpravidla je neutronová hvězda rentgenovým pulsarem, s rotační periodou obvykle několik sekund. Ze zdánlivé změny periody pulsů lze pak velmi přesně stanovit dráhu. Část BeXR je pozorovatelná stále, výbuchy jsou méně výrazné, a pulsace mají periody řádově stovky sekund (X Per).

6.9.3 Dvojhvězdné pulsary

Zdá se, že existují dva typy dvojhvězd s pulsary: V prvním případě je průvodcem pulsaru také neutronová hvězda nebo hmotný bílý trpaslík, oběžná perioda je krátká a dráha výstředná. V druhé kategorii jsou
pulsary, jejichž druhou složkou je málo hmotná hvězda (0,2-0,4 \(M_\odot \)), patrně heliový bílý trpaslík. Oběžná dráha je kruhová a perioda je dlouhá.

Už napsané napovídá o velké rozmanitosti binárních pulsarů; jednotlivé kategorie lze stručně popsat takto (příklady viz tab. 4):

1. Dosud nedošlo k akreci na neutronovou hvězdu z druhé složky, dráha je excentrická.
2. Obě složky jsou neutronové hvězdy. Pulsar a jeho průvodce se nejprve spirálovitě přiblížili ve společné obálce, pak došlo k výbuchu druhé supernovy. Každá ze složek tak musela mít původně hmotnost nad 8 \(M_\odot \).
3. Druhou složkou je WD s velkou hmotností, který mohl vzniknout jen z obra daleko rozměrnějšího než je současná dráha. To znamená, že NS spirálovala obálkou obra a způsobila její odmrštění. Zbylé jádro už nevydalo na druhou NS.
4. Složkou je málo hmotný WD na kruhové dráze, který se mohl vytvořit při stabilizovaném přenosu hmoty ze složky s malou hmotností, vyplňující RL.
5. Jde o systémy se složkami méně hmotnými než jsou hmotnosti jader nejméně hmotných hvězd, které se ještě mohly vyvinout nad hlavní posloupnost během existence vesmíru. Přenos hmoty tedy musel mít jiný důvod než nukleární vývoj složky – šlo tedy o gravitační záření nebo ztrátu úhlového momentu v magnetickém větru.
6. Pulsar 1257+12 má možná planetární systém, několik dalších pulsarů snad zničilo své průvodce, které jim poskytly úhlový moment k jejich rychlé rotaci.

6.10 Dvojhvězdy mezi hvězdami PMS (pre-main sequence)

V novější době se věnuje značná pozornost dvojhvězdám mezi hvězdami, které dosud nedosáhly ZAMS (hlavní posloupnost nulového věku). Je to proto, že proces kontrakce na Hayashiho posloupnosti zdáleka není tak dobře pochopen jako chování hvězdek od jejich dosažení ZAMS. A také proto, že technika dovoluje takové hvězdy (a dvojhvězdy) studovat. Jiné označení těchto hvězd je „Herbigovy-Harovy Be/Ae hvězdy“. Prototypem je ovšem T Tau (hvězdy typu T Tau by ale měly mít ekvivalentní šířku H\(\alpha \) > 10 Å). Tyto
hvězdy jsou obklopeny mezihvězdnou hmotou (prach, plyn, molekulární mračna), zpravidla v podobě disku. Extinkce může být značná, často jsou to objekty pozorovatelné jen v IR oblasti nebo i rádiově (tepelná emise prachu, volně-volná emise z ionizovaných bipolárních výtrysků). Název „Herbigovy-Harovy objekty“ je téměř synonymem pro PMS hvězdy. Jde o drobné mlho viny nepravidelných tvarů, zpravidla na pozadí temných mračen, a jsou to viditelné části akrečních disků a bipolárních výtrysků.

Hvězdy PMS se vyskytují především v několika oblastech: Tau-Aur, Sco-Oph, CrA. V prvé ve zmíněných oblastí téměř všechny PMS vytvářejí visuální dvojhvězdy nebo vícečlenné systémy; v ostatních oblastech je sice také procento dvojhvězd vyšší, ale – vzhledem k celkově menšímu počtu těchto objektů – není rozdíl proti výskytu dvojhvězd v okolí Slunce statisticky průkazný.

Značná část visuálních dvojhvězd má úhlovou vzdálenost složek pod 1″, některé byly objeveny interferometricky, jiné mají složku viditelnou jen v IR oboru (T Tau). Vzdálenost oblastí Tau-Aur je asi 140 pc, takže např. 0″1 odpovídá 14 au. Při hmotnostech zhruba rovných 1 M☉ by byla perioda řádu desítek let a pro některé z těchto dvojhvězd už lze stanovit dráhy a – díky známé vzdálenosti – i hmotnosti.

6.11 Dvojhvězdy mezi cefeidami

První dvojhvězdy mezi cefeidami byly objeveny teprve během posledních desetiletí. Protože cefeida je veleobr, její jasnost značně převyšuje eventuálního průvodce – hvězdu hlavní posloupnosti. Průvodce se proto může projevit třeba efektem rozdílné dráhy světla (perioda cefeidy se periodicky mění) nebo – jde-li o objekt teplejší než je cefeida – zvýšenou jasností v UV části spektra. Na adrese

http://www.konkoly.hu/CEP/intro.html

je seznam dvojhvězd mezi cefeidami publikovan. Pro 29 objektů byla k datu květen 2015 uvedena spektroskopická dráha. Nejkratší oběžná perioda je 133 dní (TX Del), většina period je ale mezi 1000 až 10000 dní. Je známo i několik trojhvězdi.

6.12 Dvojhvězdy s podtrpaslíky

Jedním z výsledků vývoje se společnou obálkou jsou i dvojhvězdy s podtrpaslíky typu B (sdB). To jsou hvězdy na extrémní horizontální větví (EHB); spalují He v jádře o hmotnosti kolem 0.5 M☉ a mají jen velmi tenkou vodíkovou obálku. Společná obálka musela vzniknout u hvězdy s degenerovaným heliovým jádrem na špičce RGB. Složkou sdB může být hvězda MS nebo podobr (v těchto případech se na světelné křivce projeví
reflexní efekt) nebo WD. Perioda může být velmi krátká, nejkratší známá je 0,073 u dvojhvězdy PG 1017-086, jejíž druhou složkou je málo hmotný červený trpaslík nebo snad hnědý trpaslík. Velkým úspěchem je objev zákrytové dvojhvězdy SDSS 103533.03+055158.4 sestávající z bílého a hnědého trpaslíka, který učinili Littlefair a kol. (2006). Tato soustava má oběžnou periodu 82,0896 minut (0,057007) a probíhá v ní přenos hmoty od hnědého na bílého trpaslíka, jde tedy o CV systém. Hmotnost hnědého trpaslíka byla určena na 0,052 M_\odot, bílého na 0,94 M_\odot. Poloměry jsou 0,108 a 0,0087 R_\odot.

6.13 Dvojhvězdy v kulových hvězdokupách

Zatímco ještě před nedávnem se soudilo, že v kulových hvězdokupách dvojhvězdy téměř nejsou – a těch několik, které byly známy, se chápaly jako výsledek zachycení v hustém prostředí kupy – nyní je zřejmé, že zastoupení dvojhvězd tu je snad jen o málo menší než ve slunečním okolí; a že nutně jde o dvojhvězdy vzniklé současně s hvězdokupou (primordinální). Jde jak o dvojhvězdy objevené optickými metodami, tak o LMXRB a pulsary. Je zajímavé, že přítomnost dvojhvězd má zásadní vliv na vývoj celé kupy.

Na rozdíl od osamocených dvojhvězd lze při pozorování hvězdokupy získat úplný soubor do určité mezní magnitudy, a výběrové efekty ve statistice mohou být kvantifikovány. Nejjasnějšími hvězdami v kulové kupě jsou červení obři s hmotnostmi pod 1 M_\odot, buď na špičce RGB (red giant branch) nebo typu AGB (asymptotic giant branch). Očekávané periody jsou tedy delší než asi 40 dní, amplitudy 10 - 20 km s$^{-1}$.

6.14 Dvojhvězdy v jiných galaxiích

Jde ovšem hlavně o dvojhvězdy v Magellanových mračnech (LMC a SMC) a jiných galaxiích lokální skupiny. Mnoho zákrytových dvojhvězd v MC bylo objeveno už v prvé polovině minulého století. Současně velké dalekohledy dovolují i jejich spektrální výzkum, a to i v M31. Přes velkou podobnost této galaxie s Mléčnou dráhou je dobře známo, že nejjasnější zákrytové proměnné v M31 zdáleka nejsou tak jasné jako v naší galaxii (což je důvod podmínkami vzniku velmi hmotných hvězd). Vývoj dvojhvězd v MC pak je ovšem nižší abundancí kovů u hvězd těchto mračen.

7 Vznik dvojhvězd

Vznik dvojhvězd a vícehlasobných soustav patřil kupodivu po dlouhou dobu mezi jednu z největších hádanek týkajících se dvojhvězd.

V existující literatuře se dlouho zvažovalo několik možností:

1. Rozštěpení (fission) protohvězdy rychlou rotací.
2. Rychlá fragmentace v zárodečném protohvězdném mračnu
3. Fragmentace disku vznikající protohvězdy

109
4. Zachycení jedné hvězdy druhou

Vznik dvojhvězد dynamickým zachycením může docházet k tělesu s vlastní gravitaci nebo pokud je sklopný tak těsně, že si vzniklé dvojhvězد mohou postupně odčerpávat hvězdu disku. V každém případě se ale zdá, že tímto mechanismem může i v největších částech hvězdic dvojhvězd vznikat někdy procent procentním populace hvězd, což je síla ke vzniku dvojhvězد, takže je třeba si uvědomit, že při setkání hvězd dochází i k rozpadu dvojhvězد, i k těmto složkám může být nějaký rovnovážný stav.

vícenásobných soustav je stále velmi žádoucí. Dosavadní úsilí v tomto směru naznačuje tři významnější neshody mezi modely a pozorováním:

1. Numerické simulace produkují příliš mnoho osamocených hvězd o malé hmotnosti a
2. předpovídají příliš mnoho dvojhvězd s velmi malými poměry hmot.
3. Numerické simulace nedovedou reprodukovat tak velké množství hvězd s vyšší multiplicitou (více než tři složky) jaké je skutečně pozorované ve hvězdné populaci. Může to být alespoň jen výpočetním omezením dnešních programů, které nejsou schopny počítat s primordialními soustavami obsahujícími více nežli 3 komponenty.

Je ovšem třeba si uvědomit, že detekce soustav s malým poměrem hmotnosti je obtížná a musí zde působit výběrové efekty.

Poslední simulace vzniku a následného vývoje dvojhvězd ukazují, že pro dobrou shodu modelu s pozorováním je potřeba aby na 100 nově vzniklých soustvách připadalo asi 40 trojhvězd a 60 dvojhvězd. Z těchto 40 trojhvězd následně vznikne asi 25 stabilních hierarchických systémů a 15 se jich rozpadne na 15 dvojhvězd a 15 samostatných hvězd (viz Goodwin a Kroupa 2005).

Dynamický rozpad nestabilních (nehierarchických) systémů probíhá poměrně rychle. Bylo ukázáno (např. Anosova 1986) že platí:

\[
t_{\text{decay}} \sim 14 \left(\frac{R_{\text{au}}}{\text{au}} \right)^{3/2} \left(\frac{M_{\text{stars}}}{M_\odot} \right)^{-1/2} \text{yr},
\]

kde \(R\) je rozměr soustavy a \(M_{\text{stars}}\) je hmotnost složek. Tento rozpad má za následek dvě hlavní věci. Jednak je to vyrážení nejméně hmotné složky ze soustavy a druhak také zmenšení poloosy oběhu zbývající dvojhvězdy, která je pak dynamicky mnohem stabilnější.

Tokovinin (2008) pro velké množství vícenábsobných systémů a jejich parametrů podrobně diskutoval, zda konkrétní mechanismy vzniku a následného vývoje dostatečně dobře popisují pozorované charakteristiky. Na obr. (35) je znázorněn případ možného vzniku čtyřhvězdy, kdy díky takovému vývoji dochází ke změně periody vnitřní a vnější dráhy. Tak zvaná kaskádovitá fragmentace na počátku z rotujícího zárodečného disku oddělila fragmenty, které si odnesou i část momentu hybnosti a dále fragmentují (a tyto fragmenty dále mohou vytvářet páry podobných hvězd, tzv. 2+2 systémy). Následná migrace drah může být způsobena právě Kozaiovými cykly se slapovým působením, vedoucími k tomu, že moment hybnosti se z vnitřní dvojhvězdy přenese na třetí složku a díky tomu pozorujeme některé charakteristiky P-P diagramů. Tomu by např. nasvědčoval i fakt, že mezi spektroskopickými dvojhvězdami vidíme kratší periody právě u systémů se třetí složkou, než u prostých dvojhvězd.
8 Apendix: Použité fyzikální a astronomické jednotky

V posledních letech docházelo v souvislosti se zlepšující se přesností astronomických pozorování k poměrně rychlému vývoji ve zpřesňování, ale i novému definování některých fyzikálních a astronomických jednotek. Protože právě dvojhvězdy jsou zdrojem našich nejpřesnějších údajů o fyzikálních vlastnostech hvězd, je důležité se tomuto vývoji přizpůsobit. Všechny konstanty použité v textu této učebnice jsou založeny na jednotkách, které jsou shrnuty v následujících odstavcích.

V současnosti je z rozhodnutí Mezinárodní astronomické unie platný systém astronomických konstát zvaný jako

The IAU 2009 system of astronomical constants

V tomto textu jsou použity z uvedených zdrojů následující jednotky:

8.1 Základní fyzikální jednotky

Rychlost světla ve vakuu \(c \) je přirozenou definici konstantou, ze které se odvozuje délková jednotka SI soustavy 1 m

\[
c = 299792458 \text{ m s}^{-1}.
\]
(185)

Stefanova - Boltzmannova konstanta \(\sigma \) je měřenou fyzikální konstantou. Zde přijímáme novější hodnotu z databáze CODATA 2014

\[
\sigma = (5,670367 \pm 0,000013) \cdot 10^{-8} \text{ W m}^{-2}\text{K}^{-4}.
\]
(186)

Je třeba upozornit, že existují vážné úvahy o tom, že by i hodnota této konstanty byla do budoucna fixována na přesné číslo nezatížené žádnou chybou.

Gravitační konstanta \(G \) je měřenou fyzikální konstantou, která je zatížena stále relativně velkou měřicí chybou. Nejnověji stanovená hodnota podle CODATA 2014 je

\[
G = (6,67408 \pm 0,00031) \cdot 10^{-11} \text{m}^3\text{kg}^{-1}\text{s}^{-2}.
\]
(187)

Součin gravitační konstanty s hmotností Slunce \(G M_{\odot} \) je ovšem možno díky radarovým a laserovým měřením ve sluneční soustavě určit mnohem přesněji, než samotnou gravitační konstantu či hmotnost Slunce v SI soustavě. Přijaté hodnoty jsou

\[
G M_{\odot} (\text{TCB}) = (1.32712442099 \pm 0.00000000010) \cdot 10^{20} \text{ m}^3\text{s}^{-2},
\]
\[
G M_{\odot} (\text{TDB}) = (1.32712440041 \pm 0.00000000010) \cdot 10^{20} \text{ m}^3\text{s}^{-2},
\]
(188)
kde první hodnota je kompaktibilní s koordinovaným barycentrickým časem TCB a druhá s barycentrickým
dynamickým časem TDB (terestrickým časem doplněným o malé cyklické relativistické korekce). Pro účely
studia dvojhvězd je přínivé, že ve všech důležitých rovnicích jako je třetí Keplerův zákon či vztahy pro
velkou poloosu dráhy dvojhvězdy nebo hmotnosti složek vystupuje vždy součin \(GM_\odot \), takže přesnost
příslušných numerických koefficientů v rovnicích (2), (56), (57), (61) a (65) je mnohem větší, než jaká by
plynula s chyb určení samotných hodnot \(G \) či \(M_\odot \).

8.2 Základní astronomické jednotky

Astronomická jednotka \(au \) je veličina, jejíž chápání se vyvíjelo od pojmu střední vzdálenosti Země
od Slunce k přesnější definici, že se jedná o poloměr kruhové dráhy tělesa zanedbatelné hmotnosti, které
oběhne kolem středu Slunce za 1 siderický rok. Rozborem přesných měření byla získána hodnota \(au =
(149 597 870 700 \pm 3) \text{ m} \). Z několika různých důvodů rozhodlo v roce 2012 Valné shromáždění Mezinárodní
astronomické unie svou resolucí B2 definici astronomické jednotky změnit a učinit z ní konstantu o známé
hmotnotě vyjádřené v metrech. Nyní tedy platí, že

\[
au = 149 597 870 700 \text{ m}.
\]

V souvislosti s tím bylo rozhodnuto, že ze soustavy astronomických jednotek bude využívána Gaussova
 gravitační konstanta \(k \). Nová definice astronomické jednotky bude aplikována při výpočtech ve všech
užívaných časových škálovách a součin \(GM_\odot \) bude určován v SI soustavě přesnými měřeními s cílem nalézt
jeho případné časové změny související jak se změnou hmotnosti Slunce, tak s relativistickými efekty.

Hmotnost a poloměr Slunce \(M_\odot \) a \(R_\odot \) jsou měřené veličiny, jejichž hodnoty v SI soustavě se nepočybne
sekolárně mění: hmotnost v důsledku ztráty hmoty hvězným větrem či naopak dopadem malých těles
sluneční soustavy na sluneční povrch, poloměr pak v důsledku vývojové expanze a patron i cyklicky. Navíc
se v literatuře udávané hodnoty těchto veličin vzájemně dost liší i v souvislosti s tím, jak se jejich přesnost
určení s časem zlepšovala. Vzhledem k tomu, že se ve stelární astronomii tradičně hmotnosti a poloměry
hvězd vyjadřují právě ve slunečních jednotkách, vnášejí se tím k jejich přesnosti zbytečná nepřesnost. Harmanec
a Prša (2011) proto navržli přijmout nominální hodnotu slunečního poloměru, která by sloužila jako přesně
definovaná hodnota převodu poloměrů hvězd vyjadřených ve slunečních poloměrech na kilometry. Situace s hmotností Slunce je poněkud odlišná. Vzhledem k tomu, že hodnota součinu \(GM_\odot \) je vztahem
(188) definována velice přesně a jak již bylo zmíněno, vystupuje tento součin všech rovnic definujících
hmotnosti hvězd či planet, není třeba definovat samotnou nominální hodnotu sluneční hmotnosti.

Je zda ale jedna důležitá výjimka. Ve výpočtech vývojových modelů hvězd se používají hmotnosti hvězd
v SI či častěji v cgs soustavě. Pokud bychom přijali nominální hodnotu součinu \(GM_\odot \), Ize hmotnost počítat
ze vztahu

\[
M_\odot [\text{kg}] = GM_\odot / G_{\text{aktuální}} \sim 1,988475 \cdot 10^{30} \text{ kg}.
\]

Povšiměme si, že vzhledem k velké chybě gravitační konstanty \(G \) je lhostejno, zda zvolíme hodnotu součinu
\(GM_\odot \) vztaženou k času TCB nebo TDB.

V letech 2013-2015 připravovala pracovní skupina IAU pod vedením Petra Harmance a později Erica
Mamajka návrh příslušné resoluce, který byl předložen Valnému shromáždění IAU v létě 2015 a schválen

113
Tabulka 5: Nominální sluneční převodní konstanty na SI soustavu jednotek stanovené resolucí Mezinárodní astronomické unie B3 z roku 2015.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominální poloměr Slunce</td>
<td>(R_N^\odot)</td>
<td>(6.957 \times 10^8) m</td>
</tr>
<tr>
<td>součin hmoty a gravitační konstanty</td>
<td>((GM)_N^\odot)</td>
<td>(1.3271244 \times 10^{20}) m³s⁻²</td>
</tr>
<tr>
<td>nominální sluneční zářivý výkon</td>
<td>(L_N^\odot)</td>
<td>(3.828 \times 10^{20}) W</td>
</tr>
<tr>
<td>nominální bolometrický sluneční tok záření u Země</td>
<td>(S_N^\odot)</td>
<td>(1361) W m⁻²</td>
</tr>
<tr>
<td>nominální efektivní teplota Slunce</td>
<td>(T_N^\odot)</td>
<td>(5772) K</td>
</tr>
</tbody>
</table>

\[R_\odot = 695700 \text{ km} \, . \]

Rovněž bylo stanoveno, že přijatá hodnota \((GM)_N^\odot\) bude odpovídat nyní měřeným hodnotám zaokrouhleným na přesnost, při níž se ještě neliší hodnoty v TBC a TDB soustavách.

Závěrem technická poznámka, jak zapisovat v publikacích nominální jednotky:
Nominální hodnotu veličiny \(Q \) můžeme v Latexu zapsat pomocí definice,
\[
\newcommand{\Qnom}{\hbox{$\mathcal{Q}^{\rm N}_{\odot$}}}
\]
kterou lze pak užívat v textu i v rovnicích například takto:
\[
Q_1 = 15.3 \, \Qnom
\]
a podobně.

8www.iau.org/static/resolutions/IAU2015_English.pdf
9 Poděkování

Za kritické přečtení předchozích verzí tohoto textu, nalezení četných překlepů či za cenné připomínky děkujeme našim kolegům doc. RNDr. Petrovi Hadravovi, DrSc., Dr. Davidovi Holmgrenovi, Dr. Andreji Pršovi, Dr. Slavkovi Ruciňského, doc. RNDr. Markovi Wolfovi, CSc. a Dr. P. Zaschemu a také studentům Astronomického ústavu UK slečně Marii Hrudkové, Mgr. Janu Libichovi a pánům Pavolovi Habudovi, Tomáši Proseckému, Stanislavu Poddanému, Lukášovi Shrbenému a Michalovi Zajačkovi. Děkujeme také Mgr. Janu Károvi za poskytnutí programu, kterým byl vytvořen obrázek 2.

Monografie

- Batten A.H. 1973 Binary and multiple systems of stars, Pergamon Press
- Eggleton P. 2006 Evolutionary Processes in Binary and Multiple Stars, Cambridge University Press
- Heintz W. D. 1978, Geophysics and Astrophysics Monographs, Reidel Publishing Company, USA
- Hiltner W.A. (Editor) 1962 Astronomical techniques, Chicago
- Shore S.N. 2003 The Tapestry of Modern Astrophysics, John Wiley and Sons, Hoboken, New Jersey, USA
- Warner B. 1995 Cataclysmic variable stars, Cambridge U.P.

Reference

115
Barr J.R. 1908 Journal Royal Astron. Soc. Canada 2, 70
Borkovits T., Csizmadia Sz., Forgács-Dajka E., Hegedüs T. 2011 Astron. Astrophys. 528, A53
Deeg H.J. 2021 Galaxies 9,1
Díaz-Cordovés J. 1990 PhD Thesis, University of Complutense, Madrid, Spain
Doubek, J. 2006 Spektroskopie hvězdy 60 Cygni, diplomová práce, Astronomický ústav UK
Duchêne G., & Kraus A. 2013 ARA&A 51, 269
Griffin R.F. 2000 Observatory 120, 1
Hadrava P. 2009a Astron. Astrophys. 494, 399
Hadrava P. 2009b arXiv:0909.0172v2
Harmanec P 1983 Hvar Obs. Bull. 7, 55
Harmanec P. 2000 in Smith a kol. 2000, p. 13
Harmanec P. 2003, pozvaný referát: Determination of basic physical properties of binary stars with hot components, ve sborníku Close Binaries, Royal Road to the Stars, ed. by O. Demircan a E. Budding, Canakkale, Turkey, July 2002
Harmanec P., Prša A. 2011 PASP 123, 976
Harrington R.S. 1968 Astron. J. 73, 190
Harrington R.S. 1969 Celest. Mechan. 1, 200
Hartkopf W.I., Guinan E.F., Harmanec P. (Eds.) 2007 Proc. IAU Symp. 240 Binary stars as critical tools
and test in contemporary astrophysics, Cambridge Univ. Press, S240
Hill G.W. 1902 Astron. J. 22, 93 a 117
Pacific Conf. Ser. 38, 127
Astrophys. 324, 965
Astrophys. 345, 855
Horák T. 1970 Astron. J. 75, 1116
Hubeny I., Plavec M.J. 1991 Astron. J. 102, 1156
Ilijic S., Hensberge H., Pavlovski K., Freyhammer L. M. 2004 ASPC 318, 111
Kloppenborg B., Stencel R.E., Monnier J.D., Schaefer G. a 13 spolauautorů 2010 Nature 464, 870
Kozai Y. 1962 Astron. J. 67, 591
Kratochvíl P. 1964 Těsné dvojhvězdy, diplomová práce, Astronomický ústav UK Praha
Kuiper G.P. 1941 Astrophys. J. 93, 133
Linnell A.P., 1984, Astrophys. J. Suppl. 54, 17
Petrova A.V. & Orlov V.V. 1999 Astron. J. 117, 587
Pietrukowicz P., Mróz P., Soszyński I. a kol. 2013 Acta Astronomica 63, 115
Tokovinin A., Mason B. D., & Hartkopf W. I. 2010 Astron. J. 139, 743
Tonry J., Davis M. 1979 Astron. J. 84, 1511
Van Hamme W. 1993 Astron. J. 106, 2096
Zasche P., Uhlář R. & Svoboda P. 2014 Acta Astronomica 64, 125
Zejda M. 2008 Analyza sveteliných křivek zákrytových dvojhvězd, PhD disertační práce, Astronomický ústav UK,
Obrázek 35: Schéma možného vývoje na příkladu čtyřnásobných systémů, viz Tokovinin (2008).