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Chapter 1

Basics of statistical physics

Physical system, or, more precisely, mathematical model of physical system is defined
by a certain set of mathematical objects. These, together with their values (in a very
general sense) define the state of the system. As an example, let’s consider a set of N
point masses (m1, . . . ,mN ) which may be characterised by 2N vectors of positions, ri,
and momenta, pi, in the framework of classical physics. Such a set of 6N numbers may
be viewed as a vector, q ≡ (r1,p1, r2,p2, ..., rN ,pN ), in 6N -dimensional phase space
and it is usually referred to as state.

Proper modelling of the state of physical system is valuable by itself, nevertheless,
further piece of information is needed if we wish to know how the system would evolve
in time. This information is carried by equations of motion (again, in a very general
sense). In the following, we will usually consider the evolution of the system to be
determined by Hamilton’s canonical equations, i.e.,

ṙi =
∂H(q)

∂pi
and ṗi = −∂H(q)

∂ri
, ∀i = 1 . . . N, (1.1)

with H(q) being a Hamiltonian of the system.

1.1 Liouville’s theorem

Liouville’s theorem states that the density of states in the phase space is constant
along any evolutionary trajectory provided it is determined by the Hamilton’s canonical
equations of motion. Equivalently, we may consider an arbitrary set of states in phase
space, Ω0. If each of the states from that set evolve for the same (yet arbitrary) time
interval, t, they define another set, Ωt at that time, as it is schematically sketched in
the left panel of Fig. 1.1. Liouville’s theorem implies that volumes of Ω0 and Ωt are
equal.

As a particular (and probably the simplest possible) example, let’s consider a single
free point-mass particle which is only allowed to move along the axis x with momentum
px. Hamiltonian of this system is H = p2x/2m, where m is mass of the particle. Solution
of the Hamilton equations of motion is then x(t) = t px/m ∧ px(t) = const. This means

11
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q

Ω0

Ωt

qt(q0)

0 x

px

Ω0 Ωt

Figure 1.1: Left: Sketch of time evolution of a set of states in the phase space; qt(q0) represents
phase space trajectory of one (initial) particular state q0. Right: Evolution of particular (rectangular
initially) set of states of a free particle with two degrees of freedom.

that states in the phase space move along lines parallel to the x-axis. Different states
with the same value of momentum travel equal distance within equal time interval
t, however, these distances differ between states with different values of momentum.
Hence, the rectangular set Ω0 as depicted in the right panel of Fig. 1.1 transforms to
rhomboid Ωt with the same length of base and height. Both straightforward geometric
intuition or simple integration show that their volumes are the same.

In the following, we will provide a proof of the Liouville’s theorem, i.e., we will show
that the volume of the set Ωt, which equals

∫
Ωt

d6Nq, is equal to the volume of Ω0. At
the first step, let us write ∫

Ω0

d6Nq =

∫

Ωt

d6Nqt , (1.2)

which can be viewed just as trivial renaming of the integration variables. Next, let us
consider the theorem about integration by substitution of variables, which states:

1) Let ϕ be a regular one-to-one mapping from RN to RN defined on an open set
G ⊂ RN ;

2) let M ⊂ ϕ(G) ⊂ RN ;
3) let f be a regular mapping RN → R1 defined almost everywhere on M .

Then, ∫

M
f(y)dNy =

∫

ϕ−1(M)
f (ϕ(x))

∣∣∣∣det
Dϕ

Dx

∣∣∣∣ dNx . (1.3)

For the sake of completeness, we stress out that the explicit form of the determinant
matrix is

Dϕ

Dx
=




∂ϕ1

∂x1

∂ϕ2

∂x1
. . . ∂ϕN

∂x1
∂ϕ1

∂x2

∂ϕ2

∂x2
. . .

...
. . .


 . (1.4)
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We will apply (1.3) to the right-hand side of equation (1.2) with f ≡ 1, y → qt, x →
q0, ϕ(x) → qt(q). The mapping ϕt is such that it maps the initial state q0 into the new
state qt for each t according to the Hamiltonian equations of motion. Note that the
mathematical meaning of qt is ambiguous here. It has a meaning of the coordinates,
when it describes a particular state in the phase space. On the other hand, it has
a meaning of a function qt(q0; t), when it describes the mapping from one state to
another according to the equations of motion, t is then a parameter of this function.
That is because the Hamiltonian may be viewed also as a recipe for the transformation
of coordinates between the states. Finally, M = Ωt and ϕ

−1(M) = Ω0, and N → 6N ,
which together yields

∫

Ωt

d6Nq =

∫

Ωt

d6Nqt =

∫

Ω0

∣∣∣∣det
Dqt

Dq0

∣∣∣∣d6Nq0 . (1.5)

Consequently, we want to prove that
∫

Ωt

1d6Nq =

∫

Ω0

1d6Nq . (1.6)

Let us further denote

J t ≡
∣∣∣∣det

Dqt

Dq0

∣∣∣∣ , (1.7)

which is the Jacobian of the transform q → qt. Apparently, the Liouville’s theorem
is valid provided J t = 1. In practise, we will show that dJ t/dt = 0 which, together
with trivial identity J0 ≡ J t=0 = 1, implies the required property of the Jacobian. Let
us denote element of the Jacobi matrix J t

ij ≡ ∂qti/∂q
0
j . It’s time derivative may be

expressed as

dJ t
ij

dt
=

∂

∂q0j

dqti
dt

=
∂q̇ti
∂q0j

=
6N∑

k=1

∂q̇ti
∂qtk

∂qtk
∂q0j

=
6N∑

k=1

∂q̇ti
∂qtk

J t
kj , (1.8)

where we denote q̇ti ≡ dqti/dt. Here we used

J t
kj =

∂qtk
∂q0j

. (1.9)

In equation (1.8) we have exchanged order of derivatives with respect to t and qj
which is possible provided these two are continuous. The time derivative of the Jacobian
J t can be written with the help of eq. (1.8):

dJ t

dt
=
∑

i,j

∂J t

∂J t
ij

dJ t
ij

dt
=
∑

i,j,k

∂J t

∂J t
ij

J t
kj

∂q̇ti
∂qtk

. (1.10)

Equation (1.10) can be simplified due to identity (see Box 1.1)

∑

j

∂J t

∂J t
ij

J t
kj = δikJ

t (1.11)
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to

dJ t

dt
= J t

6N∑

i=1

∂q̇ti
∂qti

. (1.12)

Finally, let us rewrite (1.12) in terms of canonical coordinates and momenta and consider
Hamilton’s equations to evaluate ṙti and ṗ

t
i:

dJ t

dt
= J t

3N∑

i=1

(
∂ṙti
∂rti

+
∂ṗti
∂pti

)
= J t

3N∑

i=1

(
∂2H
∂rti∂p

t
i

− ∂2H
∂pti∂r

t
i

)
(1.13)

Hence we assume that we may switch the order of partial derivatives of H, the value
of the expression above vanishes. Hence J t = 1 for each t and the Liouville’s theorem
holds.

(Add example of non-Hamiltonian system (in which case different initial states may
converge to common final state).)

(Psat carku po now, kterym zacina veta? Spravne jsou snad obe varianty, ale neni
to v textu sjednoceno.)

1.2 Statistical description of a physical system

The probability density is constant along each state evolutionary track through the
phase space, i.e. each particular state keeps in time its probability of being realised
(found/measured). This, together with the assumptions required for the Liouville’s
theorem to be valid (i.e. Hamiltonian nature of the system) allows to formulate a
Liouville’s equation for the temporal evolution of the distribution function DN.

Let’s assume an arbitrary fixed subset, Ω, of the phase space. Probability to find the
system in some state in Ω is P(Ω) =

∫
ΩDNdω. This property implies the normalisation

of the distribution function bearing the usual form

+∞∫

−∞

DNdω = C, (1.18)

where C is a scalar value. Taking into account the previous paragraph, the natural
selection dictates C = 1. The probabilistic interpration states that if the subset Ω covers
the whole phase space, the corresponding probability obtained from the distribution
function should be 1 (the certainty).

Liouville’s theorem states that the fluid of states is incompressible, hence, the only
way how the probability P (Ω) can change is due to the flow of the states through the
boundary of Ω, i.e.:

∂

∂t

∫

Ω
DN dω = −

∮

ðΩ
DN q̇ · dΣ (1.19)

where dΣ is an (outward) oriented element of the surface ðΩ. The minus sign means
that the probability decreases when the state flows parallel to dΣ, i.e. out from Ω.
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Let B = A−1 be inverse matrix of A. Then the elements bij may be computed by using
the adjoint (or adjugate1) matrix

B =
1

detA
adjA, (1.14)

defined by
(adjA)ij ≡ (−1)i+jdet(Aji). (1.15)

Then the inverse elements are given by

bij =
(−1)i+j

a
det
(
Aji
)
,

where a ≡ detA and ′ indicates the matrix transpose operator. The notation Aij

represents the submatrix obtained from matrix A by excluding ith row and jth column.
The determinant a of matrix A may be computed using the expansion as

a =
∑

i

(−1)i+jaijdetA
ij .

Then
∂a

∂aij
= (−1)i+jdetAij = abji. (1.16)

Hence ∑

j

∂a

∂aij
akj =

∑

j

abjiakj = a
∑

j

bjiakj = a(BA)ki = aδik, (1.17)

Q.E.D.

Box 1.1: Useful algebraic identity to prove the Liouville’s theorem.
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Provided some physically plausible mathematical conditions are fulfilled (provide an
exact formulation of these conditions), we may exchange derivative and integration
operators on the left-hand side of eq. (1.19); on the right-hand side, we apply Gauss
theorem, yielding ∫

Ω

∂DN

∂t
dω = −

∫

Ω
∇ · (DNq̇) dω . (1.20)

Integral equality (1.20) holds for an arbitrary set Ω which implies equality of integrands.
Therefore, we obtain a continuity equation for the distribution function,

∂DN

∂t
= −∇ · (DN q̇) . (1.21)

This equation represents the “continuity equation” for the “fluid of states” and im-
plies that the state keeps its DN when evolving in time according to the Hamiltonian
equations. The relation can be further rewritten as

∂DN

∂t
= −

6N∑

i=1

[
∂DN

∂qi
q̇i +DN

∂q̇i
∂qi

]
= −

3N∑

i=1

[
∂DN

∂ri

∂H
∂pi

− ∂DN

∂pi

∂H
∂ri

+DN

(
∂H

∂ri∂pi
− ∂H
∂pi∂ri

)]
.

(1.22)
The terms in () brackets cancel out providedH is continuously differentiable with respect
to ri and pi. Using the Poisson brackets notation, the Liouville equation is usually
written as:

∂DN

∂t
= {H, DN}P . (1.23)

(Mention the analogous von Neumann equation from the quantum theory.)

1.3 Reduced distribution functions

Distribution function, DN holds maximum information of a particular (usually very
complex) physical system. This maximum information may often be more than what
we need. In some circumstances, it is convenient to define reduced distribution functions
(for details see Box 1.2):

f(r,p) ≡
∫
DN(r,p, r2,p2, . . . , rN,pN) dτN−1 , (1.24)

where

dτN−1 ≡
d3r2d

3p2 . . . d
3rNd

3pN

(N− 1)!
(1.25)

and the integration is taken over the whole definition space of variables r2 . . .pN. Def-
inition (1.24) generally gives different results when different pairs (ri,pi) are excluded
from integration (which means that the result should keep some mark according to the
excluded particle). The definition (1.24), however, is usually considered for specific sys-
tems of undistinguishable particles which imply that DN as well as H are symmetric
with respect to permutations of individual particles (exchange of pairs of (ri,pi) and



17 1.3. REDUCED DISTRIBUTION FUNCTIONS

Let us comment on different normalisations of the reduced distribution functions. The
distribution function DN holds maximum information of a particular physical system,
which is often not necessary. For instance, we may only be interested in a probability
density of finding particle carrying tag 1 at r1 with the momentum p1, where we do not
need any information about the remaining particles. Then we may integrate DN over
all other particles yielding

f1(r1,p1) =

∫
DN(r1,p1, . . . , rN ,pN )d3r2d

3p2 . . . d
3rNd3pN .

Function f1 is in a good sense a one-particle distribution function. A similar reduction
may be written for the particle carrying tag 2:

f2(r2,p2) =

∫
DN(r1,p1, . . . , rN ,pN )d3r1d

3p1d
3r3d

3p3 . . . d
3rNd3pN

and so forth. As long as the particles are distinguishable, functions f1, f2, . . . may in
principle be different. Note that f1. . . functions are each normalised to unity.
In the above given examples, we may always formally rename the considered particle
so that its position and momentum is formally written without the subscript, hence
(r,p). Still, generally, f1(r,p) ̸= f2(r,p). They are identical only in the case of the
undistinguishable particles.
Now, in the case we are interested in a probability density f(r,p) of finding any undis-
tinguishable particle at (r,p) we must sum the probabilities of finding particle 1, particle
2,. . . at (r,p). Hence, for example,

f(r,p) =

N∑

i=1

f i(r,p) = Nf1(r,p) = Nf2(r,p) = . . . .

Note that f is now normalised to N . This is not convenient for the interpretation.
Hence we may naturally re-normalise DN to obtain f which is normalised to unity.
When integrating from DN we get

f(r,p) = N

∫
DN(r,p, . . . , rN ,pN )d3r2d

3p2 . . . d
3rNd3pN =

= N

∫
D′

N

N !
d3r2d

3p2 . . . d
3rNd3pN =

∫
D′

N

d3r2d
3p2 . . . d

3rNd3pN

(N − 1)!
,

where D′
N has a different normalisation (to N !) and we naturally see the definition of

the new volume element dτN−1. In the following, we drop the ′ for simplicity.

Box 1.2: On the normalisation of the distribution functions.
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(rj ,pj)). For these systems, integration (1.24) gives identical functions regardless of
over which N− 1 pairs of coordinates and momenta it is performed. Function f(r,p) is
usually called single-particle distribution function and it gives a probability density of
finding any particle at position r with momentum p. Note that the single-particle distri-
bution function really holds considerably reduced information with respect to DN. We
could add that to the meaning of f(r,p) that “. . . and we have no information about
positions and momenta of the other particles.” Single-particle distribution function
holds a sufficient amount of information to calculate mean values of physical quantities
which may be written in a form:

A(r1,p1, . . . , rN,pN) =

N∑

i=1

a(ri,pi) , (1.26)

i.e. it is a sum of N identical functions. The mean value is then

⟨A⟩ ≡
∫
ADN dτN =

∫
a(r,p) f(r,p) d3r d3p . (1.27)

Similarly to (1.24) we may define “two-particle distribution function,”

f2(r1,p1, r2,p2) ≡
∫
DN dτN−2 , (1.28)

which gives the probability density of finding some particle at position r1 with mo-
mentum p1 and any other particle at position r2 with momentum p2. Mean values
of physical quantities which depend on combinations of positions and momenta of two
particles,

B(r1,p1, . . . , rN,pN) =

N∑

i=1

N∑

j=1,j ̸=i

b(ri,pi, rj ,pj) , (1.29)

can be calculated through integration of the two-particle distribution function:

⟨B⟩ =
∫
b(r1,p1, r2,p2) f2(r1,p1, r2,p2) d

3r1 d
3p1d

3r2 d
3p2 . (1.30)

An important example of a physical quantity which often takes the form of (1.26)
or (1.29) or combination of both is the total energy of the system which is defined by
Hamiltonian. Let’s introduce its specific (i.e. not general!) form:

H =
N∑

i=1

p2
i

2m
+

N∑

i=1

V (ri) +
N∑

i=1

N∑

j=1

j ̸=i

w(ri, rj) . (1.31)

Here, the first sum corresponds to a system of free particles; first plus second sum
defines a system of non-interacting particles (of equal mass, m, which is an inevitable
consequence of their indistinguishability) in an external potential V (r). The third
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term is a possible form of the interaction term. The mean value of the energy of the
statistically described system determined by Hamiltonian (1.31) is

⟨H⟩ =
∫
h(r,p) f(r,p) d3r d3p +

∫
w(r1, r2) f2(r1,p1, r2,p2) d

3r1 d
3p1 d

3r2 d
3p2 ,

(1.32)
where we denote

h(r,p) ≡ p2

2m
+ V (r) . (1.33)

In the following, we will use a particular example of the interaction term which
describes mutual gravitational interaction among particles:

w(ri, rj) = −1

2

Gm2

|ri − rj |
(1.34)

with G representing the gravitational constant and the factor of 1/2 is to respect the
symmetry of the gravity force.

1.4 Boltzmann equation

Similarly to the Liouville’s equation (1.23) which defines evolution of the N-particle
distribution function, DN, we may derive a partial differential equation for evolution of
the single-particle distribution function, f(r,p). The procedure lies in the integration
of (1.23) over the whole definition space of positions and momenta of all, but one
particles. More precisely, let’s define r ≡ r1 and p ≡ p1 and perform the integration
over all coordinates and momenta except for r and p:

∫
∂DN

∂t
dτN−1 =

∫ N∑

i=1

(
∂DN

∂pi
· ∂h
∂ri

− ∂DN

∂ri
· ∂h
∂pi

)
dτN−1+

∫ ∑

i,j

∂w(ri, rj)

∂ri
·∂DN

∂pi
dτN−1 .

(1.35)
Note that when inserting (1.31) into (1.22), the first term of (1.35) should contain double
sum and the second term even a triple sum. However, according to (1.22) a derivative of
the Hamiltonian is taken with respect to the generalised coordinates, which only keeps
certain terms corresponding to the considered ri or pi from the sum in (1.31), thereby
effectively removing one summation from both terms of (1.35).

Let’s first consider the left-hand side of equation (1.35). Provided the conditions of
the theorem of the derivative of integral with respect to the parameter are fulfilled (put
them down explicitly here?), we may write

∫
∂DN

∂t
dτN−1 =

∂

∂t

∫
DN dτN−1 =

∂f(r,p)

∂t
. (1.36)

Considering the second term in (1.35), we first split it into three parts (i = 1, i = 2 and
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i > 2):

∫ N∑

i=1

(
∂DN

∂pi
· ∂h
∂ri

− ∂DN

∂ri
· ∂h
∂pi

)
dτN−1 =

∫
∂DN

∂p
· ∂h
∂r

dτN−1 −
∫
∂DN

∂r
· ∂h
∂p

dτN−1 +

∫ (
∂DN

∂p2
· ∂h
∂r2

− ∂DN

∂r2
· ∂h
∂p2

)
dτN−1 +

∫ N∑

i=3

(
∂DN

∂pi
· ∂h
∂ri

− ∂DN

∂ri
· ∂h
∂pi

)
dτN−1 .

(1.37)

The specific and very important property of the first two terms on the right-hand side
of eq. (1.37) is that (i) h is function of just r and p and (ii) the partial derivation is
with respect to these quantities over which we do not integrate. Hence, we may put the
terms ∂h/∂r and ∂h/∂p out of the integrals and, under the assumptions of derivative
of integral with respect to a parameter, we may write:

∫
∂DN

∂p
· ∂h
∂r

dτN−1 −
∫
∂DN

∂r
· ∂h
∂p

dτN−1 =
∂h

∂r
· ∂f
∂p

− ∂h

∂p
· ∂f
∂r

. (1.38)

Finally, we will show that the second (and analogically any subsequent) term of the sum
is zero. Let’s reorganise the differentials in dτN−1 and evaluate a sub-integral

I1 ≡
∫ ∫ (

∂DN

∂p2
· ∂h
∂r2

− ∂DN

∂r2
· ∂h
∂p2

)
d3r2d

3p2 . (1.39)

Performing integration per partes with respect to variable p2 and r2 in the first and
second term, respectively, we will get

I1 =

∫ [
DN

∂h

∂r2

]

p2→∞
d3r2 −

∫ ∫
DN

∂h

∂r2 ∂p2
d3r2d

3p2 −
∫ [

DN
∂h

∂p2

]

r2→∞
d3p2 +

∫ ∫
DN

∂h

∂p2 ∂r2
d3r2d

3p2 (1.40)

the notation of individual terms in (1.40) has to be taken somewhat fuzzy. More pre-
cisely, one should perform the integration over components of vectors r2 and p2. In the
first and third term on the right-hand side of (1.40), the argument of squared brackets
is to be evaluated in appropriate infinity. Hence, these terms are both zero as DN goes
to zero at infinity which is a necessary condition for the normalisation (1.18) to be
fulfilled. The second and fourth term in (1.40) cancel out provided the function h(r,p)
is smoothly differentiable with respect to both arguments (which is a condition for a
possible exchange of the order of differentiation).

As mentioned above, each individual part of the sum in the third right-hand side
term of eq. (1.37) gives zero after the manipulation analogical to that presented above.
Equation (1.35) then reduces to

∂f

∂t
+
∂h

∂p
· ∂f
∂r

− ∂h

∂r
· ∂f
∂p

=

∫ ∑

i,j

∂w(ri, rj)

∂ri
· ∂DN

∂pi
dτN−1 . (1.41)
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The right-hand term of eq. (1.41) could be simplified by using a similar approach when
dealing with (1.37). It can be easily shown that only N−1 terms with i = 1 are non-zero
and they are all identical due to symmetries of DN. With an alternate notation r′ ≡ r2
and p′ ≡ p2 we write

∂f

∂t
+
∂h

∂p
· ∂f
∂r

− ∂h

∂r
· ∂f
∂p

= (N− 1)

∫
∂w(r, r′)

∂r
· ∂DN

∂p

d3r′d3p′d3r3d
3p3 . . . d

3rNd
3pN

(N− 1)!

=

∫
d3r′d3p′ ∂w(r, r

′)

∂r
·
∫
∂DN

∂p
dτN−2

=

∫
∂w(r, r′)

∂r
· ∂f2(r,p, r

′,p′)

∂p
d3r′d3p′ . (1.42)

In the last step we, again, assumed the possibility to exchange the order of integration
and differentiation with respect to p. The right-hand side of eq. (1.42) covers mu-
tual interaction of the particles and is usually called the collision term, being denoted
as (∂f/∂t)coll. Using the Hamilton canonical equations, we may write one of several
“standard” forms of Boltzmann equation:

∂f

∂t
+
∂h

∂p
· ∂f
∂r

− ∂h

∂r
· ∂f
∂p

=

(
∂f

∂t

)

coll

. (1.43)

Keep in mind that this is just a notation and the collision term still involves integral
of the two-body distribution function. This is a principial problem which makes it
impossible to solve the equation. There are several ways how to overcome this obstacle.

1.4.1 BBGKY hierarchy

Deriving partial differential equation for two-body distribution function, f2, in a similar
way, i.e. integrating the Liouville equation over 6(N − 2) variables may seem to be a
straightforward way how to make the system of equations closed. Unfortunately, the
problem would reappear – in the equation for f2 we would obtain an integral term
including three-body distribution function. The procedure may be repeated again and
again, leading to a closed set of N − 1 equations. This set is called the BBGKY
hierarchy (after scientists who independently studied this problem: Bogolyubov, Born,
Green, Kirkwood and Yvon) but in its completeness, it is no more suitable for solving
than the Liouville equation.

A general class of approximations with an intent to make a smaller set of equations
closed lies in assumption that the higher-order distribution function can be written as a
combination of lower-order distribution functions, e.g. f2(r,p, r

′,p′) = f(r,p) f(r′,p′).

1.4.2 Vlasov approximation

The simplest, above presented approximation is, actually, often used and is the basis of
the Vlasov equation. Let’s start without the approximation and rewrite f2 in a following
way:

f2(r,p, r
′,p′) = f(r,p) f(r′,p′) + g2(r,p, r

′,p′) . (1.44)
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The first term on the right-hand side of formula (1.44), a product of two single particle
distribution functions, represents probablility density of two uncorrelated events (find-
ing one particle at position r with momentum p and another one at position r′ and
momentum p′. Function g2 is then a correlation function which gives the probablity
density of finding one particle at position r and momentum p due to finding another
particle at position r′ and momentum p′ and vice versa.

The Vlasov approximation lies in an assumption that the correlation function, g2
may be neglected with respect to the uncorrelated probability density, i.e., f2(r,p, r

′,p′) =
f(r,p) f(r′,p′). Then, the collision term in the Boltzmann’s equation (1.43) reads,

(
∂f

∂t

)

coll

=

∫
∂w(r, r′)

∂r
· ∂f(r,p)

∂p
f(r′,p′) d3r′d3p′ =

=
∂f(r,p)

∂p
· ∂
∂r

∫
w(r, r′) f(r′,p′) d3r′d3p′ . (1.45)

Here, we put out of the integral the term that does not depend on the integration vari-
ables and, similarly to several cases above, we assumed that integration and derivation
with respect to the parameter r may be mutually exchanged in order. The integral in
(1.45) is, by definition, mean value of quantity w(r, r′). For the case of example (1.34),
this represents mean value of gravitational potential energy of the system of N particles
distributed according to the distribution function f(r′,p′) at (arbitrary) position r. Let
us denote

Φ(r) ≡ ⟨W ⟩(r) =
∫
w(r, r′) f(r′,p′) d3r′d3p′ = −

∫
Gm2

|r − r′|f(r
′,p′) d3r′d3p′ (1.46)

and, consequently, we may rewrite Boltzmann’s equation (1.43) in Vlasov approxima-
tion:

∂f

∂t
+
∂h

∂p
· ∂f
∂r

−∇ [V (r) + Φ(r)] · ∂f
∂p

= 0 , (1.47)

which will be called Vlasov’s equation hereafter.
For the case of the system described by Hamiltonian (1.31) with interaction term

(1.34), we have v ≡ ṙ = p/m which allows us to rewrite the Vlasov’s equation in the
form

∂f

∂t
+ v · ∂f

∂r
− 1

m∇ [V (r) + Φ(r)] · ∂f
∂v

= 0 . (1.48)

Above, we considered the distribution function f to be explicit function of r and p with
p being the canonical impulse and with normalisation

∫
f(r, p) d3r d3p = 1.

Quite often, the Vlasov’s equation is formulated for another distribution function,
f(r,v),

∂f(r,v)

∂t
+ v · ∂f(r,v)

∂r
+

F (r)

m
· ∂f(r,v)

∂v
= 0 (1.49)

with F (r) representing all external and mean internal forces and with normalisation∫
f(r, v) d3r d3v = 1. Note that, while being trivial for v = p/m, the transition

from eq. (1.48) to (1.49) needs to be carried out carefully when dealing with systems
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of charged particles in which case the linear relation between velocity and momentum
does not hold. This is (currently) beyond the scope of this text and we will assume, that
even more generalised version of Vlasov’s equation (1.49) holds, in which F = F (r,v)
may also cover the Lorentz force.

1.5 Fluid equations

Some variant of Boltzmann or Vlasov equation appears to be suitable for solving various
physical systems. Nevertheless, in other cases, it is either too difficult, or unnecessary
to consider all information held by the distribution function. Fluid equations, which
subsequently allow various heuristic modifications are quite commonly used. Usually,
they are derived from the Vlasov equation in the form (1.48).

The basic quantities which stand in the fluid equations are defined as various, linearly
independent moments of the single-particle distribution function:




ρ(r; t)
ρ(r; t)u(r; t)
ρ(r; t) E(r; t)


 ≡

∫ 


m
mv

1
2m |v − u|2


 f(r; t,v) d3v . (1.50)

The quantities ρ, u and E are mean values of density, velocity and specific (per unit
mass and unit volume) internal energy of the statistically described system. They are
functions of position and time, but we have dropped the dependency on velocity v. In
the following, we will (again) drop the implicit dependence on time.

The fluid equations are obtained by multiplying of Boltzmann or Vlasov equation by
m, v and 1

2mv
2 and subsequent integration over the velocity space. They are sometimes

called moments of the Boltzmann/Vlasov equation.

1.5.1 Continuity equation

The simplest to derive is the continuity equation which starts from
∫
m
∂f

∂t
d3v +

∫
mv · ∂f

∂r
d3v −

∫
∇ [V (r) + Φ(r)] · ∂f

∂v
d3v = 0 . (1.51)

Under certain assumptions on the form of f(r, v), we may exchange the order of inte-
gration and derivation with respect to t and r in the first and second term, respectively.
In the last term, we may put all but the ∂f/∂v term out of the integral:

∂

∂t

∫
mf d3v +

∂

∂r
·
∫
mvf d3v −∇ [V (r) + Φ(r)] ·

∫
∂f

∂v
d3v = 0 . (1.52)

First two integrals are by definion ρ and ρu, the third integral evaluates to f(r, v)
evaluated in infinity which is zero due to the normalisation condition (see Sec. 1.4
for discussion of properties of the distribution function implied by the normalisation
constraint). Hence, the zeroth moment of the Boltzmann/Vlasov equation reads:

∂ρ

∂t
+∇ · (ρu) = 0 . (1.53)
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1.5.2 Euler equation

First moment of the Vlasov equation is sometimes called Euler equation or fluid equation
of motion. It is a vector equation and for the sake of better clarity, we will write it in
an index notation, using the Einstein summation convention:

∫
mvi

∂f

∂t
d3v +

∫
mvi vj

∂f

∂rj
d3v −

∫
vi

∂

∂rj
[V (r) + Φ(r)]

∂f

∂vj
d3v = 0 . (1.54)

Let’s assume that derivation with respect to t and rj may be exchanged with integration
over the velocity space. We will get

∂ρ ui
∂t

+
∂

∂rj
(ρ⟨vi vj⟩)−

∂

∂rj
[V (r) + Φ(r)]

∫
vi
∂f

∂vj
d3v = 0 , (1.55)

where for arbitrary function X we denote ρ⟨X ⟩ ≡
∫
mX f d3v. It can be easily shown

(e.g. by means of integration by parts) that

∫
vi
∂f

∂vj
d3v = − ρ

m
δij (1.56)

and

⟨vi vj⟩ = ui uj + ⟨wiwj⟩ , 2 (1.57)

where wi ≡ vi − ui represents “random” deviations of particles’ motion from the mean
bulk velocity. The symmetric tensor ρ⟨wiwj⟩ can be split into its trace, P ≡ 1

3ρ⟨|w|2⟩,
and traceless tensor πij ≡ ρ⟨13 |w|2δij − wiwj⟩ taken with a negative sign. The newly
introduced quantities P and πij are called pressure and stress tensor, respectively. Using
them, we can rewrite Euler equation to the form

∂

∂t
(ρ ui) +

∂

∂rj
(ρ ui uj + Pδij − πij) = − ρ

m

∂

∂ri
[V (r) + Φ(r)] (1.58)

and with further small alterations, we obtain

ui
∂ρ

∂t
+ ui

∂

∂rj
(ρ uj) + ρ

∂ui
∂t

+ ρ uj
∂ui
∂rj

= − ρ

m

∂

∂ri
[V (r) + Φ(r)]− ∂P

∂ri
+
∂πij
∂rj

. (1.59)

The sum of the first two terms on the left-hand side of eq. (1.59) is zero as it is the
left-hand side of the continuity equation (1.53) multiplied by ui. Hence, the standard
form of the Euler equation reads:

∂ui
∂t

+ uj
∂ui
∂rj

= − 1

m

∂

∂ri
[V (r) + Φ(r)]− 1

ρ

∂P

∂ri
+

1

ρ

∂πij
∂rj

. (1.60)

2⟨vivj⟩ = m
ρ

∫
d3v fvivj = m

ρ

∫
d3v f(ui+wi)(uj +wj) =

m
ρ

∫
d3v [fuiuj + fuiwj + fujwi + wiwj ].

Considering that ui may be taken out of the integrals and
∫
wifd

3v =
∫
(vi − ui)fd

3v =
∫
vifd

3v −
ui

∫
fd3v = ρ

m
ui−ui

ρ
m

= 0 and using the definition of the mean value, we have ⟨vi vj⟩ = ui uj+⟨wi wj⟩.
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Let’s put down also a common vector notation of the Euler equation

∂u

∂t
+ (u ·∇)u = f − 1

ρ
∇P +

1

ρ
∇ · π , (1.61)

where we have replaced gradient of potential energy by the specific force density f . Let’s
put stress on meaning of the term (u · ∇)u, which can be inferred from comparison
of eqs. (1.60) and (1.61). The so called “convective derivative” is an imporant term in
expressing the full time derivative,

du

dt
=
∂u

∂t
+ (u ·∇)u, (1.62)

hence the convective derivative represents the change of the vector field due to the
motion of the particle, where the partial derivative represents the temporal evolution of
the field at the given position.

1.5.3 Energy equation

Energy balance equation will be obtained multiplying eq. (1.48) with 1
2m|v|2 and inte-

grating over the velocity space. We will be briefer than in the previous two cases as the
steps done are qualitatively the same. Full derivation may be found in Appendix A.1.
Hence, after some algebra, we will obtain

∂

∂t

[
1
2ρ(u

2 + ⟨w2⟩)
]
+

∂

∂ri

[
1
2ρ⟨(ui + wi)|u+w|2⟩

]
= − ρ

m
ui

∂

∂ri
(V +Φ) , (1.63)

where we denote u2 ≡ |u|2 for the sake of brevity. Introducing the (conductive) heat
flow, F ≡ 1

2ρ⟨ww2⟩ and keeping in mind that ρE ≡ 1
2ρ⟨w2⟩ ≡ 3

2P , we rewrite (1.63) to
the form

∂

∂t

(
1
2ρu

2 + ρE
)
+

∂

∂ri

[
1
2ρu

2 ui + uj(Pδij − πij) + ρE ui + Fi

]
= − ρ

m
ui

∂

∂ri
(V +Φ) ,

(1.64)
which can be further simplified by subtracting the scalar product of the Euler equa-
tion (1.58) and ui,

∂

∂t
(12ρ u

2) +
∂

∂ri
(12ρ u

2 ui) = − ρ

m
ui

∂

∂ri
(V +Φ)− ui

∂P

∂ri
+ ui

∂πij
∂rj

, (1.65)

yielding
∂

∂t
(ρ E) + ∂

∂ri
(ρ E ui) = −P ∂ui

∂ri
− ∂Fi

∂ri
+Ψ , (1.66)

where Ψ ≡ πij ∂ui/∂rj is a local dissipation measure. Equation (1.66) can be rewritten
with help of the continuity equation into vector form

ρ
dE
dt

= −P ∇ · u−∇ · F +Ψ . (1.67)

Sometimes, there are extra terms added rather heuristically to the right-hand side of the
energy balance equation, e.g. divergence of radiative heat transfer, in order to match
the considered physical system. Note, however, that the rigorous addition of such terms
from the first principles is usually not trivial.
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1.5.4 Closing the equations set

We have obtained a set of five linearly independent momentum equations,

∂ρ

∂t
+∇ · (ρu) = 0 , (1.68)

∂u

∂t
+ (u ·∇)u = f − 1

ρ
∇P +

1

ρ
∇ · π , (1.69)

ρ
dE
dt

= −P ∇ · u−∇ · F +Ψ (1.70)

for 14 independent variables, ρ, u (3 components), P , π (5 independent components),
F (3 components) and Φ (which is hidden in f). Internal energy E is not independent,
as it is proportional to pressure p, similarly the local dissipation measure Ψ is defined
using the stress tensor π and u. Such a description of a physical problem is clearly not
solvable. Hence, various approximations are used to overcome this problem.

A large simplification, just sufficient to close the problem from the mathematical
point of view, is achieved for isotropic systems with f(r, v) = f(r, |v|), which implies
that πij = 0 and Fi = 0 (see Appendix A.2).

Quite often, a so-called Navière-Stokes approximation is used, assuming the stress
tensor to be proportional to the tensor of deformation,

πij = µDij = µ

[
∂ui
∂rj

+
∂uj
∂ri

− 3

2

∂uk
∂rk

δij

]
, (1.71)

which reduces the number of independent variables by 5. The constant of proportion-
ality, µ, is called dynamical viscosity.

Another step towards a closed set of equations may lie in heuristic introduction of
temperature, T , equation of ideal gas, P = ρ/mKBT and an assumption

F = −κ∇T . (1.72)

With κ being a constant determining the heat conduction.3

Finally, if an internal potential Φ is not neglected, some variant of Poisson equation,
e.g.

△Φ = 4πGρ , (1.73)

completes the set. Note that a similar Poisson equation holds for the external potential

△V = 4πGρext , (1.74)

where ρext indicates the external density generating the external potential.

3Quite often the conductive heat flow, F , is, actually, assumed to be zero or negligible but, on the
other hand, radiative heat flow is considered. In such a case, equation of radiative transfer, formally
similar to (1.72) is introduced with κ being an opacity.
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1.6 Thermodynamical equilibria

So far, we attempted to downscale the problem of evolution of the statistically described
system to a space (much) less-dimensional than the phase space. There is, however, a
good reason to describe the system in its full complexity in a specific case – when it is in a
thermodynamic equilibrium. We postulate that the distribution function corresponding
to the equilibrium state is the one for which the statistical entropy,

S(D) ≡ −KBTr (D lnD) , (1.75)

reaches a maximum value. (Where to add a section on the statistical entropy? Here, or
to Sec. 1.2?) For example, let’s consider a system with a finite number, N , of possible
states. The distribution function (probability in this case) for each state i is then
D(i) = 1/N . Nevertheless, the definition of the equilibrium system is more general
and can be applied also to statistical systems with some additional information. In
particular, we usually consider a given mean value, ⟨A⟩ ≡ Tr(AD), of some physical
quantity which can be assigned to the state of the system (i.e. measured in the real
world) to play the role of the constraint on the distribution function.

Let’s have a set of n physical quantities Ai, mean values of which are given. We are
looking for the form of the distribution function which maximises value of S(D) and
fulfills n+1 constraints ⟨Ai⟩ = Tr(AiD) and TrD = 1. A possible way to solve this task
is via variation:

ð

{
1

KB
S(D)−

n∑

i=0

λi [Tr(AiD)− ⟨Ai⟩]
}

= 0 , (1.76)

where λi are Lagrange multipliers and A0 ≡ 1. Using the explicit form of A0 and S(D)
equation (1.76) leads to

−Tr [(lnD + 1)ðD]− λ0Tr(ðD)−
n∑

i=1

λiTr(AiðD) = 0 , (1.77)

which may be further rewritten as

−Tr [ln(D)ðD]− λ′0Tr(ðD)−
n∑

i=1

λiTr(AiðD) = 0 , (1.78)

where λ′0 ≡ λ0 + 1. Finally, dropping prime from λ′0, we obtain:

Tr

[(
− lnD −

n∑

i=0

λiAi

)
ðD

]
= 0 . (1.79)

It can be shown (do it!) that, in order to fulfill relation (1.79) for arbitrary variation
ðD, the term in round brackets has to be zero, i.e.

D = exp

[
−

n∑

i=0

λiAi

]
. (1.80)
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Hence, we have an explicit form of the distribution function (functions/operators Ai

are given) with n + 1 parameters λi which are related to given values of ⟨Ai⟩. Let us
express λ0 for convenience. First, rewrite (1.80) to

D = e−λ0 exp

[
−

n∑

i=1

λiAi

]
. (1.81)

Then, consider that ⟨A0⟩ = TrD = 1 and apply the operator Tr to equation (1.81)
which gives

e−λ0Tr

{
exp

[
−

n∑

i=1

λiAi

]}
= 1 . (1.82)

Instead of λ0 itself, let us introduce so-called partition function (also known as partition
sum):

Z ≡ eλ0 = Tr

{
exp

[
−

n∑

i=1

λiAi

]}
. (1.83)

The equilibrium distribution function 1.80 can be then rewritten as

D =
1

Z
exp

[
−

n∑

i=1

λiAi

]
. (1.84)

Partition function Z keeps a lot of information about the system. It can be easily shown
that, e.g.

∂ lnZ

∂λi
= −⟨Ai⟩ and

∂2 lnZ

∂λi∂λj
= ⟨AiAj⟩ − ⟨Ai⟩⟨Aj⟩ . (1.85)

Similarly, we may write relation for entropy S and the Lagrange multipliers:

∂S

∂⟨Ai⟩
= KBλi . (1.86)

(Can the equilibrium state (of isolated system) be reached starting from non-equilibrium
one?)

1.6.1 Statistical ensembles

The statistical systems appear often static from a human perspective (despite micro-
scopic motions, which are not directly observable) and this allows us to describe these
systems by a set of macroscopic variables. Such systems may be described by statisti-
cal ensembles, which are assumed to be in a statistical equilibrium, and given various
macroscopic constraints, these ensembles depend on a few observable parameters. Three
important thermodynamic ensembles were defined for a fixed volume Ω.

Microcanonical ensemble is a statistical ensemble, where the total energy of the
system and the number of particles in the system are known (they each have
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particular fixed values). The system is totally isolated, no exchange of the energy
or particles with the environment is allowed. Each member of the ensemble has
the same total energy and the same total number of particles. Following (1.84)
the distribution function holds the shape of

DN =
1

ZM
. (1.87)

Canonical ensemble is a statistical ensemble, where the energy is not known exactly,
but the number of particles is fixed. The canonical ensemble is suitable for the
description of a system, which has heat exchange with a surrounding environment,
however, there is not particle exchange with the surroundings. Each member of
the ensemble has the same number of particles, their energies are not defined, how-
ever, there is a constraint on mean energy (usually expressed by a temperature),
which is given by the temperature of the surrounding bath. Following (1.84) the
distribution function holds the shape of

DN =
1

ZC
exp [−βH] , (1.88)

where β ≡ λH is the Lagrange multiplier for the Hamiltonian, which can be
expressed by using the temperature T as β = 1/KBT , and ZC is the partition
function for the canonical ensemble. Note that the distribution function bears the
index N because the number of particles is known.

Grand-canonical ensemble is a statistical ensemble, where neither the energy nor
the particle number is fixed. Similarly to the previous case, instead of the total
energy the temperature is defined, and in place of the total number of particles,
the chemical potential is defined. The grand-canonical ensemble is appropriate for
the description of open systems, which has a thermal contact with the surround-
ings and exchanges particles with a reservoir. For members of the grand-canonical
ensemble the temperature and the chemical potential of the reservoir places con-
straints to the mean energy of each member and mean number of particles. Fol-
lowing (1.84) the distribution function takes form

D =
1

ZG
exp [−βH + αN ] , (1.89)

where α ≡ −λN ≡ βµ represents the Lagrange multiplier for number of particles
and may be expressed also by using the chemical potential µ.

In the following, we will use the properties of both the canonical and grand-canonical
ensembles in order to derive the equilibrium particle distribution function.

1.6.2 Maxwell-Boltzmann distribution

We will derive the particle distribution function for an open system of particles. We
will use the calculation for a grandcanonical ensemble. We remind for clarity that the
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usage of such a statistical ensemble means that we do not know the exact total energy of
the particles in the volume nor the total number of particles. However, the constraints
are given to mean values of energy and mean number of particles, these quantities are
further denoted by a temperature T and a chemical potential µ. Elaborating Eq. (1.84)
for this case the distribution function is given by

D =
1

ZG
exp [−βH + αN ] , (1.90)

where ZG is a partition function of the grandcanonical ensemble and the two operators
connected with the two known constraints are H, Hamiltonian as an operator of energy
and N is a formal operator of number of particles. These two operators use Lagrange
multipliers β, which represents the temperature, and α representing the chemical po-
tential. Note that the argument of the exponential is a hybrid function, because the
hamiltonian H is continuous, whereas the operator of number of particles N is discrete.

The grandcanonical partition function may be written using its canonical counter-
part ZC

ZG =
∞∑

N=0

eαNZC(β,N), (1.91)

which basically says that the partition function (also termed as sum over states) simply
is a sum of partition functions of the canonical ensembles with a fixed number of particles
N with a given temperature hidden in β.

For a hamiltonian HN of N noninteracting particles (point masses) in the external
potential V (r) given by

HN =
∑

i

H1(ri,pi), (1.92)

where

H1(r,p) = p2/(2m) + V (r) (1.93)

is a hamiltionian of one particle in the external potential, we may write the canonical
partition function as

ZC =

+∞∫

−∞

exp (−βHN ) dτN , (1.94)

where for dτN we use a slightly modified definition

dτN ≡ d3r1d
3p1 . . . d

3rNd3pN

ℏ3NN !
. (1.95)

The advantage of utilising the factor ℏ3N in the denominator is that dτN is then
dimension-less, as is a corresponding distribution function D.
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Turning the sum over N particles into a multiplication (it is possible because the
functions H1 are the same) we obtain

ZC(β,N) =

∫
exp [−βHN ] dτN =

+∞∫

−∞

N∏

i=1

(
e−βp2i /(2m)e−βV (ri)d3rid

3pi

) 1

ℏ3NN !
=

=
1

ℏ3NN !




+∞∫

−∞

e−βp2/(2m)e−βV (r)d3rd3p



N

. (1.96)

Thanks to the unification of the description of the energy we may perform inte-
grations both over the positions and momenta. The integration over the momenta is
simpler, as it is in fact an Gauss integral

∫ +∞
−∞ exp (−x2)dx =

√
π. The integration in

the spatial domain requires a bit of the justification.

In order to be able to perform the integration in the spatial domain, we must de-
fine the external potential V . To keep things simple, we would require an integrable
potential, which is zero outside the region of interest (outside our volume Ω, where we
study the problem), and which has some value inside Ω. It is easy to show that the
potential well will have exactly those properties. Then the integration of r leads to a
scaled volume of our region of interest.

ΩΞ ≡
+∞∫

−∞

e−βV (r)d3r. (1.97)

Hence, we have

ZC(β,N) =
1

ℏ3NN !
(2πmKBT )

3N/2ΩNΞN ≡ ZN
1

N !
, (1.98)

where

Z1 ≡
(2πmKBT )

3/2

ℏ3N
ΩΞ. (1.99)

By choosing the potential V in a form of an infinite potential well (i.e. V (r) = 0 for
r ∈ Ω and V (r) = +∞ for r /∈ Ω), we set Ξ = 1 and the integration of the spatial part
in (1.96) exactly leads to the volume of the region of interest. Beware of a conflicting
notation, when Ω means both the regions of interest and the volume of this region.
Further note that we defined a particle partition function Z1(β) ≡ ZC(β,N = 1).

In the following, we will apply the above discussed approximation of the infinite
potential well. By combining (1.91) and (1.98) we have

ZG =
∞∑

N=0

1

N !
(eαZ1)

N = exp [eαZ1] , (1.100)

where we used the Taylor expansion of the exponential function.



1.6. THERMODYNAMICAL EQUILIBRIA 32

Now we search for a probability of finding a particle in spatial point r with a mo-
mentum of p. The procedure is somewhat complicated because we don’t know the exact
number of particles in our open system. The sought probability f is4, however, given
by

f(r,p) ≡
∞∑

N=0

[
P(N)

N∑

i=1

PN (i, r,p)

]
, (1.101)

where P(N) evaluates the probability that there is exactly N particles in the ensemble
and PN (i, r,p) indicates the probability that i-th particle (from fixed number of N
particles) can be found around coordinates (r,p) in the phase space. P(N) may be
intuitively written as a trace of the full-system distribution function D5 from (1.90):

D ∼




1
ZG

1
ZG
eα exp(−βH1)

1
ZG
e2α exp(−β[H1(r1,p1) +H1(r2,p2)])

. . .


 (1.102)

with diagonal terms DN,N defined by

DN,N =
1

ZG
eαN exp

[
−β

N∑

i=1

H1(ri,pi)

]
. (1.103)

Hence (using eq. ??)

P(N) =

+∞∫

−∞

DN,NdτN =
eαNZC(β,N)

ZG(α, β)
. (1.104)

Further, PN is simply defined for 1-particle probability (probability of finding par-
ticle carrying flag 1 on phase coordinates (r,p)) by

PN (1, r,p) =

+∞∫

−∞

DN
d3r2d

3p2 . . . d
3rNd3pN

ℏ3NN !
=

1

Nℏ3

+∞∫

−∞

DNdτN−1 (1.105)

where DN = e−βHN /ZC(β,N) is the distribution function for the canonical ensemble.

4Let us take a short excursion to the past chapters. The notation f(r,p) was already used when we
discussed the reduced distribution functions of N particles – see eq. (1.24). The question is, what is the
relation of (1.24) to (1.101). We need to keep in mind that in the past chapters our ensemble consisted
of a fixed number of particles. Therefore strictly speaking, for the previous case P(N) = 1 and the first
sum disappears. Then the two fs have the same meaning.

5Note that D does not have a simple dimension. It belongs to within the Fock space, which is formed
as a direct sum of tensor products of Hilbert spaces with varying dimensions. A proper treatment is
beyond the scope of this text, the interested reader is pointed to elsewhere.
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We further use (1.98) to have

PN (1, r,p) =
1

Nℏ3

+∞∫

−∞

e−βHNdτN−1
1
N !Z

N
1 (β)

=
1

Nℏ3

+∞∫

−∞

N(N − 1)!e−βHNdτN−1

ZN
1 (β)

=

=
(N − 1)!

ℏ3
e−βH1(r,p) 1

ZN
1

∫
e−βHN−1dτN−1 =

1

ℏ3
e−βH1(r,p)

Z1(β)
. (1.106)

Note that the factor of exp (−βH1(r,p)) could be taken out of the integral, because we
do not integrate over r and p coordinates. Furthermore, in the last step we used

∫
e−βHN−1dτN−1 =

1

(N − 1)!
Z

(N−1)
1 , (1.107)

which follows from (1.94) and (1.98). The 1-particle hamiltonian H1 is defined by (1.93).
Then (1.101) takes a form of

f(r,p) =

∞∑

N=0

eαNZC(β,N)

ZG(β, α)
N

1

ℏ3
e−βH1

Z1
, (1.108)

where the second sum over i in (1.101) was turned into multiplication by N , as we
have N undistinguishable particles. We further elaborate (1.108) by using (1.98) and
by moving terms not depending on N to the front of the sum to obtain:

f(r,p) =
1

ℏ3ZG

∞∑

N=0

eαNZN
1

N !
N
e−βH1

Z1
=
eαe−βH1

ℏ3

∞∑
N=1

eα(N−1)ZN−1
1

(N−1)!

exp [eαZ1]
, (1.109)

where used (1.100) and realised that the summation index N must start from 1 instead
of the original 0, because the expression (N − 1)! is not defined for N = 06. Now we
realise that the sum in the numerator is the Taylor expansion of the denominator and
hence finally

f(r,p) =
eα−βH1(r,p)

ℏ3
. (1.110)

Now we use the fact that the mean values of physical quantities may be expressed
from the partition function (1.85):

⟨N⟩ = ∂ lnZG

∂α
=

∂

∂α
eαZ1 = eαZ1 (1.111)

and our previous finding that
∫ +∞
−∞ exp[−βV (r)] = Ω to finally have

f ′(p) =

+∞∫

−∞

f(r,p)d3r =

+∞∫

−∞

d3r
1

ℏ3
eα exp

{
−β
[
p2/(2m) + V (r)

]}
=

=
Ω

ℏ3
exp

[
α− β

p2

2m

]
= ⟨N⟩g(p). (1.112)

6Or alternatively we may say that for N = 0 the fraction N/N ! = 0 and therefore the first term in
the sum vanished.
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Note that the expression ⟨N⟩/Ω ≡ n has the meaning of the particle density n.

Function g(p) is what is our final solution to the problem and is usually termed
the Maxwell-Boltzmann distribution function. Explicitly written by using (1.111) and
(1.98) we have

g(p) =
Ω

ℏ3
e−

βp2

2m
1

Z1
=

e−βp2/2m

(2πKBmT )3/2
=

e
− p2

2KBTm

(2πKBmT )3/2
. (1.113)

1.6.3 Chemical equilibrium, Saha’s equation

Let’s consider a system of three different kinds of particles – free electrons and protons
and neutral hydrogen atoms. They play a role in a chemical equation e+p ⇄ H, where
the double arrow indicates that the system is in the equilibrium, therefore the speed of
the reactions to the left is the same as the speed of the reverse reaction. Let’s define
the system by a simple hamiltonian

H =
Ne∑

i=1

He
1(ri pi) +

Np∑

i=1

Hp
1 (ri pi) +

NH∑

i=1

HH
1 (ri pi) (1.114)

with

Ha
1 (r, p) =

p2

2ma
+ V (r) + ha1 , a = {e, p, H} . (1.115)

Hamiltonians ha1 correspond to internal degrees of freedom and we will assume them to
have a discrete spectrum. Partition function of this grand-canonical ensemble can be
written in the form

ZG(β, µ
e, µp, µH) =

∏

a

{Tr [exp(βµaNa)] Tr [exp(−βHa)]} . (1.116)

The partition function of a canonical ensemble of Na particles of the species a reads:

Za
C(β, N

a) =
1

Na!

(∫
exp

[
−β
(
p2

2ma
+ V (r)

)]
d3r d3p

ℏ3

)Na (
Tr
{
exp (−βha1)

})Na

=
1

Na!

[
1

ℏ3
(2πmaKBT )

3/2Ω ζa(T )

]Na

=
1

Na!
[Za

1 (T ) ζ
a(T )]N

a

, (1.117)

(Dat stabni kulturu vnorenym zavorkam) here again we used an integration over the
spatial domain which defines the fixed volume of the configuration space accessible to
the particles (here we assume V (r) to represent an infinitely deep potential well),

Ω ≡
∫

exp [−β V (r)]d3r , (1.118)

Furthermore,

ζa(T ) ≡ Tr
{
exp (−βha1)

}
=
∑

dai exp [−βEa
i ] , (1.119)
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where dai is degeneracy of the energy level Ea
i . Finally, let us assume for simplicity that

each type of particles has only one internal energy level,

ζe = de exp [−βEe
0 ]

ζp = dp exp [−βEp
0 ] (1.120)

ζH = d0 exp [−β(Ee
0 + Ep

0 − Ui)] ,

where de = dp = 2 due to spin degeneracy of free electrons and protons and d0 denotes
the degeneracy of the ground state of the hydrogen atom with (positive) ionisation
energy Ui. Inserting (1.117) into (1.116) and replacing trace in the space of Na by sum,
we obtain

ZG(β, µ
e, µp, µH) =

∏

a

∑

Na

1

Na!

[
eβµ

a
Za
1 ζ

a(T )
]Na

=
∏

a

exp
[
eβµ

a
Za
1 ζ

a(T )
]
. (1.121)

This allows us to evaluate the mean number of particles of species a,

⟨Na⟩ = 1

β

∂ lnZG

∂µa
=

(2πmaKBT )
3/2

ℏ3
Ω ζa(T ) exp

(
µa

KBT

)
. (1.122)

Chemical equilibrium means that the rate of the reaction e+p ⇄ H is equal in both
directions, which can in the thermodynamical limit be expressed in terms of chemical
potentials,

µe + µp = µH . (1.123)

Equality (1.123) can be rewritten in more complicated way:

∏

a

[
exp

(
µa

KBT

)]νa
= 1 , with νe = νp = 1, νH = −1 . (1.124)

Inserting (1.122) into (1.124) and denoting na ≡ ⟨Na⟩/Ω, we obtain:

∏

a

[
na

ℏ3

(2πmaKBT )
3/2

1

ζa(T )

]νa
= 1 (1.125)

which may be finally rewritten with use of (1.121), mH ≈ mp and ne ≈ np to the
so-called Saha’s equation for equilibrium of ionised and neutral atoms,

ne
nH

=
4

d0

1

ne

(2πmeKBT )
3/2

ℏ3
exp

(
− Ui

KBT

)
. (1.126)
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Chapter 2

Plasma

Plasma is being defined as a quasi-neutral gas of mixture of charged and neutral particles
showing a collective behaviour. It is characterised by its density n, temperature T
(which is usually bound to the width of the velocity distribution, the Maxwell velocity
distribution (1.113) for the equilibrium states), and the ionisation degree (usually well
described by the Saha equation (1.126)). The collective behaviour indicates that the
electromagnetic interaction is long-range one, hence the behaviour of each particle of the
ensemble influence the behaviour of all other particles1. The quasineutrality indicates
that on the large scales, the possible charge concentrations are efficiently shielded and
thus not observable from the outside. The shielding length scale is termed a Debye
length λD.

In the system of charged particles, each particle induces an electric potential, which
interacts with the electric potential of the surrounding particles. The particles are free
to move. Assuming that the system is in the thermodynamical equilibrium or close
to it, any disbalance of the charge is almost immediately shielded in order to preserve
the whole system electrically quasi neutral. An illustrative conception of the shielding
process may be descibed in the following model (see Fig. 2.1). In the system of charged

1The Coulomb electric interaction decreases as 1/r2, where r is the distance, whereas for the given
solid angle (where ∆r/r = const) the volume of the plasma increases as r3. Hence altogether the electric
force does not vanish to large distances within the plasma.

λD

Figure 2.1: The concept of Debye shielding.
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particles, suddenly a concentration of one charge appears. There are random mecha-
nisms that can drive such clumping. The particles of the opposite charge then cluster
around this clump to remove the charge disbalance. We need to mention explicitly
that the cluster of the opposite charge is not stationary. Thermal motions of particles
are very large, so particles propagate through shielding region almost freely, only the
electric potential of the initial charge concentration slows them down. The propagating
particles spend longer time in the shielding region creating an apparent opposite charge
clump. In the system, there exists a characteristic length scale, on which the charge
concentration is shielded.

In order to derive this length scale, we will start with the Poisson equation, which
binds the electric intensity E and the charge density ρe:

∇ ·E(r) =
ρe(r)

ε0
, (2.1)

where ε0 is a permitivity of the vacuum. The electric-field intensity may be expressed
by using the potential of the electric field ϕ as

E(r) = −∇ϕ(r), (2.2)

hence the Poisson equation gains the form

△ϕ(r) = −ρe(r)
ε0

. (2.3)

Next we search for the ϕ which solves the Poisson equation. Assuming that the
plasma is near equilibrium, we may obtain the expression for ρe from the Maxwell-
Boltzmann distribution function. For particles of type α in the equilibrium when the
motion of particles is influenced by an external potential qαϕ, the velocity distribution
function gains form

fα(r,v) = Aα exp

[
−

1
2mαv

2 + qαϕ(r)

KBTα

]
, (2.4)

where Aα is a normalisation constant. The integration of (2.4) over the velocity space
yields the particle density nα. In this case, the density may be a function of the electric
potential ϕ. We remind the reader that in principle, ϕ may be a function of position:

nα(ϕ) =

∞∫

0

fα(v)d
3v = exp

[
−qαϕ(r)
KBTα

] ∞∫

0

Aα exp

[
−

1
2mαv

2

KBTα

]
d3v. (2.5)

If there was not electric potential, i.e., when ϕ = 0, then the integral in the above
equation would directly yield the particle density. In the case ϕ ̸= 0 it can be interpreted
as a background or unperturbed density. The functional form for the particle density
then yields

nα(ϕ) = nα,0 exp

[
−qαϕ(r)
KBTα

]
. (2.6)
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Using the particle density we may now express the charge density as a sum of the
respective particle densities multiplied by the particle charges:

ρe(ϕ) =
∑

α

qαnα(ϕ(r)). (2.7)

Consequently, (2.3) may be written as

△ϕ(r) = − 1

ε0

∑

α

qαnα,0 exp

[
−qαϕ(r)
KBTα

]
. (2.8)

We will further assume that the electric potential will only perturb the background
density, hence we may expand the exponential in a Taylor expansion:

△ϕ(r) = − 1

ε0

[∑

α

qαnα,0 −
∑

α

q2αnα,0ϕ(r)

KBTα
+ . . .

]
. (2.9)

The constant term in the Taylor expansion must vanish, otherwise the quasineutrality
of the plasma cannot be kept. Finally we arrive at the suitable form of the Poisson
equation

△ϕ(r) =
[∑

α

q2αnα,0
ε0KBTα

]
ϕ(r). (2.10)

In the following, let us assume that we will pick a particular testing particle having
the charge Q. We will further assume the spherical geometry of the electric potential
around this selected particle. In that case only the radial part of the Poisson equation
is relevant:

1

r

d2

dr2
[rϕ(r)] = aϕ(r), (2.11)

where we defined

a =
∑

α

q2αnα,0
ε0KBTα

(2.12)

for simplicity. Then by substituting ψ(r) ≡ rϕ(r) equation (2.11) yields

d2

dr2
ψ(r) = aψ(r), (2.13)

which has a solution in a form

ψ(r) = c1e
√
ar + c2e

−
√
ar. (2.14)

The constant c1 must equal identically to zero, otherwise the solution diverges for large
r, which is unphysical. The solution for the electric potencial then has a form

ϕ(r) =
c2
r
e−

√
ar. (2.15)
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Figure 2.2: The modelled profile of the at-
tenuation of the electric potential around
the charge concentration.

φ

φ0

0 r

The form of c2 may be expressed in a limit of r → 0, when the potential should converge
to the coulombic solution of an isolated charge. Obviously

c2
r

→ Q

4πε0r
. (2.16)

A final solution then takes a form of

ϕ(r) =
Q

4πε0r
exp

[
− r

λD

]
, (2.17)

where

λD ≡
[∑

α

q2αnα,0
ε0KBTα

]−1/2

(2.18)

is a definition of the Debye shielding length. This gives a characteristic scale on which
the charge of the selected testing particle is damped in plasmas.

By going back to our simplistic model with a positive charge, when assuming that
only the electrons will be responsible for the shielding one gets a simplified definition of
the Debye length scale

λD ≡
√
ε0KBTe
n0e2

, (2.19)

which is usually used in applications. Thus in such a system with an artificially inserted
ion charge the electrons will concentrate so that the inserted charge is exponentially
attenuated (see Fig. 2.2).

Note that Debye length increases with temperature, when the thermal motions of
electrons are larger and the shielding is thus less effective (the electrons are running out
of the shielding region) and decreases with increasing density (the more electrons, the
more is the shielding effective).

A few additional notes.

• In physics, the temperature is a measure of the width of the particle velocity
distribution and usually is being expressed in Kelvins. In plasma physics, a quite
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often used unit expressed by the kinetic energy (in electronvolts eV) of the particle
having the given temperature. From

Ek =
1

2
mv̄2 = KBT (2.20)

where v̄ is the root-mean-square velocity, we find a useful working relation that
1eV corresponds to 11 600K.

• Plasma may have many temperatures at once. Electrons and ions may have dif-
ferent velocity distributions and thus different temperatures. This is due to the
fact that the frequencies of ion-ion and electron-electron collisions are much higher
than the frequency of ion-electron collisions. The velocity distribution of a single
particle species does not have to be isotropic, e.g., when a magnetic field is present.
Then the temperature of the plasma is usually higher along the field than across
the field.

• Plasma densities vary over many orders in the universe. The density of 106 m−3 is
the typical plasma density in the interplanetary space around the Earth, it might
be many orders less in the interstellar or intergalactic space. It is around 108 m−3

in the giant molecular clouds, from which the stars are born. The plasma density
in the solar photosphere is in the order of 1022 m−3, and in the solar core 1031 m−3.
In the laboratory plasmas, the densities between 1020–1028 m−3 are considered for
the experiments with the thermonuclear fusion.

• Various approaches can be practically used to describe plasmas and their dynam-
ics. The most detailed is the kinetic description using the Boltzmann equation.
The dynamics of plasmas is also being described using the fluid and magnetohydro-
dynamic approaches. The motion of individual or testing particles is investigated
using the drift description. Using some of these approaches, we may state the
conditions for the plasma equilibrium, to study instabilities and conditions for the
propagation, excitation and damping of waves and other oscillatory motions. We
will study all these aspects in the following chapters.

• The ionisation degree may be estimated using the Saha equation (1.126). It
strongly depends on the temperature. For example, for the air at the room tem-
perature (assumed that the air is composed from nitrogen only), one gets the
estimate (assuming n0 ∼ 3 × 1025 m−3, T ∼ 300 K, and Ui ∼ 14.5 eV)) of the
ionisation degree to be ni/n0 ∼ 10−122. The air in the room certainly is not a
plasma.

• The ionosphere holds the name resembling that it contains ions. Assessing the situ-
ation of hydrogen: the temperature in the ionosphere is about KBTe ∼ 0.1 eV, the
ionisation potential is UH = 13.6 eV, the particle density is about n ∼ 1012 m−3.
Using the Saha equation one gets the expected ion density of n2i ∼ 10−52 m−3.
The ionisation degree is tiny. However, the ionosphere is not composed of hy-
drogen. There are various chemical reactions with a smaller ionisation potential,
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which indeed fill the ionosphere with ions and electrons. E.g.,

O+
2 + e− → O+O+ 6.6eV (2.21)

or
O+

2 +N2 → NO+ +NO+ 0.87eV. (2.22)

Then the matter in the ionosphere may be considered to be a plasma.

• In practice, there are three criteria, which help to decide whether the studied
system may be considered plasma:

1. The system is much larger than the Debye length, hence the quasineutrality
holds. L≫ λD, where L is the characteristic size of the system.

2. Shielding is effective. The number of particles in the Debye sphere is much
larger than one, ND ≫ 1. In case it is not, the studied system is probably a
bound system.

3. The particle interactions are dominated by electromagnetic forces and not
by collisions. ωτ > 1, where ω is a characteristic oscillation frequency of
plasma and τ is a characterictic time between particle collisions. For example
an exhaust of the jet engine can’t be considered plasma despite the huge
temperature and high ionisation, because the particle interactions are purely
collisional and electromagnetic forces play negligible role.



Chapter 3

Charged particle motion in
electromagnetic fields

In plasma, we sometimes have to consider motions of each single particle to capture
some of the effects. The densities of plasmas are not large enough to be allowed to
completely ignore the motions of individual particles. The plasmas usually are not
dominated by collisions. Hence motions of individual particles play an important role.
In this approach we study the motion of test particle in the prescribed electric and
magnetic fields. In general, the trajectory of such motion may be unambiguously found
by solving the equation of motion

m
dv(r, t)

dt
= q [E(r, t) + v(r, t)×B(r, t)] , (3.1)

In the following sections we will discuss some examples by giving particular analytical
forms to background fields E(r, t) and B(r, t). We will derive the relations for some
drifts, thus systematic motion of charged particles which are not captured when we use
other approaches to study plasmas. It is important to study drifts of particles because
these drifts often drive instabilities, which is critical e.g. for laboratory plasma in plasma
confinement and thermonuclear fusion.

3.1 Homogeneous magnetic field

Let us define the system with constant homogeneous magnetic field and no electric
field, where we define Cartesian coordinate system so that the z axis is parallel to the
direction of magnetic induction. Then we have the vector equation of motion in a form
of

m
d

dt




vx
vy
vz


 = q






vx
vy
vz


×




0
0
B




 , (3.2)
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Figure 3.1: Motion of an electron in homogeneous magnetic field. The 3-D view of the motion,
trajectories in the coordinate–time and coordinate–coordinate spaces.

where m is the mass of the particle charged with electrical charge q. This equation
becomes a system of scalar differential equations:

m
dvx
dt

= qBvy, (3.3)

m
dvy
dt

= −qBvx, (3.4)

m
dvz
dt

= 0. (3.5)

We immediately see that the parallel component of velocity has a trivial solution, which
is the constant motion along the magnetic field. By differentiating the perpendicular
components with respect to time we have

d2vx
dt2

=
q

m
B
dvy
dt

and
d2vy
dt2

= − q

m
B
dvx
dt

. (3.6)

Their combination then gives

d2vx
dt2

= −
( q
m
B
)2
vx and

d2vy
dt2

= −
( q
m
B
)2
vy, (3.7)

which has trivial solution in the form of harmonic functions. We define

ωc ≡
qB sgn q

m
=

|q|B
m

(3.8)
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to be a cyclotron frequency. Let’s take the solution of the second order ordinary differ-
ential equations as

vx,y = v⊥ exp (iωct+ iδx,y) , (3.9)

where v⊥ is the amplitude of the velocity and it is obviously1 identical for both per-
pendicular components and is usually initially driven by thermal motion. Both perpen-
dicular components are allowed to have different phase shifts δx,y. The trajectory in
the phase space obviously is a circle. Let’s set the spacetime coordinate system so that
δx = 0. Then

vx = v⊥ exp iωct, (3.10)

and we consider only the real part to have a physical meaning. Then

vy =
m

qB

dvx
dt

=
m

qB
v⊥iωc exp iωct =

m

qB
v⊥i

qB sgn q

m
exp iωct = v⊥i sgn q exp iωct.

(3.11)
We see that the sense of rotation in the phase space depends on the charge of the
particle, thus being opposite for electrons and ions.

To obtain the trajectory, one needs to integrate (3.10) and (3.11):

dx

dt
= ℜ[vx] = ℜ[v⊥ exp iωct] → x− x0 = ℜ

[
−i
v⊥
ωc

exp iωct

]
=
v⊥
ωc

sinωct (3.12)

and

dy

dt
= ℜ[vy] = ℜ[v⊥i exp iωct] → y − y0 = ℜ

[
v⊥
ωc

sgn q exp iωct

]
=
v⊥
ωc

sgn q cosωct

(3.13)
Of course, we should not forget about the parallel component

dz

dt
= ℜ[vz] = 0 → z − z0 = v∥t. (3.14)

Then the total trajectory is a helix. The ratio v⊥/ωc = rL is the Larmor radius, the
typical radius of gyration. Note that

rL =
v⊥m

qB sgn q
=
v⊥m

|q|B (3.15)

depends on the perpendicular velocity and the mass of the particle. More massive
particle has larger Larmor radius and thus smaller cyclotron frequency. Also, stronger
magnetic field causes the particles to gyrate using tighter orbits.

Electrons and ions circulate the magnetic field lines in the opposite directions (see
Fig. 3.1), but they both follow the field lines (we will generalise this case further). The
charge travelling along the helical trajectory induces it’s own magnetic field (according
to the Maxwell’s equations), which has the sign opposite to the background magnetic
field. Thus the plasma weakens the background magnetic field, it is diamagnetic.

1It might be shown that if we multiply (3.3) by vx, (3.4) by vy and sum the two, we obtain
dv2

x
dt

+
dv2

y

dt
=

dv2

dt
= 0, hence the amplitude of the velocity is constant in time.
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Figure 3.2: Motion of an electron in the crossed electric and magnetic fields.

3.2 Homogeneous electric field

Now we add a homogeneous constant electric field to the problem, and thus we choose
the coordinate system so that the magnetic field is still along the z axis, and the electric
field has non-trivial components only in x and z directions (see Fig. 3.2. Then the
equation of motion is

m
d

dt




vx
vy
vz


 = q






Ex

0
Ez


+




vx
vy
vz


×




0
0
B




 . (3.16)

The parallel component can be solved immediately:

dvz
dt

=
q

m
Ez → z − z0 =

q

2m
Ezt

2 + vz,0t. (3.17)

There is a uniform acceleration of the particle along the magnetic field caused by the
parallel component of the electric field. By using the definition of the cyclotron fre-
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quency, the remaining two components of the equation of motion are

dvx
dt

=
q

m
Ex + ωc sgn qvy, (3.18)

dvy
dt

= −ωc sgn qvx. (3.19)

Similarly to the previous case, we take the time derivative of (3.18) and (3.19) and
combine the two. We have

d2vx
dt2

= ωc sgn q
dvy
dt

= − sgn 2qω2
cvx = −ω2

cvx, (3.20)

where we assumed that q ̸= 0, and

d2vy
dt2

= − sgn qωc
dvx
dt

= − sgn qωc

( q
m
Ex + ωc sgn qvy

)
= −ω2

c

(
Ex

B
+ vy

)
. (3.21)

We solved (3.20) already in the previous case and obtained (3.10):

vx = v⊥ exp iωct. (3.22)

For (3.21) we note that Ex/B does not depend on time, thus we may simply add it to
vy on the left-hand side of the equation which then becomes

d2

dt2

(
vy +

Ex

B

)
= −ω2

c

(
vy +

Ex

B

)
, (3.23)

having a trivial solution in a form of

vy = v⊥i sgn q exp iωct−
Ex

B
. (3.24)

We see that in the solution and additional term, drift appeared. Let’s find a general
solution in a vector form. The equation of motion is

m
dv

dt
= q(E + v ×B) (3.25)

If we substitute v′ = v − E×B
B2 (we transform to a different coordinate system, which

moves with a speed of −E×B
B2 with respect to the original one). As we will find out later,

in this moving coordinate system the parallel components of the electric field disappear.
Thus (3.25) becomes:

m
dv

dt
= m

dv′

dt
= q

(
E + v′ ×B +

E ×B

B2
×B

)
=

= q

[
��E + v′ ×B −

��
���1

B2
EB2 +

B(E ·B)

B2

]
=

= q
[
v′ ×B +E∥

]
, (3.26)
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where we defined the parallel component of the electric field

E∥ ≡
B(E ·B)

B2
. (3.27)

We transformed the new problem to the previous case, as in this moving coordinate
system the effects of the electric field (causing the acceleration along the magnetic field
lines) and the magnetic field (causing the gyration around the magnetic field lines) are
separable. Thus we solve the problem in the moving coordinate system and transform
back to the original coordinate system

v = v′ +
E ×B

B2
. (3.28)

We see that a new component of the particle velocity appeared,

vE =
E ×B

B2
, (3.29)

which is the expression for the drift of the gyration centre (illustrated in Fig. 3.2), the
E-B drift. Note that the sign of this drift does neither depend on the particle mass nor
on its electric charge. This drift does not cause a separation of the charge.

Note that the E-B drift naturally shows up as a consequence of the Lorentz transform
of the electromagnetic field tensor. For details, see section B.1 in the Appendix.

3.2.1 Drift in the field of general force

Let’s make a generalisation, which we will use further. In the case of E-B drift, we have
an additional force (the force of the electric field) acting on the motion of the particle.
This force (the Lorentz force) is simply given by

FE = qE. (3.30)

After substitution into (3.29) we have

vE =
1

q

FE ×B

B2
. (3.31)

Could this expression be generalised for any force F other than Lorentz? The answer
is yes, if and only if the force in question acts homogeneously, in particular, when the
vector of the force does not depend on speed and position. Then we have a drift of
gyration centre vgs

vgs =
1

q

F ×B

B2
. (3.32)

An example? The action of gravity field may be considered homogeneous in laboratory
or at least when the small spatial scales (compared to the curvature of the gravity field
lines) are in question. Then we have the gravity drift vg

vg =
m

q

g ×B

B2
, (3.33)
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where g is the vector of gravity acceleration. How about the centrifugal force Fc =
mv2∥
R2 R

acting in the curved magnetic field? Is the expression for the curvature drift vc

vc =
mv2∥

qR2B2
R×B (3.34)

correct? It is not, because we violated one of the assumptions written above: the vector
of the acting force does depend on position in this case. Magnetic field is not homoge-
neous anymore and we must find another correction. (A figure justifying the notation
v∥ in the above equations would be suitable here. It may contain both macroscopic view
in which the force as well as B would not be homogenous and a zoomed view with both
of them being approximately homogenous, i.e. justifying use of (3.32) above.)

3.3 Inhomogeneous magnetic field

Let us study the effects of the non-homogeneous magnetic field. We will keep our
coordinate system, thus having magnetic field in the z-direction, however we will allow
for a smooth change in the y-direction. What does the word smooth mean? Let’s
remind that there is a characteristic scale of the particle motion even in the case of
homogeneous field: the Larmor radius rL = mv⊥

|q|B . By smooth we further mean that the
characteristic spatial change of the magnetic field occurs on much larger scales than the
Larmor gyration. The characteristic scale of the spatial change of the magnetic field L
may be estimated by comparing the gradient of the field to its magnitude, thus

L ∼ |B|
|∇B| . (3.35)

We will study the case when L≫ rL . The ratio of the two is a small number, thus can
be used as a small parameter to expand the physical functions to the Taylor series and
neglect the higher order of this small parameter. Hence in our case of the inhomogeneous
magnetic field we have to the first order

B = B0 + (r · ∇)B (3.36)

and in our coordinate system we have

Bz = B0 + y
∂Bz

∂y
. (3.37)

What effect do we expect? By waving our hands we can say that when we study the
gyration of the testing particle, we see that the particles still gyrate along the magnetic
field lines. However, in that part of the orbit, where the magnetic field is stronger,
the Larmor radius is smaller and vice versa. We should see a drift in the direction
perpendicular to both B and ∇|B|. We would expect the effect to increase with the
gradient of the field, when the difference between the effective radii in the “upper” and
“lower” part of the orbit is larger.
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In our case, only the y component of the Lorentz force is perturbed

Fy = −qvxBz = −qvx
(
B0 + y

∂Bz

∂y

)
. (3.38)

The first term on the right-hand side is responsible for the normal Larmor rotation,
the second term is a correction caused by the inhomogeneous magnetic field and thus
causes the expected drift. The approach we will take is that we will separate the effects
of the B0 causing the Larmor rotation and the effect of the small correction from ∇|B|.
To investigate the correction, we will average the particle motion over one Larmor
rotation. Let’s remind again that this is possible if and only if the Larmor rotation is
the dominant motion of the studied particle and thus when |∂Bz/∂y| ≪ |B0|. Then we
use the solution for vx from (3.10) and for y from (3.13). We have

Fy = −qv⊥ cosωct

(
B0 + rL sgn q cosωct

∂Bz

∂y

)
. (3.39)

The averaged (over Larmor orbit) Lorentz force is thus

⟨Fy⟩ =
1

2π

2π∫

0

Fyd(ωct) = − 1

2π

2π∫

0

qv⊥ cosωct

(
B0 + rL sgn q cosωct

∂Bz

∂y

)
d(ωct) =

= −qv⊥B0
1

2π

2π∫

0

cosωctd(ωct)− qv⊥rL sgn q
∂Bz

∂y

1

2π

2π∫

0

cos2 ωctd(ωct) =

= 0− 1

2
v⊥rL q sgn q

∂Bz

∂y
. (3.40)

We leave it to the reader to prove that the integral over one period of the sine or cosine
function vanishes and that the integral over one period of the sine squared or cosine
squared equals to π.

We found a correction term. Since the averages of the remaining components of the
Lorentz force vanish, we may generalise

⟨F ⟩ = −1

2
v⊥rL q sgn q∇|B|, (3.41)

and use it in the expression for the drift in the field of general force (3.32). Note that
under approximations we took the additional force defined by (3.41) is homogeneous
and does not depend on velocity. Hence we have a drift of the gyration centre, the
grad-B drift v∇B:

v∇B =
1

2
sgn qv⊥rL

B ×∇|B|
B2

. (3.42)

Note that the sign does depend on the sign of the particle charge and thus the grad-B
drift may cause the separation of charges and to drive additional electric field. See
Fig. 3.3.
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Figure 3.3: Drift of an electron in an inhomogeneous magnetic field.

At the beginning we used the assumption of small spatial changes of the magnetic
field to derive this relation and we should check that the assumption holds and thus the
solution is consistent. We simply compute how much does the particle move due to the
drift after one Larmor rotation, hence after one period τ = 2π/ωc. We will further use
(3.35) and v⊥/ωc = rL to evaluate the displacement, ∆, of the gyration centre over one
rotation:

∆ = τ |v∇B| =
2π

ωc

1

2
v⊥rL

|∇B|
|B| = πrL

rL
L

≪ rL (3.43)

under the assumption L ≫ rL . The solution is consistent with the assumptions, the
dominant motion still is the Larmor rotation.

Now we may continue to investigate the motion of particles in the curved magnetic
field. Obviously, additionally to the curvature drift (3.34) we need to account for inher-
ited gradient of the field. Let’s make a qualitative estimate. The Cartesian coordinates
are no longer convenient to investigate this case, cylindrical coordinates (R,ϑ, z) are
more appropriate (they naturally incorporate the “curvature” of the field). In any case,
we assumed the changes of the magnetic field to be smooth, thus we may always in-
troduce local cylindrical coordinates to approximate the real configuration of the field
lines. In vacuum we have

∇×B = µ0j = 0, (3.44)

hence when we assume that the dominant direction of the magnetic field lines is along



3.4. INHOMOGENEOUS ELECTRIC FIELD 52

the azimuthal ϑ direction, ∇|B| must have only the component in R direction. Hence

∇×B =
1

R

∂

∂R
(RBϑ) = 0 (3.45)

and therefore

Bϑ =
C
R
, (3.46)

where C is an integration constant. We further obtain

∇B =
∂

∂R

C
R

= −C 1

R2

R

R
(3.47)

and when expressing C from (3.46) we finaly have

∇B = −|B|
R2

R. (3.48)

Now we can ingest this expression for grad-B into (3.42) and (when also explicitly
writing the expression for rL ) have

v∇B = −1

2
sgn q

v⊥rL
B2

B × |B| R
R2

=
1

2

mv2⊥
qB2R2

R×B. (3.49)

After adding the curvature drift (3.34), we finally have an expression for the drift in the
curved magnetic field:

vgc = vc + v∇B =
m

q

R×B

R2B2

(
v2∥ +

1

2
v2⊥

)
. (3.50)

This has important consequences, especially for laboratory plasmas. It shows that the
plasma cannot be confined in the simply curved magnetic field. Both important drifts,
the curvature drift and the grad-B drift, sum up and thus act to displace the plasma.
Both these drifts are drivers for kink instability. Let’s imagine that the plasma flows
along the cylindrical tube of the magnetic field (the flux tube) with a prevalently poloidal
configuration of the magnetic field, which is generated by the current. When this flux
tube is displaced (e.g. by some random motions), the tube gets curved with the gradient
of the magnetic field pointing against the displacement. The drifts in the curved field
cause the charge separation in the direction perpendicular to the plane of the kink. The
separated changes introduce a small electric field and the E-B drift cause the instability
to grow.

When the configuration of the magnetic field in the flux tube is rather helical than
cylindrical, E-B drift may cancel the drift in the curved magnetic field and the plasma
may remain confined within this tube. This is the famous tokamak configuration.
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Figure 3.4: Drift of electrons in the inhomogeneous electric field.

3.4 Inhomogeneous electric field

Also the inhomogenous electric field requires the correction to the normal E-B drift of
particles. Let us investigate one example only, when the electric field has a harmonic
character. Such configuration is not uncommon, later on we will study the plasma
oscillations and waves propagating through plasmas, where we will see that there are way
too many harmonic motions in plasmas, that may be approximated as a superposition
of simple harmonic functions. Let us assume that we have a periodic electric field in
the x direction (see Fig. 3.4),

E = E0 cos kyex, (3.51)

where k is the wave number, which is related to the wavelength (λ = 2π/k), which is
the characteristic spatial scale of the perturbation. Otherwise we still keep the same
configuration of the coordinate system as we did in the previous cases. Hence the
perpendicular components of equation of motion are

dvx
dt

=
qB

m
vy +

q

m
Ex(y) and

dvy
dt

= −qB
m
vx. (3.52)
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The standard way to solve this system is to take the time derivative of these equations
and combine the two, hence

d2vx
dt2

= −ω2
cvx + ωc

sgn q

B

dEx

dt
and

d2vy
dt2

= −ω2
cvy − ω2

c

Ex(y)

B
. (3.53)

This is a system of implicit ordinary differential equations, which cannot be trivially
solved. We would need to proceed iteratively, since in order to find the solution, we
need to know E, which is the function of the solution. Let’s focus to the case of small
electric fields and apply the averaging formalism again in order to find the correction.
In this approach we simply use the unperturbed solution and average over one Larmor
rotation.

By substituting (3.13) into (3.53) we have

d2vy
dt2

= −ω2
cvy − ω2

c

E0

B
cos [k(y0 + rL sgn q cosωct)] , (3.54)

which we average over one Larmor orbit to have
〈
d2vy
dt2

〉
= −ω2

c ⟨vy⟩ − ω2
c

E0

B
⟨cos [k(y0 + rL sgn q cosωct)]⟩. (3.55)

The action of the additional force oscilates (we do not expect a secular trend in time;
this assumption should be validated in the solution), therefore when averaged over one
Larmor orbit, it vanishes, thus 〈

d2vy
dt2

〉
= 0. (3.56)

We approximate the cosine term by expansion into Taylor series in the parameter krL ,
which we assume to be small2. Essentially again the electric field is perturbed on scales
much larger than the Larmor radius

cos [k(y0 +rL sgn q cosωct)] =

= cos ky0 cos (krL sgn q cosωct)− sin ky0 sin (krL sgn q cosωct) =

= cos ky0 cos (krL cosωct)− sgn q sin ky0 sin (krL cosωct)

= cos ky0

[
1− 1

2
k2rL

2 cos2 ωct

]
− sgn q sin ky0(krL cosωct) (3.57)

Hence after averaging the term with the sine vanishes, while the term with the cosine
squared becomes 1/2. Finally

⟨vy⟩ = −E0

B
cos ky0

(
1− 1

4
k2rL

2

)
= −Ex(y)

B

(
1− 1

4
k2rL

2

)
. (3.58)

We may generalise this expression to

vE =
E ×B

B2

(
1− 1

4
k2rL

2

)
(3.59)

2We remind that cos ε ≈ 1− 1
2
ε2 and sin ε ≈ ε for ε → 0.



55 3.5. DRIFT CURRENTS

and we keep it to the reader to prove that in our case it is the correct generalisation. In
the section dealing with waves in plasmas we will often use the solution as a superposi-
tion of various modes, when for each mode we may conviniently solve the equations in
the Fourier space. The Fourier representation is convenient because differential opera-
tors become multiplications. We ask the reader to see (5.13) for a short moment and
apply it to the equation we just obtained. We may generalise this expression to

vE = −B×
B2

(
1 +

1

4
rL

2△
)
E. (3.60)

The correction term captures the effect of the finite Larmor radius. Since rL is larger
for ions, ions “feel” the changes in the background electric field stronger than electrons.
When an electric field appears in plasma, the drift instability causes this electric field
to grow. Note that the effect of the inhomogeneous electric field is proportional to
(krL )

2, whereas the effect of the inhomogeneous magnetic field is proportional to krL
(when applying the Fourier transform formalism to (3.42)). Hence, the effects of the
non-uniform E-field are relatively more important at large k, therefore at small spatial
scales.

3.5 Drift currents

Some of the drifts discussed above and summarised graphically in Fig. 3.6 depend on
the mass or charge of the particles, thus lead to the separation of charges and give rise
to the drift currents. In plasmas we have to consider k different particle species, each
having particle density nk, mass mk and qk. From the general equation for the drift
velocity (3.32), we derive the relation for the drift current

jdrift =
∑

k

nkqkvdrift,k =

∑
k nkFk

B2
×B. (3.61)

For instance, the drift current due to the grad-B drift is

j∇B =
1

2

∑

k

mknkv
2
⊥,k

B2
(B ×∇B). (3.62)

This current leads to the charge separation. An example of the natural drift current is
the ring current in the Earth’s magnetosphere (see Fig. 3.5).

3.6 Guiding centre motion

Let us show that it is possible to derive all the above discussed drifts and much more
in a very elegant and general way3. We will correctly solve the equations of motion

3Following de Blank 2012: Guiding center motion, Fusion Science and Technology 61(2T), 61–68
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Figure 3.5: A combination of drifts in the curved magnetic field in the Earth’s magnetosphere results
in the formation of the ring current in the equatorial plane (the dashed line indicates the drift of the
electrons).
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Figure 3.6: Charged particle drifts in a homogeneous magnetic field. (A) No disturbing force, (B)
With an electric field, E (C) With an independent force, F (e.g. gravity) (D) In an inhomogeneous
magnetic field, grad B. Based on Hannes Alfvén’s, Cosmical Electrodynamics (1950); (cc) Stannered,
redesigned by Ian Tresman.
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and will find the corrections to the normal gyration under the approximation of slowly
varying fields. That means that we limit ourselves to the case when

rL
L

=
v⊥
ωcL

≪ 1 and
1

ωcτ
≪ 1, (3.63)

where L and τ are the characteristic spatial and temporal changes in the fields E and
B, respectively. We see that ω−1

c ∝ m/q, which is small4. Thus we define ϵ ≡ m/q to be
a small parameter of the system and we will expand the equations to the Taylor series
using this parameter. Then rL ∝ ϵL and τ−1 ∝ ϵωc. We solve a system of ordinary
differential equations

dx

dt
= v (3.64)

dv

dt
=

q

m
(E + v ×B) . (3.65)

We will expand these equations in ϵ. But first, we introduce the coordinate transforma-
tion (x,v) → (R,u). Coordinates (R,u) are functions of time.

R(t) = x(t)− ρ(t), (3.66)

u = v − vE. (3.67)

Here R is the instantaneous position of the gyration center, x is the instantaneous
position of the given particle (with respect to the fixed reference coordinate system),
vE ≡ E ×B/B2 is the velocity of the E-B drift [see (3.29)], and ρ is the instantaneous
position of the particle with respect to the gyration centre. From the previous section
[see e.g. (3.15)] we may see that

ρ ≡ ϵ

B
b× u, (3.68)

where b(x, t) = B(x, t)/|B(x, t)| is the unity vector along the field lines. Vectors b and
vE are functions of both space x and time t and their values are measured with respect
to the particle. Note that

ωc(t) =
B(x, t)

ϵ
(3.69)

is an instantaneous cyclotron frequency.

We further introduce the local cylindrical coordinates in the plane perpendicular to
the magnetic field with two direction vectors (e1, e2), so that

u = v∥b+ u⊥e⊥ , where e⊥ ≡ e1 cosϕ+ e2 sinϕ , and ϕ = ϕ0 − ωct. (3.70)

Note again that the base vectors of this local coordinate system (e1, e2, b) vary in both
the space and time. Unit vectors e⊥ and

eρ ≡ e2 cosϕ− e1 sinϕ (3.71)
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Figure 3.7: Sketch of the coordinate system of the guiding centre variables. The dashed line indicates
the position of the gyration centre which deviates from the magnetic field line in general.

are projections of the particle’s velocity u and relative position ρ, respectively, to the
plane perpendicular to b.

Hence we derived useful relations defining the guiding centre variables (see also
Fig. 3.7).

x = R+ ρ, (3.72)

ρ = − m

qB2
u×B = ρ sgn q eρ, (3.73)

u⊥ = u⊥e⊥ and (3.74)

v = v∥b+ u⊥e⊥ + vE. (3.75)

Now we transform (3.64) and (3.65) to the newly introduced coordinates. From (3.66)
we have:

dR

dt
=

dx

dt
− dρ

dt
= v − d

dt

( ϵ
B
b× u

)
=

= v∥b+ u⊥e⊥ + vE + ϵu× d

dt

(
b

B

)
− ϵ

B
b× du

dt
=

= v∥b+ u⊥e⊥ + vE + ϵu× d

dt

(
b

B

)
− ϵ

B
b×

(
dv

dt
− dvE

dt

)
=

= v∥b+ vE + ϵu× d

dt

(
b

B

)
+

ϵ

B
b× dvE

dt
, (3.76)

4As m/q is not a dimensionless quantity, its value depend on the system of units. It’s smallness
needs to be understood in terms of equation (3.63) in which it parametrises ωc with respect to the
characteristic time scale(s) of changes of the fields.
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where we used the equation of motion (3.65) to evaluate the term − ϵ
Bb× dv

dt :

− ϵ

B
b× dv

dt
= − ϵ

B
b×

[
1

ϵ
(E + v ×B)

]
=

= − 1

B
b×E − 1

B
(v b ·B −B b · v) = − 1

B
b×E − v

B ·B
B2

+ v∥
B

B
=

= vE − v + v∥b = −u⊥e⊥. (3.77)

For the time derivative of velocity, we expand v using (3.75) to have

d(v∥b)

dt
+

d(u⊥e⊥)

dt
+

dvE
dt

=
1

ϵ

[
E + (v∥b+ u⊥e⊥ + vE)×B

]
=

=
1

ϵ

[
E + v∥b×B + u⊥e⊥ ×B + vE ×B

]
=

=
1

ϵ

[
��E + u⊥e⊥ ×B −

���
��E

B2
B ·B +

E ·B
B2

B

]
=

=
1

ϵ

[
E∥b+ u⊥e⊥ ×B

]
, (3.78)

where we defined E∥ ≡ E·B
|B| . Next, we project this equation to the directions e⊥, b,

and eρ. For the first one, we have

1

ϵ

[
E∥b · e⊥ + u⊥(e⊥ ×B) · e⊥

]
=

[
d(v∥b)

dt
+

d(u⊥e⊥)

dt
+

dvE
dt

]
· e⊥. (3.79)

The left-hand side is zero since b ⊥ e⊥ and (e⊥ ×B) · e⊥ = (e⊥ × e⊥) ·B = 0. Thus
we have

0 = e⊥ · v∥
db

dt
+ e⊥ · b

dv∥

dt
+ e⊥ · e⊥

du⊥
dt

+ u⊥e⊥ · de⊥
dt

+ e⊥ · dvE
dt

. (3.80)

The second term vanishes because e⊥ ⊥ b and the fourth term is

e⊥ · de⊥
dt

=
1

2

d

dt
(e⊥ · e⊥) = 0, (3.81)

because e⊥ · e⊥ = 1. Finally, we have

du⊥
dt

= −e⊥ ·
(
v∥

db

dt
+

dvE
dt

)
. (3.82)

For the projection into the b direction we have:

1

ϵ

[
E∥b · b+ u⊥(e⊥ ×B) · b

]
=

[
d(v∥b)

dt
+

d(u⊥e⊥)

dt
+

dvE
dt

]
· b. (3.83)

The second term on the left-hand side of (3.83) equals to zero because (e⊥ ×B) · b =
−(b×B) · e⊥ = 0. Writing out the terms on the right-hand side explicitly, we obtain

E∥

ϵ
= b · b

dv∥

dt
+ v∥

db

dt
· b+ b · e⊥

du⊥
dt

+ u⊥b ·
de⊥
dt

+
dvE · b

dt
− vE · db

dt
. (3.84)
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The second term on the right-hand side of (3.84) is zero from the same arguments as
in (3.81). The third term vanishes as b ⊥ e⊥ and the fifth term also vanishes, because
vE ⊥ b. The fourth term may be rewritten as

u⊥b ·
de⊥
dt

= u⊥
de⊥ · b

dt
− u⊥e⊥ · db

dt
= −u⊥e⊥ · db

dt
. (3.85)

Finally, we have
dv∥

dt
=
E∥

ϵ
+ (u⊥e⊥ + vE) ·

db

dt
. (3.86)

The most intense algebra concerns the projection into the eρ direction, where we
will evaluate the individual terms one by one.

1

ϵ

[
1○

E∥b · eρ +
2○

u⊥(e⊥ ×B) · eρ
]
=

3○

eρ ·
d(v∥b)

dt
+

4○

eρ ·
d(u⊥e⊥)

dt
+

5○

eρ ·
dvE
dt

. (3.87)

1○ :
b ⊥ eρ ⇒ b · eρ = 0 (3.88)

2○ :

u⊥(e⊥ ×B) · eρ = u⊥(eρ × e⊥) ·B = u⊥






− sinϕ
cosϕ
0


×




cosϕ
sinϕ
0




 ·B =

= u⊥




0
0
−1


 ·




0
0
B


 = −u⊥B (3.89)

3○ :

eρ ·
d(v∥b)

dt
= eρ · v∥

db

dt
+
��

���
eρ · b

dv∥

dt
(3.90)

4○ :

eρ·
d(u⊥e⊥)

dt
= u⊥(e2 cosϕ− e1 sinϕ) ·

d(e1 cosϕ+ e2 sinϕ)

dt
+
�

���
��

eρ · e⊥
du⊥
dt

=

= u⊥

[
(e2 cosϕ− e1 sinϕ) · (cosϕ

de1
dt

− e1 sinϕ
dϕ

dt
+ sinϕ

de2
dt

+ e2 cosϕ
dϕ

dt
)

]
=

= u⊥

[
cos2 ϕ e2 ·

de1
dt

−
���������
sinϕ cosϕ e1 ·

de1
dt

+
����������

sinϕ cosϕ
dϕ

dt
e1 · e2 + sin2 ϕ

dϕ

dt
e1 · e1+

+
���������
sinϕ cosϕ e2 ·

de2
dt

− sin2 ϕ e1 ·
de2
dt

+ cos2
dϕ

dt
e2 · e2 −

����������

sinϕ cosϕ
dϕ

dt
e1 · e2

]
=

= u⊥

[
(sin2 ϕ+ cos2 ϕ)

(
dϕ

dt
+ e2 ·

de1
dt

)
− sin2 ϕ

(
e1 ·

de2
dt

+ e2 ·
de1
dt

)]
=

= u⊥

[
dϕ

dt
+ e2

de1
dt

− sin2 ϕ

(

�
����d(e1 · e2)
dt

−
�

����
e2 ·

de1
dt

+
�

����
e2 ·

de1
dt

)]
, (3.91)

where in the last-but-one step we added and subtracted the term sin2 ϕ e2 · de1
dt .
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5○ remains unchanged

Hence, together we have

dϕ

dt
= −B

ϵ
− e2 ·

de1
dt

− 1

u⊥
eρ ·

(
v∥

db

dt
+

dvE
dt

)
. (3.92)

Let us repeat that now we have again six differential equations for modified variables
the position of the gyration center R and for variables in the plane perpendicular to
the field lines. Thus we have to solve the following set of equations:

dR

dt
= v∥b+ vE + ϵu× d

dt

(
b

B

)
+

ϵ

B
b× dvE

dt
, (3.93)

du⊥
dt

= −e⊥ ·
(
v∥

db

dt
+

dvE
dt

)
, (3.94)

dv∥

dt
=
E∥

ϵ
+ (u⊥e⊥ + vE) ·

db

dt
, (3.95)

dϕ

dt
= −B

ϵ
− e2 ·

de1
dt

− 1

u⊥
eρ ·

(
v∥

db

dt
+

dvE
dt

)
. (3.96)

To proceed further, we need to replace the total time derivative by the derivative
along the trajectory

d

dt
=

∂

∂t
+
(
v∥b+ vE + u⊥e⊥

)
·∇ (3.97)

Let us do the proper derivation for (3.93). Let’s first decompose u according to
formula (3.70) and use relation (3.97) to express d/dt in (3.93):

dR

dt
= v∥b+ vE +

ϵ

B

(
v∥b+ u⊥e⊥

)
×
[
∂

∂t
+
(
v∥b+ vE + u⊥e⊥

)
·∇
]
b+

ϵ
(
v∥b+ u⊥e⊥

)
× b

[
∂

∂t
+
(
v∥b+ vE + u⊥e⊥

)
·∇
](

1

B

)
+

ϵ

B
b×

[
∂

∂t
+
(
v∥b+ vE

)
·∇
]
vE +

ϵ

B
b× (u⊥e⊥ ·∇)vE . (3.98)

Next, we add a zero term

ϵ

B
b× b

[
∂

∂t
+
(
v∥b+ vE

)
·∇
]
v∥ = 0 (3.99)

to the right hand side of (3.98). Then, we drop several terms containing b × b and
rearrange the equation to obtain

dR

dt
= v∥b+ vE +

ϵ

B
b×Dt

(
v∥b+ vE

)
+

ϵ

B
v∥b× [u⊥e⊥ ·∇] b+

ϵu⊥
B

e⊥ ×
[
∂

∂t
+
(
v∥b+ vE + u⊥e⊥

)
·∇
]
b−

ϵu⊥
B2

e⊥ × b

[
∂

∂t
+
(
v∥b+ vE + u⊥e⊥

)
·∇
]
B +

ϵ

B
b× (u⊥e⊥ ·∇)vE , (3.100)
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where we denote

Dt ≡
∂

∂t
+
(
v∥b+ vE

)
·∇ . (3.101)

Equation (3.100) contains a lot of terms varying on different time scale. Obviously,
the terms containing factors e⊥ or eρ will change with the gyration of the particle.
Therefore we may call these terms as fast terms. Recalling back the “classical” deriva-
tion of the ∇B drift, we treated a similar problem by “averaging” over one Larmor
rotation. In the case of (3.100) we will proceed by analogy. We will average (3.100)
over ϕ.

The averaging has a mathematically correct basis. The set of equations (3.93) to
(3.96) can be symbolically written in a form

dz

dt
= fz(z) = ⟨fz⟩+ f̃z, (3.102)

where z ∈ {R, v∥, u⊥, ϕ}. The angled brackets denote the average over the gyroangle ϕ,

hence ⟨•⟩ = (2π)−1
∫
dϕ(•). The function f̃z is periodic in the fast-oscillating gyroangle

ϕ. Such separation may always be done. We will show that the oscillating compo-
nent can be removed to the leading order by means of the small parameter, ϵ, by the
redefinition of the variables z to

z̄ = z +
ϵ

B

∫ ϕ

0
f̃z(ϕ

′)dϕ′. (3.103)

From (3.96) we have:

dϕ

dt
= −B

ϵ
− e2 ·

de1
dt

− 1

u⊥
eρ ·

(
v∥

db

dt
+

dvE
dt

)
= −B

ϵ
+O(ϵ0). (3.104)

The total time derivative (3.97) in terms of the guiding centre variables reads

d

dt
=

∂

∂t
+

dR

dt
· ∂

∂R
+

dv∥

dt

∂

∂v∥
+

du⊥
dt

∂

∂u⊥
+

dϕ

dt

∂

∂ϕ
. (3.105)

The last term is the leading order term, where for dϕ
dt we use (3.104). Note that actually

the third term on the right-hand side is a leading order term (
dv∥
dt ∼ E∥

ϵ ∼ O(ϵ−1)),
however we silently assume here that E∥ ∼ O(ϵ), otherwise the assumption of small
changes gets violated. Hence

d

dt
= −B

ϵ

∂

∂ϕ
+O(ϵ0). (3.106)

Note that such an approximation is far from being general and is valid only for the
system we investigate.

By applying the leading order time derivative (3.106) to the transformed variables
(3.103) we have

dz̄

dt
=

dz

dt
− B

ϵ

∂

∂ϕ

ϵ

B

∫

ϕ
f̃z(ϕ

′)dϕ′ =

=
dz

dt
− f̃z +O(ϵ) = ⟨fz(z)⟩+ f̃z − f̃z +O(ϵ) = ⟨fz(z)⟩+O(ϵ). (3.107)
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Note that the final expression contains z, e.g., non-averaged variables as arguments.
Therefore we have a mixture of the z̄ averaged (guiding-centre based) arguments on
the left-hand side and non-averaged (particle-based) arguments on the right-hand side.
Fortunately, the right-hand side can approximately be written in the guiding centre
variables (R, v∥, u⊥, ϕ). First, the fields E and B (and consequently vectors b, e1, e2,
and vE) at the particle position are expanded in a Taylor series around the position of
the guiding center. For instance:

b(x, t) = b(R, t) + ρ · ∇b(R, t) + · · · = b(R, t) + ϵ
u⊥
B

eρ · ∇b(R, t) + . . . (3.108)

For the averaged variables even the first order term vanishes, because ⟨eρ⟩ = 0 and thus
for (3.108) we have

⟨b(x, t)⟩ = b(R, t) +O(ϵ). (3.109)

Then, finally:
dz̄

dt
= ⟨fz(z̄)⟩+O(ϵ), Q.E.D. (3.110)

Let us go back to averaging (3.100) over ϕ. For the terms independent of e⊥, this
step does not lead to any change. On the other hand, terms linear in e⊥ are zero as
⟨sinψ⟩ = ⟨cosψ⟩ = 0. The terms quadratic in e⊥ are non-zero in general and have to
be treated carefully.

〈
dR

dt

〉
=

〈
v∥b+ vE +

ϵ

B
b×Dt

(
v∥b+ vE

)
+
ϵu2⊥
B

e⊥ × (e⊥ ·∇) b− ϵu2⊥
B2

e⊥ × b (e⊥ ·∇)B

〉
.

(3.111)
Now, let us consider the last term in (3.111). Using a notation ∇1 ≡ e1 · ∇ and
∇2 ≡ e2 ·∇ we may write:

(e⊥ × b) (e⊥ ·∇)B = (e1 sinϕ− e2 cosϕ) (cosϕ∇1 + sinϕ∇2)B (3.112)

Considering ⟨sinϕ cosϕ⟩ = 0 and ⟨sin2 ϕ⟩ = ⟨cos2 ϕ⟩ = 1
2 , averaging of (3.112) over ϕ

gives:

⟨(e⊥ × b) (e⊥ ·∇)B⟩ = 1
2 (e1∇2B − e2∇1B) = −1

2 (b×∇B) . (3.113)

Note that an alternative derivation of this relation can be found in Appendix B.2.
A similar approach will be applied to the fourth term of the right-hand side of

eq. (3.111). In this case, we have to keep in mind that the vector field b has components
(0, 0, 1) at the point R though, but derivatives of all of its components are non-zero in
general. Hence,

e⊥ × (e⊥ ·∇) b = (e1 cosϕ+ e2 sinϕ)× (cosϕ∇1 + sinϕ∇2) b

= (e1 cosϕ+ e2 sinϕ)× [e1 (cosϕ∇1 + sinϕ∇2) b1+

e2 (cosϕ∇1 + sinϕ∇2) b2 + e3 (cosϕ∇1 + sinϕ∇2) b3]

= e1 [sinϕ (cosϕ∇1 + sinϕ∇2) b3]− e2 [cosϕ (cosϕ∇1 + sinϕ∇2) b3] +

e3 [cosϕ (cosϕ∇1 + sinϕ∇2) b2 − sinϕ (cosϕ∇1 + sinϕ∇2)] b1 .(3.114)
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Averaging over ϕ then leads to

⟨e⊥ × (e⊥ ·∇) b⟩ = 1
2 (e1∇2 − e2∇1) b3 +

1
2e3 (∇1b2 −∇2b1) . (3.115)

First term on the right hand side of eq. (3.115) may be neglected as∇ib3 = O((∇ib[1,2])
2).5

The second term on the right-hand side of eq. (3.115) can be rewritten in the vector
notation:

⟨e⊥ × (e⊥ ·∇) b⟩ = 1
2e3 (e3 · ∇ × b) = 1

2b (b · ∇ × b) , (3.118)

where we used the identity b ≡ e3. Note that an alternative derivation of this relation
can be found in Appendix B.2. Inserting (3.113) and (3.118) gives

〈
dR

dt

〉
=

1○
v∥b +

2○
vE +

3○
ϵ

B
b×Dt

(
v∥b+ vE

)
+

4○
ϵu2⊥
2B

(b ·∇× b) b +

5○
ϵu2⊥
2B2

b×∇B +O(ϵ2) .

(3.119)
This is the equation for the guiding centre motion. It contains all drift we discussed in
the previous chapters and much more.

1○ This term represents the movement along the field lines. Local vector b is curved in
(x, t) space, nevertheless, the motion of the particle is always dominantly parallel
to the local vector of the magnetic induction.

2○ This is the E-B drift.

3○ This term contains the generalised curvature drift (term ∼ ϵ
Bb × (v∥b ·∇)(v∥b)

6),
the polarisation drift7 and the effects of the non-homogeneous electric field.

5The fact that ∇ib3 = O((∇ib[1,2])
2) is a consequence of normalisation |b| = 1. Vector b at a small

displacement δR from R can be expressed by means of Taylor series:

b(R+ δR) = b(R) + δR ·∇b(R) +O(δR2) . (3.116)

Denoting b′ ≡ b(R+ δR) and δbi ≡ δR ·∇bi(R), we write b′ = b+ δb1e1 + δb2e2 + δb3e3. We further
consider b = (0, 0, 1) and both b and b′ be normalised. Hence |b′|2 = 1 which implies

|b′|2 = 1 =

∣∣∣∣∣∣
 0

0
1

+

 δb1
δb2
δb3

∣∣∣∣∣∣
2

= δb21 + δb22 + (1 + δb3)
2 ∼ δb21 + δb22 + δb23 + 2δb3 + 1. (3.117)

and, therefore, 2δb3 ≈ −δb21 − δb22 − δb23 ∼ O(δb2[1,2]), Q.E.D.
6Deriving it more explicitly, let’s assume the parallel velocity to be constant (or weakly variable),

then

vc =
mv2∥
qB

[b× (b ·∇)b] =
mv2∥
qB2

B × [b · (e1∇b1 + e2∇b2 + b∇b3)] =

=
mv2∥
qB2

B ×∇b3 = −
mv2∥

qB2R2
B ×R, (3.120)

where we noted that in the local cylindrical coordinates, b3 is along the constant radius R and in order
to fulfill ∇ ·B = 0 in a vaccuum the field must decrease as 1/R and hence the gradient of the field must
decrease as −1/R2R. This relation is exactly the same as (3.34).

7Let us handle the third term of 3.119 a little more in detail, in each step always by focusing to one
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z

ϕ

B

Figure 3.8: An illustration of the gyration of charged particles in the magnetic field with the configu-
ration of the magnetic mirror. The particles gyrate along the field line, however they also undergo a
drift between field-lines thanks to the drift in the curved magnetic field. As the particle approaches
the strong-field region, it’s motion in the parallel direction slows down. When it reaches zero, the
particle reflects back to the region of the weak field. The reflection positions are indicated by vertical
lines. Note that there is one particle trajectory indicated, which has a large initial parallel velocity,
which does not reflect and in principle passes through the magnetic mirror to the other side.

4○ This is the correction to the parallel current: b ·∇× b = µ0j∥/B.

5○ This is the grad-B drift.

Similar equations might be derived for mean values of time derivatives of velocity
components (see Appendix B.3), namely:

〈
dv∥

dt

〉
=
E∥

ϵ
− u2⊥

2B
∇∥B + vE ·Dtb+O(ϵ) (3.122)

〈
du⊥
dt

〉
=
v∥u⊥

2B
∇∥B − u⊥

2
(∇ · vE − b · ∇∥vE) +O(ϵ) (3.123)

〈
dϕ

dt

〉
= −B

ϵ
− e2 ·Dte1 −

v∥

2
b ·∇× (v∥b+ vE) +O(ϵ) (3.124)
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3.7 Magnetic mirrors

We deliberately did not study the motion of the testing particle in the case of an inho-
mogeneous magnetic field with ∇|B| ∥ B. We will derive some useful properties of this
configuration of the magnetic field now. Let us consider the axisymmetric configuration
in cylindrical coordinates (such as that indicated in Fig. 3.8), where B = (Br, Bφ, Bz)
and Bφ = 0 and ∂/∂φ = 0. From the Gauss’s law for magnetism

∇ ·B =
1

r

∂

∂r
rBr +

1

r

∂Bφ

∂φ
+
∂Bz

∂z
= 0 (3.125)

we immediately see that

rBr = −
r∫

0

r′
∂Bz

∂z
dr′. (3.126)

Assuming that we know ∂Bz
∂z on the axis and consider only particle motions close enough

to the axis, we may neglect the radial dependence of this term and obtain

rBr ∼ −
[
∂Bz

∂z

]

r=0

r∫

0

r′dr′ = −1

2
r2
[
∂Bz

∂z

]

r=0

, (3.127)

and hence

Br ∼ −1

2
r

[
∂Bz

∂z

]

r=0

. (3.128)

Thus we have an additional component to the Lorentz force, hence we may expect a
drift. It will be a grad-B drift, but not the radial one, since ∂B/∂φ = 0. The Lorentz
force is

F = qv ×B = q




vr
vφ
vz


×




Br

Bφ

Bz


 = q




vφBz − vzBφ

vzBr − vrBz

vrBφ − vφBr


 =

= q




vφB
1○

z

vzB
2○

r − vrB
3○

z

−vφB 4○
r


 . (3.129)

Terms 1○ and 3○ are not interesting, as they are responsible for the Larmor rotation.
Term 2○ vanishes around the axis, however even when we had relaxed the assumptions,
this term would only cause the normal grad-B drift. Term 4○ is something new.

particular term, while leaving the remaining terms unevaluated.

ϵ

B
b×Dt

(
v∥b+ vE

)
=

ϵ

B
b× dvE

dt
+A =

m

qB2
B × d

dt

E ×B

B2
+A =

m

qB4
B ×

(
∂E

∂t
×B

)
+ B =

=
m

qB4

(
B ·B ∂E

∂t
−B · ∂E

∂t
B

)
+ B =

m

qB2

∂E

∂t
+ C =

sgn q

ωcB

∂E

∂t
+ C, (3.121)

where the first term is the polarisation drift.
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Hence we have an additional force

Fz = −qvφBr =
1

2
qvφr

∂Bz

∂z
, (3.130)

which we (in agreement with the procedure already used before) average over one Larmor
rotation. By taking into account that vφ = − sgn qv⊥, r = rL = v⊥/ωc and ωc =
q sgn qB/m we have

Fz = −1

2
qv⊥ sgn q

v⊥m

q sgn qB

∂Bz

∂z
= −1

2

mv2⊥
B

∂Bz

∂z
= −µ∂Bz

∂z
, (3.131)

where µ = 1
2mv

2
⊥/B is the magnetic moment. This equation may be generalised, when

we identify z direction with the parallel direction, hence

F∥ = −µ∂B
∂s

= −µ∇∥B, (3.132)

where ds is the trajectory element.
We will further show that during the particle’s motion, its rL changes, but its

magnetic moment remains invariant. First, we handle the parallel component of the
equation of motion

m
dv∥

dt
= −µ∂B

∂s
(3.133)

by multiplying it by v∥:

mv∥ ·
dv∥

dt
=

d

dt

(
1

2
mv2∥

)
= −µ∂B

∂s
· v∥ = −µ∂B

∂s
· ds
dt

= −µdB
dt
. (3.134)

The energy conservation law gives

d

dt

(
1

2
mv2∥ +

1

2
mv2⊥

)
=

d

dt

(
1

2
mv2∥ + µB

)
= 0, (3.135)

where we used 1
2mv

2
⊥ = µB. Finally we subtract (3.134) and (3.135) to have

0 = −µdB
dt

+
d

dt
µB = −µdB

dt
+ µ

dB

dt
+B

dµ

dt
(3.136)

and hence
dµ

dt
= 0. (3.137)

The magnetic moment remains invariant. Unfortunately, this conclusion cannot be
considered general, as we took very restrictive assumptions at the beginning. It is
interesting to study to what extent is the magnetic moment conservation valid. Here
we will go back to the guiding centre equations we derived in the previous section. Let’s
work with (3.123) in a form

du⊥
dt

=
v∥u⊥

2B
b · ∇∥B − u⊥

2
(

A○
∇ · vE −

B○
b · ∇∥vE) +O(ϵ), (3.138)

where ∇∥• ≡ b ·∇•. Let’s trim the terms one-by-one:
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A○

∇ · vE = ∇ · E ×B

B2
=

1

B2
[B · (∇×E)−E · (∇×B)] + (E ×B) · ∇ 1

B2
=

= − 1

B2
B · ∂B

∂t
−

E∥ +E⊥

B2
· (∇×B)− 2(E ×B)

B2
· ∇B
B

=

= − B

B2
b ·
[
B
∂b

∂t
+ b

∂B

∂t

]
−

E∥

B2
· [(∇B)× b+B(∇× b)]−

− E⊥
B2

· (∇×B)− 2vE · ∇B
B

= −b · ∂b
∂t

− 1

B

∂B

∂t
−

−
E∥

B2
b · [(∇B)× b]−

E∥

B
b · (∇× b), (3.139)

where we used that b· ∂b∂t = 0, defined the parallel amplitude of the electric intensity
by E∥ = E∥ · b, and also assumed (∇ ×B) ∥ B (force-free approximation). We
also applied Farraday’s law ∇×E = −∂B/∂t.

B○

b · ∇∥vE = ∇∥(b · vE)− vE · (∇∥b) = −vE · [(b ·∇)b] =

− vE
B

· [(b ·∇)B]− (vE ·B) (b ·∇)
1

B
= −vE

B
· [(b ·∇)B] , (3.140)

where we used vE ⊥ b. When adjusting the term (b · ∇)B let us evaluate the
term ∇B2:

∇B2 = ∇(B ·B) = 2B · ∇B = 2Bb · ∇B and ∇B2 = 2B∇B. (3.141)

Hence b ·∇B = ∇B.

We will further apply the assumption that E∥ ∼ O(ϵ), where we remind that ϵ = m/q
is a small parameter. Hence all together (3.138) reads

du⊥
dt

=
v∥u⊥

2B
b · ∇∥B +

u⊥
2

1

B

∂B

∂t
+
u⊥
2
vE · ∇B

B
+O(ϵ) =

=
u⊥
2

[
∂

∂t
+ (v∥b+ vE) ·∇

]
B +O(ϵ) =

u⊥
2B

DtB +O(ϵ), (3.142)

where again Dt is the full time derivative along the guiding centre trajectory.
Hence by taking the time derivative of the magnetic moment µ = u2⊥/2B and by

using (3.142) we have

dµ

dt
=
u⊥

d
dtu⊥

B
+
u2⊥
2B

d

dt

1

B
=

u2⊥
2B2

DtB +O(ϵ)− u2⊥
2B2

dB

dt
= O(ϵ). (3.143)

Hence the magnetic moment is invariant when the changes of the fields are small (the
assumption of E ∼ O(ϵ).
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A measurable consequence of the magnetic moment conservation is the effect of
magnetic mirrors. Let’s imagine that a charged particle moves (due to the thermal
motion for example) from the weak into the stronger magnetic field. It “sees” the
stronger field, hence its Larmor radius decreases and perpendicular velocity increases,
so that µ remains constant. But also the total kinetic energy must be conserved, hence
the parallel velocity decreases as the particle enters the stronger field. For B large
enough the parallel velocity drops to zero and the particle suffers from the reflection
back to the weaker field (see Fig. 3.8).

The reflection is not perfect. For example particles with originally v⊥ = 0 have zero
magnetic moments and thus penetrate the “magnetic trap”. They “do not feel” the
Lorentz force along the magnetic field lines. Similar behaviour may be expected for
particles with small ratio of v⊥/v∥. Is there a limit to this ratio?

Let’s assume that in the region of the weak field B0, the particle has the following
values of velocity components: v⊥ = v⊥,0 and v∥ = v∥,0. In the place of reflection we
have v⊥ = v′⊥ and v∥ = 0 and the field has the induction B′. Since

µ = const =
1

2
mv2⊥,0/B0 =

1

2
mv′⊥/B

′ and v′2⊥ = v2⊥,0 + v2∥,0 ≡ v20, (3.144)

we have
B0

B′ =
v2⊥,0

v′2⊥
=
v2⊥,0

v20
= sin2 ϑ, (3.145)

where ϑ is a pitch angle in the region of the weak field. The smaller ϑ is, the stronger
magnetic field needs to be reached at the place of reflection. Considering that there
is some maximum finite value of magnetic field, Bmax, in the real setup, particles with
sufficiently small value of ϑ may not get reflected. From the equation above it becomes
that the maximal pitch angle for the particle to reflect is

sin2 ϑmax =
B0

Bmax
. (3.146)

If we plot all three components of velocity for the particles (Fig. 3.9), we find that ϑmax

creates a cone in the phase space. Particles located inside this cone will escape the
reflection. Hence the name loss cone. Note that the shape of the loss cone depends
neither on a charge of the particle nor on its mass.

3.8 Adiabatic invariants

Let’s have a hamiltonian of the system H = H(p, q) and a system of equations of
motion

dq

dt
=
∂H
∂p

and
dp

dt
= −∂H

∂q
. (3.147)

Should any of the coordinates qi by cyclic, thus

qi(t) = qi(t+ T ), (3.148)
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Figure 3.9: The illustration of the loss cone.

v‖

vy

vx

v

v⊥

θm

where T is the period, then ∮
pidqi = const (3.149)

is the integral of motion. For example, in case of the mathematical pendulum, the
deviation φ(t) = φ0 cosωt is cyclic with period of T = 2π/ω. Let’s define the canonical
pair q = φ and p = ml2φ̇, where m and l are the mass and the length of the pendulum,
respectively. Then we have

T∫

0

pdq =

T∫

0

(−ml2φ0ω sinωt)(−φ0ω sinωt)d(ωt) =

= ml2φ2
0ω

T∫

0

sin2 ωtd(ωt) = πml2φ2
0ω = const. (3.150)

When the integral of motion contains a parameter, which is slowly variable (slowly
means that the time scale of the change of this parameter is much larger than period T of
the cyclic coordinate), it turns into the adiabatic invariant. In the case of the pendulum,
the invariant is conserved when we slowly change the length of the pendulum. Clearly,
when l increases, ω must decrease in order for the invariant to remain constant. That
is true only if the time scale, with which the length of the pendulum changes, is much
longer than the period T of the cyclic coordinate. Should the time scale of the length
changes be too short, the system behaves in a completely different regime.

3.8.1 First adiabatic invariant

Charged particles moving in the background electric and magnetic field have coordi-
nate ϕ, which is obviously cyclic and connected to Larmor rotation, see (3.70). The
canonically conjugated momentum is an angular momentum p = mv⊥rL . Hence

J1 =

∮
pidqi =

2π∫

0

mv⊥rL dϕ = 2πv⊥
m2v⊥
q sgn qB

=
4πm

q sgn q
µ = const. (3.151)
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It basically proves what we have derived in the previous chapters: for small changes the
magnetic moment µ is an adiabatic invariant.

There are some important situations in which the magnetic moment is not invariant:

• Magnetic pumping : If the collision frequency is larger than the pump frequency, µ
is no longer conserved. In particular, collisions allow net heating by transferring
some of the perpendicular energy to parallel energy.

• Cyclotron heating : If B is oscillating at the cyclotron frequency, the condition
for adiabatic invariance is violated and heating is possible. In particular, the
induced electric field rotates in phase with some of the particles and continuously
accelerates them.

• Magnetic cusps: The magnetic field at the center of a cusp vanishes, so the cy-
clotron frequency is automatically smaller than the rate of any changes. Thus
the magnetic moment is not conserved and particles are scattered relatively easily
into the loss cone.

3.8.2 Second adiabatic invariant

Let us consider a system with two magnetic mirrors and the particles out of the loss cone,
thus cycling from one mirror to another. This motion is cyclic, thus this motion would
in the normal system have a motion integral I =

∮ b
a mv∥ds. In plasmas the motions

of particles are subjects of drifts, hence the absolute periodicity is violated. We would
assume that the motion integral becomes an adiabatic invariant when the effects of the
drifts are much smaller than the dominant motion of the system (reflection between two
mirrors).

We will derive an longitudinal invariant J , which is defined only between two con-
secutive reflections, hence

J2 =

b∫

a

v∥ds (3.152)

and we will show that J is invariant in the stationary magnetic field. Further, we will
generalise this case when ∂B

∂t is small. When the distance between the two mirrors
shortens, the reflecting particles gain kinetic energy, which is the basics of the Fermi
acceleration.

Let’s study the system of an asymmetrical magnetosphere, when due to the drifts the
particle occupies different geometries (“a different field line”). The particle drifts from
one field line to another, which has a different curvature Rk in time ∆t (see Fig. 3.10).
Then for small angles we have

δs

Rk
=
δs′

R′
k

. (3.153)

The fractional change of the trajectory computed by subtracting 1 from both sides of
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Figure 3.10: The scheme of the coordinate system used in the
derivation of the second adiabatic invariant.

Rk

Rk'

B
δs

δs'

(3.153) and dividing them by ∆t is

δs′ − δs

∆tδs
=
R′

k −Rk

∆tRk
= vgc ·

Rk

R2
k

=
1

δs

∆δs

∆t
=

1

δs

dδs

dt
, (3.154)

where we used the radial component of the curvature drift to estimate the speed of jump
between the field lines ∣∣∣∣

R′
k −Rk

∆t

∣∣∣∣ = vgc ·
Rk

Rk
. (3.155)

We studied the drift speed in the curved magnetic field earlier, thus we only apply
results from (3.50) here:

vgc =
1

2
sgn qv⊥rL

B ×∇B
B2

+
mv2∥

q

Rk ×B

R2
kB

2
. (3.156)

The second term does not have any component along Rk, thus we do not have to
consider it further. Hence

1

δs

dδs

dt
=

1

2

m

q

v2⊥
B3

(B ×∇B) · Rk

R2
k

, (3.157)

which represents the fractional change of δs from the particle’s point of view. Further,
we will investigate the change of v∥. Let’s use the total energy of the particle W ,

W =
1

2
mv2∥ +

1

2
mv2⊥ =

1

2
mv2∥ + µB =W∥ +W⊥. (3.158)

The parallel velocity is then v∥ =
√

2
m(W − µB) and its time derivative

dv∥

dt
=

1

2

1√
2
m(W − µB)

(
−µdB

dt

)
2

m
(3.159)

and the fractional change of v∥ is

dv∥
dt

v∥
= −1

2

µdB
dt

W − µB
= −µ

dB
dt

mv2∥
, (3.160)
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where we used (3.158) to express W − µB. The field B is stationary, but its derivative
(seen by the moving particle) is generally not vanishing due to the drift :

dB

dt
=

dB

dR

dR

dt
= vgc · ∇B =

mv2∥

q

Rk ×B

R2
kB

2
· ∇B. (3.161)

We insert this useful relation into (3.160) and have

dv∥
dt

v∥
= −µ

q

(Rk ×B) · ∇B
R2

kB
2

= −1

2

mv2⊥
Bq

(B ×∇B) ·Rk

R2
kB

2
. (3.162)

The goal is to evaluate the fractional change of v∥δs during the exchange of trajectory:

1

v∥δs

d(v∥δs)

dt
=

1

δs

dδs

dt
+

1

v∥

dv∥

dt
. (3.163)

The first term we already evaluated in (3.157) and the second in (3.162). They both
equal except for the sign, hence

1

v∥δs

d(v∥δs)

dt
= 0 (3.164)

and v∥δs remains constant when the particle exchanges the field line. This is not the

claim we wanted to prove, which was that J =
∫ b
a v∥δs is constant (as indicated in

Fig. 3.11). However, we may split this integral into three terms,

J2 =

∫ a′

a
v∥δs+

∫ b′

a′
v∥δs+

∫ b

b′
v∥δs, (3.165)

representing the different reflection points for the different field lines. When a and a′

are close and b and b′ are also close, then the contributions of the first and third terms
are negligible and J remains approximately invariant. The smallness of these boundary
contributions is emphasised by the fact that v∥ is small near the reflection points (where
the total velocity amplitude is dominated by the perpendicular component).

By replacing the local longitudinal velocity by its average ⟨v∥⟩ over the distance
between the two reflection points L, we have

J2 = ⟨v∥⟩L, (3.166)

which is invariant. When L decreases, ⟨v∥⟩ increases, which is the basics of the Fermi
acceleration. High-energetic particles of the cosmic radiation of the galactic origin were
mostly accelerated by this mechanism, e.g. by repeated reflections between the magnetic
field embedded in the interstellar gaseous clouds, which moved towards each other.

In an axially nonsymmetric magnetosphere – such as the magnetosphere of the Earth
– the gravitation drift drives the ring current, which drives the “jumping of the particles
between different field lines”. The second adiabatic invariant is conserved on both sides
of the magnetosphere.
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Figure 3.11: The scheme
of gyrating particles trapped
between two reflecting mag-
netic mirrors.

a b

3.8.3 Third adiabatic invariant

This adiabatic invariant is defined for an axisymmetrical magnetic field when the cur-
vature drift is also cyclical. Then the total magnetic flux enclosed by a drift surface

J3 = Φ =

∫
B · dS (3.167)

is invariant. It is associated with the periodic motion of mirror-trapped particles drifting
around the axis of the system. The particle moves on the surface which adjusts itself
to variations in the magnetic field so that the flux enclosed by this surface remains
constant.

When the waves in the Earth’s ionosphere (usually having long periods) are in
resonance with the drifting particles, the energy of the drift converts to the energy of
these waves. The drift is relatively slow, thus in practice, Φ is not conserved in real
systems.

3.9 van Allen radiation belts

We will apply what we have just learned to a realistic problem, which is the particle
trapping in the axially symmetric magnetosphere. This is the reason why there are
radiation (known as van Allen) belts in the Earth’s magnetosphere and also in the
magnetospheres of other planets. We do not aim to solve the full problem, we aim
more to show the basic principles using a rather simplistic approach. We will search for
allowed trajectories of the particles.

Let us assume the axially symmetric magnetic field with components

B = (BR(R, z), 0, Bz(R, z)) , (3.168)

where BR and Bz are the radial and vertical components of the magnetic field induction
vector. The Gauss law must be fulfilled also in this case, hence

∇ ·B = 0 =
1

R

∂

∂R
RBR +

∂Bz

∂z
. (3.169)
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Following the recipe exploited further in Section 4.4.2, such condition is fulfilled
when the radial and vertical components of the magnetic field are given (4.69) as

Bz =
1

R

∂F

∂R
and BR = − 1

R

∂F

∂z
. (3.170)

The function F is called the flux function and it can be explicitly computed for the
given configuration of the magnetic field. E.g., for a dipole (see Appendix C.1)

F = M R2

(R2 + z2)3/2
, (3.171)

where M is the magnetic moment of a dipole8. For now, we can take F as a given
function, by taking the spatial derivatives of which we obtain the magnetic induction
components. It may easily be shown that definition (3.170) fulfills the Gauss’s law.

Now, let us deal with the particle equation of motion in the cylindrical coordinates
and we will be interested in the azimuthal component of it:

(
m
dv

dt

)

φ

= q (vzBR − vRBz) = − q

R

(
vz
∂F

∂z
+ vR

∂F

∂R

)
= − q

R

dF

dt
, (3.172)

where we used vz = dz
dt and vR = dR

dt and assumed that ∂F
∂t = ∂F

∂φ = 0. Due to the

cylindrical symmetry, the remaining terms of the full time derivative dF
dt related to the

φ-component vanish.
Let us look at the coordinate system we have. We defined two linear coordinates R

(radial coordinate, distance from the axis) and z (height) and one angular (the azimuthal
angle) φ. The studied particle has a position vector r. Obviously, the unit vector which
is tangential to the azimuth φ at the given point is parallel to the cross-product of the
position vector r and the unit vector in the z-direction, hence

eφ ∝ ez × r. (3.173)

But what is its amplitude? We can easily determine it from the amplitude of the cross
product, which is

|z||r| sinϑ = R, (3.174)

where ϑ is an angle between ez and r (also termed as co-latitude). Altogether we have

Reφ = ez × r. (3.175)

Then
Rvφ = Reφ · v = (ez × r) · v. (3.176)

Now, we compute the time derivative of this expression. We have

d

dt
Rvφ = (ez × r) · dv

dt
+ (ez ×

dr

dt
) · v. (3.177)

8For instance, the dipole magnetic moment of the Earth is ME = 8× 1015 Tm3.
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The second term vanishes as dr
dt = v and the result of the cross product is perpendicular

to v. By using (3.175) we have

d

dt
Rvφ = Reφ · dv

dt
= R

(
dv

dt

)

φ

. (3.178)

Finally, let us investigate the expression

d

dt

(
Rvφ +

qF

m

)
= R

dvφ
dt

+
q

m

dF

dt
= 0, (3.179)

where we used (3.178) and (3.172). Hence

Rvφ +
qF

m
= I1 (3.180)

is a motion integral.
Another motion integral is the total kinetic energy (we assumed that no dissipation

takes place), which may be written in a simplistic form as

v2R + v2φ + v2z = v2 = I22 (3.181)

Certainly, v2φ ≤ v2, as vφ is only one component of v.
Then

R|vφ| ≤ |v|R →
∣∣∣∣I1 −

qF

m

∣∣∣∣ ≤ RI2. (3.182)

We will not solve this inequation explicitly but will rather point out some general
properties of it by drawing a graph (see Fig. 3.12). On the horizontal axis let us represent
the radial coordinate R, on the vertical axis then the value of the expression qF

m (R,ϑ),
where ϑ again represents the co-latitude (see Appendix C.2). The solutions for a given
combination of q, F , and m will show as the hyperbola-like curves for varying ϑ in the
canvas. The degenerate limiting ϑ = 0 curve coincides with the coordinate axes.

The remaining terms in the expression will create a sector on the canvas, the apex
of which will be at a coordinate (0, I1) and the opening angle will correspond to I2 (the
larger, the more is the sector opened). Particles with a given kinetic energy and the
value of I1 are now allowed to move in this diagram freely along their corresponding
qF
m -line for a given ϑ, but only in the limits determined by the sector.

This simplistic approach gave us some important physical predictions. Particles with
larger speeds are allowed to more within the larger range of radial distances. At lower
co-latitudes (hence near the poles) the particles are in general located nearer the surface
(lower R) and the extent of their allowed radial coordinate is lower (the belt is thinner)
than near the equator. These predictions are fully consistent with the observations of
the real van Allen radiation belts.
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R

I1

qF
m

ϑ↘ 0

ϑ

ϑ = π
2

Figure 3.12: A graphical solution of the trapped particles in the axisymmetrical magnetosphere.
In the shadowed regions, the particles are allowed due to the inequality (3.182). For a given ϑ,
the particle may move along the given field line. Hence the total allowed region is given by the
intersection of the two (denoted by the solid thick line). Such a region obviously depends on the
co-latitude and the energy of the particle.



3.9. VAN ALLEN RADIATION BELTS 78



Chapter 4

Plasma as fluid

In Section 1.5, we derived the moments of the Boltzmann equation by neglecting the
particle distribution function and by considering the physical parameters averaged over
the ensemble of the particles. Plasma may be treated the same way, however, we have to
bear in mind that the individual particles are charged and thus must follow an additional
set of physical laws – the Maxwell equations.

4.1 Double-fluid model in physics of plasmas

When we consider electrons and ions non-interacting or at least weakly interacting, we
may separate the particle distribution function to two terms, describing independently
electrons and ions. Hence we have two independent “fluids” in the plasma, the electron
fluid (described by ne, ue, pe,. . . ) and the ion fluid (fully described by ni, ui, pi,. . . ).
For each type of particles α, where α ∈ {e, i}, we have the equation of continuity, the
Euler equation, and the equation of state, hence

∂nα
∂t

+∇ · (nαuα) = 0 (4.1)

mαnα

[
∂uα

∂t
+ (uα ·∇)uα

]
= qαnα(E + uα ×B)−∇pα (4.2)

pα = Cα(mαnα)
γα , (4.3)

where γα is the ratio of specific heats and Cα is a constant. This set of equations must
be accompanied by the Maxwell equations

ε0∇ ·E = niqi + neqe (4.4)

∇×E = −∂B
∂t

(4.5)

∇ ·B = 0 (4.6)

1

µ0
∇×B = niqiui + neqeue + ε0

∂E

∂t
. (4.7)

79
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Note that on the general expression of the right-hand side of (4.4) for a mixture of
different charges α stands

∑
α nαqα. Similarly, the sum of the first two terms on the

right-hand side of (4.7) for a general mixture of charges turns into
∑

α nαqαuα. Also,
on the right-hand side of (4.5) additional force terms may be added, such as the action
of the gravity force mαnαg or others.

The above given set of equations represents all together 18 equations (by considering
the vector equations as a triplet) for 16 variables (for each electrons and ions we have
n, ux, uy, uz, and p and we must add components of the magnetic and electric fields).
The disharmony is only apparent. Equations (4.4) and (4.6) play the role of boundary
conditions and are not independent from (4.5) and (4.7). For instance, when we apply
the operator of divergence to (4.5), we have

∇ · (∇×E) = −∇ · ∂B
∂t

= − ∂

∂t
∇ ·B. (4.8)

The left-hand side is a vanishing vector identity, hence

∇ ·B = const, (4.9)

and our universe is set up so that this constant equals to zero. The physical meaning
of this boundary condition is that there are no magnetic charges.

The equation of state (4.3) requires some commentary. Note that when dropping
the index α, we define the mass density as ρ = mn. The polytropic equation of state in
the new variable reads

p = Cργ or
∇p
p

= γ
∇ρ
ρ
. (4.10)

The value of γ varies with the type of the process in question. E.g. for the isothermic
process, we have γ = 1. For the adiabatic process, γ = (N + 2)/N , where N is the
number of degrees of freedom. Note that γ = 5/3 for the adiabatic process of the ideal
gas.

4.1.1 Plasma approximation

In solving the problems using the fluid approximation, we often use the plasma approx-
imation. That essentially means that we neglect the possible concentration of charges
occurring on small scales, and consider large scales only. Due to the requirement on
the bulk neutrality of plasma, we must assume that the particle density of both fluids
equals, hence ne = ni = n. In the process of deriving useful relations, we then do not
use the Poisson equation (4.4), which would otherwise lead to a discrepancy, because in
detail, ∇ ·E = 0, which is not true due to the collective behaviour. We will show later
that the plasma approximation is valid only when scales larger than Debye shielding
length are considered.

4.2 Highly ionised plasmas

The need to capture the particle interactions on scales smaller than the Debye length
leads naturally to additional term in the Euler equation. Such term is termed collisional
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term, even though strictly speaking it is not the same as the collisional term in the
Boltzmann equation we derived earlier. The Euler equation for electrons then reads

mene
due

dt
= −ene(E + ue ×B)−∇pe + Pei. (4.11)

The term Pei represents the momentum change due to the collisions with ions. Due to
the momentum conservation law, it is clear that

Pei = −Pie. (4.12)

Heuristically, the collisional term may be written as

Pei = η︸︷︷︸
5○

e2︸︷︷︸
1○

ne︸︷︷︸
2○
ni (ui − ue)︸ ︷︷ ︸

3○︸ ︷︷ ︸
4○

∼ ηe2n2(ui − ue), (4.13)

where we may notice the construction of the expression from the following

1○ The interaction is coulombic; hence, proportional to the multiplication of charges
of both species.

2○ The rate of collisions is proportional to the electron flux.

3○ Relative speed of the fluids.

4○ Describes how often do the electrons meet ions.

5○ The scaling parameter (describing the efficiency of the collisions), it has a physical
meaning of the specific resistivity.

Alternatively,

Pei = men(ui − ue)νei, (4.14)

where νei is the collisional frequency, with which the electrons hit the ions. Such expres-
sion may also be viewed phenomenologically: the expression men(ui − ue) physically
means the momentum exchanged due to the collisions, which is “normalised” by the
collisional frequency (as the Euler equation evaluates the change of the momentum in
time). Note that the particle density n does not hold the indication of species as the
plasma approximation is assumed here. By comparing the two formulations of Pei we
obtain the expression for the collisional frequency as

νei =
ne2

me
η = ω2

pε0η, (4.15)

where ωp is a plasma frequency (to be defined in Section 5.4.1).

Let us estimate the specific resistivity η from a model of the electron squeezing
around the ion and hence losing some portion of its momentum. See Fig. 4.1. The
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Figure 4.1: The geometry to estimate the specific re-
sistivity

r0

interaction is driven by the electric force, hence the force is

F = − e2

4πε0r2
, (4.16)

where r is the distance between the ion (which is considered fixed in this coordinate
system) and the passing electron. We roughly estimate that the interaction takes the
total time ∆t, where

∆t =
r0
v
, (4.17)

where r0 is the impact parameter and v is the mutual speed of the electron and ion. This
approximation assumes that the interaction is most effective for the short distances, we
estimate the limit by r0. Here we assumed that the essential interaction occurs on
the scales of the impact parameter. During the interaction, the electron’s momentum
changes by

∆(mev) ∼ |F ∆t| = e2

4πε0r0v
. (4.18)

Let us consider that during the interaction, the electron loses all of its momentum,
hence ∆(mev) = mev. This is the case when the electron is scattered to the direction
perpendicular to the direction of the original motion.

∆(mev) = mev =
e2

4πε0r0v
, (4.19)

which may be used to express the corresponding value of the impact parameter r0. For
this special case of the perpendicular scattering, we will denote this special value of the
impact parameter as r90:

r90 =
e2

4πε0mev2
. (4.20)

Let’s define the effective cross-section σ of the interaction as

σ = πr290 =
e4

16πε20m
2
ev

4
. (4.21)
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Then the collisional frequency (how many collisions in a unit of time) may be expressed
as

νei = σnv =
ne4

16πε20m
2
ev

3
. (4.22)

If we further relate the typical speed of the electrons and their temperature by mev
2
e ∼

KBTe, we obtain for the specific resistivity

η =
νeime

ne2
=

e2

16πε20mev3
=

e2m
1/2
e

16πε20(KBTe)3/2
. (4.23)

So far we have considered only the perpendicular scattering. To account for all
impact parameters, we must integrate over all of them,

∫∞
0 1/r dr. Unfortunately, such

function diverges, and the workaround is to limit the integration by the lower and
upper bounds from the physical view. The lower bound is obviously the perpendicular
scattering. The upper bound is the Debye length, as on larger scales, the plasma is
neutral. Then we have

λD∫

r90

1

r
dr = [ln r]λD

r90
= ln

λD
r90

= lnΛ, (4.24)

where Λ is the coulombic logarithm. This brings a correction to what we have previously
derived, hence the full expression of the specific resistivity reads

η =
e2m

1/2
e

16πε20(KBTe)3/2
ln Λ. (4.25)

Note that

• η does not depend on density. The larger density of the charge carriers is balanced
by the higher rate of collisions.

• η ∝ T−3/2, hence for large temperatures the specific resistivity is very small. As a
consequence, if we want to heat the plasma via the Joule heating from the electric
current flowing through the plasma, the processes get very inefficient when large
temperatures are reached, hence one cannot obtain the temperatures necessary
for thermonuclear fusion using such energy pumping. The different mechanism
must be used.

• For KBTe ∼ 100 eV the plasma specific resistivity is 5× 10−7 Ωm, which is of the
same order as the resistivity of metals such as copper.

Also, note that
Pei = ηe2n2(ui − ue) = eneE. (4.26)

Then
E = ηen(ui − ue) = ηj, (4.27)

which is the Ohm’s law.
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4.3 Single-fluid model

Even a rougher approximation exists when we stop considering two charged species in
the plasma – a single-fluid approximation. The two species are electrons (having the
particle mass m) and ions (having massM). The governing equations of the single-fluid
approximation are obtained by linearly combining the equations for double-fluid approx-
imation. These equations are replenished with the collision terms Pei = ηe2n2(ui−ue),
where η is a specific resistivity, and an ad-hoc term of the gravity force. We further
neglect the convective derivative (u ·∇)u by assuming the speeds of fluids are generally
small and hence this is the quadratic term. This term is also negligible when velocity
does not change much along the streamlines, which is a reasonable approximation. We
further define the bulk density

ρ ≡ niM + nem ∼ n(M +m) ∼ nM, (4.28)

the bulk velocity

u ≡ 1

ρ
(niMui + nemue) ∼

n(Mui +mue)

n(M +m)
=
Mui +mue

M +m
, (4.29)

the bulk current density

j ≡ e(niui − neue) ∼ ne(ui − ue), (4.30)

and the bulk pressure

p = pi + pe. (4.31)

Let’s consider the sum of Euler equations for both fluids, where we ad-hoc added
the term of the acceleration by gravity:

Mn
∂ui

∂t
= en(E + ui ×B)−∇pi +Mng + Pie, (4.32)

mn
∂ue

∂t
= −en(E + ue ×B)−∇pe +mng + Pei (4.33)

by using the symmetry Pie = −Pei and definitions above we have

n(M+m)
∂

∂t

(
Mui +mue

M +m

)
= n

∂

∂t
(Mui+mue) = en(ui−ue)×B−∇p+n(M+m)g.

(4.34)
By using definitions of the bulk density and the bulk current density we have

ρ
∂u

∂t
= j ×B −∇p+ ρg, (4.35)

which is the equation of motion for single-fluid plasma. Note that in general j ∦ u
because the bulk velocity u is weighted by masses, whereas the current density j is
weighted by charges. In principle, discrepancies may appear.
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Let’s consider a different combination of the same equations. Let’s multiply (4.32)
by m and (4.33) by M

mMn
∂ui

∂t
= emn(E + ui ×B)−m∇pi +mMng +mPie, (4.36)

mMn
∂ue

∂t
= −eMn(E + ue ×B)−M∇pe +mMng +MPei. (4.37)

Now subtract the two. We have

nmM
∂

∂t
(ui − ue) = en(M +m)E + en(mui +Mue)×B−

−m∇pi +M∇pe − (M +m)Pei. (4.38)

Now ui − ue = j/(ne) may be expressed using the bulk electric current and

mui +Mue =Mui +mue +M(ue − ui) +m(ui − ue) =
ρ

n
u− (M −m)

j

ne
, (4.39)

and also
Pei = ηe2n2(ui − ue) = ηenj. (4.40)

By further dividing (4.38) by en(M +m) = eρ we have

E + u×B − ηj =
1

eρ

[
Mmn

e

∂

∂t

j

n
+ (M −m)j ×B +m∇pi −M∇pe

]
. (4.41)

For m/M → 0 and when

Mmn

e

∂

∂t

j

n
=MnB

m

eB

∂

∂t

j

n
=MnBω−1

c

∂

∂t

j

n
≪ (M −m)j ×B, (4.42)

which is fullfilled when the time variations of the current density are much slower than
the cyclotron frequency. In that case

1

ωc

d

dt

(
j

n

)
≪ j

n
(4.43)

and we obtain

E + u×B − ηj =
1

en
(j ×B −∇pe) , (4.44)

which is the generalised Ohm’s law. The first term on the right-hand side is the expres-
sion for Hall’s current. In various applications, the right-hand side is often completely
neglected.

Similarly (and we leave the derivation to the reader) one may obtain the continuity
equation for density and charge density ρe = e(ni − ne) for single-fluid plasma by
summing and subtracting the continuity equations for both fluids:

∂ρ

∂t
+∇ · ρu = 0 (4.45)
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and
∂ρe
∂t

+∇ · j = 0. (4.46)

Hence the full set of equations for a sigle-fluid plasma reads

ρ
∂u

∂t
= j ×B −∇p+ ρg, (4.47)

E + u×B = ηj, (4.48)

∂ρ

∂t
+∇ · ρu = 0, (4.49)

∂ρe
∂t

+∇ · j = 0. (4.50)

This system must be accompanied by Maxwell equations to fully describe the plasma in
equilibrium, where the definitions for ρe and j are simply used in Equations (4.4)-(4.7).
The single-fluid approximation is used usually when resistivity play a non-negligible
role in the plasma and is often used also in astrophysics. The system of single-fluid
equations is most often understood under the term magnetohydrodynamic equations or
MHD equations.

4.4 Approximations to plasma fluid

Additional approximations to plasma fluid approximation are used in some cases.

4.4.1 Force-free and ideal MHD

The force-free approximation is valid for systems, where locally the plasma does not
“feel” the Lorentz force, i.e.

fLorentz = ρeE + j ×B = 0. (4.51)

Note that the above given equation represents an “effective” of “bulk” Lorentz force
acting on both species in the mixture.

This approximation is also used in the case when the Lorentz force is negligible
compared to other considered forces. Another view to this approximation may also be
formulated in such a way that the electromagnetic field induced by the motion of plasma
fluid exactly and immediately cancels out the external forces.

For E small, the force-free approximation turns to

j ×B = 0. (4.52)

The current density is related to the curl of the magnetic induction via Maxwell equa-
tions by

∇×B = µj. (4.53)

Combining the two we have
(∇×B)×B = 0, (4.54)
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which indicates that the curl of the magnetic induction is parallel to the magnetic
induction, i.e.,

∇×B = αB. (4.55)

This approximation is usually referred to as linear force free. Note that the constant of
proportionality α may change with position in space.

The ideal MHD approximation is somewhat different. It uses the fact that in the
comoving frame the electric field disappears. I.e.

E′ = E + u×B = 0. (4.56)

By using the generalised Ohm’s law it turns out that the ideal MHD approximation
equals to the case when the plasma is ideally conductive, therefore when the resistivity
is zero. This may be immediately seen from

E′ = ηj, (4.57)

where the left-hand side is zero because of (4.56) and this relation may be valid in a
trivial case when j = 0 or when η = 0 (which represents an infinite conductivity).

The two approximations mentioned in this subsection are usable in the case when
the electromagnetic field is degenerated, i.e. when E ·B = 0. The two coincide when
j = ρeu.

Frozen field

The consequence of the ideal MHD approximation is something called frozen field. It is a
description of observed behaviour of highly-conductive plasmas, where a strong coupling
between the plasma and the field exists. It was found responsible for strengthening the
magnetic field in the stars or temporal changes of the Earth’s magnetosphere under the
influence of the varying solar wind.

Let us start from taking the curl of the Ampère’s law:

∇× (∇×B) = ∇∇ ·B −△B = ∇×
(
µ0j + µ0ε0

∂E

∂t

)
. (4.58)

The term ∇∇ ·B vanishes due to the Gauss’s law for magnetism. By using the ideal
MHD approximation (4.56), Eq. (4.57), and the definition of σ ≡ 1/η we have

σµ0∇× (E + u×B) + µ0∇× ∂E

∂t
= −△B. (4.59)

For σ → ∞ must ∇× (E + u×B) = 0 in order to △B be finite. By additionally
using the Farraday’s law we then have

−∂B
∂t

+∇× (u×B) = 0 → ∇× (u×B) =
∂B

∂t
. (4.60)

Let us note at this point that ∇× (E+u×B) = 0 does not imply E+u×B = 0.
A mathematical object having zero value does not necessarily have to have vanishing
derivatives!



4.4. APPROXIMATIONS TO PLASMA FLUID 88

Figure 4.2: Magnetic flux through a closed curve in
the frozen-field approximation.

B

dS

udt

dl

The frozen-field approximation may also be understood as a condition when the
magnetic flux through a closed curve bound to the plasma does not change with time.
Let us prove this statement. Let’s start by defining the system as in Fig. 4.2. By
zooming in it is obvious that the change of the surface vector element is given by a
cross-product of the plasma velocity and the elementary length along the closed curve,
i.e., d

dtS = u× dl.

We will now derive the change of the magnetic flux Ψ with time:

dΨ

dt
=

d

dt

∫
B · dS =

∫
B · dS

dt
+

∫
∂B

∂t
· dS. (4.61)

We apply the relation between the surface and length elements from above and after
using the cyclic exchange in a mixed product we have

∮

l
B · (u× dl) +

∫
∂B

∂t
· dS = −

∮

l
(u×B) · dl+

∫
∂B

∂t
· dS. (4.62)

We further use the Stokes mathematical theorem and obtain

−
∫

∇× (u×B) · dS +

∫
∂B

∂t
· dS = −

∫ [
∇× (u×B)− ∂B

∂t

]
· dS = 0, (4.63)

where we used (4.60). Q.E.D.

4.4.2 Axisymmetrical systems, stream functions

Another class of approximations comes with the symmetries and/or degenerations of
the system. Let us consider the axially symmetric stationary system represented in the
cylindrical coordinates (R,φ, z). I.e. ∂

∂φ = 0 and ∂
∂t = 0. The curl of E that has

components

∇×E =

(
1

R

∂Ez

∂φ
− ∂ER

∂z
,
∂ER

∂z
− ∂Ez

∂R
,
1

R

∂

∂R
REφ − 1

R

∂ER

∂φ

)
= 0. (4.64)

From the third component it turns out that Eφ = 0.
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By using the ideal MHD approximation, we further have

Eφ = −(u×B)φ = −uRBz + uzBR = 0, (4.65)

and therefore
uR
uz

=
BR

Bz
. (4.66)

Thus the poloidal components are bound with an unknown scalar function ξ

up = ξ(R, z)Bp, (4.67)

which is a consequence of the axial symmetry, stationarity, and the used ideal MHD
approximation. Such a result is therefore not valid generally!

Let us only remind that the poloidal component of a vector a⃗ is simply a combination
of the radial and height components, i.e., ap = aReR + azez.

Because B = ∇×A, where A is a magnetic vector-potential, we may write

Ψ(R, z) = RAφ, (4.68)

where Ψ is a scalar magnetic flux function. Then simply

BR = − 1

R

∂Ψ

∂z
and Bz =

1

R

∂Ψ

∂R
. (4.69)

By using the continuity equation

∂ρ

∂t
+∇ · (ρup) +

∂ρvφ
∂φ

= ∇ · (ρup) = 0, (4.70)

we have

∇ · (ρup) = ∇ · (ρξBp) = ∇ρξ ·Bp + ρξ∇ ·Bp = 0. (4.71)

The last term vanishes due to the Gauss’s law for magnetism. By decomposing the
divergence operator into the non-vanishing components and using (4.69)

∇ · (ρξBp) = ∇R(ρξ)BR +∇z(ρξ)Bz = − 1

R
∇R(ρξ)∇zΨ+

1

R
∇z(ρξ)∇RΨ = 0, (4.72)

we see that this is the φ component of an expression 1
R∇(ρξ) × ∇Ψ. Due to the

assumptions the arguments of the gradient operators do not depend on φ. The gradient
therefore has only the component perpendicular to both eR and ez non-trivial. That is
the φ-component, which also vanished as we proved in (4.72). Thus

∇(ρξ)×∇Ψ = 0. (4.73)

It may be interpretted as ∇(ρξ) ∥ ∇Ψ and therefore the scalar function ξ may be related
to Ψ as

4πρξ = F1(Ψ). (4.74)
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Function F1 is termed the stream function, which is obviously constant on a con-
stant surface of Ψ. Its particular mathematical expression may be determined from the
boundary conditions. The use of the stream function is the reduction of variables to be
solved for the given system as it introduces a bound between u and B.

Similarly, using the poloidal and azimuthal (toroidal) decomposition and equations
(4.67) and (4.69) we have

u×B = uφeφ ×Bp + up ×Bφeφ = uφeφ ×Bp + ξBp ×Bφeφ

= (uφ − ξBφ)(Bz −BR)ez = (uφ − ξBφ)
1

R

(
∂Ψ

∂R
− ∂Ψ

∂z

)
ez

=
uφ − ξBφ

R
∇Ψ. (4.75)

In a stationary frozen-field approximation we have

∇× (u×B) =
∂B

∂t
= 0, (4.76)

and therefore

∇×
(
uφ − ξBφ

R
∇Ψ

)
= ∇

(
uφ − ξBφ

R

)
×∇Ψ = 0, (4.77)

where we proceeded similarly to the previous case. Again, the surfaces of the argu-
ments of the gradient operators must coalign, and hence we may define a second stream
function as

uφ − ξBφ

R
= F2(Ψ). (4.78)

By taking the projection of the Euler equation to eφ, we can show that

Bφeφ · ∇(RBφ − F1Rvφ) = 0, (4.79)

and hence define the third stream function as

RBφ − F1(Ψ)Rvφ = F3(Ψ). (4.80)

And finally, by taking the projection of the Euler equation onto Bp, we obtain a
definition for a fourth stream function as

1

2
u2 +

∫

Ψ=const

dP

ρ
+Φ−RuφF3(Ψ) = F4(Ψ). (4.81)

Altogether the stream function provide a “technology” for seaking the solution of
the system in a given geometry.

4.5 Drifts in the plasma fluid

Let’s discuss the drifts in the plasma fluid.
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4.5.1 Drifts perpendicular to B

When investigating the drifts in the direction perpendicular to B, we solve the perpen-
dicular component of the Euler equation, which for collision-less plasma reads:

mn

(
∂u

∂t
+ u · ∇u

)
= qn(E + u×B)−∇p (4.82)

Let us consider systems, where the left-hand side is negligible to the right-hand side.1

Hence we solve a much simpler equation

0 = qn(E + u×B)−∇p (4.83)

by applying the vector multiplication by B:

0 = qn[E ×B + (u×B)×B]−∇p×B =

= qn(E ×B − uB2 +Bu ·B)−∇p×B. (4.84)

The perpendicular component of this equation is

qn(E ×B − u⊥B
2)−∇p×B = 0 (4.85)

and thus

u⊥ =
E ×B

B2
− ∇p×B

qnB2
= vE + vD. (4.86)

We found the expression for the perpendicular drift in the plasma fluid. The first
term resembles the already known E-B drift, the second term is new and represents the
diamagnetic drift vD. The direction of vD is perpendicular to ∇p, hence the assumption
of u · ∇u being negligible holds only if E = 0. The assumption further holds if ∇ϕ and
∇p are parallel, then u · ∇u is still zero for E = −∇ϕ. In the other cases the situation
is more complicated and the solution may involve the necessity to deal with the u · ∇u
term.

4.5.2 Drifts parallel to B

Now let’s look at the remaining component of the drifts in a plasma fluid. Let’s consider
the coordinate system so that the axis ez is parallel to the magnetic field. Then we
study the z-component of the equation of motion

mn

(
∂uz
∂t

+ (u · ∇)uz

)
= qnEz −

∂p

∂z
(4.87)

with equation of state in a form
∇p
p

= γ
∇n
n
, (4.88)

1To estimate this, let’s use the Fourier transform of Euler equation, for now blindly applying the rules
(5.11) to (5.13). By simply waving the hands we see that the left-hand side is proportional to iω + i 1

L
,

where ω is a mode frequency and L is a characteristic scale of spatial change, while the right-hand side
is proportional to iωc ∝ 1

rL
. Usually, ω ≪ ωc and rL ≪ L, hence the left-hand side is negligible.
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B
⊙⊙⊙

∇n

Figure 4.3: A scheme of the origin of the diamagnetic drift. In the “zooming” square one sees that
on the side with a larger density, the arrows pointing down are more abundant than on the opposite
side. Thus, on average, the motion downwards prevails which is represented by the drift.

where we further use γ = 1, because we will solve the equation only for electrons that are
fast and may be considered isothermic. Additional assumptions apply: (u · ∇)uz → 0,
uz homogeneous, and ∇p = KBT∇n. Then

mn
∂uz
∂t

= qnEz −KBT
∂n

∂z
. (4.89)

For electrons we have q = −e, m → 0, and T → Te. By using the Poisson equation
Ez = −∂ϕ/∂z we have

e
∂ϕ

∂z
=
KBTe
n

∂n

∂z
(4.90)

and hence
eϕ = KBTe lnn+ C (4.91)

and finally

n = n0 exp

[
eϕ

KBTe

]
, (4.92)

which is the Boltzmann relation. The Boltzmann relation describes the spatial distri-
bution of electrons around the random concentration of ions. In the local concentration
of ions, the pressure gradient pushes electrons away from this region. The consecutive
charge separation gives rise to the local electric field, which acts against the pressure
gradient. In the equilibrium, both the pressure and electrostatic forces are balanced.
The Boltzmann relation is a very useful relation when we further solve the system of
equations for ions. Due to the mass difference between the two species the spatial
distribution of electrons may be approximated by the Boltzmann relation.



Chapter 5

Waves in plasmas

5.1 Linear waves

It is not trivial to comprehensively describe solutions supporting waves in plasmas. We
will investigate a few examples only of linear waves. In practice, we will decompose the
variables describing both plasma and magnetic and electric fields into two components:
a background component (having index 0) and a fluctuating component (having index
1), e.g., ρ = ρ0 + ρ1. In (silently) applying this decomposition, we will assume that:

1. The background components automatically fulfill the full set of magnetohydrody-
namic equations. The background is the zeroth order of the smallness variable.

2. The fluctuating components are small compared to the background (e.g., ρ1/ρ0 ≪
1). When averaging the fluctuating component (both in space and/or time), the
averaged value is zero (e.g., ⟨ρ1⟩ = 0). Implicitly, we assume the same about both
temporal and spatial derivatives of the fluctuating component. The fluctuating
part is the first order of the smallness variable.

We will solve the set (or subset) of magnetohydrodynamic equations to the first order.
Let’s stop for a while and make this decomposition crystal clear forever. It might

get confusing especially in the case of velocity. When we computed moments of the
Boltzmann equation, we performed also a decomposition having a fluctuating part.
Let’s compare the two:

v = u+w, (5.1)

u = u0 + u1. (5.2)

These two are crucially different. While in Eq. (5.1) a particle velocity v is decomposed
into a mean (or bulk) velocity u and the component w fluctuating about this mean
value, where the amplitude of the fluctuations may be (and typically is) much larger
than the amplitude of the bulk motion, in Eq. (5.2) the bulk velocity u is decomposed
into the background fulfilling the MHD equations u0 and a small correction to this
background value. Hence u from Eq. (5.2) indeed equals to u from Eq. (5.1).

93
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5.2 Example: Acoustic waves in fluids

To illustrate the linearisation approach, let us derive the dispersion relation for waves
in a fluid, fully described by the Euler equation in the form

ρ

[
∂u

∂t
+ (u ·∇)u

]
= −∇p = −γp

ρ
∇ρ, (5.3)

where on the right-hand side we assumed the adiabatic equation of state pρ−γ = const,
and a continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (5.4)

We will assume the following:

Pressure waves in fluids

• Strictly hydrodynamical case (no fields)

• No viscosity

• No bulk motion of the background, u0 = 0

• The background is homogeneous

By introducing the fluctuating part to the velocity and density, i.e., u = u0 + u1,
p = p0 + p1, and ρ = ρ0 + ρ1, equations (5.3) and (5.4) take the form of

(ρ0 + ρ1)

{
∂u0

∂t
+
∂u1

∂t
+ [(u0 + u1) ·∇] (u0 + u1)

}
= −γ(p0 + p1)

(ρ0 + ρ1)
∇(ρ0 + ρ1) (5.5)

∂(ρ0 + ρ1)

∂t
+∇ · [(ρ0 + ρ1)(u0 + u1)] = 0. (5.6)

Now, let’s take the continuity equation (5.6) as an example. It can be explicitly
written as

1○
∂ρ0
∂t

+

2○
∂ρ1
∂t

+
3○

∇ · (ρ0u0) +
4○

ρ0∇ · u1 +
5○

u1 · ∇ρ0 +
6○

∇ · (ρ1u0)+
7○

∇ · (ρ1u1)= 0. (5.7)

Let’s discuss the terms in the above equation:

• Terms 1○ and 3○ automatically fulfill the continuity equation for the background
variables: ∂ρ0

∂t +∇ · (ρ0u0) = 0.

• Term 5○ is zero because we assumed homogeneous background, i.e. ∇ρ0 = 0.

• Term 6○ is zero because we assumed u0 = 0.
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• Term 7○ is a second order term, thus it can be neglected.

Thus only relation
∂ρ1
∂t

+ ρ0∇ · u1 = 0 (5.8)

remains. This is the linearised continuity equation.
Similarly1, we obtain the linearised Euler equation:

ρ0
∂u1

∂t
= −γ p0

ρ0
∇ρ1. (5.9)

Equations (5.8) and (5.9) need to be solved. We are looking for a solution supporting
waves, thus, we may search for a solution in a form

A1 = Ã1 exp [i(k · r − ωt)], (5.10)

where Ã1 is the Fourier image of A1 or the amplitude, k is a wave vector in the Fourier
space and ω is a frequency. There are two possibilities for how to see this approach:

1. We solve these equations in the Fourier space. At this step, a careful reader
should open the mathematical textbook and repeat all the assumptions of the
Fourier transform.

2. We view the solution as a superposition of modes, each mode2 is described by a
unique combination of k and ω. Thus we solve the equations for one general mode
and a complete solution is a superposition of all modes with various amplitudes.

Either way, the beauty of the formulation of the equations in the Fourier space is that the
differential operators turn into the multiplication. One can easily prove from Eq. (5.10)
that

∂•
∂t

→ −iω• (5.11)

∇• → ik• (5.12)

△• → −k2• (5.13)

Our goal is to find a dispersion relation, thus, a relation which couples k and ω.
Dispersion relation D(k, ω) = 0 fully describes the given mode of the wave. Equations
(5.8) and (5.9) written in the Fourier space take the following form:

−iωρ1 + iρ0k · u1 = 0, (5.14)

−iωρ0u1 + iγ
p0
ρ0

kρ1 = 0. (5.15)

1For clarity, let’s handle the fraction on the right-hand side explicitly:

p0 + p1
ρ0 + ρ1

=

p0+p1
ρ0

ρ0+ρ1
ρ0

=

p0
ρ0

+ p1
ρ0

1 + ρ1
ρ0

=
p0
ρ0

,

because p1
ρ0

and ρ1
ρ0

are negligible terms.
2A mode is defined either as any of the wave-like and/or oscillation-like plasma motions or as one

possible configuration of the travelling or steady wave. Both definitions are equivalent.
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For simplicity let’s define the coordinate system so that the wave propagates in the main
direction, thus, wave vector k may be replaced by its scalar equivalent wave number k.
Then by solving the equations above one obtains a dispersion relation

ω

k
=

√
γp0
ρ0

≡ cs, (5.16)

where cs is a speed of sound.
A few remarks to what we just obtained:

• The dispersion relation exists, thus, the waves propagate. The propagation is
fully described by the wave vector k. Possible combinations of the wave vector
and frequency of the mode are bound by the dispersion relation. The waves
propagate in a form of pressure fluctuations.

• The wavenumber of the wave is inversely proportional to its wavelength λ =
(2π)/k.

• The phase speed vφ is a speed with which places with the same phase propagate
through the medium. The phase speed is given by vφ = ω/k. In our case, vφ = cs.

• On the other hand, the group speed vg is a speed with which the modulation
information propagates. It also relates the wavenumber and the frequency of the
mode by vg = dω/dk. In our case, again, vg = cs and vg = vφ. As we will show
later, this does not have to always be the case. It can be illustrated in a very
simple example: we have one mode only with a constant amplitude in time. A
constant “beep” does not carry any information. Its dispersion relation reads:
ω = const. Thus its phase speed is not defined (it might be viewed as infinite
as well), but the group speed is zero. We just showed an additional important
property: phase speed does not have to be limited (again, it does not carry any
information), while the group speed is limited (from the top) by the speed of light
c.

• The term dispersion relation indicates that the wave disperses, changes the wave-
form during the propagation. That indeed is the case, when the wave is dispersive,
i.e., when the propagation phase speed depends on wave frequency or wave num-
ber. Then the amplitude spectrum of the wave packet changes as the packet
passes through the medium – individual frequencies exhibit various phase shifts.
Then the wave-packet propagation is not a simple translation parallel with the
direction of propagation but it is more complex and additionally to the movement
of the wave packet the packet itself changes its shape. Dispersive waves usually
have group speed different from the phase speed. Sound waves in fluids are non-
dispersive. A simplistic illustration of the dispersive and non-dispersive waves is
given in Fig. 5.1.
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• Note that the approach we will use is equivalent to approximation by the geo-
metrical optics a.k.a. ray approximation, which ignores the effects of the finite
wavelength. Such an approach is justified when the wavelength is much shorter
than the typical spatial scale of the changes in the medium. In the other case, the
effects may be observed, which are not captured by the ray approximation. Finite
wavelength effects are captured by the scattering theory, which are not easy to be
solved both analytically and numerically. Approximations to the scattering the-
ory, such as the Born approximation, capture some of the most important finite
wavelength effects quite well.

Let us see what happens when we relax an assumption of u0 = 0. Then the Fourier
image of the continuity equation will read:

−iωρ1 + iρ1k · u0 + iρ0k · u1 = 0, (5.17)

which may be written as

−iρ1(ω − k · u0) + iρ0k · u1 = 0. (5.18)

Hence by introducing ω′ = ω−k·u0 we change the equation to the previous case. Similar
operation may be done to the Euler equation3. Hence the final dispersion relation will
be

ω − k · u0 = kcs, (5.21)

and the motion of the background fluid with respect to the observer’s frame introduces
a Doppler shift of the frequencies.

5.3 Types of plasma waves

To study the waves in plasma, we will use the fluid approximation. It is fine enough to
capture all essential properties to investigate the possible propagation of waves but is
also simple enough to be able to obtain some analytical solutions. There is the whole
spectrum of waves propagating through the plasma, which may be decomposed into
several modes with different dispersion relations. We will study only a handful of the
possible modes, some of which may have important physical consequences.

Plasma waves are usually excited by means of instabilities (this is not surprising, e.g.
sound waves propagating through a convective envelope of Sun-like stars are excited by
the convective instability below the photosphere of the star) or they may be excited

3Due to u0 ̸= 0 we must keep the “convective derivative” term in the equation, leading to the
linearised form

ρ0
∂u1

∂t
+ ρ0(u0 ·∇u1) = −γ

p0
ρ0

∇ρ1, (5.19)

which has a Fourier form of
−iρ0(ω − k · u0)u1 + ikγ

p0
ρ0

ρ1 = 0, (5.20)

where a possible substitution ω′ = ω − k · u0 is immediately visible.
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Figure 5.1: Difference between dispersive and non-dispersive waves. In the case of the non-dispersive
waves, the time evolution of the waveform consists of the translation in space only. In the case of
the dispersive waves, various modes propagate with different phase speeds, hence the waveform is
not only translated but also corrugated.

artificially. The dispersion relation does not say anything about the excitation process.
Basic types of plasma waves can be distinguished by giving one of the two values to the
following three properties:

1. In the wave, either electrons or ions oscillate. Thus we have electron or ion wave.
Usually, when we solve for an electron wave, the ions are approximated as a non-
movable background, because ions are at least three orders of magnitude heavier
than electrons.

2. The wave can be longitudinal or electrostatic when k ∥ E1 or tranversal or elec-
tromagnetic, when k ⊥ E1, where E1 is a fluctuating component of the electric
field.

3. The wave is parallel when k ∥ B0 or perpendicular when k ⊥ B0, where B0 is a
background magnetic field.

Plasma waves we will discuss in the following Sections will always be distinguishable by
the three above described tags.

The approach we will take is that we will prescribe the expected geometry of the
wave (in terms of the type, direction of propagation and which of the components it
contains) and search for the solution using the linearised fluid and Maxwell equations.
If the solution in the form of a dispersion relation exists, the plasma supports this kind
of wave. Our solutions will not give the answer if this particular wave really gets excited
under given conditions and what is its amplitude (for this one would need to state the
initial or boundary conditions), not even saying anything about whether this particular
mode is dominant or completely marginal at given conditions.
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The linearisation approach explicitly states that we introduce some plasma back-
ground, which fulfills the fluid equations and remains unchanged by the wave propa-
gation. It is the perturbations in density, velocity, pressure, electric or magnetic field,
which oscillates and possibly propagates from place to place as a wave. We will see that
the type of the propagating wave usually depends on the direction with respect to the
background magnetic field.

Let’s make a simplified example, which we will in detail investigate in Section 5.6.3.
Let us consider a stationary and homogeneous plasma cloud in a background magnetic
field. Somewhere inside this cloud we shortly blick with a light-source, a bulb if you
want. In normal transparent neutral gas, such impulse would cause the spherical light-
wave to propagate from the point of initiation with a speed of light in all directions. In
plasma, it is more difficult, as the light waves are known to be variations of the electric
and magnetic field. In plasma, these small electric and magnetic fields, oscillating with
the wave, interact with the charged particles by displacing them slightly, which causes
the modification of the electric and magnetic field in the wave. The motion of particles
and the electric and magnetic fields are bound via the set of (linearised) fluid equations,
which in general depends on the direction to the background magnetic field. Hence
the waveform gets modified depending on the angle of the propagation with respect to
the background magnetic field. We will see that along the magnetic field two circularly
polarised modes propagating with different speeds appear, accompanied by incoherent
local oscillations of plasma. In the direction perpendicular to the magnetic field two
linearly polarised modes, again with different propagation speeds, appear. In a general
direction of propagation, we will find a combination of all five modes. Electromagnetic
waves do not cause the variations in plasma density, hence only the electric and magnetic
fields are affected and inherently also the motions of individual particles. Another kind
of impulse, such as a sudden local increase of plasma density, will excite another type
of waves, but not the complex of electromagnetic ones, only if such impulse is not
accompanied by some emission mechanism.

5.4 Electrostatic waves without background magnetic field

5.4.1 Plasma oscillations

The very basic oscillatory movement registered in plasmas takes the form of plasma
oscillations. Let’s derive the dispersion relation first. We search for a solution under
the following assumptions:

Plasma oscillations

• No background fields, i.e., E0 = B0 = 0, we do not consider induced perturbation
to the magnetic field, i.e., B1 = 0. Thus from the set of Maxwell equations, only
the Poisson equation must be retained

• No thermal motion, plasma is cold
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• Ions are fixed in space and have a uniform distribution

• Background density of ions and electrons is the same, i.e., ne0 = ni0 = n0

• Background is stationary and homogeneous, ue0 = 0

Thus we solve the following set of linearised equations:

mn0
∂ue1

∂t
= −en0E1, (5.22)

∂ne1
∂t

+∇ · [n0ue1] = 0, (5.23)

E1 = −∇ϕ1, (5.24)

ε0∇ ·E1 = −ene1. (5.25)

Now we express E1 from (5.24) and insert it into appropriate terms in (5.22) and
(5.25), and apply a divergence operator to (5.22) to obtain:

ε0△ϕ1 = ne1e, (5.26)

mn0
∂∇ · ue1

∂t
= en0△ϕ1, (5.27)

∂ne1
∂t

+ n0∇ · ue1 = 0. (5.28)

Now we express term △ϕ1 from (5.26) and insert it into (5.27). We do a simple
algebraic adjustment to (5.28) by leaving only ∇ ·ue1 on the left-hand side of equation:

mn0
∂∇ · ue1

∂t
=
e2n0
ε0

ne1, (5.29)

∇ · ue1 = − 1

n0

∂ne1
∂t

. (5.30)

By combining these two equations we finally obtain

−m∂2ne1
∂t2

=
e2n0
ε0

ne1. (5.31)

Now we take the Fourier transform of this equation, practically by applying rules (5.11)
and (5.12):

ω2ne1 =
e2n0
ε0m

ne1. (5.32)

Thus we obtained a dispersion relation for plasma oscillations
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ω2
p =

n0e
2

ε0m
. (5.33)

This result requires a little discussion

• The dispersion relation shows that there exist oscillations with this characteristic
plasma frequency ωp, but there is no wave propagating since there is no wave
vector k in the dispersion relation. The physical interpretation is the following:
electrons may be displaced from their equilibrium positions determined by station-
ary background ions by some random fluctuation. The induced electric field acts
as a restoring force to return them back to their original positions. As they move
back, they have some inertia and overshoot their equilibrium positions. They are
displaced again and the electric field again acts as a restoring force. This random
movement is periodic. The motion of individual electrons is independent, their
mutual phase shifts are random. In fact, the idea of individual electrons is very
simplifying – we should rather speak about metaparticles, “bunch of electrons”.

• The phase speed of this motion, vφ = ω/k, is not defined. This is not surprising in
the frame that we just said. Since the mutual phase shifts of individual electrons
are random, a formal phase speed takes any value.

• The group speed, vg = dω/dk = 0. No signal propagates.

• The plasma frequency is essentially the function of the background density only.

• Despite the assumption that both the ions and electrons are cold, this condition is
not realistic. It is enough to assume that the temperature of electrons is larger than
the temperature of ions and we further assume that electrons are isothermal (that
is that Te is uniform). Debye length relates to plasma frequency as λ2D = ε0KBTe

n0e2
=

KBTe

m
1
ω2
p

∼ 1
2v

2
T

1
ω2
p
, where we approximated the thermal speed vT ∼

√
2KBTe

m .

Obviously, the fluctuations induced by plasma oscillations are shielded on the
length scales comparable to the Debye length, thus, plasma oscillations do not
induce any macroscopic charge.

5.4.2 Electron plasma wave

In the previous section, we showed that plasma supports the oscillatory motion, however,
we did not derive the dispersion relation of the wave. We need to keep the additional
physical effects. The thermal motion may cause the oscillations to propagate.

Longitudinal electron wave
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• No background fields, i.e., E0 = B0 = 0, we do not consider induced perturbation
to the magnetic field, i.e., B1 = 0. Thus from the set of Maxwell equations, only
the Poisson equation must be retained

• Ions are cold, electrons are subjects of thermal motion

• Ions are fixed in space and have a uniform distribution

• Background density of ions and electrons is the same, i.e., ne0 = ni0 = n0

• Background is stationary and homogeneous, ue0 = 0

To include the effect of the thermal motion, we need to keep the pressure term in
the equation of motion. The gradient of pressure is coupled with the thermal motion
through the equation of state

∇pe = ∇(3KBTene) = 3KBTe∇(n0 + ne1), (5.34)

where number 3 indicates that there is only one degree of freedom, thus, we (silently) as-
sume the propagation in one direction only. The modified system of linearised equations
to be solved then reads:

mn0
∂ue1

∂t
= −en0E1 − 3KBTe∇ne1, (5.35)

∂ne1
∂t

+ n0∇ · ue1 = 0, (5.36)

E1 = −∇ϕ1, (5.37)

ε0∇ ·E1 = −ene1. (5.38)

The sequence of algebraic steps performed is identical to those in Section 5.4.1, thus we
state only the final step here

−m∂2ne1
∂t2

=
e2n0
ε0

ne1 − 3KBTe△ne1. (5.39)

By taking the Fourier transform we obtain

ω2ne1 − ω2
pne1 − 3k2

KBTe
m

ne1 = 0 (5.40)

and finally a dispersion relation for longitudinal electron waves in plasmas

ω2 = ω2
p +

3

2
k2v2T, (5.41)
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where vT =
√

2KBTe

m is the thermal speed of electrons.

The dispersion relation seemingly differs only slightly from the dispersion relation
for electron oscillations, however, it implies qualitatively different properties:

• This relation describes a propagating wave (it contains wave vector k). It propa-
gates only for frequencies larger than the plasma frequency, for frequencies smaller,
the resulting wave vector takes imaginary values, thus the spatial part causes the
exponential in (5.10) to decay. Excited waves with frequencies smaller than plasma
frequency are rapidly attenuated. The wave propagates only in plasmas, the dis-
persion relation degenerates to ω = 0 in a vacuum.

• The phase speed is given by vφ =

√
ω2
p+3/2k2v2T

k . It depends on the wavenumber,
thus the waves are dispersive (different modes travel with a different phase speed).

• The group speed vg = 3
2
v2Tk
ω = 3

2
v2Tk√

ω2
p+3/2k2v2T

is not zero, thus the waves are able

to carry information. Asymptotically for large k, lim
k→∞

vg = 3
2 lim
k→∞

v2Tk√
ω2
p+3/2k2v2T

∼
3
2

v2Tk√
3/2k2v2T

=
√

3
2vT, the waves propagate essentially with the thermal speed.

We solved the dispersion relation for perturbation in density of electrons ne1. The
definition of the Fourier transform (5.10) allows to introduce a phase shift, so that the
variable fulfill the system of equations. Let’s assume that the full solution for ne1 has a
form of

ne1 = ne1 cos (k · r − ωt) (5.42)

and we allow for a phase shift δE for E1:

E1 = E1 cos (k · r − ωt+ δE). (5.43)

Both variables E1 and ne1 are coupled via Poisson equation ε0∇·E1 = −ene1. Thus

−ε0k ·E1 sin (k · r − ωt+ δE) = −ene1 cos (k · r − ωt). (5.44)

By expressing the left-hand side we obtain

sin (k · r − ωt) cos δE + cos (k · r − ωt) sin δE =
e

ε0

ne1

E1 · k
cos (k · r − ωt). (5.45)

This equation has a solution when we take for example δE = π
2 .

The perturbation to electron density and the electric field induced by the wave are
shifted in phase by a quarter of the period. How about the direction of the vector
variables?

The Fourier image of the Lorentz force is

−iωmue1 = e(E1 + ue1 ×B0). (5.46)
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Since in our case B0 = 0, the relation simplifies to

ue1 = − e

ω
E1, (5.47)

thus ue1 ∥ E1. Similarly Farraday’s law written in the Fourier space is

k ×E1 = ωB1, (5.48)

but B1 = 0, hence k ∥ E1. The waves are longitudinal.
This result may also simply be obtained by application of the curl operator to a

Poisson equation E1 = −∇ϕ1 and using the vector identity ∇×∇ϕ1 ≡ 0.

5.4.3 Ion waves

When it comes to ion waves, the situation becomes more complicated, since we can’t
consider ions an immovable background anymore. In section 5.2 we derived the dis-
persion relation for the acoustic waves in the non-magnetised neutral fluid. Will the
solution change, when the fluid is composed of charged particles? We search for the
wave, assuming:

Ion acoustic wave

• No background fields, i.e., E0 = B0 = 0, we do not consider induced perturbation
to the magnetic field, i.e., B1 = 0. Thus from the set of Maxwell equations only
the Poisson equation must be retained

• Both ions and electrons are subjects of thermal motion, their temperatures may
be different

• Background density of ions and electrons is the same, i.e., ne0 = ni0 = n0

• Background is stationary and homogeneous, ue0 = ui0 = 0

Then we solve a system of linearised equations

mn0
∂ue1

∂t
= −en0E1 − 3KBTe∇ne1, (5.49)

∂ne1
∂t

+ n0∇ · ue1 = 0, (5.50)

Mn0
∂ui1

∂t
= en0E1 − 3KBTi∇ni1, (5.51)

∂ni1
∂t

+ n0∇ · ui1 = 0, (5.52)

E1 = −∇ϕ1, (5.53)

ε0∇ ·E1 = e(ni1 − ne1). (5.54)
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Ions are much heavier than electrons, thus, we may assume that electrons will simply
follow the ions and organize themselves so that they shield possible charge concentra-
tions. Therefore, the perturbation to the electron density ne1 may be estimated by the
Boltzmann relation (4.92), thus

ne1 = ne − ne0 = n0

(
exp

eϕ1
KBTe

− 1

)
∼ n0

eϕ1
KBTe

(5.55)

and we may consider (5.49) and (5.50) solved.
Now we take E1 from (5.53), insert it into (5.51) and use (5.55) in (5.54). Addition-

ally, we apply a divergence operator to (5.51). We have

Mn0
∂∇ · ui1

∂t
= −en0△ϕ1 − 3KBTi△ni1, (5.56)

∂ni1
∂t

+ n0∇ · ui1 = 0, (5.57)

−ε0△ϕ1 = eni1 − en0
eϕ1
KBTe

. (5.58)

Now we express ∇ · ui1 from (5.57), insert into (5.56) and take a Fourier transform of
the two remaining equations. We have

ω2Mni1 = en0k
2ϕ1 + 3KBTik

2ni1, (5.59)

ε0k
2ϕ1 = eni1 − e2n0

ϕ1
KBTe

. (5.60)

Finally, we take ϕ1 from (5.60), insert into (5.59) and solve for ni1 to get

ω2 =
e2n0k

2

M
(
ε0k2 +

e2n0
KBTe

) +
3KBTik

2

M
. (5.61)

Let Ωp =
√

e2n0
Mε0

be an ion plasma frequency. If we remind Debye length λD =
√

ε0KBTe

n0e2

and ion thermal speed vTi =
√

2KBTi
M , we finally obtain a dispersion relation of ion

acoustic waves

ω2 =
Ω2
pλ

2
Dk

2

λ2Dk
2 + 1

+
3

2
v2Tik

2. (5.62)

For further discussion, let’s take one more approximation, the plasma approxima-
tion. In practice we focus to large-scale effects, thus we set kλD ≪ 1. That is essentially
equivalent of setting ni = ne.

4 Under this approximation, the dispersion relation sim-
plifies to:

ω2 = k2
(
KBTe
M

+ 3
KBTi
M

)
. (5.63)

4Note that by assuming the plasma approximation, we consider the bulk densities of ions and elec-
trons to be equal. This does not imply either ni1 = ne1 or ni0 = ne0!
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k

ω

k

ω

ωp

Ωp

√
3
2vT cs

Figure 5.2: Asymptotic solutions for longitudinal electron and ion waves

• Phase speed vφ =
√

KBTe+3KBTi
M ≡ cs is a speed of sound in plasma. Under the

plasma approximation, these waves are not dispersive. Dispersivity shows up as
the effect of Debye shielding, which is mode-dependent.

• Group speed equals to the phase speed, thus vg = vφ = cs. Ion waves are waves
with a constant speed of propagation.

• In laboratory plasmas, Ti ≪ Te, thus cs ∼
√

KBTe

M . The propagation speed is

essentially set by the mass of ions and temperature of electrons.

• The waves are longitudinal. We keep the proof to the reader.

• The ion acoustic wave exists only if the thermal motion of at least electrons is
possible. Electrons are pulled by ions to balance the charge concentrations, hence
vg = vφ. However, the shielding is not perfect, there exist microscopic accumula-
tions of ions, which propagate as the wave by through a E1 field.

• By assuming that Ti ≪ Te, the asymptotic dispersion relations read: ω = 0 for
k → 0 and ω = Ωp for k → ∞. The asymptotic solution for small scales (large k)
is fundamentally different from longitudinal electron waves, as also illustrated in
Fig. 5.2.

5.5 Electrostatic waves in background magnetic field

5.5.1 Electron waves

Electron electrostatic perpendicual waves

• Background magnetic field, no background electric field, i.e., B0 ̸= 0, E0 = 0
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z

x

y

B0

k‖E1

α
Figure 5.3: The coordinate system used in the derivation of the electrostatic
electron waves in the presence of the background magnetic field.

• Ions stationary, thermal motion of electrons is being neglected

• Background density of ions and electrons is the same, i.e., ne0 = ni0 = n0

• Background is stationary and homogeneous, ue0 = 0

• k ∥ E1

Let’s write the Fourier images of fluid equations for electrons:

−iωmue1 = −e(E1 + ue1 ×B0), (5.64)

−iωne1 + in0k · ue1 = 0, (5.65)

ik ·E1 = − e

ε0
ne1, (5.66)

We express E1 from (5.64) and combine together (5.65) and (5.66) through ne1.

E1 =
iωm

e
ue1 − ue1 ×B0, (5.67)

k ·E1 =
ien0
ε0ω

k · ue1. (5.68)

Since we are considering longitudinal waves, k ∥ E1, hence k ·E1 = kE1. Thus equation
(5.68) allows to express the amplitude E1 = |E1| of electric field:

E1 =
ien0
ε0ωk

k · ue1. (5.69)

Let us consider the Cartesian coordinate system (Fig. 5.3), so that ez ∥ B0 and
E1 lies in the x − z plane. Hence B0 = (0, 0, B0) and E1 = (E1 sinα, 0, E1 cosα), and
similarly k = (k sinα, 0, k cosα), where α is the angle between B0 and k. We may then
write (5.67) in components




E1 sinα
0

E1 cosα


 =

ien0
ε0ω

(kue1,x sinα+ kue1,z cosα)




sinα
0

cosα


 = (5.70)

=
iωm

e




ue1,x
ue1,y
ue1,z


−B0




ue1,y
−ue1,x

0


 . (5.71)
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Then using (5.69), multiplying the whole equation by 1
i

e
ωm and using ω2

p = e2n0
ε0m

and

ωc =
eB
m , and reorganising everything to the left-hand side of the equation we have




ue1,x
ue1,y
ue1,z


−

ω2
p

ω2
(ue1,x sinα+ ue1,z cosα)




sinα
0

cosα


+ i

ωc

ω




ue1,y
−ue1,x

0


 = 0. (5.72)

Such equation may be written as

Mu · ue1 = 0, (5.73)

with matrix Mu being

Mu =




1− ω2
p

ω2 sin
2 α iωc

ω −ω2
p

ω2 sinα cosα
−iωc

ω 1 0

−ω2
p

ω2 sinα cosα 0 1− ω2
p

ω2 cos
2 α


 (5.74)

Nontrivial solution of equation (5.73) exists only if detMu = 0. Let’s evaluate detMu

using the Laplace expansion using the third row:

detMu = −
ω4
p

ω4
sin2 α cos2 α+

(
1−

ω2
p

ω2
cos2 α

)(
1−

ω2
p

ω2
sin2 α− ω2

c

ω2

)
= 0 , (5.75)

which is the dispersion relation for electrostatic waves in the presence of the background
magnetic field. Note that according to this dispersion relation no wave propagates, only
oscillations appear in plasma.

Let’s discuss two extreme cases. For α = 0 hence for oscillatory motions along the
magnetic field, we have (

1−
ω2
p

ω2

)(
1− ω2

c

ω2

)
= 0, (5.76)

which has two physical solutions

ω2 = ω2
p, and ω2 = ω2

c . (5.77)

Therefore, in the direction of the magnetic field, we have ordinary plasma oscillations
and the Larmor rotation.

For α = π/2, i.e., the oscillatory motions perpendicular to the background magnetic
field we have

1−
ω2
p

ω2
− ω2

c

ω2
= 0, (5.78)

which may be written as
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ω2 = ω2
p + ω2

c ≡ ω2
h. (5.79)

The symbol ωh indicates the upper hybrid frequency, the only possible frequency for
electron oscillations perpendicular to B0.

5.5.2 Ion waves

Ion electrostatic perpendicular waves

• Background magnetic field, no background electric field, i.e., B0 ̸= 0, E0 = 0

• Electrons are subject of thermal motion if they are allowed to, ions are cold

• Background density of ions and electrons is the same, i.e., ne0 = ni0 = n0

• Background is stationary and homogeneous, ue0 = ui0 = 0

• k ∥ E1

In the case of the ion waves perpendicular to the background magnetic field, we need to
strictly distinguish the two cases: when the waves are nearly perpendicular, and when
they are strictly perpendicular (Fig. 5.4). The difference is fundamental. In the case
of the nearly perpendicular configuration, there is some, however small, component of
the background magnetic field parallel to the wave vector. It is important since in this
approximation the electrons follow ions and in such case, they are still able to shield the
concentrations of charges via the mechanism of Debye shielding. They are free to move
along the magnetic field lines and the shielding is effective. In the case of a strictly
perpendicular magnetic field, there is no option for electrons to shield anymore, since
they can’t move around. Let’s investigate the two cases separately.

k nearly perpendicular to B0

In this case we consider the effect of the Debye shielding and thus we can use the
Boltzmann relation as a solution to the problem of electrons. We further solve the
Euler equation for ions having the form of

−iωMui1 = −eikϕ1 + eui1 ×B0 (5.80)

in the Fourier space. In components we have (again, assuming the Cartesian coordinate
system, where k = kex and B0 = B0ez)

−iωMui1,x = −eikϕ1 + eui1,yB0, (5.81)

−iωMui1,y = −eui1,xB0, (5.82)
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which gives the x-component of the perturbed velocity

ui1,x =
ekϕ1
ωM

(
1− Ω2

c

ω2

)−1

. (5.83)

The continuity equation gives as usually

ni1 = n0
k

ω
ui1,x, (5.84)

and the electron density perturbation is solved by the Boltzmann relation

ne1 = n0
eϕ1
KBTe

. (5.85)

By assuming the plasma approximation ni = ne, we have ni1 = ne1 and hence

ui1,x =
ωeϕ1
KBTek

, (5.86)

which may be compared to (5.83) to obtain the dispersion relation

ω2 − Ω2
c =

KBTe
M

k2. (5.87)

Let us remind that the definition of the speed of sound in the plasma reads

c2s =

(
KBTe
M

+
3KBTi
M

)
(5.88)

which has a simpler form due to the assumption of Ti → 0 (or equivalently, Ti ≪ Te).
Hence the dispersion relation (5.87) may be rewritten in a form

ω2 = Ω2
c + k2c2s . (5.89)

This case is possible only if the limiting angle θ = π
2 − α, where α is the angle

between k and B0, is larger than the ratio of ion and electron speed in the direction
of B0, hence roughly for θ > (m/M)1/2. In this case, the electrons have kinetic energy
(from the thermal motion) large enough to chase the ions and also move around them
to shield the originating concentrations of charges. For angles smaller when electrons
do not have thermal speed large enough to shield the ion, we need to use a different
formalism.
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B0

k

B0
kα
Θ

Figure 5.4: Comparison of the cases with k strictly
(top) and nearly (bottom) perpendicular to B0. The
two-headed arrows indicate the possible motions of the
electrons, which are allowed to move only along the
magnetic field lines. In the first case of an assument
strictly perpendicular propagation, they are not able
to shield, because their allowed motion does not have
a component in the direction of the assument wave
propagation.

k ⊥ B0

For k exactly perpendicular to B0 there is no component of k parallel to B0, thus
electrons are not allowed to move along the B0 and thus they cannot keep the neutrality.
Hence we must solve fluid equations for both electrons and ions. The system of equations
is closed by using the plasma approximation. Hence we have simply used (5.83) for
describing the motions of ions in the direction of the wave vector, and equivalently
construct the corresponding equation for electrons just by replacing e→ −e and M →
m. Thus

ue1,x = −ekϕ1
ωm

(
1− ω2

c

ω2

)−1

. (5.90)

Similarly for the continuity equation,

ni1 = n0
k

ω
ui1,x, (5.91)

ne1 = n0
k

ω
ue1,x. (5.92)

By applying the plasma approximation approach we have ne1 = ni1 and hence
ue1,x = ui1,x. Thus

M

(
1− Ω2

c

ω2

)
= −m

(
1− ω2

c

ω2

)
, (5.93)

and further

ω2(M +m) = mω2
c +MΩ2

c = e2B2
0

(
1

m
+

1

M

)
= e2B2

0

(
m+M

mM

)
(5.94)

and thus

ω2 =
eB0

m

eB0

M
= ωcΩc ≡ ω2

d. (5.95)

In this case, the oscillations are allowed to have the only one possible frequency, the
lower hybrid frequency.
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5.6 Electromagnetic waves

When discussing the electromagnetic waves, we automatically assume that the resulting
solution will fulfill the assumption k ⊥ E1. This assumption should always be verified
at the end. In this text, we will keep the verification to the reader. Since they are
electromagnetic, we cannot neglect the magnetic component of the wave, thus B1 ̸= 0.

5.6.1 In vacuum: Light waves

Electromagnetic waves in vacuum degenerate to light waves. Thus we need only the set
of Maxwell equations.

Electromagnetic waves in vacuum

• No background magnetic or electric field, i.e., B0 = E0 = 0

• No plasma, thus ne = ni = n0 = 0, ue = ui = 0

• k ⊥ E1

∇×E1 = −∂B1

∂t
, (5.96)

1

µ0
∇×B1 = ε0

∂E1

∂t
, (5.97)

∇ ·B1 = 0. (5.98)

Now we take a time derivative of (5.96) and apply the curl operator to (5.97). We have

∇× ∂E1

∂t
= −∂

2B1

∂t2
, (5.99)

1

µ0ε0
∇×∇×B1 = ∇× ∂E1

∂t
, (5.100)

∇ ·B1 = 0. (5.101)

Both (5.99) and (5.100) contain the term∇× ∂E1
∂t . Using this term we combine these two

equations and take a Fourier transform of the system of the remaining two equations.
We have

−c2k × (k ×B1) = ω2B1, (5.102)

k ·B1 = 0, (5.103)

where we used the definition of the speed of light c =
√
(µ0ε0)−1. The double vector

multiplication may be written using two terms. We have

−c2
[
(k ·B1)k − k2B1

]
= ω2B1, (5.104)

k ·B1 = 0. (5.105)
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Now we finally use (5.105) in (5.104) and have

c2k2B1 = ω2B1, (5.106)

which simplifies to

ω2 = c2k2. (5.107)

This is the dispersion relation for electromagnetic waves in vacuum, describing the
propagation of light. Obviously, the light waves are non-dispersive and both phase and
group speeds equal to the speed of light in vacuum.

5.6.2 Electromagnetic waves in plasma

In plasma, the dispersion relation for electromagnetic waves gets modified due to the
charged particles.

Electromagnetic waves in plasma

• No background magnetic or electric field, i.e., B0 = E0 = 0

• Background stationary and homogeneous

• We expect large frequencies (ω ≫ Ωp), thus heavy ions remain stationary, only
electrons respond

• Both ions and electrons are cold (no thermal motion)

• k ⊥ E1

We proceed similarly to the case of electromagnetic waves in vacuum, we only need
to retain the electric current j1 in the Ampére’s law.

∇×E1 = −∂B1

∂t
, (5.108)

1

µ0
∇×B1 = ε0

∂E1

∂t
+ j1. (5.109)

Similarly to the previous section, we take a time derivative of (5.109) and apply a curl
operator to (5.108) and combine the two using the term ∇ × ∂B1

∂t , which is contained
in both equations. We have

∇×∇×E1 = − 1

c2
∂2E1

∂t2
− 1

ε0c2
∂j1
∂t

. (5.110)
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Figure 5.5: Dispersion diagram of electromagnetic
waves in plasma.

k

ω

ωp

c

Again, we take a Fourier transform of the above given equation and split the double
vector multiplication into two terms:

−(k ·E1)k + k2E1 =
iω

ε0c2
j1 +

ω2

c2
E1. (5.111)

From the beginning, we search for the dispersion relation of electromagnetic waves, thus
we limit ourselves to the case when k ⊥ E1, hence k ·E1 = 0. Thus (5.111) simplifies
to

(ω2 − c2k2)E1 = − iω

ε0
j1. (5.112)

In the solution, we expect frequencies much larger than ion plasma frequency, thus
the perturbed component of the electric current is composed of electrons only, ions are
considered as fixed in space in this approximation. Thus

j1 = −n0eue1. (5.113)

The fluctuating component of electron velocity ue1 may be obtained from Euler equation
for electrons, which for cold plasma with no background magnetic field simplifies to

m
∂ue1

∂t
= −eE1. (5.114)

Hence, the current density j1 is

j1 = −n0e
2

iωm
E1, (5.115)

where we expressed the Euler equation for electrons in the Fourier space. Now we
continue to modify (5.112):

(ω2 − c2k2)E1 =
iω

ε0

n0e
2

iωm
E1 =

n0e
2

ε0m
E1 = ω2

pE1. (5.116)

Hence the dispersion relation for electromagnetic waves in plasma reads
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Figure 5.6: The scheme of the influence of cut-off frequency on the measured spectrum.

ω2 = ω2
p + c2k2. (5.117)

Let’s make a few comments

• The dispersion diagram is displayed in Fig. 5.5.

• Phase velocity: v2φ =
(
ω
k

)2
= c2 +

ω2
p

k2
> c2. Phase velocity of these waves is larger

than the speed of light. However, it is the phase velocity, thus it does not carry
any signal, and the principles of the special theory of relativity are not violated.

• The dispersion relation describes propagating waves that are for large k or in the
high-frequency regime only weakly dispersive.

• Group velocity: vg = dω/dk = 2c2k

2
√

ω2
p+c2k2

= c2

vφ
< c for vφ > c. The group speed

is smaller than the speed of light.

• The waves propagate only for large frequencies, when ω > ωp. The electron plasma
frequency ωp serves as a cut-off frequency. For frequencies smaller than ωp the
waves do not propagate (the wave vector k is imaginary). Then we have ck =

(ω2−ω2
p)

1/2 = i
√
ω2
p − ω2. Taking the spatial part of the Fourier transform (5.10),

we find the physical variables to vary as exp ik · r ∼ exp ikx = exp

[
−x

√
ω2
p−ω2

c

]
=

exp
[
−x

δ

]
, where δ = c√

ω2
p−ω2

is the attenuation length.

The electromagnetic waves propagating through plasma may serve as a primitive mean
to estimate the plasma density. The process is illustrated in Fig. 5.6. From measuring
the spectrum we find the cut-off frequency, which depends on the plasma density n0
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Figure 5.7: The radio
trasmission from the space-
craft returning to the Earth
is blocked by surrounding
plasma, when the spacecraft
undergoes the atmospheric
breaking maneuvre. The
breaking heats up and
ionises the air in the close
vicinity, thereby introducing
a plasma-frequency cut-off
to the radio communication.

only. This is being used in astrophysics for example in estimating the plasma density of
the solar atmosphere. Imagine that we have an ionised plasma cloud hurled during the
solar flare by the magnetic reconnection, which rises in the atmosphere, and acts as a
source for different kinds of plasma waves, including the electromagnetic ones, usually
in the band of radio waves. As the cloud rises, the density of ambient plasma decreases,
therefore, also the cut-off frequency decreases and thus waves at lower frequencies are
allowed to escape the region and propagate toward the observer. By measuring the
cut-off frequency as a function of time and estimating the rising speed of the plasma
blob, we perform the density scanning of the solar atmosphere. The spacecraft returning
from space to Earth are unable to communicate directly with the control for about three
minutes during the atmospheric breaking maneuvre (Fig. 5.7)

(Add a story of measuring the density of the interstellar matter from Voyager 1,
must confirm what kind of waves were involved and perform the calculation)

5.6.3 Complex of electromagnetic waves in presence of B0

Electromagnetic waves in plasmas interact mostly with electrons, the heavy ions can’t
adjust to the large frequencies of the electromagnetic waves. Hence we will solve the
system of equations

−iωmue1 = −e(E1 + ue1 ×B0), (5.118)

ik ×E1 = iωB1, (5.119)

i

µ0
k ×B1 = −ε0iωE1 − en0ue1. (5.120)

The equations are already written in the form of Fourier images. Note that we did not
consider the continuity equation, which over-determines the system. That is because
the density perturbation ne1 does appear in the continuity equation only. Now we
express ue1 from (5.118) and combine (5.119) and (5.120) viaB1, where in the combined
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Figure 5.8: Coordinate system: electromagnetic waves in
presence of B0.

equation we keep solely ue1 on the left-hand side:

ue1 = −i
e

mω
E1 − i

eB0

mω
ue1 × b0, (5.121)

ue1 = −i
ε0ω

en0
E1 − i

c2ε0ω

ω2en0
k × (k ×E1), (5.122)

where we used the definition of the speed of light c2 = (ε0µ0)
−1 and defined the unity

vector b0 in the direction of the magnetic field, so that B0 = B0b0. Now we insert
(5.122) into (5.121). One needs to be careful here, since we find ue1 in (5.121) on both
sides of the equation. We further use ωc = eB0/m to obtain

−i
ε0ω

en0
E1 − i

c2ε0
ωen0

k × (k ×E1) =

− i
e

mω
E1 − i

ωc

ω

[
−i
ε0ω

en0
E1 − i

c2ε0
ωen0

k × (k ×E1)

]
× b0. (5.123)

Now we express the double-cross products and multiply the whole equation by
− en0ω

iε0
. We have

ω2E1 + c2(k ·E1)k − c2k2E1 =

=
e2n0
ε0m

E1 − iωcωE1 × b0 − i
ωc

ω
c2(k ·E1)(k × b0) + i

ωc

ω
c2k2(E1 × b0). (5.124)

By reordering and using ω2
p = e2n0

ε0m
we have

(ω2−ω2
p− c2k2)E1+ i

ωc

ω
(ω2− c2k2)(E1× b0)+ c2(k ·E1)k+ i

ωc

ω
c2(k ·E1)(k× b0) = 0.

(5.125)
To solve this equation, we introduce the Cartesian coordinate system (Fig. 5.8), so that
B0 ∥ ez and k lies in the x–z plane. Therefore b0 = (0, 0, 1) and k = (k sinα, 0, k cosα),
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where α is the angle between B0 and k. The electric intensity vector has all components
E1 = (E1x, E1y, E1z). In this particular representation (5.125) turns into

(ω2 − ω2
p − c2k2)




E1x

E1y

E1z


+ i

ωc

ω
(ω2 − c2k2)




E1y

−E1x

0


+

+ c2(kE1x sinα+ kE1z cosα)




k sinα
0

k cosα


+

+ i
ωc

ω
c2(E1xk sinα+ kE1z cosα)




0
−k sinα

0


 = 0. (5.126)

This is a set of three equations for three components of perturbation of electric intensity,
which may be written in the matrix form as

ME1 ·E1 = 0 (5.127)

with system matrix

ME1 =




ω2 − ω2
p − c2k2 cos2 α iωc

ω (ω2 − c2k2) c2k2 sinα cosα

−iωc
ω (ω2 − c2k2 cos2 α) ω2 − ω2

p − c2k2 −iωc
ω c

2k2 cosα sinα

c2k2 sinα cosα 0 ω2 − ω2
p − c2k2 sin2 α


 . (5.128)

Equation (5.127) has the nontrivial solution when detME1 = 0. We expand detME1

around the third row to have

detME1 = c4k4 sin2 α cos2 α

[
ω2
c

ω2
(ω2 − c2k2)− (ω2 − ω2

p − c2k2)

]
+

+ (ω2 − ω2
p − c2k2 sin2 α)

[
(ω2 − ω2

p − c2k2 cos2 α)(ω2 − ω2
p − c2k2)−

− ω2
c

ω2
(ω2 − c2k2)(ω2 − c2k2 cos2 α)

]
= 0. (5.129)

This is the dispersion relation for a complex of electromagnetic waves in plasmas. We
will now study two special cases.

Electromagnetic waves parallel to B0

Waves parallel to B0 have k ∥ B0 and thus α = 0. The dispersion relation (5.129)
simplifies to

(ω2 − ω2
p)

[
(ω2 − ω2

p − c2k2)2 − ω2
c

ω2
(ω2 − c2k2)2

]
= 0. (5.130)
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Figure 5.9: The dispersion diagram of the L- (dashed) and R- (solid) waves. The figure illustrates
the cut-offs and resonances.

This equation has four roots, one of which is not physical. By setting the first parenthesis
equal to zero one obtains

ω2 = ω2
p, (5.131)

therefore, along the magnetic field, the first mode of oscillatory motions is composed of
ordinary plasma oscillations.

By setting the second parenthesis equal to zero we obtain other two roots:

ω2 − ω2
p − c2k2 = ±ωc

ω
(ω2 − c2k2) (5.132)

which may be written as

ω2 − c2k2 =
ω2
p

1− ωc
ω

(5.133)

and

ω2 − c2k2 =
ω2
p

1 + ωc
ω

. (5.134)

The wave described by (5.133) carries the name R-wave, while the other one de-
scribed by (5.134) is named the L-wave. Their names have the origin in their circular
polarisation, which we will study in a moment.

• The dispersion diagrams in two forms are given in Figs. 5.9 and 5.10.

• Both waves are dispersive
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Figure 5.10: The dispersion (k−ω) diagram of L- (dashed) and
R- (solid) waves.
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Figure 5.11: The coordinate system to demonstrate the polar-
isation and propagation of the R- and L-modes.
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• We keep the derivation of phase and group speed to the reader, however already
from the dispersion relation we see that at the same frequency, the propagation
speed of the R-wave is larger.

• Let’s investigate the polarisation of these two waves. We start from (5.127) with
α = 0. We have




ω2 − ω2
p − c2k2 iωc

ω (ω2 − c2k2) 0

−iωc
ω (ω2 − c2k2) ω2 − ω2

p − c2k2 0

0 0 ω2 − ω2
p


 ·




E1x

E1y

E1z


 = 0, (5.135)

from which we immediately see that E1z = 0. The relation between the two other
components is

(ω2 − ω2
p − c2k2)E1x + i

ωc

ω
(ω2 − c2k2)E1y = 0. (5.136)

We further use the dispersion relation in a form c2k2 = ω2 − ω2
p

(
1∓ ωc

ω

)−1
to

finally obtain

E1y = ±iE1x. (5.137)

Thus we have Ex = −iEy for the R-wave (the upper sign is valid) and Ex = iEy

for the L-wave. We immediately see that the waves are circularly polarised (the
amplitudes of both components are equal and both components are shifted in
phase by quarter of circle). We explicitly express the spatio-temporal dependence
of the electric intensity,

E1 = E1 exp [i(k · r − ωt)] = E1 [cos (k · r − ωt) + i sin (k · r − ωt)] . (5.138)

If we introduce a phase shift δE between the components and define

Ex = ℜ(E1) = E1 cos (k · r − ωt) (5.139)

and

Ey = ℑ(E1) = E1 sin (k · r − ωt+ δE), (5.140)

we see that for the R-wave, δE = π/2 and thus Ey preceeds Ex, the wave’s
polarisation is right-handed (see Fig. 5.11). Similarly, in the case of the L-wave,
Ey is retarded by δE = −π/2 and the wave’s polarisation is left-handed. Note
that the polarisation does not depend on the propagation direction, only on the
direction of the background magnetic field.

• The R-wave has a cut-off at ωR = 1
2

[
ωc + (ω2

c + 4ω2
p)

1/2
]
(hence the designation

of this frequency) and a resonance at ωc. The L(-)wave has a cut-off at ωL =
1
2

[
−ωc + (ω2

c + 4ω2
p)

1/2
]
and no resonance.

Application: Farraday rotation. The detection of R- and L-waves in the radio
spectrum of astrophysical objects allows to estimate either the distance of these objects
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Figure 5.12: The superpo-
sition of L- and R- circu-
larly polarised waves with the
same amplitude yields the
wave with a linear polarisa-
tion. The tilt of the polarisa-
tion plane is a consequence
of the Farraday rotation ef-
fect.
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or the plasma frequency of the interstellar environment. Assume that we have a plane
wave composed of both R- and L-waves, which propagates along interstellar B0. As we
pointed out, the R-wave propagates faster.

Let us write the vector of electric fields of both considered R- and L-wave in com-
ponent with respect to some Cartesian coordinate system

ER = E0 exp[i(kR · r − ωt)] [ex + iey] , (5.141)

EL = E0 exp[i(kL · r − ωt)] [ex − iey] . (5.142)

The components are written in agreement with (5.137) and ex and ey are unity vectors
in x and y directions.

The two waves superpose to form one detected wave (Fig. 5.12):

E =
1

2
(ER +EL) =

1

2
E0e

−iωt
[
eikR·r(ex + iey) + eikL·r(ex − iey)

]
. (5.143)

Should kR = kL = k then

E =
1

2
E0e

−iωt
[
2eik·rex

]
= E0 exp[i(k · r − ωt)]ex, (5.144)

which is the linearly polarised wave in the x-direction.
In our case, however, kR ̸= kL,

kR,L =
ω

c

√
1−

ω2
p/ω

2

1∓ ωc/ω
. (5.145)

In the high-frequency regime, for ω ≫ ωc, ωp by using Taylor series
√
1− x ∼ 1− x

2 and
(1 + x)−1 ∼ 1− x we obtain

kR,L ∼ ω

c

(
1− 1

2

ω2
p

ω2

1

1∓ ωc/ω

)
∼ ω

c

[
1− 1

2

ω2
p

ω2

(
1± ωc

ω

)]
(5.146)

Hence when we use a decomposition of both wavenumbers as

kR,L = k ±∆k, (5.147)
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E

Figure 5.13: The sketch illustrating the Farraday’s rotation. The combination of the R- and L-modes
creates a linearly polarised wave in the plane before entering the plasma cylinder. In the plasma,
the L-mode lags behind the R-mode, which causes the rotation of the polarisation axis. In the plane
after leaving the plasma cylinder the linear polarisation depict the phase shift ∆φ.

we have

k =
ω

c

[
1− 1

2

ω2
p

ω2

]
(5.148)

and

∆k = −1

2

ω2
pωc

cω2
. (5.149)

By inserting (5.147) into (5.143) we have

E =
1

2
E0e

i(k·r−ωt)
[
ei∆k·r(ex + iey) + e−i∆k·r(ex − iey)

]

= E0e
i(k·r−ωt) [cos(−∆k · r)ex + sin(−∆k · r)ey] . (5.150)

Obviously, the difference in the phase speeds of the R- and L-wave causes the rotation
of the polarisation plane of the resulting linearly polarised wave. When adjusting the
coordinate system so that −∆k · r = −∆kz the angle of the polarisation φ (it equals to
the argument of the goniometric functions) plane fulfills

dφ

dz
= −∆k. (5.151)

To obtain the total rotation of the polarisation plane for the waves travelling the
distance d (see Fig. 5.13) we must integrate (5.151):

φ = φ0 +

d∫

0

dφ

dz
dz = φ0 +

d∫

0

−∆kdz = φ0 +
1

2cω2

d∫

0

ω2
p(z)ωc(z)dz =

= φ0 +
e3

2m2ε0cω2

d∫

0

n0(z)B0(z)dz. (5.152)



5.6. ELECTROMAGNETIC WAVES 124

When we approximate both the density and magnetic field by constants, we simply
obtain

φ = φ0 +
e3

2m2ε0c

1

ω2
n0B0d. (5.153)

By measuring the angle of the polarisation plane for various frequencies one may fit this
relation and obtain the information about either the properties of the interstellar space
or about the distance of the radiating object.

Electromagnetic waves perpendicular to B0

Let us go back to the general dispersion relation of the complex of electromagnetic waves
in plasmas (5.129) and discuss the other special case when α = π/2. The dispersion
relation simplifies to

(ω2 − ω2
p − c2k2)

[
(ω2 − ω2

p)(ω
2 − ω2

p − c2k2)− ω2
c (ω

2 − c2k2)
]
= 0. (5.154)

This equation again has two solutions. By zeroing the first parenthesis we obtain

ω2 = ω2
p + c2k2, (5.155)

which is the dispersion relation identical to the electromagnetic waves in non-magnetised
plasmas. Due to this correspondence, this wave is called ordinary or the O-mode. It is
linearly polarized with E1 ∥ B0. It has a cut-off at the plasma frequency.

By zeroing the second parenthesis we have

(ω2 − ω2
p)(ω

2 − ω2
p − c2k2) = ω2

c (ω
2 − c2k2), (5.156)

which by expressing ω2 − c2k2 from both sides and rearranging becomes

ω2 − c2k2 = ω2
p

ω2 − ω2
p

ω2 − ω2
h

, (5.157)

where we used the definition of the upper hybrid frequency ω2
h = ω2

p + ω2
c . Such wave

is termed the extraordinary wave or the X-mode. It is partly transversal and partly
longitudinal, it propagates perpendicularly to B0. As the density is increased, the
phase velocity rises from c until the cut-off at ωR is reached. As the density is further
increased, the wave is evanescent until the resonance at the upper hybrid frequency ωh.
Then it can propagate again until the second cut-off at ωL. The cut-off frequencies are
given by: ωR = 1

2

[
ωc + (ω2

c + 4ω2
p)

1/2
]
and ωL = 1

2

[
−ωc + (ω2

c + 4ω2
p)

1/2
]
.

For the O- and X-modes the plasma acts as a birefringent environment. The disper-
sion relations in two forms are given in Figs. 5.14, 5.15, and 5.16.
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Figure 5.14: Dispersion relation of the O-wave. The shaded region indicates the region of attenuation
(square of the phase velocity is negative).
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Figure 5.16: The dispersion
k − ω diagram for the O-
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(right)



5.7. MHD WAVES 126

Figure 5.17: Geometry of an Alfvén wave propagating along B0.
x
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B1v1,
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5.7 MHD waves

By MHD waves (a.k.a. hydromagnetic waves) we understand low frequency ion oscilla-
tions in the presence of the magnetic field. A special case is the Alfvén wave.

5.7.1 Alfvén wave

Alfvén waves

• Background magnetic field, no background electric field, i.e., B0 ̸= 0, E0 = 0

• Background stationary and homogeneous

• We solve equations of motion for both ions and electrons

• Both ions and electrons are cold (no thermal motion)

We introduce the Cartesian coordinate system (ex, ey, ez), so that:

• B0 = B0ez,

• E1 ∥ j1 ∥ ex, E1 ⊥ B0,

• B1 ∥ u1 ∥ ey,

• k ∥ B0, B1 ⊥ E1.

This system and the wave setup is also indicated graphically in Fig. 5.17.

Again, we use the solution of the system of Maxwell equations (5.108) and (5.109)
from the previous section by directly using (5.112):

(ω2 − c2k2)E1 = − iω

ε0
j1. (5.158)
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We do not assume that the ions create a stationary background, thus the current density
j1 is proportional to the difference between fluctuation speed of ions and electrons.
Hence

j1 = j1ex = n0e(ui1,x − ue1,x)ex. (5.159)

Expression for both velocity fluctuations must be obtained from the Euler equations.
For ions we have

M
∂ui1

∂t
= e(E1 + ui1 ×B0), (5.160)

which in components and in the Fourier space gives

−iωMui1,x = eE1 + eui1,yB0, (5.161)

−iωMui1,y = −eui1,xB0. (5.162)

By combining these two equations we have

−iωMui1,x = eE1 + eB0
eB0

iωM
ui1,x (5.163)

and after some algebra we obtain

ui1,x =
ie

ωM

(
1− Ω2

c

ω2

)−1

E1. (5.164)

Similarly [e.g. by inserting (5.164) into (5.162)], we obtain for uiy:

ui1,y =
e

ωM

Ωc

ω

(
1− Ω2

c

ω2

)−1

E1. (5.165)

We solve the Euler’s equation for electrons by analogy (formally by application of the
following substitutions: M → m, e→ −e, and Ωc → −ωc), to obtain:

ue1,x = − ie

ωm

(
1− ω2

c

ω2

)−1

E1, (5.166)

ue1,y = − e

ωm

−ωc

ω

(
1− ω2

c

ω2

)−1

E1. (5.167)

We expect low-frequency waves. Thus we are allowed to use the approximation ωc ≫ ω.
Under this approximation (5.166) and (5.167) becomes:

ue1,x = − ie

ωm

(
ω2 − ω2

c

ω2

)−1

E1 ∼
ie

ωm

ω2

ω2
c

E1 → 0 (5.168)

and

ue1,y =
e

ωm

ωc

ω

(
ω2 − ω2

c

ω2

)−1

E1 ∼ − e

ωm

ωc

ω

ω2

ω2
c

E1 = − e

ωcm
E1 = −E1

B0
. (5.169)
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Now we use the estimates obtained for the fluctuating speeds (5.164) and (5.168)
and use them in (5.159), which we use in (5.158).

(ω2 − c2k2)E1 = − iω

ε0
n0e

[
ie

ωM

(
1− Ω2

c

ω2

)−1

E1 − 0

]
=

=
n0e

2

ε0M

(
1− Ω2

c

ω2

)−1

E1 = Ω2
p

(
1− Ω2

c

ω2

)−1

E1. (5.170)

Hence the dispersion relation reads

ω2 − c2k2 = Ω2
p

(
1− Ω2

c

ω2

)−1

. (5.171)

If we limit ourselves to the case, when ω ≪ Ωc, which is a very strong assumption, we
basically say that we are interested only in the very low-frequency waves, the dispersion
relation simplifies to

ω2 − c2k2 = Ω2
p

(
ω2 − Ω2

c

ω2

)−1

∼ −ω2
Ω2
p

Ω2
c

= −ω2n0M

ε0B2
0

= −ω2 ρ0
ε0B2

0

. (5.172)

Hence
ω2

k2
=

c2

1 + ρ0
ε0B2

0

. (5.173)

In plasma, the expression 1 + ρ0
ε0B2

0
has a meaning of the square-root of relative permi-

tivity εr, which in plasmas is usually much larger than unity. Hence ρ0
ε0B2

0
≫ 1 and we

have
ω2

k2
=

c2

ρµ0c2

B2
0

=
B2

0

µ0ρ0
. (5.174)

Thus the dispersion relation for Alvén waves reads

ω

k
=

B0√
µ0ρ0

≡ cA. (5.175)

cA is the Alfvén speed.
Notes:

• The relations among the oscillating quantities are displayed in Fig. 5.18.

• Magnetic component of the wave, By, is in the y direction and looks like sinusoid
stringing the field lines of the background magnetic field

• We have a drift vy = E1ex ×B0/B
2
0 , which is the same for both ions and electrons
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x

z

y

B
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E1
v1 = E1 × B0/B2

0

Figure 5.18: Relations among the oscillating quantities in an Alfvén wave and the distortion of the
lines of force.

• The phase speed of the perturbations to the field lines equals to the speed of
both ions and electrons. To prove it, let’s take the Fourier image of the induction
equation without the dissipative term ωB1 = kvy,BB0 and the Farraday’s law
kE1 = −ωB1. Combining the two we obtain vy,B = −ω

k
k
ω

E1
B0

= −E1
B0

, which is the
expression for the speed of particles. Therefore, both the fluid and the perturbed
magnetic field oscillate together. The plasma is frozen in the magnetic field.

• The results we obtained are valid only if there is no background electric field
parallel to the magnetic.

• Alfvén speed is a characteristic speed of propagation of perturbations to the mag-
netic field. This may yield important estimates. For example, sunspots are be-
lieved to be caused by the flux tube, which was perturbed at the base of the solar
convection zone and rises up to the photosphere (see the schematic illustration in
Fig. 5.19). The characteristic time of rise may be roughly estimated when using
the Alfvén speed as the estimate for the rising speed. For the Sun, assuming
the depth of the convection zone to be 200 Mm, the average bulk density in the
convection zone 200 kgm−3, and the initial field strength in the perturbed flux
tube to be 10 kG=1 T. Then we have τ ∼ d

cA
∼ 200×106

1√
4π×10−7·200

s ∼ 36 days. This

estimate is not far from the more appropriate modelling, which includes a detailed
balance of the rising flux tube and the ambient solar plasma. The characteristic
rising time is larger than the solar rotation period, thus one should expect the
deflection of the rising flux tube due to the Coriolis force.
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Figure 5.19: Illustration of the emerging magnetic field from
the bottom of the convective zone of Sun-like stars. A series of
snapshots of the perturbed flux tube rising towards solar surface
is indicated in the figure.

d

B0

〈ρ〉

cA

5.7.2 General MHD waves

As the final case, let us study the general case of magnetohydrodynamic waves. Hence,
we will solve the linearised version of the following system of equations:

∂ρ

∂t
+ ρ∇ · u = 0, (5.176)

ρ
du

dt
= −∇p+ (∇×B)×B/µ0, (5.177)

d

dt

(
p

ργ

)
= 0, (5.178)

∂B

∂t
= ∇× (u×B), (5.179)

∇ ·B = 0. (5.180)

Note that:

• We assume a homogeneous and stationary background and no background motion
(u0 = 0).

• We collapse the set of Maxwell equations into the induction equation with no dis-
sipative terms, to the Gauss’s law for magnetism and explicitly use Ampére’s law
in the expression for the Lorentz force; the frozen-field approximation is implied.

• We assume the adiabatic approximation to the equation of state.

• We assume that the flow is non-convecting, that is the terms where the operator
(u ·∇) is applied are neglected.
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Except for the equation of state, the linearisation is trivial and can be done from the
top of anyone’s head:

∂ρ1
∂t

+ ρ0(∇ · u1) = 0, (5.181)

ρ0
∂u1

∂t
= −∇p1 + (∇×B1)×B0/µ0, (5.182)

∂B1

∂t
= ∇× (u1 ×B0), (5.183)

∇ ·B1 = 0. (5.184)

The equation of the state needs to be done more carefully. Let us do a slow derivation,
in each step we immediately neglect the second and higher-order terms:

0 =

{
∂

∂t
+ u1 ·∇

}[
p0 + p1

(ρ0 + ρ1)γ

]
=

=
1

(ρ0 + ρ1)γ

[
∂p1
∂t

+ (u1 ·∇)p0

]
+ (p0 + p1)

{ −γ
(ρ0 + ρ1)γ+1

[
∂ρ1
∂t

+ (u1 ·∇)ρ0

]}
.

(5.185)

Now we apply the assumption of the homogeneous background, that is we remove the
terms where derivatives of the background quantities appear.

0 =
1

(ρ0 + ρ1)γ

[
∂p1
∂t

− γ
p0 + p1
ρ0 + ρ1

∂ρ1
∂t

]
=

1

(ρ0 + ρ1)γ

{
∂p1
∂t

− c2s
∂ρ1
∂t

}
, (5.186)

where we used the definition of the speed of sound c2s = γp0/ρ0 and we evaluated term
p0+p1
ρ0+ρ1

already in Section 5.2. Since the term 1
(ρ0+ρ1)γ

is some non-zero number, the
expression in curly parentheses must be zero, which is our linearised equation of state
(by further taking into account that the background is homogeneous):

∂p1
∂t

− c2s
∂ρ1
∂t

= 0. (5.187)

Thus we combine (5.181), (5.182), (5.183), (5.184), and (5.187) to obtain the dispersion
relation. We start from taking a time derivative of (5.182):

∂2u1

∂t2
= − 1

ρ0
∇∂p1
∂t

+ (∇× ∂B1

∂t
)× B0

ρ0µ0
. (5.188)

Now we use (5.187) and have

∂2u1

∂t2
= − 1

ρ0
∇
(
c2s
∂ρ1
∂t

)
+ (∇× ∂B1

∂t
)× B0

ρ0µ0
(5.189)

and further by using (5.181) and (5.183) we have

∂2u1

∂t2
= c2s∇ (∇ · u1) + {∇× [∇× (u1 ×B0)]} ×

B0

ρ0µ0
. (5.190)
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The equation is being solved in the Fourier space again:

ω2u1 = c2sk(k · u1) + {k × [k × (u1 ×B0)]} ×
B0

µ0ρ0

= c2sk(k · u1) + {k × [k × (u1 × b0)]} × b0c
2
A, (5.191)

where we used b0 = B0/|B0| and c2A = B2
0/(µ0ρ0) is the Alfvén speed. The complicated

multiplication of the right-hand side is

{k × [k × (u1 × b0)]} × b0 = {k × [u1(k · b0)− b0(k · u1)]} × b0 =

= (k · b0) [(k × u1)× b0]− (k · u1) [(k × b0)× b0] =

= −(k · b0) [k(u1 · b0)− u1(k · b0)] + (k · u1)
[
kb20 − b0(k · b0)

]
=

= (k · b0)2u1 − (k · u1)(k · b0)b0 + k [k · u1 − (k · b0)(u1 · b0)] .
(5.192)

Now we use k · b0 = k cosα, where α is the field inclination. We continue evaluating
(5.191):

ω2u1 = c2sk(k ·u1)+c
2
A

{
(k · b0)2u1 − (k · u1)(k · b0)b0 + k [k · u1 − (k · b0)(u1 · b0)]

}
,

(5.193)
thus

ω2u1

c2A
= k2 cos2 αu1 − (k · u1)k cosαb0 + k

[(
1 +

c2s
c2A

)
(k · u1)− k cosα(u1 · b0)

]
.

(5.194)
We take the projections of (5.194) first into the direction of k

ω2(k · u1) = k2c2A cos2 α(u1 · k)− c2Ak
2 cos2 α(k · u1)+

+ c2A(k · u1)k
2 + c2s (k · u1)k

2 − c2Ak
3 cosα(u1 · b0). (5.195)

Hence [
−ω2 + c2Ak

2 + c2sk
2
]
(u1 · k) = c2Ak

3 cosα(b0 · u1). (5.196)

Then we project (5.194) into the direction of b0.

ω2(b0 · u1) = c2Ak
2 cos2 α(u1 · b0)− c2A(k · u1)k cosα+

+ c2A(k · u1)k cosα+ c2s (k · u1)k cosα− c2Ak
2 cos2 α(u1 · b0), (5.197)

hence

ω2(b0 · u1) = c2s (k · u1)k cosα. (5.198)

Equation (5.196) may further be played with:

b0 · u1

u1 · k
=

−ω2 + c2Ak
2 + c2sk

2

c2Ak
3 cosα

(5.199)
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and similarly (5.198) becomes

b0 · u1

u1 · k
=
c2sk cosα

ω2
. (5.200)

These two equations equal, thus we have

−ω2 + c2Ak
2 + c2sk

2

c2Ak
3 cosα

=
c2sk cosα

ω2
(5.201)

and therefore
ω4 − ω2k2(c2A + c2s ) + c2sc

2
Ak

4 cos2 α = 0. (5.202)

By solving the quadratic equation in (ω/k)2 we have a solution:

(ω
k

)2
=

[
1

2
(c2s + c2A)±

1

2

√
c4s + c4A − 4c2sc

2
A cos2 α+ 2c2Ac

2
s

]
. (5.203)

This is the general dispersion relation for the magnetoacoustic wave. The one with
the plus sign is called a fast wave, while the one with the minus sign is called the slow
wave. Obviously, the speed of propagation depends on the direction of propagation with
respect to the vector of the background magnetic field.

For waves travelling along the magnetic field α = 0 we have:

(ω
k

)2
=

1

2
(c2s + c2A)±

1

2

√
c4s + c4A − 2c2Ac

2
s =

1

2
(c2s + c2A)±

1

2
|c2s − c2A| =

{
c2s
c2A

, (5.204)

for cs > cA and oppositely for cA > cs (note that we still keep the notation that the
upper solution represents the fast wave, whereas the lower represents the slow-wave
mode). To summarise the two cases in a general solution, we may write that the fast
mode has a dispersion relation ω/k = max (cs, cA), whereas the slow mode disperses
according to ω/k = min (cs, cA). Note that as a special case of waves propagating along
the field, we obtained the dispersion relation for the Alfvén wave. Also the slow wave,
which is purely acoustic, propagates. For waves travelling across the field for α = π/2
we have

(ω
k

)2
=

1

2
(c2s + c2A)±

1

2

√
c4s + c4A + 2c2Ac

2
s =

1

2
(c2s + c2A)±

1

2
(c2s + c2A) =

{
c2s + c2A

0
,

(5.205)
therefore, only the fast wave propagates. In a special case of no background field, i.e.
B0 = 0 we simply have cA = 0 and thus

(ω
k

)2
=

{
0
c2s

, (5.206)

and the wave just degenerates to the ordinary acoustic wave.
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5.7.3 Mode conversion

In the stratified medium, we should supply additional terms in our equations (namely
the gravitation term) and drop the requirement of the homogeneous background. In
some cases, we may find surfaces, where the sound speed equals the Alfvén speed, the
equipartition surface (prove that at this surface, the plasma β equals one). Here all
the dispersion relations collapse and the waves are resonant. The use of the simple ray
approximation (which we were using all the time) is not appropriate in these regions,
finite-wavelength effects play an important role. Using the higher-order theory one may
find5 that a mode conversion may occur. Essential in the equipartition layers the waves
convert types, purely acoustic waves may become magnetoacoustic fast waves etc. The
efficiency of the conversion depends on an incident angle to the magnetic field.

The mode conversion is an effect which essentially prohibits reliable helioseismic
tomography of the Sun beneath sunspots. The sunspots are regions of the strong field,
thus, there definitely is the equipartition layer below the surface of the Sun. The (purely
acoustic) seismic waves excited by the vigorous surface convection propagate through
the convection zone (in the stratified medium, thus they do not propagate straight but
rather bend as the local sound speed varies), go through the equipartition layer and
partly convert to the magnetoacoustic modes. They undergo one more conversion after
total reflection from the surface. As a consequence, the total power of the acoustic
waves, which is measured and analysed by helioseismology, is lower in the regions of the
strong field, leading to unknown large systematic errors in analyses.

Similarly, the acoustic waves in the solar atmosphere are totally reflected at the
temperature minimum region (lower chromosphere, T ∼ 4200 K), where the acoustic
cut-off frequency is around 5.2 mHz (the cut-off frequency is a function of the local
plasma state parameters, ωcut−off = γg

2cs
, where g is the local gravity acceleration).

However, in the magnetised regions, the magnetoacoustic waves are allowed to propagate
along the magnetic field. Thus when the conversion takes place, the originally acoustic
waves may leak to the higher atmosphere as converted magnetoacoustic and Alfvén
waves. Numerical simulations revealed that the inclined magnetic field acts as a factor
lowering the cut-off frequency, which is then modified to ωcut−off = γg cosα

2cs
, where α

is the magnetic field inclination to the local vertical. In the magnetised regions with
inclined magnetic field the sound waves excited by the solar convection may carry some
non-negligible acoustic flux to the chromosphere and thus contributing to its heating6.

5e.g. Cally, P. 2006: Dispersion relations, rays and ray splitting in magnetohelioseismology, Royal
Society of London Transactions Series A 364, p.333–349

6e.g. Sobotka, M., Švanda, M., Jurčák, J. et al. 2013: Dynamics of the solar atmosphere above a
pore with a light bridge, Astronomy&Astrophysics, in press, ArXiv:1309.7790S



Chapter 6

Diffusion

6.1 Diffusion in weakly ionised plasmas

In Section 4.2 we introduced an additional term to the Euler equation accounting for
collisions between particles. We defined the particle flux Γ

Γ = nu, (6.1)

where n was the particle density and u their speed.
The formalism used here is similar. For simplicity, let us assume that the particles

flow along the x-axis of the Cartesian coordinate system. By collisions occurring along
with the spatial interval dx, the fraction of the flux dΓ is lost (see Fig. 6.1). We may
write

dΓ = −nnσΓdx, (6.2)

where nn is the density of neutral particles because we expect the collisions to be
dominated by neutral particles. σ is the effective cross-section of the collisions. From
the effective cross-section, we may define useful quantities λs = 1/nnσ to be the mean
free path between the consecutive collisions and similarly the mean collisional frequency

ν = nn⟨σv⟩ ≈ nnσu, (6.3)

where the averaging is performed over the velocity space. The averaging is performed
because the quantum mechanics teaches us that the effective cross-section may be a
function of velocity. The mean period between the consecutive collisions is then τ = 1/ν.

By taking the time derivative of (6.1) and (6.2) when for simplicity neglecting the
possible time dependence of other variables but the coordinates and velocity and using
the definition of Γ we have

dΓ

dt
= n

du

dt
= −nnσnu

dx

dt
= −nnσnuu = −nνu, (6.4)

Hence
du

dt
= −νu, (6.5)

135
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Figure 6.1: Illustration to
the model of the change of
the particle flux via collisions.

dx

σ

Γ0

Γ1

which is the (average) velocity change due to the collisions.

Hence the Euler equation with magnetic field set to zero and with collisional term
added reads

mn

[
∂u

∂t
+ (u ·∇)u

]
= qnE −∇p−mnνu (6.6)

Let’s investigate the system where d
dtu = 0 (in such system we find only a constant

motion due to the diffusion). Then

u =
qE

mν
− KBT∇n

mnν
=

Γ

n
, (6.7)

where we used the definition of the particle flux. By introducing mobility µ = q sgn q
mν

and diffusion coefficient D = KBT
mν we have for the particle species j

Γj = sgn qj nµjE −Dj∇n. (6.8)

For E = 0 we have

Γ = −D∇n, (6.9)

which is the form of Fick’s law for diffusion. The simple interpretation of this useful
relation is that the particles flow from locations with a higher density to lower density
regions (as illustrated in Fig. 6.2), which is to be expected. In plasmas, the Fick’s law
is generalised to (6.8) noting the effect of the electric field. One should also note that
the coefficients µj and Dj may be generally different for various particle species (most
often electrons and ions) and hence the diffusion in plasmas may cause the separation
of charges and thus drive the electric field. However, to fulfill the quasineutrality of
plasma, Γi = Γe = Γ on scales L≫ λD, which allows us to derive the necessary electric
field which will keep the plasma quasineutral.

By assuming the plasma approximation ne = ni = n we have

nµiE −Di∇n = −nµeE −De∇n (6.10)
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Figure 6.2: Illustrative concept of the diffusion. An
overabundance of the black “particles” is decreased
in time via collisions with white “particles” and their
local density thus decreases.

and hence

E =
Di −De

µi + µe

∇n
n

(6.11)

is the induced electric field triggered by the separation of charges. This is the repulsive
electric field, which stops the charges from further separation due to the diffusion and
hence keeps plasma neutral on large scales. This electric field causes the electrons to
slow down and accelerate ions simultaneously, so that the bulk of plasma (with charges
separated on scales smaller than λD) diffuses according to modified Fick’s law. This is
the basic picture of ambipolar diffusion.

Then

Γ = Γi = nµi
Di −De

µi + µe

∇n
n

−Di∇n =

=
µiDi − µiDe − µiDi − µeDi

µi + µe
∇n = −µiDe + µeDi

µi + µe
∇n =

≡ −Da∇n, (6.12)

where Da is the coefficient of the ambipolar diffusion. For µe ≫ µi and using the
definition of mobility coefficient we have

Da =
µiDe + µeDi

µi + µe
≈ Di +

µi
µe
De =

(
1 +

Te
Ti

)
Di. (6.13)

Thus the coefficient of the ambipolar diffusion is mostly determined by the diffusion
coefficients for ions with some correction.

Typical time evolution by diffusion

As an example, let’s take the continuum equation

∂n

∂t
+∇ · nu = 0, (6.14)

and hence
∂n

∂t
= −∇ · nu = −∇ · Γ = Da△n. (6.15)
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Figure 6.3: A model of plasma diffusion confined be-
tween two infinite plane-parallel walls. A series of
plasma density snapshots is plotted by the purple lines.
At the beginning, the density profile is quite com-
plex. Due to the diffusion, it simplifies with time,
large spatial frequencies (small-scale features) decay
the fastest.

−L 0 +L

n

This equation is similar to the heat conduction equation. It may be solved by assuming
the 1-D solution separating the variables n(x, t) = T (t)S(x), where T and S are some
functions. Then

S
dT

dt
= DaT △S, (6.16)

and hence
1

T

dT

dt
=
Da

S
△S = const = −1

τ
. (6.17)

Both sides of the equations must equal the same constant because the left-hand side
depends purely on time; thus, the right-hand side can’t depend on time and vice versa
for the spatial dependency of the right-hand side. From the dimension reasons, this
constant must have the dimension of the reciprocal time. The equation may then be
solved by parts

dT

dt
= −T

τ
→ T = T0e

− t
τ (6.18)

and
d2S

dx2
= − 1

Daτ
S, (6.19)

which has the solution in the series of harmonic functions,

S = S0 cos
x√
Daτ

and S = S0 sin
x√
Daτ

. (6.20)

This solution must be supplied with the boundary conditions. Let’s assume a simple
model of plasma confined between two infinite plane-parallel walls (see Fig. 6.3), where
the density of the plasma vanishes outside interval x ∈ (−L,L). Then the solution to
the problem is

n = n0

{ ∞∑

l=0

ae,le
− t

τe,l cos

[
(l + 1

2)πx

L

]
+

∞∑

m=1

ao,me
− t

τo,m sin
[mπx
L

]}
(6.21)

The coefficients τe,l and τo,m may be determined from inserting the solution above into
(6.16) and comparing the terms one by one. For the first term (l = 0) in the cosine
series we have
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−ae,0e
− t

τe,0
1

τe,0
cos

πx

2L
= −Daae,0e

− t
τe,0

( π
2L

)2
cos

πx

2L
(6.22)

and hence

τe,0 =
4L2

π2Da
. (6.23)

For a general mode l, we would similarly find

τe,l =
L2

(l + 1
2)

2π2Da
. (6.24)

For the first term (m = 1) in the sine series, we have

−ao,1e
− t

τo,1
1

τo,1
sin

πx

L
= −Daao,1e

− t
τo,1

(π
L

)2
sin

πx

L
(6.25)

and hence

τo,1 =
L2

π2Da
. (6.26)

For the other modes m we similarly obtain

τo,m =
L2

m2π2Da
. (6.27)

The lifetime of various modes τe,l and τo,m shows that the higher modes are attenuated
faster. Therefore, if there is a wild density profile at the beginning (in time t = 0),
then the profile is being simplified with time. A set of snapshots of the evolution of an
arbitrary density profile is given in Fig. 6.3.

Other physics-motivated examples for diffusion

The question is whether it is possible to achieve the stationarity in the presence of
diffusion. It is not if the continuity equation holds. It is possible in the presence of the
source term,

∇ · nu = Q. (6.28)

In case of the collisional ionisation Q = Zn, where Z is the ionisation function, we
have

∇ · nu = −Da△n = Zn → △n = − Z

Da
n, (6.29)

solution to which is again the series of harmonic functions.
The recombination, on the other hand, takes a different form because it does change

the number of charged particles. The number density of the ionised particles naturally
decays with n2 in recombination, hence the continuity equation may be written in a
form

∂n

∂t
−Da∇n = −αn2. (6.30)
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Similarly to the previous cases, we consider the solution separated to the temporal and
spatial parts n = TS. Further, we will only be interested in the temporal part, which
is equivalent to modification of (6.30) to

∂n

∂t
= −αn2, (6.31)

where n2 dependence is the consequence of the recombination being proportional to
both the density of electrons and ions and the use of plasma approximation. Then

1

n2
dn = −αdt → − 1

n
= − 1

n0
− αt. (6.32)

For t → ∞ we have n ∼ 1
αt , which says that due to the recombination in plasmas, the

density of the charged particles drops as 1/t. The spatial part of the continuity equation
is not relevant to the problem; thus, we neglect it from the solution.

This solution is important for understanding which process drives the diffusion of
charged particles in a left-alone cloud of plasma in time. Obviously, in the initial
moment, the recombination will be the dominant process, as its time dependence is
steeper for small t. Contrary, when the density of the plasma gets smaller, the diffusion
with exponecial time dependence prevails and further drives the diffusion.

6.2 Diffusion in highly ionised plasmas

We will show that in highly ionised plasmas, the diffusion resembles the process of
recombination rather than ambipolar diffusion. Let’s take the fluid approximation to
deal with the problem.

ρ
∂u

∂t
= j ×B −∇p (6.33)

E + u×B = ηj (6.34)

Note that generally, the specific resistivity of plasma η is not a scalar value but rather a
tensor and thus may depend on direction. In plasma, it usually is the case. Therefore, we
split the specific resistivity to the parallel and perpendicular components (η = η∥+η⊥),
where in the parallel direction the Ohm’s law simply is

E∥ = η∥j∥. (6.35)

. To obtain a similar relation in the direction perpendicular to the magnetic field, when
assuming the stationarity, by vector-multiplying (6.34) by B and using (6.33) we have

E ×B + (u×B)×B = E ×B −B2u+B2u∥ = η⊥∇p. (6.36)

Since u = u∥ + u⊥, then the two last terms on the left-hand side give together B2u⊥
and thus

u⊥ =
E ×B

B2
− η⊥∇p

B2
. (6.37)
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The first term on the right-hand side is the same for both (electron and ion) fluids. The
second one, on the other hand, may drive the diffusion. The perpendicular particle flux
on top of the E-B drift is

Γ⊥ = nu′
⊥ = −η⊥n(KBTe +KBTi)

B2
∇n = −D⊥∇n . (6.38)

Note that the diffusion coefficient D⊥ is a function of particle density and may be for
simpler manipulation rewritten as

D⊥ =

η⊥nKB
∑
α
Tα

B2
= 2An. (6.39)

The factor of two is introduced so that ∇ · (2An∇n) = 2A∇ · (n∇n) = A△n2.
The continuity equation

∂n

∂t
+∇ · (nu) = 0 (6.40)

then transforms to
∂n

∂t
= A△n2. (6.41)

Such equation may be solved by separation of variables, hence n(r, t) = T (t)S(r). Then
S dT

dt = AT 2△S2 and
1

T 2

dT

dt
=
A

S
△S2 = const = − 1

τ2
(6.42)

and in the case we solved previously. Then the temporal part has a solution

1

T
=

t

τ2
+

1

T0
(6.43)

and the form of τ depends on the spatial part S. For t→ ∞

T ∝ τ2

t
, (6.44)

which reminds the solution of the change of the particle density caused by recombina-
tions. The difference between the ambipolar diffusion and the result we just obtained
is in the diffusion coefficient depending on particle density. Note that the result we
obtained is not consistent with the assumptions of the derivation of the Fick’s law, as
we allow for non-stationarity here.

6.3 Diffusion in the magnetic field

In presence of the magnetic field, the Euler equation retains an additional term. Let
us see what happens in the presence of the magnetic field. We must go back to the
double-fluid approximation since collisions are essential in the process of diffusion.

mn

[
∂u

∂t
+ (u ·∇)u

]
= sgn q en(E + u×B)−KBT∇n−mnνu (6.45)
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Let’s assume that the collisions are much faster than the overall evolution of the system
in time, or in other words d

dt ≪ ωc, ν, where ν is the collision frequency with neutrals
and τ ≡ 1/ν is the corresponding time between collisions. Then the left-hand side may
be neglected. Thus in components in the Cartesian system with z axis oriented along
the magnetic field (B = Bez) we have

mnνux = sgn q enEx −KBT
∂n

∂x
+ sgn q enuyB, (6.46)

mnνuy = sgn q enEy −KBT
∂n

∂y
− sgn q enuxB. (6.47)

Along the magnetic field, a classic diffusion as derived above occurs.
By introducing µ = e

mν , D = KBT
mν = ωc

ν
KBT
eB we have

ux = sgn q µEx −
D

n

∂n

∂x
+ sgn q

ωc

ν
uy, (6.48)

uy = sgn q µEy −
D

n

∂n

∂y
− sgn q

ωc

ν
ux, (6.49)

and (using τ ≡ 1/ν)

ux(1 + ω2
cτ

2) = sgn q µEx −
D

n

∂n

∂x
+ ω2

cτ
2Ey

B
− sgn q ω2

cτ
2KBT

neB

∂n

∂y
, (6.50)

uy(1 + ω2
cτ

2) = sgn q µEy −
D

n

∂n

∂y
− ω2

cτ
2Ex

B
+ sgn q ω2

cτ
2KBT

neB

∂n

∂x
. (6.51)

The last two terms on the right-hand side obviously indicate the already known E-B
and diamagnetic drifts. Hence

u⊥ =
vE + vD

1 + 1/(ω2
cτ

2)
+ sgn q

µ

1 + ω2
cτ

2
E − D

1 + ω2
cτ

2

∇n
n
, (6.52)

where vE = E ×B/B2 and vD = −∇p×B/(qnB2). Let us further identify

µ⊥ ≡ µ

1 + ω2
cτ

2
and D⊥ ≡ D

1 + ω2
cτ

2
. (6.53)

Hence the generalised Fick’s law transforms to

u⊥ = sgn q µ⊥E −D⊥
∇n
n

+
vE + vD

1 + 1/(ω2
cτ

2)
. (6.54)

The last term represents the already familiar drifts in the plasma fluid, only with the
correction term for the diffusion. Obviously, the correcting term is important for ν > ωc.
Hence in the weak field regime, drifts are suppressed by collisions.

The correctinon term for the mobility and the diffusion coeficient act in an opposite
way. In the strong field, i.e., when ν < ωc, diffusion is suppressed. In particular, we
have

D⊥ ∝ KBTν

mω2
c

and D∥ =
KBT

mν
, (6.55)
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where D∥ is the non-modified diffusion coefficient which occurs in the component of the
Euler equation parallel to the magnetic field. Hence the decay caused by diffusion in
plasmas has different rates in different directions. In case the collisional frequency is
proportional1 to m−1/2 then the diffusion depends also on the species of the particles.
Then

D⊥ ∝ m1/2 and D∥ ∝ m−1/2. (6.56)

In the perpendicular direction, the diffusion is faster for ions than electrons, while in the
parallel direction the electrons diffuse faster. It has to be noted that generally speaking,
the collisions are important for the particles to be able to penetrate across the magnetic
field.

1As we discussed at the beginning of this chapter, ν = nn⟨σv⟩. Leaving out a possible dependence
of the effective cross-section on velocity, we have ν ∝ ⟨v⟩ ∝

√
⟨v2⟩. Since T ∝ m⟨v2⟩, for the fixed

temperature T we have ⟨v2⟩ ∝ m−1 and finally ν ∝ m−1/2.
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Chapter 7

Equilibrium and stability

7.1 Equilibrium

The state of equilibrium indicates the forces acting on plasma are in balance. In the
investigation of the possible equilibrium of plasma, we will use the fluid approximation.
However, it should be noted that this approximation might be too rough. In plasmas,
the drifting motions are usually the sources of instabilities driving the plasma from equi-
librium, and the drifting motions are largely not captured by the fluid approximation.

In investigating the stability, we assume that the forces are in balance, hence the
solution is stationary. Hence the necessary condition of equilibrium is ∂•

∂t → 0.
We recognize a stable equilibrium, where small perturbations deviating the system

from an exact balance are attenuated, and an unstable equilibrium, when even a small
perturbation of the system grows and brings the system out of equilibrium. The equilib-
rium generally is a non-linear problem (see Fig. 7.1). We will limit ourselves to discuss
the linear problems only by considering the small perturbations. To describe the equi-
librium, the MHD description suffices, however it is usually not sufficient to discuss the
stability of such equilibrium. Let us remind that the mechanical stability equals to the
work that is needed to bring the object from the stable equilibrium position to another
(investigated) equilibrium position. Should this work be negative, the position at which
it is located is not stable.

Let us describe a general concept of investigation of equilibrium on an example of
hydromagnetic equilibrium. Let’s consider a plasma cylinder, where the magnetic field
aligns along the cylinder axis (see Fig. 7.2). The simplified equation of motion reads

ρ
∂u

∂t
= j ×B −∇p. (7.1)

We search for a stationary state, hence we set ∂u
∂t = 0 and the Euler equation degenerates

to

∇p = j ×B (7.2)

It is clear now that there is an obvious balance between the Lorentz force which supports
the pressure gradient. Such balance may be achieved when an azimuthal current flows

145
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a) b) c)

d) e)

f) g)

Figure 7.1: Illustrations of various kinds of equilibria. a) inequilibrium, b) neutrally stable, c)
metastable, d) stable, e) unstable, f) linearly stable, non-linearly unstable, g) linearly unstable,
non-linearly stable.

Figure 7.2: Illustration of hydromag-
netic equilibrium.

B

∇p

j⊥
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through plasma cylinder. By taking the vector multiplication by B we have

B ×∇p = B × (j ×B) = B2j −B · jB = B2(j − j∥). (7.3)

By assuming that j = j∥+j⊥ we obtain the expression for a required azimuthal current

j⊥ =
B ×∇p
B2

= (KBTi +KBTe)
B ×∇n
B2

, (7.4)

which is an expression for a diamagnetic current. Such a situation may be viewed as if
a plasma cylinder is to be in equilibrium, there must be a current induced, which takes
a form of a diamagnetic current. One should bear in mind that this expression was
derived when neglecting all other terms in the Euler equation.

One should also note that both j and B are perpendicular to ∇p, hence both j and
B lie in the isosurface of constant pressure. The field lines and the current lines may
be curved in this surface.

7.2 Plasma β

By considering Ampére’s law
∇×B = µ0j (7.5)

for the equilibrium situation, we have

∇p = j ×B =
1

µ0
(∇×B)×B =

=
1

µ0
[−(∇B) ·B + (B ·∇)B] =

1

µ0

[
(B ·∇)B − 1

2
∇B2

]
(7.6)

By rearranging we have

∇
(
p+

1

µ0
B2/2

)
=

1

µ0
(B ·∇)B. (7.7)

The right-hand side indicates the action of forces along field lines, the magnetic tension.
If we assume that there are negligible changes of the magnetic field along the field lines,
the right-hand side vanishes. Then

p+
B2

2µ0
= const. (7.8)

The second term has a physical meaning of the magnetic field pressure. By comparing
the two terms we define the plasma beta,

β ≡ p

pmag
=

n
∑
α
KBTα

B2

2µ0

, (7.9)

where α identificates the particles by type.
For β > 1 the gas pressure prevails. This high-beta regime is common to the interior

of stars and most of the laboratory experiments. For β < 1 the magnetic field pressure
prevails. This low-beta regime is common to solar/stellar atmosphere(s) and also to
interstellar matter.
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Figure 7.3: Plasma and magnetic field boundary and
definition of plasma β,

⊙⊙⊙⊙⊙⊙
⊙⊙⊙

⊙⊙⊙⊙⊙⊙
⊙⊙⊙⊙⊙⊙

⊙⊙⊙
⊙⊙⊙⊙⊙⊙

β = 1

β < 1

β > 1

7.2.1 Diffusion of the magnetic field into plasmas

Let us discuss the system of two limited half-spaces, one of them filled with plasmas only,
and the other one containing the magnetic field in a vacuum (Fig. 7.3). In case there is no
resistivity in plasmas, the two regions will remain disconnected. The electromotive force
induced by any possible movement of the field would drive an infinite electric current
on the boundary separating these two regions, but the field would never penetrate the
plasma. However, the shape of the boundary may change significantly. If a pressure
balance (7.8) is to be held, then it must be that if we somehow force the magnetic field
to penetrate the plasma region, the gas must leave such a region.

Since (7.8) holds, automatically β = 1 on the boundary. For the “plasma half-space”
the second term vanishes and vice versa for the “magnetic field half-space”. However,
by considering the finite resistivity of the plasma we practically allow the two distinct
“fluids” to mix. In the following, we want to estimate the time scale of this process.
Let us start from a Farraday’s law of induction, Ampére’s law, and a generalised Ohm’s
law:

∇×E = −∂B
∂t

(7.10)

∇×B = µ0j (7.11)

E + u×B = ηj (7.12)

Let us assume that the plasma is stationary, hence u = 0 and thus the second term
on the left-hand side of the Ohm’s law vanishes. Note that even when we assume no
bulk motion of the plasma, there still might flow electric currents through plasma, as
we have two distinct charged species in the plasma. Remind that the velocity of the
bulk motion is defined as

u =
1

ρ
(niMui + nemue) ∼

Mui +mue

M +m
, (7.13)

hence as a weighted mean of the velocities of the two species, while the current is defined
as a difference of the velocities of the two species:

j = e(niui − neue) ∼ ne(ui − ue). (7.14)
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By combining equations (7.10), (7.11), and (7.12) we have

∂B

∂t
= −∇× ηj = − η

µ0
[∇(∇ ·B)−△B] =

η

µ0
△B, (7.15)

where we used ∇ ·B = 0. The above equation is a type of “heat-conduction equation”
and may be understood using the following model: the equation describes the temporal
evolution of the magnetic field when it is distorted from the equilibrium. We seek the
solution and study whether it is possible to recover the equilibrium and at what costs.

Such an equation may be solved using the separation of variables. For simplicity,
we approximate the ∇ operator by division over the length-scale L, which may be
understood as a penetration depth of the magnetic field. Then we solve the equation

∂B

∂t
=

η

µ0L2
B, (7.16)

which has a solution in a form of exponential

B = B0 exp

[
± t

τ

]
, (7.17)

from which we take only the negative solution as physical since we solve for a dissipation
of the magnetic field into plasma.

τ =
µ0L

2

η
(7.18)

is a characteristic time-scale of the penetration of the magnetic field into plasma.

The solution might be also understood as the magnetic field dissipating due to the
induction of the electric currents in plasma, which dissipate via the Ohmic heating. Let
us estimate how much of the energy of the magnetic field dissipates due to the Ohmic
heating processes.

The loss output of the Ohmic heating is given by

P = ηj2. (7.19)

Hence the energy drained from the magnetic field over the time τ is

∆W = ηj2τ. (7.20)

The electric current is given by the Ampére’s law (7.11). Hence the energy loss (again,
when approximating the ∇ operator) we have

∆W = ηj2τ = η

(
B

µ0L

)2 µ0L
2

η
=
B2

µ0
. (7.21)

It turned out that all the total energy of the magnetic field dissipates and heats up the
plasma. Actually it is by factor two larger, which is due to our rough estimates.
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7.3 Instabilities

The systems out of the thermodynamical equilibrium contain some of the free energy,
which may drive the rise of random fluctuations. In this case, for instance, the self-
excitation of plasma waves is possible. There is no other mean to self-excite plasma
waves. Of course, they might be driven from the outside. In this case, we speak about
the unstable equilibrium.

We recognise basically four types of plasma instabilities and in the further sections,
we will study some of the examples.

Stream instabilities A stream of plasma or an electric current propagates through
plasma. A spectrum of waves is excited that leads to an instability of the system.

Rayleigh-Taylor instability Should there be a sharp density gradient in plasmas
or the plasma be confined and there is an external force (for instance, gravity),
the external force drives the growth of instabilities. A classical example of non-
plasmatic Rayleigh-Taylor instability is a glass of water turned upside down when
the atmospheric pressure supports the water in the glass. The system is allowed
to be in an unstable equilibrium, however once perturbed, the instability grows.

Universal instability Is called universal because it is always present in the confined
plasmas (and the plasmas are always confined somehow). The confined plasma
is not in the total thermodynamical balance even when there are no important
external forces. The pressure (expanding the plasma) drives the instabilities.

Kinetic instability The kinetic instability is driven by the non-equilibrium distribu-
tion function (usually non-Maxwellian). An anisotropy in the distribution function
may drive the instabilities.

7.3.1 Two-stream instability

Let us study the first one example of stream instabilities, the two-stream instability.
Let us assume a homogeneous plasma in the coordinate system, where ions are station-
ary. Let us allow electrons to have a systematical speed u0 with respect to the ion
background. We assume ∇ · u0 = 0. The plasma is cold (Ti = Te = 0) and there is no
magnetic field (hence B0 = 0, B1 = 0).

Then the linearised Euler equations read:

Mn0
∂ui1

∂t
= en0E1, (7.22)

mn0

[
∂ue1

∂t
+ (u0 ·∇)ue1

]
= −en0E1. (7.23)

We search for electrostatic waves propagating in the x direction, where E1 ∥ ex ∥
k ∥ u0. Let us use the approach of solving the equations in the Fourier space (using the
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Fourier transform (5.10) ) similarly to the problem of deriving the dispersion relation
of plasma waves. Hence

−iωMui1 = eE1, (7.24)

m(−iω + iku0)ue1 = −eE1. (7.25)

The continuity equation for ions reads (with assumptions applied: ∇n0 = 0 and ui0 ≡ 0)

∂ni1
∂t

+ n0∇ · ui1 = 0, (7.26)

where we again consider only the x-component of the differential operator. We express
ni1 and further use (7.24) to get

ni1 =
k

ω
n0ui1 =

ien0k

Mω2
E1. (7.27)

Similarly, the continuity equation for electrons reads

∂ne1
∂t

+ n0∇ · ue1 + (u0 ·∇)ne1 = 0, (7.28)

hence the parallel component in the Fourier space is

(−iω + iku0)ne1 + ikn0ue1 = 0, (7.29)

from which we express ne1 by using (7.25):

ne1 =
kn0ue1
ω − ku0

= − iekn0
m(ω − ku0)2

E1. (7.30)

We do not assume the plasma approximation to be valid in this case, thus we further
use Poisson equation to finally derive the dispersion relation

∇ ·E1 =
e

ε0
(ni1 − ne1), (7.31)

where the density perturbations of the two species are given by (7.27) and (7.30). Then

ikE1 =
e

ε0
iekn0

[
1

Mω2
+

1

m(ω − ku0)2

]
E1 (7.32)

and thus

1 =
e2n0
ε0m

[
m/M

ω2
+

1

(ω − ku0)2

]
= ω2

p

[
m/M

ω2
+

1

(ω − ku0)2

]
. (7.33)

This is the dispersion relation of the two-stream instability. Please note that for u0 = 0
andm/M → 0 this relation degenerates to ω2 = ω2

p, hence to normal plasma oscillations.
This is the equation of the fourth-order in ω. The equation may either have four real

roots, each of them will correspond to the individual oscillatory mode, hence it will not
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describe an instability. The other option is that the equation will have two real roots
and the remaining two will be complex, one conjugated to the other. Let us discuss
these two. They might be symbolically written as

ωj = αj + iγj , where αj = ℜ[ωj ] and γj = ℑ[ωj ]. (7.34)

In the case of the complex roots, the solution for e.g. the electric field then reads

E1 = Eex exp [i(kx− ωt)] eγjt. (7.35)

Since the two complex roots are complex conjugated, one of them will have γj > 0 and
at least one of the modes will depict an exponential growth of the perturbation.

To study the dispersion relation at least qualitatively, we introduce new variables
ξ = ω/ωp and ξ0 = ku0/ωp. Then the dispersion relation reads

1 =
m/M

ξ2
+

1

(ξ − ξ0)2
= F (ξ; ξ0). (7.36)

We draw F (ξ; ξ0) as a function of ξ for the given ξ0. Two possible plots are displayed
in Fig. 7.4.

0 ξ0 ξ

1

F (ξ; ξ0)

0 ξ0 ξ

1

F (ξ; ξ0)

Figure 7.4: A graphical solution of the dispersion relation of the two-stream instability. In the case
displayed above, the solution has four real roots. No instability takes place. In the case below, only
two real roots solve the dispersion relation. Necessarily, the remaining root must have an imaginary
component, which is responsible for the instability.

It turns out that for small ξ0 the plasma is unstable (function F (ξ; ξ0) has two
conjugated complex roots). In other words, for a given u0, the plasma is unstable with
respect to perturbations with small k (and hence large wavelength). In this case, an
internal inconsistency appears. The linearisation approach to solve the system of initial
equations will no longer be valid, the assumptions of small perturbations will break. Our
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solution is therefore no longer correct. We just derived that such a solution qualitatively
is unstable (that is a correct result), however quantitatively (deriving the exponential
growth) is not correct.1

7.3.2 Gravitational instability

Let us consider another example which belongs into the family of Rayleigh-Taylor in-
stabilities: the space is divided into two half-spaces, one empty and one occupied by
plasma. The Cartesian coordinate system is set so that the ex is normal to the bound-
ary between the two half-spaces and ey and ez lie within the boundary, perpendicular
to each other. The background magnetic field is parallel to axis z. The plasma has
the density gradient parallel to axis x. The plasma is cold and the magnetic field is
homogeneous. We allow for a plasma bulk velocity parallel to axis y. Then in the state
of equilibrium, the Euler equation reads

Mni0[(ui0 ·∇)ui0] = eni0ui0 ×B0 +Mni0g. (7.37)

Note that we added an ad hoc term of the gravity force. For g constant also ui0 is
constant and hence (ui0 ·∇)ui0 → 0. Then

0 = eni0ui0 ×B0 +Mni0g (7.38)

We multiply (7.38) by B0 to obtain

0 = eB0 × (ui0 ×B0) +MB0 × g = eB2
0ui0 − eB0 · ui0B0 +MB0 × g, (7.39)

where B0 · ui0 due to the orthogonality of these vectors and hence

ui0 = −M
e

B0 × g

B2
0

= − g

Ωc
ey, (7.40)

where ui0 is the velocity of the ion drift in the field of gravity. The drift of electrons is
negligible since they have m/M -times smaller effect. Regarding the other drifts, there
is no E-B drift, since E0 = 0, there is also no diamagnetic drift because we assumed
the cold plasma. However, the conclusions might be different, when the boundary is
perturbed and corrugated (see Fig. 7.5). Then the following effects occur:

1. The ions drift and will cause the accumulation of the charge. The electrons react
with some delay.

2. The accumulated charges cause the additional electric field E1.

3. Now the E-B drift appears with drift velocity pointing parallel to the normal
direction to the boundary.

1The solution has a form of the growth in time. The growth factor gives an approximate idea on time
scales of the growth of the instability. It is also important to compare this timescale with the timescale
of the study we are performing. Should, for instance, the time span of the experiment be much shorter
than the instability timescale, the instability will simply not have enough time to fully develop and may
thus be neglected.
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∇n0
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Figure 7.5: Left: The coordinate setup for the gravitational instability. Note that the bulk velocity
u is a mass-weighted combination of background electron ue0 and ion ui0 velocities. However, in
the drift of the gravity field, ue0 ≪ ui0. Right: The E-B drift in the evolved gravitational instability.

Let us search for the increment of the growth. Let us assume that there is a wave
propagating parallel to ey. For ions, we introduce the perturbations to the density and
velocity, similarly as we did in the case of the plasma waves. The Euler equation reads:

M(ni0 + ni1)

{
∂

∂t
(ui0 + ui1) + [(ui0 + ui1) ·∇](ui0 + ui1)

}
=

e(ni0 + ni1) [E1 + (ui0 + ui1)×B0] +M(ni0 + ni1)g (7.41)

We further proceed slightly differently from the procedure we took when studying the
waves. We append (7.41) with (7.37) multiplied by 1 + ni1/ni0 to obtain the system of
two equations:

M(ni0 + ni1)

{
∂

∂t
(ui0 + ui1) + (ui0 ·∇)ui0 + (ui0 ·∇)ui1 + (ui1 ·∇)ui0

}
=

e(ni0 + ni1) [E1 + (ui0 + ui1)×B0] +M(ni0 + ni1)g (7.42)

M(ni0 + ni1)(ui0 ·∇)ui0 = (ni0 + ni1)eui0 ×B0 +M(ni0 + ni1)g. (7.43)

By subtracting the two some of the terms cancel, and when we further use ∂ui0
∂t = 0 and

(ui1 ·∇)ui0 = 0 we have to the first order

Mni0

[
∂ui1

∂t
+ (ui0 ·∇)ui1

]
= eni0(E1 + ui1 ×B0). (7.44)

It seems that apparently the term with the gravity acceleration disappeared. An explicit
term containing g indeed disappeared, however we have to keep in mind that the gravity
acceleration is still hidden in ui0!

Equation (7.44) in the Fourier space transforms to

M(ω − k · ui0)ui1 = ie(E1 + ui1 ×B0). (7.45)
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Let us write this equation in components by assuming E1x = 0, since we search for
wave propagating in the y-direction. We further use k = key and ui0 = ui0ey. For ions
we have

ui1x =
ie

M(ω − kui0)
ui1yB0, (7.46)

ui1y =
−ie

M(ω − kui0)
(E1y − ui1xB0). (7.47)

By combining the two we obtain for uiy

ui1y =
−ie

M(ω − kui0)

(
E1y +

−ieB2
0

M(ω − kui0)
ui1y

)
(7.48)

and hence

ui1y =
−ieE1y

M(ω − kui0)

[
1− e2B2

0/M
2

(ω − kui0)2

]−1

=
−ieE1y

M(ω − kui0)

[
1− Ω2

c

(ω − kui0)2

]−1

. (7.49)

To obtain a relation for ui1x we simply insert (7.49) into (7.46) and have

ui1x = − eΩcE1y

M(ω − kui0)2

[
1− Ω2

c

(ω − kui0)2

]−1

. (7.50)

By further assuming low-frequency waves, hence using approximation Ω2
c ≫ (ω −

kui0)
2, we have

ui1x =
E1y

B0
, ui1y = −i

ω − kui0
Ωc

E1y

B0
(7.51)

and analogously for electrons

ue1x =
E1y

B0
, ue1y = −i

ω − kue0
ωc

E1y

B0
, (7.52)

where ωc ≫ Ωc and thus ue1y → 0.
The continuity equation for ions is

∂ni1
∂t

+∇ · (ni0ui0)+(ui0 ·∇)ni1+ni1∇ ·ui0+(ui1 ·∇)ni0+ni0∇ ·ui1+∇ · (ni1ui1) = 0.

(7.53)
The second term vanishes, because by assumptions ∇ni0 ⊥ ui0, the fourth term vanishes
because we assumed that∇·ui0 = 0 and the last term on the left-hand side also vanishes
because it is the second-order term. Hence in the Fourier space, we have

−iωni1 + ikui0ni1 + ui1x
∂ni0
∂x

+ ikni0ui1y = 0. (7.54)

Similarly, we construct the continuity equation for electrons, however it is simpler,
because we assumed that ue0 ≪ ui0 and we showed that ue1y → 0. We will also expect
the low-frequency waves, hence the use of plasma approximation n1 = ne1 = ni1 and
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n0 = ne0 = ni0 is justified. In the end, we should show the consistency of the results
with the assumptions. Thus for electrons, we have

−iωn1 + ue1x
∂n0
∂x

= 0. (7.55)

By combining (7.54) and (7.51) we have

−iωn1 + ikui0n1 +
E1y

B0

∂n0
∂x

− i2kn0
ω − kui0

Ωc

E1y

B0
= 0, (7.56)

which trivially turns into

(ω − kui0)n1 + i
E1y

B0

∂n0
∂x

+ ikn0
ω − kui0

Ωc

E1y

B0
= 0. (7.57)

Similarly we combine (7.55) and (7.52) to get the equivalent of (7.57):

−iωn1 +
E1y

B0

∂n0
∂x

= 0, (7.58)

which allows us to express the term E1y/B0 and insert it into (7.57). Then

(ω − kui0)n1 −
ωn1
∂n0
∂x

∂n0
∂x

− kn0
ω − kui0

Ωc

ωn1
∂n0
∂x

= 0. (7.59)

After some algebra we obtain

ω(ω − kui0) = −ui0Ωc

n0

∂n0
∂x

. (7.60)

Now we use (7.40) and have

ω(ω − kui0) =
g

n0

∂n0
∂x

, (7.61)

or

ω2 − kui0ω − g

(
∂n0
∂x

n0

)
= 0. (7.62)

This is the dispersion relation of the wave we searched for. The solution is

ω =
1

2
kui0 ±

[
1

4
k2u2i0 + g

(
∂n0
∂x

n0

)] 1
2

. (7.63)

We will have instability (and exponential growth) in case ω is complex. That will be
fulfilled for

−g
(

∂n0
∂x

n0

)
>

1

4
k2u2i0, (7.64)
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B0

ku0

Figure 7.6: A flute instabil-
ity.

thus g and ∇n0 must have opposite signs. By waving the hands, “the lighter fluid
supports the heavier one”. Similar situation we had in case of the glass of water turned
upside down.

The interpretation is seen in Fig. 7.5 on the right. The corrugated boundary together
with the flow along the boundary causes the concentration of charges on the opposite
sides of the “wave”. The perturbed E1 electric field is induced by this charge separation
and the resulting vE drift causes the initial perturbation to grow.

Similar instability appears in the column of plasma when the gravity force is replaced
by the action of the centrifugal force (Fig. 7.6). The conclusions are the same. The
boundary of the plasma column is then corrugated and the instability is termed flute
instability. The onset of this instability is observed in the experiments of the laser-
induced fusion. The idea of the laser-induced fusion is that the fusion begins faster
than the flute instability sets on and disintegrates the plasma confinement (Fig. 7.7).

7.3.3 Universal instability

We will proceed similarly to the previous section, however, the g × B drift will be
replaced by the diamagnetic drift. Since in this drift there is no scaling with mass of
the particles, we have to solve equations for both ions and electrons.
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a) b) c)

electron profile
ion

profile

E
E

E×B

E×B

Figure 7.7: Development of flute instability. a) Initial disturbance. b) Effect of ion and electron
azimuthal drifts. c) Resulting E ×B drifts increase the amplitude.

For the background velocities we have relations:

ui0 = uDi =
KBTi
eB0

1

n0

∂n0
∂x

ey, (7.65)

ue0 = uDe = −KBTe
eB0

1

n0

∂n0
∂x

ey, . (7.66)

We expect the non-zero component kz of the wavevector, the motion of electrons
along the background magnetic field is important to shield the electrostatic field induced
by ions. We will further assume that the Boltzmann relation (4.92) fully describes the
density perturbation of the electrons,

ne1
n0

=
eϕ1
KBTe

. (7.67)

The geometry of the problem is sketched in Fig. 7.8.

At point A, the density is larger than in equilibrium, which is denoted by the solid
line, hence ne1 > 0 and thus ϕ1 > 0. At point B, the density is smaller than in
equilibrium, hence ne1 < 0 and ϕ1 < 0. Thus between points A and B there must be an
electric field E1, which drives the E-B drift with the drift velocity

u1 =
E1 ×B0

B2
0

. (7.68)

There will be a wave in direction ey, hence both ne1 and ϕ1 oscillate in time. Therefore
also ue1 oscillates in time and in fact the oscillations in the drift velocity are the cause
for the oscillations of density. As a result, there will be a motion of the plasma fluid
in x direction. Let us support this physical scenario by some equations. The Fourier
image of (7.68) is

u1x =
Ey

B0
= − ikyϕ1

B0
, (7.69)
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∇n0

k

u1

E1B

A

x

y ⊙⊙⊙
B0

Figure 7.8: An illustration of the universal instability. The corrugated boundary induces the charge
separation, which drives the perturbation of the electric field. This together with the background
magnetic field yiels the E −B drift, which causes the instability to grow.

where we used the Poisson equation E1 = −∇ϕ1 = −ikϕ1. The speed of the drift is
the same for both ions and electrons. Let us further assume for simplicity, that the
fluid of plasmas is incompressible and oscillates only in the x direction. Mathematically
speaking: u1x ̸= u1x(x) and kz ≪ ky. Then the continuity equation for divergence
centres reads:

∂n1
∂t

= −u1x
∂n0
∂x

, (7.70)

other components are being neglected. We express (7.70) in the Fourier space and use
Boltzmann relation to handle n1 for electrons and (7.69) to handle u1x. We have:

−iωne1 = −ue1x
∂n0
∂x

=
ikyϕ1
B0

∂n0
∂x

= −iωn0
eϕ1
KBTe

, (7.71)

which solves as
ω

k
= −KBTe

eB0

1

n0

∂n0
∂x

, (7.72)

which is exactly the expression (7.66). We confirmed the physical picture sketched in
words a few paragraphs above. The perturbation waves propagate with the speed of
the diamagnetic drift, hence termed drift waves.

However, the dispersion relation shows that no instability occurs, it does not have
any term assuring the growth. We did not prove that this configuration is unstable. Let
us only comment that the approach we took is not correct enough and that we neglected
two important ingredients: the polarisation drift and the drift in the inhomogeneous
electric field. The polarisation drift shows up in the case we have a variable electric
field. Then an additional drift with a speed of vp = sgn q 1

ωcB
dE
dt needs to be taken into

account. We will further only draw a physical picture in words: the corrections by the
additional two drifts causes the phase shift between ϕ1, which depicts a delay between
u1 and n1. Hence, in places, where the plasma is already skewed (n1 > 0), u1 directs
out of the plasma and vice versa. The perturbation on the boundary grows.
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7.3.4 Landau damping

The highlight of these lecture notes consists of an example of the kinetic instability. We
started this text with an introduction to the statistical physics to describe important
properties of the ensemble particles. We will end the text by investigating the oscillatory
motions in plasmas, which occur in the case of the particle distribution function not
being in equilibrium. We need to leave the fluid approximation and need to go one
step deeper, to the single-particle distribution function. Let us remind that for the
single-particle distribution function f the Boltzmann equation may be derived,

∂f

∂t
+
∂h

∂pi

∂f

∂ri
− ∂h

∂ri

∂f

∂pi
=

(
∂f

∂t

)

coll

, (7.73)

where h = p2

2m + V (r) is a Hamiltonian of one particle. We showed that this equation
may be rewritten as

∂f

∂t
+ v · ∇f +

F

m
· ∂f
∂v

=

(
∂f

∂t

)

coll

, (7.74)

where F are the external forces coming from the external potential V (r). By playing
explicitly with the term on the right-hand side to extract the term of the self-potential,
which has a similar shape as the action of the external potential, we got

∂f

∂t
+ v · ∇f +

⟨F ⟩
m

· ∂f
∂v

=

(
∂f

∂t

)′

coll

, (7.75)

where ⟨F ⟩ is the averaged action of both external forces and the self potential com-
bined. Then the Vlasov approximation consists of neglecting the right-hand side, which
is equivalent of neglecting the mutual correlation of distribution function of different
particles. For the further case, we substitute ⟨F ⟩ by the Lorentz force (as an effect of
the sum of both external and internal electric and magnetic fields). Hence finally we
have a Vlasov equation to solve:

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∂f

∂v
= 0, (7.76)

where E and B represent the joint action of both external and internal electric and
magnetic fields. In the following, we will neglect the external fields and in the case of
the magnetic field, we will neglect also the internal one. Altogether, we use the following
approximations:

1. B = 0,

2. E0 = 0, but E1 ̸= 0,

3. f = f0 + f1, f0 = f0(v), f1 = f1(t, r,v),

4. all perturbations are expressed by means of the Fourier series asA1 = Ā1 exp [i(kx− ωt)],
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5. and A1 ≪ A0 and ∂A1
∂a ≪ ∂A0

∂a . The perturbations are much smaller than the
background values and also the derivatives of the perturbations are much smaller
than the derivatives of the background.

6. We will further assume that the electric field has only a component along axis x̂.

We solve the problem for electrons. Thus the Vlasov equation (7.76) under the assump-
tions listed above reduces to

−iωf1 + ikf1vx =
e

m
E1x

∂f0
∂vx

, (7.77)

hence

f1 =
ieE1x

m

∂f0/∂vx
ω − kvx

. (7.78)

we add the Poisson equation

∇ ·E1 = ikE1x = −en1
ε0

= − e

ε0

+∞∫

−∞

f1d
3v. (7.79)

Let us rescale the distribution function so that f0 = n0f̂0(v), where the normalisation of
the newly introduced f̂0 is

∫
f̂0d

3v = 1. This definition has an advantage of n0, which
may be put outside of the integrals, because it is not a function of v. Let us integrate
(7.78) over the whole velocity space

+∞∫

−∞

f1d
3v =

ieE1x

m
n0

+∞∫

−∞

∂f̂0/∂vx
ω − kvx

d3v = − ikE1xε0
e

, (7.80)

where we also used (7.79). From that we obtain

1 = − e2n0
ε0mk

+∞∫

−∞

∂f̂0/∂vx
ω − kvx

d3v = +
ω2
p

k2

+∞∫

−∞

∂f̂0/∂vx
vx − ω

k

d3v. (7.81)

Let us assume that f̂0 is a background equilibrium distribution, essentially having the
shape of Maxwell-Boltzmann distribution. Then we may decompose f̂0 as a product of

f̂0(v) = f̃0(vx)f̃0(vy)f̃0(vz), (7.82)

with a normalisation
∫
f̃0(v)dv = 1. Then (7.81) simplifies to

1 =
ω2
p

k2

+∞∫

−∞

dvx
∂f̃0(vx)/∂vx
vx − ω

k

+∞∫

−∞

dvyf̃0(vy)

+∞∫

−∞

dvz f̃0(vz) =
ω2
p

k2

+∞∫

−∞

∂f̃0/∂vx
vx − ω

k

dvx. (7.83)

We will let ω be complex. The function (7.83) has a pole in ω/k. By using the residuum
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Figure 7.9: A sketch of the integration path including the pole in ω/k.

Im(vx)

Re(vx)

Iv.p.
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R/2
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u3

Figure 7.10: A sketch of the integration path bypassing the pole in ω/k.

theorem for the integration of the complex functions, we must integrate along the closed
curve, but bypass a pole, which results in an additional contribution of the residuum of
this pole. According to the integration path displayed in Fig. 7.9 we have

−I + Iv.p. + u1 + u2 +
R

2
+ u3 + u4 = 0, (7.84)

where I is the integral we want to evaluate (note the negative sign as we integrate against

the direction of the x axis), Iv.p. is the principal value of this integral, R =
[
2πi ∂f̃0∂vx

]
ω
k

is

a residuum in the pole and the segments u3 and u4 may be made infinitesimally small.
The segments u1 and u2 are in the close vicinity of the pole and we may assume that
their length will be similar. Their orientation is the opposite on the integration path,
hence we may safely assume that their total contribution, effectively the difference of
their lengths, will be negligible.

UNVERIFIED: Why did we take only one half of the residuum in the pole? We
assume that the damping is small and therefore the pole is very close to the real axis,
effectively lying on it. The principal value integral may then be computed as an average
of the integrals below and above the real axis. There is no pole (and no residuum) for
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the integral above the axis, for the integral below the axis one needs to account for the
whole residuum, therefore the total contribution contains only one half of the residuum.
The case of the non-negligible damping is discussed elsewhere2.

ALTERNATIVELY: The integration path may also be drawn that bypasses the
pole, as in Fig. 7.10. In that case, we use the integration path that avoids the pole
with a semicircular detour towards the upper half of the complex plane. The theorem
from the complex analysis from mathematics says that if we bypass the pole of the
complex differentiable (meromorphic)function using a trajectory in a form of an arc,
we need to consider only proportional fraction of the corresponding residuum in that
pole. The fraction is then given as a ratio of the length of the arc and the length of the
corresponding full circle. In our case, since we bypass the residuum using a half-circle,
we consider only one half of the residuum value.

(7.83) may thus be written as

1 =
ω2
p

k2



v.p.

+∞∫

−∞

∂f̃0/∂vx
vx − ω

k

dvx +

[
iπ
∂f̃0
∂vx

]

ω
k



 . (7.85)

The integral may be solved by parts

+∞∫

−∞

∂f̃0
∂vx

dvx
vx − ω/k

=

[
f̃0

vx − ω/k

]−∞

+∞

+

+∞∫

−∞

f̃0dvx
(vx − ω/k)2

. (7.86)

The first term vanishes due to the fast decay of the distribution function. Note that
the phase speed vφ = ω/k and let vφ be positive, i.e., we will deal with the positive
velocities only. Let’s approximate using the Taylor expansion

(vx − vφ)
−2 ∼ v−2

φ

(
1 +

2vx
vφ

+
3v2x
v2φ

)
. (7.87)

Then (7.86) turns into

+∞∫

−∞

f̃0dvx
(vx − vφ)2

∼ v−2
φ




+∞∫

−∞

f̃0dvx +

+∞∫

−∞

2vx
vφ

f̃0dvx +

+∞∫

−∞

3v2x
v2φ

f̃0dvx


 =

= v−2
φ

[
1 +

2

vφ
⟨vx⟩+

3⟨v2x⟩
v2φ

]
= v−2

φ

(
1 +

3⟨v2x⟩
v2φ

)
, (7.88)

where we used ⟨vx⟩ = 0, which certainly is true for the symmetrical velocity distribution,
such as the Maxwell-Boltzmann one.

Let’s continue to deal with (7.85):

1 =
ω2
p

k2
k2

ω2



1 +

3⟨v2x⟩
v2φ

+ iπ

[
ω2

k2
∂f̃0
∂vx

]

ω
k



 . (7.89)

2T. H. Stix: Waves in Plasmas, 1992, AIP-Press, ISBN 978-0-88318-859-0
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Let us take a step to the side. If we were to neglect the residuum in the pole, we
would neglect the last term. By further using 1

2m⟨v2x⟩ = 1
2KBTe we have

1 =
ω2
p

ω2

(
1 + 3

k2

ω2

KBTe
m

)
. (7.90)

If we further assume that ω → ωp in the second-order (in other words ω4 ∼ ω2ω2
p) we

have

ω2 = ω2
p + 3k2

KBTe
m

, (7.91)

which is the dispersion relation for electron electrostatic waves. By neglecting the
contribution in the pole we obtained the classical result.

The new physics shows up when we properly treat the residuum in the pole. For
simplicity, let’s omit the term with the thermal motion, which (as we just showed)
results in the electrostatic electron waves. The dispersion relation then reads

ω2 = ω2
p



1 + iπ

[
ω2

k2
∂f̃0
∂vx

]

ω
k



 . (7.92)

Using the expansion to the Taylor series to the first order and assuming ωp > 0 we have

ω ∼ ωp



1 +

1

2
iπ

[
ω2

k2
∂f̃0
∂vx

]

ω
k



 . (7.93)

The Taylor expansion is justified because we expect ω to be very close to ωp. In that
case (7.92) may be written as

ω2

ω2
p

=



1 + iπ

[
ω2

k2
∂f̃0
∂vx

]

ω
k



 ∼ 1 (7.94)

and thus the second term on the right-hand side must be small compared to unity. For
ω → ωp then the equation (7.93) gives

ω ∼ ωp



1 +

1

2
iπ

[
ω2
p

k2
∂f̃0
∂vx

]

ω
k



 . (7.95)

This relation has a suitable form of the complex number with separated purely real and
purely imaginary parts.

By going back to the definition of the Fourier series A1 = Ā1 exp [i(kx− ωt)], the

new results will come obvious. For ∂f̃0
∂vx

> 0 ℑ(ω) > 0 and thus we have an instability.

For ∂f̃0
∂vx

< 0 ℑ(ω) < 0 the external perturbations (such as waves) are damped.
So if we plot the distribution function and the perturbation appears at the given

phase speed, the derivative of the distribution function decides whether this perturbation
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vw
vpvp

vw

Figure 7.11: The system in the frame moving with phase speed vφ. At point A the speed of
the particle is a little smaller than vφ, hence the particle falls behind into the point x′, where the
electric potential is higher and thus pushes the particle forward. Particles having v < vφ are being
accelerated. Contrary, particles with v > vφ are decelerated.

will be damped or will grow. Note that for the Maxwell-Boltzmann distribution, ∂f̃0
∂vx

< 0
for all speeds, thus in for plasma in a perfect equilibrium the perturbations are always
damped. This effect is termed the Landau damping.

For a Maxwell-Boltzmann distribution, we may obtain an explicit term of the imag-
inary part, which is

ℑ
(
ω

ωp

)
∼ 0.22

√
π

(
ωp

kvT

)3

exp

[
− 1

2k2λD

]
, (7.96)

which shows that the waves with wavenumbers comparable to the Debye shielding length
are the most effectively damped.

A different situation appears when the stream of particles having a different typical
speed perturbs the distribution function and creates a bump. Part of this bump will

have ∂f̃0
∂vx

> 0. If the system is perturbed e.g. by the waves with the phase speeds in the
susceptible interval, the instability will occur. The energy exchange between the wave
and the particles will occur (see Fig. 7.11). A mixture of two Doppler-shifted Maxwellian
distributions is unstable. An alternative interpretation can be seen in Fig. 7.12.

Landau damping effect plays an important role in the heating of the solar corona
(and also coronae of Sun-like stars), where the outer layers of the atmosphere (coronae)
are much hotter (millions of degrees) than the below located photospheres (thousands
of degrees). The heating is therefore due to the non-thermodynamical effect, such as
the dissipation of the coronal currents flowing along with the loops of the magnetic
fields, thermal energy from the all-scale reconnection processes and the heating due to
the MHD waves propagating to the coronae. The waves exchange the energy with the
coronal plasma by means of the Landau damping.
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Figure 7.12: The interpreta-
tion of Landau damping: If
in total there are less faster-
than-the-wave particles than
slower-than-the-wave parti-
cles, the energy streams from
the wave to the particles and
the perturbation is damped.
This is the case of Landau
damping, when ∂f̃0

∂vx
< 0.

The other case is obvious. v1 v2 v

f0(v) ∂f0

∂v < 0

∂f0

∂v > 0



Appendices

167





Appendix A

Basics of statistical physics

A.1 Equation of the energy balance as a second moment
of the Vlasov equation

Energy balance equation will be obtained multiplying eq. (1.48) with 1
2m|v|2 and inte-

grating over the velocity space.

It is again convenient to use the Einstein summation rule and perform some of the
algebra in the components.

We remind that

|v|2 = (ui + wi)(ui + wi) (A.1)

for v = u +w, where u is the bulk velocity and w the random (thermal) component.
We also remind that

ρ⟨X ⟩ ≡
∫
mXf d3v, (A.2)

defines a mean value of quantity X .

Multiplying the Boltzmann equation (only repeating Eq. 1.48)

∂f

∂t
+ v · ∂f

∂r
− 1

m
∇ [V (r) + Φ(r)] · ∂f

∂v
= 0 . (A.3)

by 1
2m|v|2 and integrating over the velocity space we get

∫
∂f

∂t

1

2
m|v|2 d3v +

∫
vk
∂f

∂rk

1

2
m|v|2 d3v −

∫
1

m

∂

∂rk
[V +Φ]

∂f

∂vk

1

2
m|v|2 d3v = 0 .

(A.4)

We will further deal with the terms of this equation one by one. In the first term, we
swap the order of the time derivative and integration over velocity space, assuming that
it is mathematically possible. We further utilise the definition of the mean value (A.2)
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and decomposition of the velocity to bulk and random components.

∂

∂t

∫
1

2
m|v|2f d3v =

∂

∂t
⟨ρ
2
|v|2⟩ = ∂

∂t

ρ

2
⟨u2 + w2⟩ = ∂

∂t

[ρ
2
u2 +

ρ

2
⟨w2⟩

]
=

=
∂

∂t

[ρ
2
u2 + ρE

]
, (A.5)

where we used the definition of the internal energy as ρE ≡ ρ⟨1/2w2⟩.
When dealing with the second term of (A.4), we will utilise the following relation:

⟨(vivi)vk⟩ = ⟨(ui + wi)
2(uk + wk)⟩ = ⟨(u2i + 2uiwi + w2

i )(uk + wk)⟩ =
= ⟨u2iuk + 2uiwiuk + w2

i uk + u2iwk + 2uiwiwk + w2
iwk⟩ =

= u2uk + uk⟨w2⟩+ 2ui⟨wiwk⟩+ ⟨w2
iwk⟩, (A.6)

where we used the fact that the mean value is a linear operator and ⟨wi⟩ = 0. We will
further define the following quantities:

heat conduction Fk ≡ ρ⟨wk
1

2
w2⟩, (A.7)

pressure P ≡ 1

3
ρ⟨w2⟩, (A.8)

stress tensor πij ≡ ρ⟨1
3
|w2|δij − wiwj⟩ = Pδij − ρ⟨wiwj⟩. (A.9)

Note that from the last line it follows that ⟨wiwk⟩ = 1/ρ(Pδik − πik).

Using the identity (A.6) we may evaluate the second term of (A.4):

∫
vk
∂f

∂rk

1

2
m|v|2 d3v =

∂

∂rk

∫
vkf

1

2
m|v|2 d3v =

=
∂

∂rk

ρ

2
⟨v2vk⟩ =

∂

∂rk

ρ

2
⟨(vivi)vk⟩ =

=
∂

∂rk

[ρ
2
u2uk + Fk + ρEuk + ui(Pδik − πik)

]
. (A.10)

The third term of (A.4) gives:

∫
1

m

∂ [V +Φ]

∂rk

∂f

∂vk

1

2
m|v|2 d3v =

∂ [V +Φ]

∂rk

∫
1

2

m

m
vivi

∂f

∂vk
d3v = − ρ

m
uk
∂[V +Φ]

∂rk
,

(A.11)
where we used the integration by parts and also the normalisation condition of the
distribution function
∫
vivi

∂f

∂rk
d3v = [vivif ]

+∞
−∞ −

∫
∂(vivi)

∂vk
f d3v = −2

∫
vi
∂vi
∂vk

f d3v = −2

∫
viδikf d

3v =

= −2

∫
vkf d

3v = −2
ρ

m
uk. (A.12)
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So in total, the (A.4) may be written as

∂

∂t

[ρ
2
u2 + ρE

]
+

∂

∂rk

[ρ
2
u2uk + Fk + ρEuk + ui(Pδik − πik)

]
= − ρ

m
uk
∂[V +Φ]

∂rk
.

(A.13)
Now we take the Euler equation (1.60)

ρ
∂uk
∂t

+ ρuj
∂uk
∂rj

= − ρ

m

∂[V +Φ]

∂rk
− ∂P

∂rk
+
∂πkj
∂rj

(A.14)

and multiply it by uk:

ukρ
∂uk
∂t

+ ρukuj
∂uk
∂rj

= − ρ

m
uk
∂[V +Φ]

∂rk
− uk

∂P

∂rk
+ uk

∂πkj
∂rj

. (A.15)

The left-hand side becomes:

ukρ
∂uk
∂t

+ ρukuj
∂uk
∂rj

=
ρ

2

∂u2k
∂t

+
ρ

2
uj
∂u2k
∂rj

+
u2k
2

∂ρ

∂t
+
u2k
2

∂ρuj
∂rj

=

=
∂

∂t

(
1

2
ρu2k

)
+

∂

∂rj

(
1

2
ρuju

2
k

)
=

∂

∂t

(
ρu2

2

)
+

∂

∂rj

(
ρu2

2
uj

)
, (A.16)

where as a trick we added a zero term in a form of the u2/2-multiple of the continuity
equation. Hence the uk-multiple of the Euler equation reads:

∂

∂t

(
ρu2

2

)
+

∂

∂rk

(
ρu2

2
uk

)
= − ρ

m
uk
∂[V +Φ]

∂rk
− uk

∂P

∂rk
+ uk

∂πkj
∂rj

. (A.17)

Now we subtract the previous from (A.13) and get

∂ρE
∂t

= −∂Fk

∂rk
− ∂ρEuk

∂rk
− ∂

∂rk
uiPδik + uk

∂P

∂rk
+
∂uiπik
∂rk

− uk
∂πkj
∂rj

. (A.18)

The term on the left-hand side together with the second term on the right-hand side
give

∂ρE
∂t

+
∂ρEuk
∂rk

= E ∂ρ
∂t

+ρ
∂E
∂t

+E ∂ukρ
∂rk

+ρuk
∂E
∂rk

= ρ
∂E
∂t

+ρuk
∂E
∂rk

= ρ
∂E
∂t

+ρ (u ·∇) E = ρ
dE
dt
,

(A.19)
where in the first step we identified the E-multiple of the continuity equation, hence two
terms cancelled out.

The third and forth terms on the right-hand side of (A.18) give

− ∂

∂rk
uiPδik+uk

∂P

∂rk
= −∂ukP

∂rk
+uk

∂P

∂rk
= −P ∂uk

∂rk
−uk

∂P

∂rk
+uk

∂P

∂rk
= −P ∂uk

∂rk
. (A.20)

And finally, the fifth and sixth terms on the right-hand side of (A.18) give

∂uiπik
∂rk

− uk
∂πkj
∂rj

=
∂uiπik
∂rk

− ui
∂πik
∂rk

= πik
∂ui
∂rk

+ ui
∂πik
∂rk

− ui
∂πik
∂rk

= πik
∂ui
∂rk

. (A.21)
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The resulting expression is usually termed the local heat dissipation rate, Ψ ≡ πik
∂ui
∂rk

.
Putting the intermediate results together we finally have

ρ
∂E
∂t

+ ρuk
∂E
∂rk

= −∂Fk

∂rk
− P

∂uk
∂rk

+ πik
∂ui
∂rk

(A.22)

or in a vector form

ρ
dE
dt

= −∇ · F − P∇ · u+ π : (∇u), (A.23)

where we need to stress out that the object (∇u) is a dyadic (a second-order tensor)
and the colon (:) operator indicates the double-scalar product between the tensors.

A.2 Properties of the stress tensor and heat flow with the
isotropic distribution function

Let us properly derive the properties of the stress tensor πij and (conductive) heat flow
Fi in the special case of the distribution function, which is isotropic in the velocity
space, hence f(r,v) = f(r, |v|).

Note that the isotropic distribution function is the special case of the symmetric
distribution function, for which we have f(r,v) = f(r,−v). In such a case, when
splitting the particle velocity component into its bult and fluctuating components, vi =
ui + wi we have for the mean values

⟨wi⟩ = 0, ⟨vi⟩ = ui = 0, ∀i, (A.24)

where we followed the description for the mean value by (A.2). This is due to the
symmetry of the distribution function. Such useful properties will also be valid for the
isotropic distribution function (which again is a special case of the symmetric one) and
further more, the velocity dispersions in all directions will be the same, symbolically

⟨v2i ⟩ = ⟨w2
i ⟩ ≡ ⟨w2⟩, ∀i. (A.25)

Note that ⟨w2⟩ indicates the velocity dispersion in any direction, which is a different
quantity than the square of the length of the fluctuating velocity vector w. We would
indicate the latter as |w|2. For the isotropic distribution function, these two quantities
differ by a factor of 3, which we will use immediately in what is to follow. For the stress
tensor we can thus write:

πij = ρ

〈
1

3
|w|2δij − wiwj

〉
= ρ

[
1

3
⟨|w|2⟩δij − ⟨wiwj⟩

]
=

= ρ

[
1

3

〈
3∑

i=1

w2
i

〉
δij − ⟨wiwj⟩

]
= ρ

[
1

3
3⟨w2⟩δij − ⟨w2⟩δij

]
= 0, (A.26)

where we applied the properties of the velocity dispersions for the system isotropic in
the velocity space.
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Similarly, for conductive heat flow we have

Fk =
ρ

2

〈
wk|w|2

〉
=
ρ

2

〈
w

3∑

i=1

w2

〉
=

1

2
m

∫
w 3w2fd3v =

3

2
m

∫
v3fd3v = 0, ∀k

(A.27)
again due to the symmetries (the odd powers of velocity component average to zero).

In the case of the symmetric distribution function (f(r,v) = f(r,−v)), the system
symmetry also simplifies the two considered quantites significantly. For the heat flow
we have

Fk =
ρ

2

〈
wk|w|2

〉
=
ρ

2

〈
wk

3∑

i=1

w2
i

〉
=
m

2

∫
vk

3∑

i=1

v2i fd
3v =

=
m

2

3∑

i=1

∫
vkv

2
i fd

3v =
m

2



∫
v3kfd

3v +
∑

i ̸=k

∫
v2i

(∫
vkfdvk

)
d2v


 = 0, (A.28)

where we symbolically split the integration element to d3v = dvkd
2v. In the last step

and the second term, note that the integral in the round parenthesis (integration of vk)
could in principle still depend on the two remaining velocity components. The symmetry
of f in the velocity space implies the symmetry in the individual components, hence
the averaging of the velocity component vanishes and the whole term becomes zero.

When assessing the properties of the stress tensor for the symmetric distribution
function, let us go back to the velocity correlations, from which the stress-tensor com-
ponents are defined. The elements of the correlation tensor ⟨vivj⟩ =

∫
vivjfd

3v sub-
stantially differ for the diagonal and off-diagonal elements. For the diagonal elements
we trivially have

⟨vivi⟩ = ⟨v2i ⟩ = ⟨w2
i ⟩, (A.29)

hence on the diagonal, we have velocity dispersions in each direction. Note that the
values of the diagonal terms need not to be the same. They are for the isotropic
distribution function. For the off-diagonal terms we have

⟨vivj⟩ =
m

ρ

∫
vivjfd

3v =
m

ρ

∫ (∫
vifdvi

)
vjdvjdv = 0, (A.30)

where similarly to the previous case we split the integration element to d3v = dvidvjdv
and do the averaging of the components with caution.

Since the velocity-correlation tensor has a diagonal form, the stress tensor πij must
also have a diagonal form. Only two of them are however independent, as the sum of
the diagonal elements is bound to the value of pressure P ,

πii = ρ

〈
1

3
|w|2 − w2

i

〉
and πij = 0 for i ̸= j. (A.31)
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Appendix B

Guiding centre motion

B.1 Relativistic E-B drift

In Section 3.2 we derived an expression for a classical E-B drift. It is interesting to show
that the E-B drift naturally shows up as a consequence of the Lorentz transform of the
electromagnetic field tensor. That is we transform Fµν ,

Fµν =




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0


 (B.1)

using the tensor of Lorentz transform Λµ
ν

Λµ
ν =




γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ


 , (B.2)

where β = v/c and γ = (1 − v2/c2)−
1
2 . Note that the velocity v is not known yet and

we will obtain it as a solution to the problem. The transformed F ′
ξζ is

F ′
ξζ = Λµ

ξFµνΛ
ν
ζ =

=




γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ







0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0







γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ


 .

(B.3)
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Now we need to properly multiply these three matrices to obtain

F ′
ξζ =




0 γ(Ex/c− βBy) γ(Ey/c+ βBx) Ez/c
γ(βBy − Ex/c) 0 Bz γ(βEx/c−By)
−γ(Ey/c+ βBx) −Bz 0 γ(βEy/c+Bx)

−Ez/c γ(By − βEx/c) −γ(βEy/c+Bx) 0


 =

=




0 E′
x/c E′

y/c E′
z/c

−E′
x/c 0 B′

z −B′
y

−E′
y/c −B′

z 0 B′
x

−E′
z/c B′

y −B′
x 0


 . (B.4)

Hence

E′
x/c = γ(Ex/c− βBy), (B.5)

E′
y/c = γ(Ey/c+ βBx), (B.6)

E′
z = Ez, (B.7)

B′
x = γ(βEy/c+Bx), (B.8)

B′
y = γ(By − βEx/c), (B.9)

B′
z = Bz (B.10)

are the transformation equations for all the components of the electromagnetic tensor.
The target mutual velocity of both coordinate systems is the one when the effect of the
magnetic and electric fields will be separable, thus when E ∥ B, which is an equivalent
of E × B = 0. For reasons which will show up later, let’s compute the square of the
cross product amplitude, which will certainly be zero for parallel vectors. Then by using
the rules for mixed product we have

|E ×B|2 = (E ×B) · (E ×B) = E · [B × (E ×B)] = E2B2 − (E ·B)2 = 0 (B.11)

Let’s compute this relation for transformed vectors E′

c and B′ and let’s deal only with
perpendicular components, because the parallel componets are already separated. Doing
this algebra we have
∣∣∣∣
E′

⊥
c

∣∣∣∣
2

|B′
⊥|2 =

[
γ2(Ex/c− βBy)

2 + γ2(Ey/c+ βBx)
2
]

[
γ2(βEy/c+Bx)

2 + γ2(By − βEx/c)
2
]
=

= γ4(Ex/c− βBy)
2(βEy/c+Bx)

2 + γ4(Ex/c− βBy)
2(By − βEx/c)

2+

+ γ4(Ey/c+ βBx)
2(βEy/c+Bx)

2 + γ4(Ey/c+ βBx)
2(By − βEx/c)

2

(B.12)

and
∣∣∣∣
E′

⊥
c

·B′
⊥

∣∣∣∣
2

= γ4(Ex/c− βBy)
2(βEy/c+Bx)

2 + γ4(Ey/c+ βBx)
2(By − βEx/c)

2+

+ 2γ4(Ex/c− βBy)(Ey/c+ βBx)(βEy/c+Bx)(By − βEx/c). (B.13)
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Hence [we immediately see that when subtracting (B.13) from (B.12), first terms cancel
with each other, as do also the fourth term from (B.12) and second term from (B.13)]:

∣∣∣∣
E′

⊥
c

·B′
∣∣∣∣
2

−
∣∣∣∣
E′

⊥
c

∣∣∣∣
2

|B′|2 = γ4(Ex/c− βBy)
2(By − βEx/c)

2+

+ γ4(Ey/c+ βBx)
2(βEy/c+Bx)

2−
− 2γ4(Ex/c− βBy)(Ey/c+ βBy)(βEy/c+Bx)(By − βEx/c) =

= γ4
[(

Ex

c
− βBy

)(
By − β

Ex

c

)
−
(
Ey

c
+ βBx

)(
β
Ey

c
+Bx

)]2
=

= γ4

[
−β
(
E2

x

c2
+
E2

y

c2
+B2

x +B2
y

)
+ (1 + β2)

(
Ey

c
Bx −

Ex

c
By

)]2
=

= γ4
[
−β
(
E2

c2
+B2

)
+ (1 + β2)

(
B × E

c

)

z

]
= 0, (B.14)

where we used

(1 + β2)

(
B × E

c

)

z

= (1 + β2)

(
Bx

Ey

c
−By

Ex

c

)
. (B.15)

Equation (B.14) may be true if and only if we have

β

1 + β2
=

E
c ×B

E2

c2
+B2

, (B.16)

which implicitly defines the target speed vE of the coordinate system, in which the
effects of magnetic and electric fields are separable. This speed is hidden in β = vE/c.
We will not solve this equation properly but rather take an approximation of β < 1,
when we may use the β2 as a correction term and obtain

vE = (1 + β2)
E ×B
E2

c2
+B2

. (B.17)

This is the relativistic version of (3.29). When assuming a non-relativistic case with
β ≪ 1 and further |E| ≪ c, the two expressions equal exactly. The latter condition
applies to most of the real-world systems.
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B.2 Alternative derivation of (3.118)

⟨(e⊥ × b)(e⊥ ·∇)B⟩ =
〈




cosϕ
sinϕ
0


×




0
0
b










cosϕ
sinϕ
0


 ·




∇1B
∇2B
∇3B





〉

=

=

〈


b sinϕ
−b cosϕ

0


 (cosϕ∇1B + sinϕ∇2B)

〉
=

=

〈


b sinϕ cosϕ∇1B + b sin2 ϕ∇2B
−b cos2 ϕ∇1B − b sinϕ cosϕ∇2B

0



〉

=

= −1

2




−b∇2B
b∇1B

0


 = −1

2




0
0
b


×




∇1B
∇2B
∇3B


 =

= −1

2
b×∇B (B.18)

⟨(e⊥ × [e⊥ ·∇] b⟩ =
〈


cosϕ
sinϕ
0


×






cosϕ
sinϕ
0


 ·




∇1b
∇2b
∇3b





〉

=

=

〈


cosϕ
sinϕ
0


×


(cosϕ, sinϕ, 0)




∇1b1 ∇1b2 ∇1b3
∇2b1 ∇2b2 ∇2b3
∇3b1 ∇3b2 ∇3b3





〉

=

=

〈


cosϕ
sinϕ
0


×




cosϕ∇1b1 + sinϕ∇2b1
cosϕ∇1b2 + sinϕ∇2b2
cosϕ∇1b3 + sinϕ∇2b3



〉

=

=

〈


sinϕ cosϕ∇1b3 + sin2 ϕ∇2b3
− cos2 ϕ∇1b3 − cosϕ sinϕ∇2b3

− sinϕ cosϕ∇1b1 − sin2 ϕ∇2b1 + cos2 ϕ∇1b2 + cosϕ sinϕ∇2b2



〉

=

=




1
2∇2b3
−1

2∇1b3
−1

2∇2b1 +
1
2∇1b2


 =

1

2
(e1∇2 − e2∇1)b3 +

1

2
b(∇1b2 −∇2b1) =

=
1

2
b(∇× b)3 +O

[
(∇b[1,2])2

]
=

1

2
b[b · (∇× b)]. (B.19)

Note that in the second step we expressed the dot product by means of matrix multi-
plication respecting the rule a · b = aTb = abT, where a is the matrix representation of
the vector a.
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B.3 Derivation of equations (3.122)–(3.124)

Derive equations for variables in the perpendicular plane

〈
dv∥

dt

〉
=
E∥

ϵ
− u2⊥

2B
∇∥B + vE ·Dtb (B.20)

〈
du⊥
dt

〉
=
v∥u⊥

2B
∇∥B − u⊥

2
(∇ · vE − b · ∇∥vE) (B.21)

〈
dϕ

dt

〉
= −B

ϵ
− e2 ·Dte1 −

v∥

2
b ·∇× (v∥b+ vE) (B.22)
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Appendix C

Magnetic dipole

C.1 Magnetic dipole expressed in various coordinate sys-
tems

The magnetic induction B of a dipole with a magnetic moment M is given1 by

B = (Br, Bϑ, Bφ) =
M
r3

[2 cosϑer + sinϑeϑ] (C.1)

in the spherical coordinates (r, ϑ, φ). For the sake of an example studied in Section 3.9,
it is convenient to express the same in the cylindrical coordinates (R,φ, z). To complete
this, we consider the following transform equations

R =r sinϑ, (C.2)

φ =φ, (C.3)

z =r cosϑ (C.4)

that can easily be derived from the definition of each using the usual Cartesian system.
Consequently

r =
√
R2 + z2, (C.5)

sinϑ =
R

r
=

R√
R2 + z2

, (C.6)

cosϑ =
z

r
=

z√
R2 + z2

. (C.7)

To transform (C.1) to cylindrical coordinates, we first express the unit vectors from
(C.1) in the cylindrical coordinates. For the position vector of a point we have

R+ z = Rer + zez = r = rer, (C.8)

1e.g. https://en.wikipedia.org/wiki/Magnetic_dipole
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where vectors e are unit vectors in the appropriate coordinate direction indicated by
their subscript. Hence

er =
R

r
eR +

z

r
ez = sinϑeR + cosϑez. (C.9)

To express eϑ we use the orthonormality of both the spherical and cylindrical coordinate
systems:

eϑ = eφ × er and eφ = ez × eR. (C.10)

Then

eϑ = (ez × eR)× er = −ezeR · er + eRer · ez = − sinϑez + cosϑeR. (C.11)

We use these expression in (C.1) to have

B =
M
r3
[
3 cosϑ sinϑeR + (2− 3 sin2 ϑ)ez

]
. (C.12)

By expressing r in cylindrical coordinates we obtain components of the magnetic induc-
tion:

BR =
3M
r3

cosϑ sinϑ =
3MRz

(R2 + z2)5/2
(C.13)

and

Bz =
M
r3
(
2− 3 sin2 ϑ

)
=

M
(R2 + z2)3/2

[
2− 3R2

R2 + z2

]
=

M
(R2 + z2)5/2

[
2z2 −R2

]
.

(C.14)
In Section 3.9 we claimed that for the axisymmetric magnetic field, we may utilise

the flux function

F = M R2

(R2 + z2)3/2
(C.15)

to derive the magnetic induction components as

Bz =
1

R

∂F

∂R
and BR = − 1

R

∂F

∂z
, (C.16)

which is consistent with the approach described in Section 4.4.2. Let us verify that we
indeed get the dipole components (C.13) and (C.14).

For the polar component, we have

BR = −MR2

R

∂

∂z

1

(R2 + z2)3/2
= −MR

[
−3

2

2z

(R2 + z2)5/2

]
=

3MRz

(R2 + z2)5/2
. (C.17)

For the vertical component, we have

Bz =
M
R

∂

∂R

R2

(R2 + z2)3/2
=

M
R

[
2R

(R2 + z2)3/2
− 3

2

R22R

(R2 + z2)5/2

]
= (C.18)

=
M

(R2 + z2)5/2
[
2(R2 + z2)− 3R2

]
=

M
(R2 + z2)5/2

[
2z2 −R2

]
. (C.19)

Both components were therefore verified.
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C.2 Flux function in spherical coordinates

In Fig. 3.12 we plotted the flux function F conveniently in the spherical coordinates,
whereas its expression used was derived in the cylindrical coordinates. Following the
transforms (C.2) and (C.4) we have

F = M R2

(R2 + z2)3/2
=

Mr2 sin2 ϑ

(r2 sin2 ϑ+ r2 cos2 ϑ)3/2
= (C.20)

Mr2 sin2 ϑ

(r2)3/2
=

M
r

sin2 ϑ, (C.21)

which constitutes the explicit expression for F in the spherical coordinates.
I may be instructive to show that the approach of the use of the flux function to

derive the components of the magnetic induction is applicable regardless the coordinate
system. The requirement is that the Gauss law ∇ ·B = 0 holds. That leads to different
expressions to derive the components, namely:

Br =
1

r2 sinϑ

∂F

∂ϑ
=

1

r2 sinϑ

M
r

∂ sin2 ϑ

∂ϑ
=

2M
r3

cosϑ (C.22)

and

Bϑ = − 1

r sinϑ

∂F

∂r
= −M sin2 ϑ

r sinϑ

∂

∂r

1

r
=

M sinϑ

r

1

r2
=

M
r3

sinϑ. (C.23)

These components are consistent with (C.1).


