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Generalized YORP evolution: Onset of tumbling and new asymptotic states
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Abstract

Asteroids have a wide range of rotation states. While the majority spin a few times to several times each day in principal axis rotation, a small
number spin so slowly that they have somehow managed to enter into a tumbling rotation state. Here we investigate whether the Yarkovsky–
Radzievskii–O’Keefe–Paddack (YORP) thermal radiation effect could have produced these unusual spin states. To do this, we developed a Lie–
Poisson integrator of the orbital and rotational motion of a model asteroid. Solar torques, YORP, and internal energy dissipation were included in
our model. Using this code, we found that YORP can no longer drive the spin rates of bodies toward values infinitely close to zero. Instead, bodies
losing too much rotation angular momentum fall into chaotic tumbling rotation states where the spin axis wanders randomly for some interval of
time. Eventually, our model asteroids reach rotation states that approach regular motion of the spin axis in the body frame. An analytical model
designed to describe this behavior does a good job of predicting how and when the onset of tumbling motion should take place. The question of
whether a given asteroid will fall into a tumbling rotation state depends on the efficiency of its internal energy dissipation and on the precise way
YORP modifies the spin rates of small bodies.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

There has been a rapid increase over the last 10 years
in the quantity of asteroid rotation rate data obtained from
lightcurve observations (e.g., Pravec et al., 2007) and radar
(Ostro et al., 2002). Yet another order of magnitude increase
is expected when photometrically-calibrated sky surveys such
as Pan-STARRS come on-line (e.g., Ďurech et al., 2007). As
new telescopes become available for asteroid studies, the popu-
lation of objects with known rotation state will begin to extend
to smaller objects. If experience is any guide, this data will
present us with numerous unexplained problems; previous ex-
amples include the collinearity of spin vectors found among
prograde-rotating Koronis family members (e.g., Slivan, 2002;
Slivan et al., 2003) and the strongly non-Maxwellian distribu-
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tion of rotation rates seen among small (D � 10 km) asteroids
(e.g., Pravec et al., 2007). The challenge is to expand existing
asteroid rotation evolution theory prior to these advances taking
place.

Prior to the last several years, the effects of torques pro-
duced by incident radiation from the Sun or a planet were
used to understand the attitude of artificial satellites (e.g.,
Burns et al., 1979, or references in Rubincam, 2000). In re-
cent years, however, the interest of these torques on small
asteroids and meteoroids has increased, perhaps due to suc-
cessful applications of related radiative forces in the orbital
motion of planetary bodies. The effects of the thermal com-
ponent of these radiative torques, which are due to infrared
emission of absorbed sunlight from the surface of a body, was
first described and characterized by Rubincam (2000). Ru-
bincam coined an acronym for these torques called YORP,
which stands for Yarkovsky–O’Keefe–Radzievskii–Paddack
(after several researches who pioneered the study of radiative
torques in the 1950s and 1960s). Rubincam (2000) showed that
YORP torques can produce pronounced secular changes in the
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spin vectors (i.e., rotation rates and obliquities) of small aster-
oids and meteoroids.

Since that classical paper, YORP torques have been used to
explain why (i) the spin vectors of Koronis family members
are aligned (Vokrouhlický et al., 2003), (ii) small objects in
asteroid families tend to have semimajor axes near the periph-
ery of the family (Vokrouhlický et al., 2006a, 2006b) and (iii)
some multi-km asteroids have escaped the main belt (in con-
junction with the Yarkovsky effect and resonances) and are now
in the planet-crossing region (Morbidelli and Vokrouhlický,
2003). Moreover, precise photometry and radar observations
have allowed us to directly detect the effects of YORP on two
near-Earth asteroids: (54509) 2000 PH5 (Lowry et al., 2007;
Taylor et al., 2007) and (1862) Apollo (Kaasalainen et al.,
2007). More YORP detections should be possible in the fu-
ture (e.g., Vokrouhlický et al., 2004; Scheeres et al., 2007).
Finally, YORP has been suggested as a possible mechanism for
the creation of binary asteroids (see, e.g., Bottke et al., 2006;
Ostro et al., 2006; Scheeres et al., 2006).

Despite these achievements, the existing level of YORP
theoretical modeling is still limited. So far, the YORP mod-
els described in Rubincam (2000), Vokrouhlický and Čapek
(2002) and Čapek and Vokrouhlický (2004) do not rely on
an exact solution of an asteroid’s rotation but instead assume
rotation occurs about the principal axis of the inertia tensor
and then use a torque-averaging method. Alternative meth-
ods include Scheeres (2007), who developed a semi-analytical
method that implements a linearized solution of the complete
set of Euler equations about the minimum-energy state of prin-
cipal axis rotation, and Nesvorný and Vokrouhlický (2007),
who recently derived the first fully-analytical analysis of YORP
torque components that were capable of changing the rotation
rate of weakly-perturbed spheres. No group, however, has yet
attempted a complete, unrestricted solution of an asteroid’s ro-
tation under the influence of YORP torques. The purpose of this
paper is to explore this possibility.

In order to make our work as efficient as possible, we devel-
oped for this paper a Lie–Poisson integration scheme capable of
tracking orbital and attitude motion about a center. For YORP
problems, this method is at least an order of magnitude faster
than conventional integrators. We checked the results of our
Lie–Poisson by programming an independent integrator using
traditional tools of attitude dynamics: Euler dynamical equa-
tions for angular velocity vector in the body frame and coeffi-
cients of the attitude matrix parametrized by Euler–Rodrigues
parameters. This latter integrator, and related checks, are not re-
ported in the paper. Both integrators allow us to include YORP
torques and internal energy dissipation within the body.

2. Theory

2.1. Equations of motion

Attitude dynamics of rigid bodies has been considered for
centuries using different approaches. In this paper we follow the
early work by Euler that describes free rotation in the body’s
reference frame. This approach allows the dynamical (Euler–
Newton) equations to be reduced to solving the evolution of the
angular momentum vector in the body-fixed (BF) frame and it
avoids using parameters of the transformation matrix between
an inertial and BF frames such as Euler angles or quaternions.
Instead, the link between the two frames of reference is ob-
tained by tracking the BF position using vector quantities whose
inertial frame position is known (either constant or using their
initial values). A generalization of this approach has proved to
be very useful in cases where the body’s rotation is coupled to
its orbital motion. This method again relegates all dynamics,
including the body’s orbital motion, to be uniformly described
in the chosen BF frame. The theoretical basis behind our ap-
proach can be found in the works of Wang et al. (1991), Touma
and Wisdom (1994) and Maciejewski (1995), though the clos-
est predecessor is Breiter et al. (2005).

We considered the translational and rotational motion of an
asteroid in orbit about a force center (the Sun). The respective
masses of the asteroid and the center are m and m′. The Sun
is characterized by a position vector R and momentum vec-
tor P in a BF frame of reference attached to the asteroid. The
rotational motion of the asteroid is described by the angular
momentum vector G. It is both conventional and convenient to
work in a BF frame defined by the principal axes of the in-
ertia tensor I. For that choice we have I = diag(A,B,C) and
I−1 = diag(1/A,1/B,1/C), where A � B � C are the prin-
cipal values of I. In spite of our assumption that non-rigidity
effects operate on the body to dissipate its rotational energy, we
neglect, for simplicity, their effects on I and the shape of the
asteroid in the BF. This is because we assume that dissipation
occurs on a microscopic level inside the body and that the am-
plitude of elastic flexing is negligible.

The previously listed variables would suffice to describe the
problem if the asteroid and the Sun were an isolated system.
However, planetary perturbations affect the orbital motion of
the asteroid. We are not going to include these perturbations in
full detail, but we want to include their essential character de-
scribing the asteroid’s rotational motion, namely the precession
of the orbital plane with respect to inertial space. This is done
using the following method. We define an auxiliary vector N,
normal to the invariable plane of the planetary system, and add
it to the system of dynamical variables, which now defined by
a 12-dimensional vector:

(1)ζT = (
RT,PT,GT,NT)

.

Focusing first on the non-dissipative part of the problem, we
note the equations of motion derive from a Hamiltonian func-
tion

(2)H = P2

2μ
+ 1

2
G · I−1G + U(R) − σG · N,

where μ = mm′/(m + m′) and where the irrelevant kinetic
energy of the Sun-body center of mass motions has been al-
ready eliminated. Because m � m′, we will use μ ≈ m. We
shall truncate the interaction potential at the quadrupole level
U � U0(R) + U2(R), where

(3)U0(R) = −Gmm′
,

R
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(4)U2(R) = −Gm′

R3

(
TrI − 3R−2R · IR

)
(Tr I is the trace of inertia tensor I). The novel feature here is
the last term in (2), and obviously the presence of N among the
active dynamical variables, where σ is the precession rate of
the orbital plane in the inertial space. For simplicity, we assume
uniform precession.

The equations of motion have a Hamiltonian form

(5)
dζ

dt
= J

∂H
∂ζ

,

with the Lie–Poisson structure matrix

(6)J =
⎛
⎜⎝

0 E Q(R) 0
−E 0 Q(P) 0

Q(R) Q(P) Q(G) Q(N)

0 0 Q(N) 0

⎞
⎟⎠ ,

where 0 and E are the 3×3 zero and unit matrices, respectively.
The skew-symmetric matrix Q associated with an arbitrary vec-
tor F reads

(7)Q(F) =
( 0 −F3 F2

F3 0 −F1
−F2 F1 0

)
.

Because

(8)Q(A)B = A × B,

it is also called the vector product matrix. Note the system (1)
is not canonical, such that our variables cannot be organized
into pairs of coordinates and generalized momenta, but still
has structure allowing to introduce powerful tools of Lie–
Poissonian mechanics (e.g., Olver, 1993). In particular, intro-
ducing a Lie–Poisson bracket {f,g} of two arbitrary functions2

f and g

(9){f,g} =
(

∂f

∂ζ

)T

J
(

∂g

∂ζ

)
,

we can rewrite the equations of motion (5) into a more straight-
forward Hamiltonian form

(10)
dζ

dt
= {ζ ,H}.

Our task below is to complement the conservative dynam-
ics described above by additional dissipative effects that would
drive long-term evolution of the system. Since our primary fo-
cus is the rotational motion of the asteroid, this means consid-
ering additional (weak) torques T. To fold them into the right
dimensionality of our approach, we define an auxiliary vector

(11)τT = (
0T,0T,TT,0T)

,

such that the complete set of dynamical equations now reads

(12)
dζ

dt
= {ζ ,H} + τ .

2 One directly verifies that (9) defines an antisymmetric differential operator
which satisfies the Jacobi identity {{f,g}, h} + {{g,h}, f } + {{h,f }, g} = 0.
We discuss nature and operational definition of the appropriate
dissipative torques in Section 2.3, while in the next section we
briefly introduce a numerical propagator that conserves the Lie–
Poisson structure (9).

2.2. Lie–Poisson algorithm for numerical propagation

Using a symplectic integration method, we split the Hamil-
tonian function (2) into integrable pieces. The splitting is arbi-
trary, but it can be advantageous if one part dominates the others
and can be considered as a perturbation (e.g., McLachlan and
Quispel, 2002). Recalling that our adopted BF frame of refer-
ence is that of principal axes of inertia tensor I, we split the
Hamiltonian into five parts3

(13)H =H0 +H1 +H2 +H3 +H4,

where

(14)H0 = P2

2μ
+ U0(R) + G2

2C
,

(15)H1 =
(

1

A
− 1

C

)
G2

1

2
,

(16)H2 =
(

1

B
− 1

C

)
G2

2

2
,

(17)H3 = U2(R),

(18)H4 = −σG · N.

In planetary applications, the G-term in H0 is much larger than
H1 and H2, though for highly irregular asteroidal shapes this
may not be true. Still, we believe that separating the G2

1 and
G2

2 monomials as in (15) and (16) is the most efficient way
to proceed. The last two pieces in (13), H3 and H4, are small
perturbations.

Defining Lie derivatives Li (i = 0, . . . ,4) associated with
each of the Hamiltonian terms Hi

(19)Lif = {f,Hi},
we obtain a generalized second-order leapfrog map of initial
state ζ 0 = ζ (t0) to final state4 ζ 1 = ζ (t0 + h):

(20)ζ 1 �
4∏

i=0

exp

(
h

2
Li

) 4∏
i=0

exp

(
h

2
L4−i

)
ζ 0.

The integration proceeds by initially choosing some value of h,
which is typically of the order of minutes in our application. As
in Breiter et al. (2005) we have increased the accuracy of the
symplectic map using a series of leapfrog steps (20) in order to
obtain a fourth-order symmetric integrator [see Yoshida, 1993,
Eqs. (39) and (40)].

The exact solution of the individual patches L0 to L3 has
been described in detail by Touma and Wisdom (1994) or

3 We thus follow an approach of Breiter et al. (2005), who folded a “spherical

top” part G2/(2C) into the unperturbed Hamiltonian piece H0. This is simpler
than working with the symmetric top splitting of Touma and Wisdom (1994).

4 Product here means composition of generally non-commutative operators.
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Breiter et al. (2005). Here we only note that in our work we
consider the L3 (solar quadrupole) action on G vector, in or-
der to describe its precession, but we neglect its action on the
P vector [see, e.g., Touma and Wisdom, 1994, Eq. (8.0.3)]. We
believe this simplification is legitimate for our analysis because
it amounts to neglecting the influence of the asteroid’s shape
on the orbital motion of the Sun in the inertial frame. The new
terms in L4 due to H4 and dynamics of N are briefly discussed
below.

While restricting to the H4 part of the Hamiltonian, the equa-
tions of motion (10) read

(21)
dR
dt

= −σQ(R)N = −σR × N,

(22)
dP
dt

= −σQ(P)N = −σP × N,

and in the same time G and N are constant. Equations (21)
and (22) express regular precession of the orbital plane defined
by vectors (R,P) with frequency σ about N. The solution is
easily obtained by

(23)R1 = MR0, P1 = MP0,

where, according to the Rodrigues formula

(24)M = E + sin θQ(N) + 2 sin2 θ

2
Q2(N),

and θ = −σ t . We note H4 commutes with the (R,P)-dependent
part of H0, but it does not commute with G2. Thus it cannot be
added “at no expense” to the L0 propagator. Although some al-
gebraic effort might yield and analytical solution for H4 + G2,
we prefer to keep things simple and retain the action of H4 as a
separate step in our scheme.

In our approach, the vector N is considered fixed in inertial
space. The fundamental variable ζ , however, contains its rep-
resentation in the BF frame, where N moves in response to the
rotation of the body. The relevant dynamics is given by Eq. (10)
and reads

(25)
dN
dt

= N × I−1G.

The evolution of N is decomposed similarly to the motion of G
in the maps generated by the L0, L1 and L2 operators.

2.3. Non-conservative effects

The rotation rate distribution of diameter D � 40 km aster-
oids has been previously shown to be dominated by the effects
of YORP torques. We postulate that the ability to drain rota-
tion energy from the asteroid via YORP torques could, at some
point, trigger non-principal axis rotation. One of our main goals
is to model this process quantitatively. Free wobbling of the G
vector in the BF frame, however, is supposed to efficiently dissi-
pate extra rotational energy for D > 1 km asteroids. As a result,
any model of asteroid tumbling must also include their internal
dissipation processes. The next two sections briefly outline our
approach along these lines.
2.3.1. YORP torques
Thermal radiation emitted by the surface of an asteroid pro-

duced a recoil force df on an infinitesimal, oriented surface
element dS. The total YORP torque T is a sum of all of these
surface contributions:

(26)T =
∫
S

r × df,

where the integration is performed over the whole surface S of
the body.5 Assuming Lambert’s emission, we have (e.g., Bottke
et al., 2002)

(27)df = −2

3

εσT 4

c
dS,

where ε is the emissivity coefficient, σ the Stefan–Boltzmann
constant, T the surface temperature and c the velocity of light.

The fundamental difficulty in determining the YORP torque
is computing the correct value of T in (27) for each surface
element. In general, this task requires that we solve the heat
diffusion equation inside an irregular body. To avoid this com-
plicated problem, we adopted an approximate approach and as-
sumed the asteroid surface had zero (or near-zero) thermal con-
ductivity. In that case, the surface temperature follows directly
from energy conservation εσT 4 dS ≈ (1 − A)Φ(dS · R)/R,
where Φ is the solar radiation flux impinging on the surface
element dS along direction R (Rubincam, 2000; Vokrouhlický
and Čapek, 2002; note that when the right-hand side is negative
the temperature is formally set zero). We caution the reader that
our results are not applicable to very small bodies (such as me-
teoroids) which may have high thermal conductivities. In such
a situation, this would produce nonzero lag between solar heat-
ing and the response of the surface temperature. It could even
result in enough heat conducted across the body that it becomes
isothermal.

By assuming zero thermal conductivity, our work implies
the YORP torques depend uniquely on the (instantaneous) so-
lar direction R in the BF frame of the asteroid. This allows us
to pre-compute T for a given body on a fine grid of R direc-
tions and store the result in memory. In our spin–orbit history
simulation for the body, we then use a three-point interpolation
scheme on this grid to obtain T for an arbitrary R value.

2.3.2. Anelastic dissipation
Frictional internal processes tend to dissipate energy of the

fluctuating strain field in the body (e.g., Kaula, 1968). The fluc-
tuating strain energy is nonzero when the angular momentum
vector G is wobbling in the BF frame. The problem of estimat-
ing the related amount of dissipated energy, which can also be
considered a timescale to damp the free wobble of G, has been
examined by several authors in the past. Unfortunately, their re-
sults differ by as much as one order of magnitude (apart from
unknown material constants). We briefly discuss these results

5 In fact, we replace integration in (26) by a summation over triangular
surface facets (typically one to few thousands). Other quantities, such as vol-
ume/mass, principal values of the inertia tensor, etc. are also computed using
the triangular model (e.g., Dobrovolskis, 1996).
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and adopt an empirical compromise that allows us to implement
dissipation effects in our simulations.

The older literature has been critically revised, and corrected
in some respect, by Sharma et al. (2005) (see also Paolicchi et
al., 2002). While restricting their work to the case of a spher-
oidal body and a commonly used Q-model of energy dissipa-
tion, these authors computed the quantities needed to evaluate
the rate of change of the nutation angle θ (between G and the
shortest or longest body axis ez)

(28)
dθ

dt
= ∓ρa2Ω3

0

μQ
sin θ

(
b0 + b2 cos2 θ

)
.

This result holds for an oblate spheroid. The upper and lower
signs apply for θ < 90◦ and θ > 90◦, respectively; ρ is the bulk
density, a the equatorial radius of the spheroid, Ω0 = G/C is
a characteristic angular velocity, μ is the rigidity and Q the
(frequency-independent) quality factor.

Parameters b0 and b2 depend on the geometric flattening of
the spheroid6 h = c/a � 1:

(29)b0 = 325 + 760h2 + 608h4 + 320h6

7(1 + h2)4(13 + 20h2)(15 + 10h2 + 8h4)
,

b2 = −325 − 760h2 + 952h4 + 2820h6

7(1 + h2)4(13 + 20h2)(15 + 10h2 + 8h4)

(30)+ 2232h8 + 1120h10

7(1 + h2)4(13 + 20h2)(15 + 10h2 + 8h4)
.

The formula (28) is actually not valid for θ ∼ 90◦ for which
the mathematical assumptions in the model exceed physical
applicability.7 Since the internal dissipation is assumed to con-
serve the total value of angular momentum G, we may write

(31)T = f (G)G × π,

where

(32)π = G × ez

G sin θ

plays the role of an instantaneous, auxiliary axis about which
the G vector rotates due to the dissipative effects, and

(33)f (G) = ∓ ρa2

μQC3
G sin θ

(
b0G

2 + b2G
2
z

)
is the relevant rate. Sharma et al. (2005) found similar results
for a prolate spheroid, where only the signs were reversed in
the above equations (obviously, h � 1 in this case).

So far, no closed expressions for internal dissipation effects
have been computed for triaxial ellipsoids, mainly because of
their algebraic complexity (see, e.g., Efroimsky, 2000, 2001).
In this situation, we adopt the following crude approximation.
The angular momentum vector G circulates either about ±ez or

6 We thank I. Sharma to let us know the h-dependence of the b0 and b2
coefficients.

7 In particular, the period of Euler precession of G in the BF frame diverges
for θ → 90◦ . The model formally averages the fluctuating strain energy over
this timescale and is applicable only when a dynamical timescale is much
longer. At the same time, the quality factor Q, assumed to be constant, must
vanish for zero frequency.
±ex for a freely-rotating triaxial ellipsoid (e.g., Landau and Lif-
schitz, 1976). When dissipation is effective, circulation about
±ex is unstable and the motion is driven toward a lower-energy
wobbling near ±ez. At any instant within the simulation, we can
operationally define whether G resides in one of the two circu-
lation zones. This is performed by computing the free-rotation
energy E = 1

2 G · I−1G and comparing it to the critical value

(34)E	 = G2

2B
,

that separates the two rotation modes.8

When the G vector is found to circulate about ±ez, we use
the formulae (32) and (33) given above. Since those apply for
a spheroid, we define its effective equatorial moment of inertia
to be Aeff � 1

2 (A + B), a2
eff � 2.5C/m and 1 + h2

eff � 2Aeff/C.
In the opposite case of G locally circulating about ±ex , we use
the model of a prolate spheroid but identify the long ex axis
as ez before (thus also the nutation angle θ above is now mea-
sured from ex ). In this case we define effective values Ceff = A,
Aeff � 1

2 (C + B), a2
eff � 2.5A/m and 1 + h2

eff � 2Aeff/A.
As a caveat, we should mention that our model does not

correctly represent the evolution near the separatrix of the two
circulation regimes, when E � E	. This is an unavoidable fea-
ture of any such model; it is similar to the failure of a dissipation
model for spheroids near nutation angle 90◦. We have been ex-
perimenting with the implementation of a more complex model,
where the G vector is driven along direction of gradient of E
projected onto a sphere G = const. The complexity of this ap-
proach, however, has not yet led to significantly more accurate
results. For this reason, we continue to use the simplified for-
mulation described above.

2.3.3. Implementation to the numerical propagation
Introducing additional (dissipative) effects in a Hamiltonian

scheme such as τ in Eq. (12) also brings with it conceptual
problems, mainly by breaking its Lie–Poisson structure. For-
tunately, when τ is a small perturbation, such as the YORP
effect for sufficiently large bodies, we can adopt an operational
approach by introducing an additional map in the scheme ex-
pressed by Eq. (20), notably the simplest Euler-type integra-
tion

(37)ζ 1 = ζ 0 + hτ .

We apply this step in the middle of leapfrog (20).
In the case of anelastic dissipation effects, we use the Ro-

drigues formula (24) to express an infinitesimal rotation of G
about the axis π (replacing N) by a small angle f (G)h. Other
parameters in ζ are conserved.

8 For further use we also note the minimum nutation angle θ	 of the separatrix

(35)cos2 θ	 = C

B

B − A

C − A

and a fraction r of the circulation zone about ±ez in the G-space:

(36)r = 2θ	

π
.
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2.4. Parameter-scaling of the solutions

Parametric dependence of differential-equation solutions
sometimes produce non-trivial correspondence laws that al-
low one to derive a solution from another known solution.
This technique can be used when only numerical solutions are
available, especially if solutions for some parameter values are
not easy to obtain (for instance, they would require too much
computer time). For this reason, we searched such rules for
our fundamental system of equations, Eq. (12), that describes
coupled translational-rotation motion about a center of grav-
ity.

For a body of a given (fixed) shape we first highlight the
parametric dependence of the solution ζ on: (i) size D, (ii) bulk
density ρ, (iii) internal dissipation factor μQ, (iv) preces-
sion rate σ of the orbital plane due to planetary interactions,
and (v) gravitational factor Gm of the center. In addition to
these parameters, we shall allow the independent time vari-
able t to also be scaled. Here we assume we know a so-
lution ζ 1 of the system (12) for a given set of parameters
[D1, ρ1, (μQ)1, σ1, (Gm)1] and time t1. Let now the parame-
ters be scaled according to the following rule:

(38)D2 = δD1,

(39)ρ2 = δ−2(1+g)ρ1,

(40)(μQ)2 = δ−2(1+g)(μQ)1,

(41)σ2 = δgσ1,

(42)(Gm)2 = δ3+2g(Gm)1,

to obtain a new set to parameters [D2, ρ2, (μQ)2, σ2, (Gm)2].
The scaling is defined using two arbitrary real parameters δ > 0
and g. The solution of the system (12) that corresponds to new
system of parameters reads

(43)R2 = δR1,

(44)P2 = δ2−gP1,

(45)G2 = δ3−gG1,

(46)N2 = N1,

and the timelike-independent variable t2 scales as t2 = δ−gt1.
We note the scaling (38) allows us to relate solutions for bod-

ies of different sizes as required. It also preserves a degree of
internal dissipation because ρ/(μQ) is invariant, see Eqs. (28)
and (33), and for larger bodies it stretches timescale and fre-
quencies as expected. A particular case that leaves both bulk
density ρ and dissipation factor μQ invariant requires g = −1.

The goal of this procedure was to see whether we could
speed up our integrations in some fashion by transforming spin
state changes in a smaller asteroid to that of larger asteroids.
Unfortunately, it appears the process is scale-invariant; roughly
equal numbers of integration timesteps are needed to change a
body’s rotation state relative to its initial state, regardless of the
body’s initial size because of the above mentioned timescale
stretching. Hence, the scaling law described above cannot be
used to save computation time; no other scaling laws were
found.
Fig. 1. Two examples of the Gaussian spheres used in our study that dynam-
ically resemble a spheroidal body: (i) C/B/A � 1.67/1.21/1 (top), and (ii)
C/B/A � 1.35/1.10/1 (bottom); (A,B,C) are the principal values of the in-
ertia tensor.

3. YORP effect in full glance: numerical tests

3.1. Choice of test bodies, initial data and auxiliary algebra

In order to determine the importance of the YORP effect on
small body rotation we must choose: (i) the object’s shape, size
and physical properties, (ii) its heliocentric orbit [i.e., which
yields the initial data for (R(0),P(0))], and (iii) its initial ro-
tation state [G(0),N(0)]. Unfortunately, the parameter space
represented by these components is so large that it cannot be
comprehensively analyzed with our available computer power.
For this reason, we probed parameter space using the following
strategy.

3.1.1. Shape
We selected 10 bodies with randomly-generated shapes us-

ing the Gaussian-sphere technique (Muinonen, 1998). The
range of shapes went from oblate spheroids (for which A �
B < C; Fig. 1) to highly elongated ones (for which A < B � C;
Fig. 2). The majority were intermediate cases, described as
A < B < C without any particular hierarchy (Fig. 3). Animated
images of all our objects can be obtained from our website http:
//sirrah.troja.mff.cuni.cz/~davok/. Following Vokrouhlický and
Čapek (2002) we use surface triangulation to technically deter-
mine the irregular shape of the body (see also Dobrovolskis,
1996); we use 1004 surface facets of approximately equal area.

http://sirrah.troja.mff.cuni.cz/~davok/
http://sirrah.troja.mff.cuni.cz/~davok/
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Fig. 2. Two examples of the Gaussian spheres used in our study that dynam-
ically resemble a triaxial ellipsoid: (i) C/B/A � 3.96/3.67/1 (top), and (ii)
C/B/A � 2.91/2.66/1 (bottom); (A,B,C) are the principal values of the in-
ertia tensor.

Fig. 3. Bodies 1 and 2 from Section 3.2 having a shape intermediate to
dynamical spheroids or ellipsoids: (i) C/B/A � 1.75/1.45/1 (top), and (ii)
C/B/A � 1.43/1.21/1 (bottom); (A,B,C) are the principal values of the in-
ertia tensor.

The volume (mass), moments of inertia and other useful quan-
tities for our arbitrary polyhedra were computed using the
techniques described by Dobrovolskis (1996). Uniform scal-
ing of vertex coordinates allowed us to create bodies with many
different sizes.

The YORP torque T(R) in (26) is the net sum of torques
computed for each facet of the asteroid. To save computation
time in our production runs, we computed beforehand the net
YORP torque for all possible solar positions (i.e., the R orien-
tation in the body-fixed frame was varied). Our look-up table of
YORP torques consisted of a 1◦ ×1◦ grid of R directions. These
values were checked during our production runs using a denser
0.1◦ × 0.1◦ grid; we found it yielded identical results. In our
simulations, we computed the YORP torques at every timestep
by interpolating across these values. As mentioned above, we
neglected the effects of internal energy dissipation in this pa-
per, thus formally μQ → ∞.

3.1.2. Heliocentric orbit
We restricted our study by only considering objects residing

on circular orbits with a heliocentric distance of 2 AU. Orbital
inclinations were set to 0◦. As explained in Section 2, spin–orbit
coupling on the orbital evolution of the body was neglected in
the simulations presented below, such that we formally propa-
gated the orbital state vector (R,P) along a fixed circular orbit
with the above stated parameters. The effects of orbital plane
precession were neglected in this work (thus formally σ = 0).

3.1.3. Initial rotation state
Another three degrees of freedom can be folded into spec-

ifications for the initial rotation state. Here we reduced these
parameters to a simple choice: N(0) = (−1/

√
2,0,1/

√
2)T and

G(0) = G(sin δ,0, cos δ)T , with G = Cω and ω = 2π/(6 h).
The free parameter δ is the initial tilt of G vector from the prin-
cipal axis ez of the inertia tensor (corresponding to the SAM
mode of rotation). The sensitivity of our results were tested by
choosing different initial δ values (all small).

3.1.4. Auxiliary parameters
Here we introduce some auxiliary parameters. Let us de-

note the unit vector Ĝ = G/G along the direction of rota-
tional angular momentum G. The solution of free-top mo-
tion, a template case for the perturbed motion, can be de-
rived from energy and angular momentum conservation and
can be written in the following form (see also Whittaker, 1944;
Landau and Lifschitz, 1976):

(47)Ĝ2
x + Ĝ2

y + Ĝ2
z = 1,

(48)αĜ2
x + Ĝ2

y + βĜ2
z = p,

where α = B/A � 1 and β = B/C � 1,

(49)p = 2BE
G2

and the Ĝ components are assumed with respect to the body-
fixed frame of the principal axes of the inertia tensor. Equations
(47) and (48) imply Ĝ evolves along the intersection of a sphere
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Fig. 4. Snapshots of the Ĝ-vector evolution in the body-fixed frame of principal axes of inertia (from top and left to bottom and right): The black dots are the
direction of Ĝ in equidistant timesteps in the numerical simulations. Light-gray lines are isolevels p = constant from Eqs. (47) and (48); they are indicative for the
free-top motion. The separatrix level p = 1 is shown by the thick gray line. SAM mode of rotation evolves to the small-angle circulation about ez (top and left) at
∼4.3 kyr and further approaches the separatrix (top and right) at ∼4.8 kyr. At a later phase, the Ĝ vector flips to the circulation zone about −ez; bottom left plot
shows the state of minimum angular distance from −ez at ∼5.5 kyr. Finally, the evolution approaches an asymptotic state shown at bottom right. The angle of view
is rotated so the evolution can be better observed.
and an ellipsoid (see Fig. 4); particular solutions are parame-
trized by p, with values in the interval (β,α).9 The value p = 1
holds for a separatrix curve between the oscillations of mini-
mum (±ez) and maximum (±ex ) energy about the stable points.
The minimum value p = β is that of the rotation about the ±ez

axes (SAM mode), while the maximum value p = α is that of

9 Our p parameter, up to a constant scaling, is related to that of Whittaker
(1944, Section 70), who discusses a classical work by Poinsot describing the
geometrical representation of motion of a free, triaxial top.
the rotation about the ±ex axes (LAM mode). In the follow-
ing, we shall use the p parameter to trace the position of the G
vector in the body-fixed frame. This is meaningful as long as
the perturbations from non-conservative torques (YORP in our
case) are small and lead to an adiabatic evolution of p.

3.2. General YORP evolution

To provide the reader with a sense of how things work in
our YORP model, we determine below the general evolutionary
paths for two selected bodies. We then discuss the dependence
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Fig. 5. Evolution from the previous figure is now shown using different variables: (top) time dependence of the Gz (curve 1) and Gxy =
√

G2
x + G2

y components

(curve 2) of the angular momentum vector in the body-fixed frame; (middle) time dependence of the auxiliary parameter p = 2BE/G2 with E = 1
2 G · I−1G the free

rotation energy; (bottom) time dependence of the obliquity angle ε between G and normal N to the orbital plane. The initial and final phases are characterized with
p � constant, indicating the YORP torques are a small perturbation of the free rotation. The intermediate phase is dominated by the effects of YORP torques. During
the first phase (time � 4.3 kyr) the body rotates in the SAM mode; YORP decelerates its rotation rate and tilts the obliquity ε toward a zero value. Asymptotically,
the value of ε approaches ∼55◦ (dashed line, bottom panel). Despite small nutation component, G increases linearly with time during the asymptotic regime.
of these results on different parameters. Our initial simulations
use bodies of an equivalent size D = 50 m. We always start with
SAM rotation (or with tumbling at very small nutation angle).
YORP torques are such that they initially decelerate the rotation
rate of the model asteroid.

3.2.1. Body No. 1
Fig. 4 shows four snapshots of the Ĝ-vector location in the

body-fixed system during its evolution. To help the reader un-
derstand the location of its critical points, we also show isolines
p = constant for each frame (in this case, we have α � 1.447
and β � 0.826).

The body starts in SAM rotation (δ = 0◦). YORP slowly
decelerates the rotation rate and tilts the spin axis toward N.
Eventually, tumbling with a small nutation angle is developed
(Fig. 4, top and left). Both E and G are decreased but in
such a way that p stays approximately constant (Fig. 5). This
is because at this phase YORP is merely a small perturba-
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tion of the body’s rotation and adiabatically conserves the p

isolevel.
Eventually, there is enough energy/momentum drained out

by YORP from the body’s rotation motion that YORP ceases to
be a small perturbation and the adiabaticity of the body’s evolu-
tion is violated. The Ĝ vector drifts away from the ez axis and
reaches the separatrix zone about two possible types of free-top
circulation (Fig. 4, top and right). In the presence of perturba-
tions, the evolution near the separatrix is chaotic and predictable
only in a probabilistic manner. In our case, the Ĝ vector passes
through the circulation zone to near −ez (Fig. 4, bottom and
left). Finally, though, YORP forces the Ĝ vector to circulate
about −ez at a larger relative angle of ∼30◦ (Fig. 4, bottom
and right), while G steadily increases. It should be mentioned
that the formal quantity 2π/ω never exceeds ∼740 h during the
evolution.

At the final stage of evolution, YORP again becomes a per-
turbation effect to the body’s free rotational motion and E in-
creases such that the asymptotic evolution is again character-
ized by p = constant (Fig. 5). We also note that during this
phase, dG/dt = Ĝ · T = constant. The new asymptotic state of
tumbling has the following properties: (i) unlike deceleration
in the simplified case, the rotation gains energy by the YORP
torques in an unlimited way, (ii) the Ĝ vector freezes in in-
ertial space, since the rotation becomes asymptotically close
to resembling a free-top along a direction that, on average, is
tilted away from the orbital plane. In our case, this asymp-
totic tilt angle is ∼55◦ (Fig. 5). While the exact value depends
on the chosen body, we note below that its value, rather re-
markably, is clustered about this typical value. We can only
speculate that this feature has a similar or related origin to that
of non-tumbling bodies (see, e.g., Vokrouhlický et al., 2003;
Nesvorný and Vokrouhlický, 2007).

The above integration was repeated, except this time we
started things with a small initial tumbling component. In par-
ticular, we took δ = 0.1◦ and δ = 1◦ (the initial tilt of G from
ez). Fig. 6 shows the evolution of p in these simulations. We
note the onset of tumbling is facilitated by the initial compo-
nent, such that with δ = 1◦, p deviates from the initial SAM
value described above. While their evolutionary paths are dif-
ferent, these three simulations happen to be directed toward the
same asymptotic state. However, since the evolution near the
separatrix is chaotic, we cannot yet state that the observed as-
ymptotic evolution is the common attractor of all possible cases.
Indeed, in a number of simulations below, we found that initial
data only nominally different from the cases above evolved to-
ward different asymptotic states, even while sharing all of the
properties listed above.

3.2.2. Body No. 2
In some cases, the asymptotic state is preceded by a more

complicated evolution than indicated in the simple example
above. This means the Ĝ vector may chaotically wander for a
longer period of time, visiting different circulation zones about
±ez and/or ±ex , before being directed toward the asymptotic
track. Fig. 7 shows such a case. The asymptotic state is rep-
resented here by circulation about the ex direction of LAM
Fig. 6. Evolution of the p parameter for the body from Figs. 4 and 5, but now
for three different initial tilt angles δ between ez and G: (i) δ = 0◦ , (ii) δ = 0.1◦ ,
and (iii) δ = 1◦ . Top panel is a zoom of the initial phase (shown as a dashed
interval in the bottom panel).

rotation. Interestingly, though, the asymptotic obliquity value
(tilt of G from N) moves once again to ∼55◦.

An interesting segment of evolution was denoted by a shaded
rectangle in Fig. 7. During this period of time the G vector
seems to adhere a periodic solution since its orientation was re-
peatedly flipping in between the tumbling zones around ez and
−ez. The solution finally diverged from this cycle indicating
probably that such a periodic solution is unstable.

Fig. 8 indicates that analogous stable cycles of YORP evo-
lution also exist. Here we started our simulation of body No. 2
with an initial 1◦ tilt between the G and ez vectors. During our
integration, the G vector periodically flipped between ez and
−ez orientations in the body-frame, with the separatrix quickly
crossed in each case.

3.2.3. Comments on additional simulations
We ran simulations similar to those presented above for 8

other Gaussian spheres. The results share the same pattern:
(i) the initial SAM rotation becomes destabilized by YORP
torques when the rotation rate is long enough, (ii) an asymptotic
state emerges from the irregular tumbling that is characterized
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Fig. 7. Evolution of spin parameters for the second test body: (top) time dependence of the auxiliary parameter p = 2BE/G2 with E = 1
2 G · I−1G the free-rotation

energy; (bottom) time dependence of the obliquity angle ε between G and normal N to the orbital plane. The initial and final phases are characterized with p �
constant, indicating the YORP torques are a small perturbation of the free rotation. The body initially rotates in the SAM mode, while asymptotically tumbles in the
LAM rotation zone at roughly constant angle from ex . During the intermediate phase, the body visits different SAM and LAM zones. For 15 kyr (shaded interval)
the evolution seems to adhere an unstable periodic solution. The obliquity asymptotically evolves toward the ∼55◦ value (dashed curve).
by circulation of the G vector about ±ez or ±ex with linearly
increasing magnitude G (in a minority of cases the solution ad-
heres to a stable periodic solution such as in the last example
above; Fig. 8), (iii) the inertial space orientation of G is such
that its tilt to N is close to either 55◦ or 125◦. For the D = 50 m
bodies in our sample, the median time to reach the onset of
macroscopic tumbling was 5.3 kyr.

We also reran these simulation for bodies of equivalent size
of 200 m. The qualitative features of the evolution remained the
same, but the timescale was rescaled by a factor 16, suggesting
it is proportional to the size as ∝D2. This behavior will be ex-
plained in the next section.

4. Analytical model for origin of tumbling

No complete analytical theory describing how YORP tor-
ques influence the rotation of an arbitrarily-shaped body has
yet been published. It is not even clear if such a theory is possi-
ble, considering how despun objects undergo chaotic tumbling.
A recent analysis by Scheeres (2007) is based upon a some-
what restrictive assumption that the spin vector does not deviate
significantly from the maximum inertia axis. For this reason,
it cannot predict the tumbling reported in this paper. On the
other hand, we do not expect from an analytical model more
than a qualitative explanation of the physical mechanism and a
hint of its dependence on physical parameters and initial condi-
tions.

Intuitively, there are two sources of large-scale, long-term
phenomena in a dynamical system: (i) a resonance, or (ii) a
constant term in the right-hand side of a body’s equations of
motion. Although the former is practically inevitable in the
case of a systematic slowdown of a body’s rotation, we fo-
cus here on the latter case that should act on all initial rota-
tion states. If we identify some constant components of the
YORP torques, which result from averaging the torques over
all solar orientations in the body-fixed frame, we obtain a
problem that is well known in spacecraft attitude dynamics,
namely that of a rigid body with self-excitation. The response
of the angular momentum vector to a constant thrust exerted
by rocket engines has been studied in a number of papers
(see, e.g., Tsiotras and Longuski, 1991; Livneh and Wie, 1997;
Tong and Tabarrok, 1997; Gick et al., 2000; Longuski et al.,
2005) mostly by means of perturbation methods; the only case
that can be solved exactly is that of a body with rotational sym-
metry.
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Fig. 8. Evolution of spin parameters for the second test body with an initial tilt of 1◦ between G and ez vectors: (top) time dependence of the auxiliary parameter
p = 2BE/G2 with E = 1

2 G · I−1G the free-rotation energy; (bottom) time dependence of the obliquity angle ε between G and normal N to the orbital plane. As
long as we tracked the body’s evolution, it adhered to a periodic solution characterized by rotation about the principal axes ±ez with excursions toward the separatrix
mode when it entered a tumbling state. The obliquity avoids settling near the ∼55◦ value (dashed curve) but oscillates about it; during its decreasing phase the body
rotates about ez , while during the increasing phase the body rotates about −ez .
Thus, consider a toy model of the Euler equations

(50)
dG

dt
= G × I−1G + T ,

with a constant torque T = (T1, T2, T3)
T �= 0. In this paper,

we also assume that T1T2T3 �= 0. In a sequence of papers,
Longuski, Tsiotras and collaborators developed an approximate
solution of Eq. (50) using

(51)G3(t) = G3(0) + T3t,

as the first approximation and then solving the remaining two
equations for G1,G2 that form a linear system with time-
dependent coefficients. Tsiotras and Longuski (1991) justify
Eq. (51) as a result of neglecting the triaxiality of the body,
but—interestingly—the same result is valid even for a signif-
icantly triaxial shape, provided G3 is understood as the mean
variable in the context of the first-order averaging method.

Rearranging the approximate solution provided in Tsiotras
and Longuski (1991), we introduce a complex variable

(52)Γ = G1

√
(C − A)B + iG2

√
(C − B)A,
which evolves according to

(53)Γ (t) = eiξ(t)
(
Γ (0)e−iξ(0) + FIω(t)

)
,

where

F = T1

√
(C − A)B + iT2

√
(C − B)A,

Iω(t) =
√

πC(s(t)E(|ξ(t)|) − s(0)E(|ξ(0)|))√|T3|σ ,

ξ(t) = σG2
3(t)

2CT3
,

σ =
√

(C − A)(C − B)

AB
,

s(t) = sgn
(
G3(t)

)
sgn(T3),

E(x) = 1√
2π

x∫
0

dq√
q

exp
(−i sgn(T3)q

)
(54)= C2(x) − i sgn(T3)S2(x).

Functions C2 and S2 are modified Fresnel sine and cosine inte-
grals (e.g., Abramowitz and Stegun, 1964, Chap. 7.3). In further
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discussion we will use asymptotic expansions

(55)C2(x) ≈ 1

2
+ sinx√

2πx
+ O

(
x−3/2),

(56)S2(x) ≈ 1

2
− cosx√

2πx
+ O

(
x−3/2)

valid for x � 1.
The Tsiotras–Longuski (TL) theory has to be used with cau-

tion, because it is inherently restricted to the rotation mode with
p < 1 (SAM). It is straightforward exercise to derive its p > 1
(LAM) complement, but none of the solutions is capable of
following a sudden transition from one mode to another, a pos-
sibility that may happen in the constant torque problem. Thus,
a realistic application of TL theory consists of using it only un-
til the p ∼ 1 separatrix is reached or until after it is left by the G

vector.
Let us now see how the TL approximate analytic solution

above may help us understand some of our numerical results
from Section 3.2. Suppose the initial value of G(0) is such that
G3(0) > 0 and p < 1. According to the TL theory, there are two
possible scenarios in this case, depending on the sign of T3:

1. If T3 > 0, the G3 component grows linearly, whereas G1
and G2 oscillate around some guiding centers. As t → ∞,
the guiding centers approach 0 and the oscillation ampli-
tudes shrink to finite, nonzero values A1 for G1, and A2
for G2, such that

A2
1 = G2

1(0) + A

C − A

[
C − B

B
G2

2(0)

+ 2C

G3(0)

(
G2(0)T1 − G1(0)T2

+ C

2G3(0)

(
BT 2

1

C − B
+ AT 2

2

C − A

))]
,

(57)A2 = A1

√
B(C − A)

A(C − B)
.

In other words, the projection of G onto the G1,G2 plane
tends to an ellipse centered at the origin.
Of course, the unbounded growth of G3 leads asymptoti-
cally to the final state G = (0,0,1)T, regardless of the final
nonzero values of G1 and G2.

2. If T3 < 0, the third component of G decreases linearly,
reaching the value G3 = 0 after the time

(58)�t = −G3(0)

T3
.

This elementary but very useful formula derived from
Eq. (51) estimates the time required to enter the tumbling
mode. Note that if T3 < 0, even the initial state G(0) = ez

is unstable and moves G towards the separatrix. On its way,
Eq. (53) indicates that the G1 and G2 components oscillate
with an increasing amplitude.

In order to test our analytic formulae, we output values of
the YORP torques during the numerical evolutions reported
in Section 3.2 Passing these values through a Fourier filter
on a running-box window, we verified that all three compo-
nents (T1, T2, T3) have nonzero mean values (this is a some-
what trivial conclusion as far as the third component T3 is
concerned, because its nonzero mean value is responsible for
the YORP acceleration or deceleration of the rotation rate al-
ready recognized by Rubincam, 2000). Here we compared the
estimated timescale �t from Eq. (58) to acquire a tumbling
rotation state with our numerically-determined timescale and
found the two values were is good agreement. Note that because
�t ∝ D2 (Rubincam, 2000; Vokrouhlický and Čapek, 2002),
the timescale to the onset of tumbling scales with the size of the
body used in our numerical experiments.

After reaching the separatrix, the evolution of G either con-
tinues as precession around ez (with G3 < 0) and the TL theory
still applies, or precession around ex occurs and a modification
of the theory is required with T1 and G1 taking the roles of T3
and G3. A qualitative description of the latter case is similar to
the p < 1 case discussed above.

Even elementary considerations lead us to the conclusion
that, if |G3| experiences unlimited growth, the energy value
tends to E ≈ G2

3/(2C), and the square of total momentum
tends to G2 ≈ G2

3. This means the value of p should con-
verge to p ≈ B/C = β . In the second evolution variant, when
|G1| grows and G tends to ±ex , the quantity p converges to
p ≈ B/A = α. As a result, the simple constant-torque model
described above cannot explain the new asymptotic states de-
termined by the numerical experiments from Section 3.2. An
appropriate analytic model that would allow their description is
beyond the scope of this paper.

5. Conclusions

In this paper, we extended our knowledge of YORP asymp-
totic states using a more complete model than has been used
before. We have shown that the previously-determined states of
infinitely slow rotation rate, or sun-synchronous if solar torques
were included, do not persist and instead lead to the onset of
tumbling rotation states. Using a simple analytical model, we
explained why tumbling is excited by YORP.

We caution that at this stage of analysis, the timescales to
determine the onset of tumbling by YORP, and particularly
the asymptotic states, are mathematical results. The question
of whether they exist in reality or not should be studied us-
ing a more complete and sophisticated approach. For instance,
very small bodies with D � 50 m are unlikely to have an in-
sulating cover of regolith; this means their surfaces may be
characterized by exposed rock with high thermal conductivity
values. This would violate the zero thermal conductivity cases
examined here. Accordingly, our results may not be applica-
ble to meter-sized meteoroids (to learn more about the role of
the surface conductivity on the YORP effect, see, Čapek and
Vokrouhlický, 2004).

It is also important to note that the effects of internal dissi-
pation within multi-kilometer asteroids present an obstacle for
the efficient onset of tumbling by YORP over a timescale lim-
ited by collisional powerful enough to affect their spin states.
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Efficient internal dissipation processes would damp the asymp-
totic tumbling states, reported in this paper, to SAM rotation
because of steadily-increasing rotational energy (Section 3). In
such a scenario, tumbling states would only be temporary ex-
cursions between SAM rotation modes. A detailed analysis of
such effects is beyond the scope of this paper.

Using asteroid lightcurves, Pravec et al. (2005) searched for
bodies that could be in an excited, non-principal-axis rotation
state. According to their work, these objects are located be-
low a critical line �1 in a plot of ω vs D, where damping of
the excitation by internal dissipation would either take longer
than ∼4 Gyr or the body’s estimated collisional lifetime. If we
now compare the order-of-magnitude estimate of the timescale
needed for YORP to push a body from a SAM state into a tum-
bling state to the dissipation timescale in Harris (1994), we find
that below (D/P )2 ∼ κ/a line (�2), YORP should win over dis-
sipation damping to push an asteroid’s rotation into an excited
rotation state. Here κ ∼ (0.1–0.5) if D is in kilometers, rotation
period P in hours and semimajor axis a in astronomical units.
The critical line �2, if plotted on an ω vs D plot, would—for
nominal parameter values—lie above �1, which would make the
parametric space where tumbling asteroids are expected even
larger.

Curiously, a number of apparently SAM-rotating D ∼
(0.1–5) km asteroids reside below the �1 and �2 critical lines in
the ω vs D plot (A. Harris, personal communication). Rotating
very slowly for their size, these objects cannot damp their exci-
tation energy within their collisional lifetimes and thus should
be easy targets for YORP to quickly establish tumbling. Their
existence is a true mystery.
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