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Abstract

The main text is the same as the corresponding section in Viikinkoski et al. 2017, A&A 607,
A117, included here for introduction and clarity. The essential part of this separate study is
the appendix that presents a complete proof and discussion of fundamental uniqueness and
nonuniqueness properties of the nonconvex photometric inverse problem. We also include
a related mathematical joke on how to make a binary target look like a single one and yet
describe the surface accurately.

Information content analysis, including uniqueness proofs of the reconstructions of bodies based
on various projectionlike data sources as well as the weighting of those sources when used simul-
taneously, has been presented in a number of works (see, e.g., Kaasalainen & Lamberg 2006 and
references therein, Kaasalainen 2011, Viikinkoski & Kaasalainen 2014, Nortunen et al. 2017). We
revisit here the reconstruction of nonconvex shapes from photometry only. The numerical results
discussed, e.g., in Kaasalainen et al. (2001), Durech & Kaasalainen (2003), and Kaasalainen &
Durech (2007) give a good practical overview of the inverse problem. The problem, however, is
a mathematical one, so any nonuniqueness or uniqueness proofs are invaluable for understand-
ing the actual characteristics of the case. We present here fundamental results that require a
somewhat special setup, but they give insight to the general problem, and are among the very
rare proofs that can be given about the problem in the first place.

In the following, the term illuminated projection area denotes the total area of the projections
of the visible and illuminated (hereafter VI) parts of a body in the viewing direction (from
which the illumination direction can differ). Brightness data is the generalization of this, where
the surface elements contributing to the illuminated projection area are each weighted by a
scattering function depending on the local viewing and illumination conditions (the scattering
of illuminated projection areas is called geometric). Brightness data are also called generalized
projections (Kaasalainen & Lamberg 2006). In two dimensions, the body is a planar curve and
the projection area is the sum of the widths of the VI parts of the curve seen from the viewing
direction.

Tangent-covered bodies or TCBs are bodies for which each point on the surface has at least
one tangent that does not intersect any other part of the body (but can be tangent to them).
The tangent hull of a body is the set of surface points for which the above criterion is true,
augmented by their tangents to form a closed, connected surface of a TCB. By a concavity,
we mean a part of the surface of a body that is not part of its tangent hull. As discussed



in Kaasalainen (2011), tangent-covered bodies (and the tangent hull of a body, also called its
profile hull) are reconstructable from their disc-resolved silhouette or profile curves. TCBs are
thus the set of all convex bodies and all nonconvex bodies without concavities. By definition,
bodies with concavities are not TCBs, a TCB is identical to its tangent hull, in three dimensions
convex bodies are a subset of TCBs, and in two dimensions the sets of convex bodies and TCBs
are identical.

Two-dimensional nonconvex bodies cannot be uniquely determined from their bright-
ness data. By definition, the tangent hull of a 2D body is its convex hull, so any nonconvexities
of a 2D body are concavities. Each concavity is covered by a line that is part of the convex hull,
and all parts of a line have the same visibility and illumination. Thus the effect of the concavity
on brightness data can be replaced by smaller concavities, covered by the same line, that are
isomorphic to the original concavity whose length along the line equals their combined lengths.
It is also possible to have concavities of different shapes along the same line that together pro-
duce a shadow effect that can be attributed to one concavity of still another shape (see below).
Therefore the brightness data of any nonconvex 2D body can be reproduced by infinitely many
other nonconvex versions. We call this scale ambiguity.

Concavities of three-dimensional bodies cannot be uniquely determined from the
brightness data of the bodies. For simplicity, we assume here any concavity to be contained
in a plane that is part of the convex hull of the body. This is just to avoid lengthy discussions of
special shadowing conditions that are not material to the argument. Then the 3D case is a direct
generalization of the scale ambiguity of the 2D case: the effect of the concavity on brightness
data can be replaced by smaller isomorphic (or possibly other) concavities in the plane whose
combined surface area equals that of the concavity. We assume that the plane is suitably larger
than the part of it occupied by the concavity so that the smaller concavities can be arranged
within the plane. Note that this arrangement is also nonunique: even if one uses a size constraint
for the concavities, their locations in the plane cannot be deduced from brightness data.

An interesting corollary of this nonuniqueness is that even a large-scale concavity is actually
indistinguishable from a locally rugged surface: in other words, a concavity within a plane can
be replaced by the same plane with scattering properties caused by small-scale roughness (cf.
the discussion in Kaasalainen et al. 2004).

A subset of tangent-covered bodies can be determined from their illuminated pro-
jection areas at least with a simple scale constraint. Here we show that the set of bodies
essentially reconstructable from their illuminated projection areas is larger than the set of convex
surfaces. Essentially means here the use of a natural constraint. The uniqueness proof for the
brightness data of convex bodies is discussed in Kaasalainen & Lamberg (2006) and references
therein.

Proving anything about the integrals over a nonconvex body dependent on directions is notori-
ously difficult for the simple reason that usually such integrals are not analytically calculable,
requiring numerical ray-tracing or the finding of the roots of equations containing high-order
functions. Therefore we must resort to a number of special assumptions, considering first the
case in two dimensions. We can construct a proof there since in 2D the location of the shadow
boundary point is essentially the same as its projection area (length in 2D). In 3D, the shadow
boundary is resolved in 2D (see Kaasalainen 2011), and the area requires the computation of an
integral (as would brightness data in 2D).
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Figure 1: Sketch of the geometry of the nonconvex shape in the xy-plane.

Our reconstruction consists of three parts: 1. the uniqueness of a concavity up to scaling in 2D,
2. the separation of the uniqueness of this shape and that of the rest of the 2D curve, and 3.
the transformation of the 2D curve into a 3D TCB and the scale constraints.

1. For simplicity, we consider an isolated concave section S of a curve C in the zy-plane, with
end points on the x-axis, one at the origin and the other at (L,0), and the rest of S is below the
z-axis. We are interested in the shadow caused by the end point at (0,0). Let the illumination
direction be ¢ and the viewing direction 6, with ¢ — § = o. When o # 0, § can be uniquely
reconstructed by finding the point (zg,ys) on S separating the shadow and the illuminated part
for successive values of ¢ and . We require S to be starlike w.r.t. the origin: this enables
simple shape parametrization and yields only one shadow and one illuminated section on the
concavity. Further, we require VI parts of S to cover the whole of the line between (xs,ys) and
(L,0) projected in 6, and that there are 6 covering the whole of the motion of (xg, ys) from (0, 0)
to (L,0) as @ increases. A simple sufficient but by no means necessary arrangement for this is
to let S be an inverted convex curve with the angles between the y-axis and the tangents of S
both a/2 at (0,0) and (L, 0).

The shadow point (x4, ys) is the intersection point of two lines L; and Ly. L is the shadow line
through the origin in ¢, and Lo is the line in § such that its distance from the corresponding
line through (L, 0) is the observed illuminated projection length I. Thus

Ty = —dcos¢ =x9— scosf, ys=—dsing = —ssind, (1)

where d and s are the length parameters of the lines Ly and Lo, respectively, and Lo passes
through zg for which
l = (L —xp)siné. (2)

Combining these, one obtains the unique solution for d, and thus xs,ys at given 0, a, L, and



observed [. Parametrizing [ with the usual polar angle ¢, obtained directly from ¢ = ¢ — w, we
have
d(p)sina = Lsinf —1(0), 0=¢p—a+mnm, 0<60<7m—aq, (3)

[2(0), y(p)]ls = [d() cos p, d(p) sin ¢], (4)

and d(¢) = 0 for some values of § when [(§) = Lsin#; d(¢) > 0 for some interval of ¢ ending at
@ =271 whend =L and [ = 0.

This result shows formally the scale ambiguity: d is unique only if there is one concavity with
d, since otherwise one may define

Y disina=Y Lisin0—1(0), > Li=L Y di=d, (5)

so scaled-down arrangements of adjacent concavities with similar or various d;(y) will produce
the same [(0).

2. Recall that any convex curve can be defined by its curvature function C(¢), 0 < ¢ < 2.
The length element is ds = C(v)) di, so the points [x(¢)), y(1)] on the curve are given by
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The observed projection length of the VI part of the curve at 0 is
/2
1(6) :/ C (¢ + 0) cos dip. (7)
—7/24«

Expanding C(v) = ), ancosny + bysinny, n > 0,a; = by = 0, and similarly 1(0) =
> Cn cosnb + dy, sinnf, we have (Ostro & Connelly 1984, Kaasalainen 2016)

cn = aply(a) + bp I (a), dp = byl () —anl;(a), (8)
where
w/2 /2
ID(a) = / cosniycospdy, I (o) :/ sin n1 cos v dp, 9)
-7 /24« —m/2+o

so the solution of the inverse problem is
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The denominator (I¢)%+ (13)? is nonzero at 0 < a < T, so the convex curve is uniquely obtained
from the [(#)-data at any a.

When the integral defining I(6) mixes parts of S and other parts of C, there is no simple way to
parametrize C so as to allow analytical computations of [(6). Thus we separate the observations
of § from the rest of the curve C denoted by R = C\S. We assume that R is convex and without
linear sections. Then, denoting the angle interior to C between the z-axis and the tangent of R
at the origin and (L, 0) by, respectively, 7o and 77, we must have v9 < a, v, < a. With these



assumptions, either parts of S or parts of R are VI at any given 6. The data from S cannot be
mimicked by a convex curve since they are like those of a line for some range of 6.

Given a full range of observations /() of C, one can proceed as follows. First find the values of 6
at which [(6) vanishes at the given a. Assuming R not to contain straight lines ending at sharp
corners elsewhere, there are two intervals (or points) in § with /() = 0, one ending at § = 0
and one starting at § = « (the lengths of the intervals are o — 79 and «a — 7). Between these,
1(9) is sinusoidal for an interval of # starting at the end of one interval of [ = 0: | = Lsin#.
This reveals the existence of the corners at the origin and (L,0). It also fixes the xy-frame in
our convention, and gives the size of S: L = [/sinf from the sinusoidal interval. After the
shadow effect appears at some 6, the shape profile of S is uniquely obtained from [(#)-data at
0 <6 < m— a. Observations of [(#) in the range 7 — a < 6 < 27 are sufficient to determine
C (7)) of R (or any convex curve) in the interval 37/2 — a < ¢ < 37/2 4+ « since C'(¢)) in this
interval does not affect 1(6) at other values of #. For this range of 6, these data are exactly the
same as those from C with S a straight line from the origin to (L, 0) would be.

This concludes the determination of C up to the scale ambiguity on S: one obtains R and the
shape S, but there is no way of telling from () whether the data are due to S or smaller
concavities on the line section Lo between the origin and (L, 0).

3. Next we define a class of 3D bodies by extending the 2D curve C to apply to some interval
zp < z < 21, and covering the cylindrical shape of height z; — 2y with planes at zy and z;. This
surface is a TCB, and we call the shape class cylindrical TCBs. Concavities in 2D are changed
into saddle surfaces rather than concavities in 3D, with much richer information possibilities.
Viewing directions along the z-axis then reveal the true area A between the real concavity curve
and Lg: if Ap is the observed projected area of the body and Ac the area contained inside the
curve formed of R and Ly, A = A¢c — Ap. This information strongly constrains the possible
scale ambiguities. Now we must have ) . A; = A in addition to ), L; = L for each concavity 1,
and the combined area of many concavities is smaller than the area of one due to the quadratic
scaling of the areas A; w.r.t. the lengths L;. Also, viewing and illumination directions other
than those along the z-axis or in the zy-plane offer additional information. In these other
observing geometries, scale ambiguity is at least partly removed for the saddle-surface versions
of the concavities, but it is difficult to show the exact properties analytically.

If A equals the area Ag by S (on the whole of Ly) or is close to it, the assumption of one
concavity is well justified. Indeed, if A = Ag, only one occurrence of the concavity shape § is
possible if only this shape is considered. A simple way to enforce the assumption is to attribute
almost all area A to one scaled concavity & and fill the remaining length on Ly by negligibly
small-scale roughness.

The above construction applies also to other arrangements than that of § and R. For example,
the profiles of the concave sides of a "nonconvex Reuleaux triangle” are solvable at least for
a > /6. Viewing directions tilted from the z-axis can be used to isolate the area information
for each concave section of the surface by placing them in the opposite azimuthal direction.

Not all tangent-covered bodies can be uniquely determined from their brightness
data. Even the use of all observing geometries and size constraints cannot resolve the case where
sections on Ly are without concavities (just straight lines). Then it is impossible to say where
along the line the sections and concavities are. Another example of TCB ambiguity: consider



the surface of a wedge-shaped 3D tangent-covered body (or a convex body with a wedgelike
part), with two intersecting planes forming the wedge. A new tangent-covered surface can be
formed by making a tangent-covered hole that is contained between the two planes. The hole
need not be cylindrical as long as it is tangent-covered so that the new body is still a TCB. If
the hole is suitably smaller than the wedge, all brightness data of the body can be reproduced
by having a collection of smaller isomorphic holes within the wedge arranged such that their
combined area equals that of the original concavity. This is possible because the wedge shape
allows an infinite number of isomorphic holes to be created (two parallel planes instead of a
wedge would not allow this). A corollary of this is that a hole can be replaced by arbitrarily
small-scale perforation.

Even when formally removable, ambiguities lead to instabilities near limit conditions. For exam-
ple, if the straight line on which two scale-ambiguous concavities are adjacent is bent between
the concavities, the above uniqueness results are obtained for both separately. However, this
requires « to be at least as large as m — 8 where 3 is the bending angle. A small § is a typ-
ical depiction for many nearby nonconvex features on asteroid surfaces, so reconstructions are
unstable even at high a.

The reconstruction of a nonconvex body from its brightness data is fundamentally
nonunique. Scale and location ambiguities are inherent to the inverse problem. Nevertheless,
the reconstructable class of bodies from brightness data is, in a certain sense and with constraints,
larger than the set of convex shapes especially due to the projection area information from TCBs.
This corroborates the numerical success in simulations such as those in Durech & Kaasalainen
(2003). However, the reconstruction of nonconvex bodies from photometry has neither the
fundamental uniqueness properties of the convex case nor the Minkowski stability that pertains
to the global shape and applies to both data and model errors. These aspects are illustrated
by, e.g., the case of the asteroid Eros. Eros, with its sizable nonconvex TCB-like feature, can
be roughly approximated by the simple cylindrical model when viewed from the direction of
its rotation axis. One might thus expect its photometry to yield a unique nonconvex solution.
Even so, as discussed in Kaasalainen & Durech (2007), the convex model fits the data as well as
a nonconvex one and, above all, better than the real shape with usual scattering models. There
are various nonconvex shapes that fit the data equally well. This underlines the ambiguous
properties and the instabilities of the photometry of nonconvex bodies and the need for large «.

A convex surface actually represents merely a nonconvex case in which regularisation suppressing
local nonconvex features has been given infinite weight. This, however, does generally not
deteriorate the fit as discussed in Durech & Kaasalainen (2003); so far, the only asteroid requiring
a nonconvex shape to explain its photometry is Eger (Durech et al. 2012). All others can be
explained down to the noise level by convex shapes, which means that, from the point of view
of regularisation theory, there is no optimal regularisation weight so it is best to use full weight
to avoid the inevitable instabilities and nonuniqueness at lower weights. Statistically, no result
between the two extreme weights can be shown to be the best one, so the safest result is a
convex shape because of its strong uniqueness and stability properties. From the Bayesian point
of view, the problem is the lack of proper statistics to cover the systematic data and model
errors (dominating over the data noise) and the difficulty of finding shape sampling covering the
whole of the shape space (single or a few shape supports cannot do this properly in the sense of
Markov chain Monte Carlo; see Viikinkoski et al. 2015).
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Appendix: full shape determination

In the above, we used a fixed z-height or thickness h = z1 — zg of the disc C X [z¢, 21] for simplicity,
and derived the constraints on the size of the concavity from views along the z-axis. We fix
2o = 0 here (without loss of generality) so the disc is now C x [0, h]. We can also prove that it
is possible to derive h uniquely and thus indeed define a class of nonconvex bodies that can be
fully determined from brightness data. By a reconstructable shape class we mean a category of
surfaces defined by a number of non-trivial parameters that extensively alter the shapes, and
that the values of these parameters can be uniquely determined from sufficient data.!

If the disc height A is known, then the length L of the nonconvex feature follows directly from
the observed area (brightness value) Lh obtained at o« = 0 and § = 7/2. Then the illuminated
area data from the direction of the z-axis automatically show whether the S-curve covers the
largest possible area; i.e., is a single curve of length L, or if there are multiple S-curves. But if
h is not known, L cannot be known either, in which case these observations do not settle the
case of the possibly multiple S-curves. There are infinitely many combinations of A and L that
reproduce the data and will allow S-multiplicities. Thus, to determine the size and height of
the disc as well as the S-multiplicity constraints, one needs illumination directions other than
those in the xy-plane or along the z-axis.

To derive the disc height h we use the same self-shadowing phenomenon of nonconvex bodies
(distinct from the occluding shadow of convex bodies) that provided the information needed

'We note that the three-dimensional shape of this proof is constrained also because we only know from the
convex proof which illumination and viewing coverage is sufficient for uniquely reconstructing a given part of a
convex surface. If we knew which coverage is necessary, we might sharpen the result. Again, from numerical
inversion results we know that the coverage needed is much smaller than in the original proof.



for determining the curve S. We choose ¢ = m and o = 7/2 so § = 7/2. In this case, the
concave surface S, = § x [0, h] of height h and defined by the curve S is entirely in shadow.
By introducing a latitude 19 for the illumination source we can illuminate the concave part in
another way. The illumination source is given in three dimensions by the angles (¢, ¢), where
9 is the polar angle measured from the z-axis. ¥ = 0 means that the illumination is parallel to
the z-axis, and ¥ = 7/2 keeps it in the xy-plane. Because of symmetry, we choose 0 < ¥ < /2.
We now have illumination at (¢, 7) and start to decrease ¥ from 7/2 so that illuminated parts
start to appear on the surface S;. We also assume that both L and h are nonzero.

Since the curve S is fully known from earlier reconstruction (up to the unknown scale length
L), the projected area (up to the unknown height h) of the VI part V of S in the direction
of the viewer, P[V(Sp)], is readily computed at least by numerical ray-tracing (the shape of
the shadow boundary depends on the shape of S). Note that an analytical expression of this is
not necessary for the following proof, it is sufficient to know that P[Vy(S)] can be computed
to any desired accuracy.

We assume, as above, that the shape of S is such that there is only one boundary curve between
shadow and light. Also, we assume for simplicity that S is bounded by a rectangle, one side of
which is Lg. These constraints are not strictly necessary and are straightforward to generalise.

First we assume that there is only one curve S covering Lg. Define a computable function
f(0) = P9, Vi (Sxo)l; (11)

where the ¥-argument on the r.h.s. gives the illumination angle for the VI part. Thus f(1) gives
the projected area when h — oco. We define f(1J) only for ¥ > 0 since f(J) — oo as ¥ — 0.
Then, with the viewer in the zy-plane, the shadow boundary curve starts in the zz-plane of
projection from the point (zg, k), where

xo = inf{z|ni(z) < 0}, (12)
where 7 € R? is the normal of the curve S in the zy-plane, and ends at the point (L, z,), where

2z« = h — Lcot . (13)

Choosing unit length for L in f(¢) (with the above viewing direction), the observed projected
area is P,(d) = L?f(¥9), so we obtain

L= /Po(d)/f(V) (14)

for some span of .

When h is finite and ¢ decreases from 7/2, at some ¥ the shapes of the functions f () and P,(?J)
start to differ because the illuminated part of Sj, no longer increases as expected for (1)) since
the shadow falls beyond the surface: Sj, necessarily cannot accommodate all the illumination.
By our earlier assumed constraints on the shape of S, this missing illuminated area must be
nonzero. This means that we have detected at which ¢, the whole of h is spanned; i.e., z, = 0,
and thus h/L = cot ¥y, which yields h (Fig. 2):

cot Vp,. (15)
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Figure 2: A schematic of the shadows as seen by the viewer in the 2’z-plane (2/ = —z + ¢, ¢ a
constant, z as in Fig. 1) at ¥ = w/4, ¢ = 7, and 6 = /2. Now the nonconvex feature consists
of two S-curve concavities in the xy-plane: I = 3, s = 1. The top points of the boundaries
of the shadow projections in the z’z-plane are the (—zg + ¢, h) of Eq. (12), and the boundaries
tend towards the values z, of Eq. (13) (with L replaced by l; and l) at the left-hand vertical
boundaries of the concavities, one reaching it and the other not.

Next, define
Jn(0) = P[0, Vi (Sp)]- (16)
Thus, fr(9) = f(9) for 9 > Jy; elsewhere, fi(9) < f(9).

If the observations show that
P,(9) = L2 f,(0) Y9, 0<¥<m/2, (17)

we know that either there is only one curve S or there is a degeneracy and our deduced L is
incorrect: there are two or more curves of exactly the same length. If the length L is divided into
N equal-sized curves of shape S, the A’ deduced as above, based on the assumption of a single
curve, will be v/N times larger than the actual height h to account for the combined projected
area of the N edge sections. Similarly, the deduced length L’ will be v/N(L/N) = L/v/N, so
the circumference of the C-shaped boundary curve of the disc is underestimated by v/ N. Thus,
if the expected and observed projected areas in the direction of the z-axis are, respectively, P,
and P,, we find that if p = P,/P. > 1, there is an N-fold degeneracy of

where ¢ is the expected ratio of the missing projected area of the nonconvex feature to the
projected area of the disc if the feature were replaced by a straight line.

It remains to check the case of L being split into S-shaped curves of unequal sizes. We omit
degeneracies there for simplicity, and the case of differently shaped curves obviously has generic
ambiguities. Let 9’ be the first ¥ at which the observed P,(¥9) differs from L f (1) as 9 decreases



from 7 /2, and b’ and L’ are the height and length deduced based on ¥ as above. If there are
smaller versions of &, illumination through them requires ¥ < 1 to meet the lower rim of the
disc, in which case not as much illuminated area is missed as in fp/. Thus, if

L2 fu(9) < Bp(9) < L?f(9), 9 <, (19)

we then know that there are multiple curves of shape S in various sizes.

Here the information from illumination at various ¢ yields both h and the sizes of the curves
(although their ordering along the line L cannot be deduced). Let each curve i have a projected
length [; along Lo so that the total length is L = ). 1; (Fig. 2), and we observe the ¥; when
the corresponding illuminated portion on Sj, meets the lower rim of the disc. This is seen from
the behaviour of P, in the same way as above. The 1; occur in the order of decreasing [; as 1
decreases. Then

li/lj = tan'ﬁi/tan 79]'. (20)

By observing all the 9; when scanning 0 < ¥ < 7/2 we find all the possible curves (in Fig. 2,
¥g < ¥ < 1), and scale them to correct lengths by matching the sum of the projected areas of
all illuminated portions with any observed P,(d), ¥ > ;. This also yields h.

Our proof has thus shown that it is possible to define a nontrivial class of nonconvex shapes
that can be uniquely reconstructed from brightness observations. One can also verify if the
object does not belong to this class, or if it does not have a strictly unique single S-curve. The
proof makes use of the self-shadowing of nonconvex bodies, the related high illumination phase
angles, and the constraining nature of the ”missing profile area” information of tangent-covered
bodies. The proof is not strictly constructive in parts (in that we do not construct the Fourier
series but prove that the corresponding information is in the data), but the numerical inversion
computations corroborate it as discussed earlier. Such computations also emphasise the unstable
and fundamentally nonunique nature of the general nonconvex inversion, especially due to the
model errors.

The main points of the proof are that:

1. There are a number of fundamental unavoidable scale and location ambiguities in non-
convex inversion, as well as strong instabilities in the vicinities of these (regions with low
global curvature or close to concave; low phase angles).

2. Tangent-covered bodies and suitable lighting geometries offer unique information on non-
convex features and alleviate scale ambiguities.

It is also possible to show uniqueness results for a concave feature on a bent version of the above
construction (two planar sections forming a wedge instead of a planar region), approximating a
more general saddle-like feature on a curved surface. This, however, pertains to a very restricted
shape class and does not illustrate the case of general shapes in R3. Also, it does not offer more
insights to the above points already detected in the more clearly defined shape class represented
by C x [0, h].

An often asked question is: can’t we just unravel some nonconvex features by regularisation or
some other trick? To which the answer is, unfortunately, simply no if the convex version fits the
data as well as the others. This is because regularisation can only reveal probable detail if the
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continuous removing of the apparent detail (complexity) in the result starts to worsen the data
fit at some point. The morphological complexity of a nonconvex shape is, by any measure, always
larger than that of its convex hull (which is not the same as the corresponding convex result but
approximating it well enough for the purpose of the argument if not for fit comparison). Thus
it follows that, if a convex shape fits the data better or as well as the more complex ones, there
is no way to assign better probability to any of the latter on purely morphological basis.

If we could use physical and geological arguments for structural rather than morphological
complexity to create a quantitative regularisation function, based on physical likelihood, the
situation might be different. This, however, essentially requires us to already know what any
target should basically look like both inside and on the surface, which is rather against the
whole point of the exercise in the first place. The case of an outright unfeasible convex solution
is a different matter, if we decide we just have to use a more likely shape representation (e.g.,
a bi-lobated shape) even if we cannot give it a quantitative likelihood. This is a discrete or
categorisation problem of model selection rather than a continuous problem of regularisation.
Here a useful way to see what actually causes the modelled lightcurve is to plot the rotating
plane-of-sky animation of the asteroid together with the evolving model lightcurve and its fit to
the observed one. Then the changes in the projected area and the shadows become apparent.
This is particularly helpful in appraising nonconvex solutions qualitatively when one tries to
identify the features most essential for the shapes of the observed lightcurves.

To wrap up, we note an interesting mathematical curiosity, or a setup for pulling a prank on an
overconfident observer. Consider an arbitrary convex curve C in R?, and its version C x [0, h]
in R3, with the origin at the centroid of the area enclosed by C. Let the illumination phase
angle a be —7/2 for the viewing angles 0 < 6 < 7/2 and 7 < 6 < 37/2, and a = 7/2 for
/2 <6 < mand 37/2 < 60 < 27. By o < 0 we mean that the integration limits in Eq. (7) are
from —7/2 to /2 + «; i.e., the light source is trailing instead of leading on the unit circle S*.
Now the observed lightcurve [(6) is piecewise defined and discontinuous at intervals of 7/2, so
the Fourier analysis of the inverse problem is not applicable as above. However, we see from
Eq. (7) that information on all the Fourier components of the curvature C(1)) is retained in [(6)
(the effect of C(¢) on [(f) is not well sampled only at and near the special points ¢ = m/2
and ¢ = 37/2). Thus the observer can expect to obtain a good approximation of C (at least
with suitable regularisation, as corroborated by numerical experiments) by solving a set of linear
equations by some truncation or discretisation corresponding to Eq. (7) for [(#) observed at a
large number of § covering all of S'. The height h is obtained by observing the area enclosed by
C by viewing C x [0, h] from the direction of the z-axis. Thus the observer has a unique accurate
solution for C x [0, h] from the observations.

Suppose now that C is actually split in two parts along the z-axis such that we have two closed
convex curves C; and Co with straight lines parallel to the z-axis as parts. Now C; and Co can
be moved arbitrarily far away from each other along the y-axis while the observations remain
invariant. No information on the gap reaches the observer who nevertheless has a unique single-
body reconstruction of C that perfectly explains the data. This scenario is readily extended
to convex bodies in R? with partial observing geometries analogous to those that are typically
sufficient for reconstructing the single body but in this case not for detecting the split body.
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