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The Yarkovsky effect is a subtle nongravitational phenomenon
related to the anisotropic thermal emission of Solar System objects.
Its importance has been recently demonstrated in relation to the
transport of material from the main asteroid belt (both to explain
the origin of near-Earth asteroids and some properties of meteorites)
and also in relation to the aging processes of the asteroid families.
However, unlike the case of the artificial satellites, the Yarkovsky
effect has never been measured or detected in the motion of natural
bodies in the Solar System. In this paper, we investigate the possi-
bility of detecting the Yarkovsky effect via precise orbit determina-
tion of near-Earth asteroids. Such a detection is feasible only with
the existence of precise radar astrometry at multiple apparitions.
Since the observability of the Yarkovsky perturbation accumulates
quadratically with time the time span between radar observations is
a critical factor. Though the current data do not clearly indicate the
Yarkovsky effect in the motion of these bodies, we predict that the
next apparition of several asteroids (in particular, 6489 Golevka,
1620 Geographos, and possibly 1566 Icarus) might reveal its ex-
istence. Moreover, we show that the Yarkovsky effect may play a
very important role in the orbit determination of small, but still
observable, bodies like 1998 KY26. If carefully followed, this body
may serve as a superb probe of the Yarkovsky effect in its next close
approach to the Earth in June 2024. c© 2000 Academic Press
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1. INTRODUCTION AND MOTIVATIONS
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The orbital dynamics of near-Earth objects (NEOs) rev
many complex problems. Among them, the influence of cl
planetary encounters has been extensively studied and re
nized to be a principal reason for their strong chaoticity and s
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tional dynamical effects that increase the difficulty of modeli
the NEO dynamics. The purpose of this paper is to analyze
influence on NEO motion of the Yarkovsky effect, a subtle no
gravitational perturbation due to a recoil force of anisotropica
emitted thermal radiation of a rotating body. Since the persp
tive of our effort is to consider a possible observability of t
Yarkovsky effect, we shall not investigate its role on the d
namical lifetime of NEO orbits nor its influence on very sm
NEOs (e.g., the meteorite precursors of a typical size 0.5 to
see, e.g., Vokrouhlick´y and Farinella 2000). We rather restri
our analysis to understanding the orbital perturbation indu
by the Yarkovsky effect for the near-Earth asteroids (NEA
observed at-present. Obviously, the short time scale invo
('years) must be compensated by very high precision ob
vations. Fortunately, we have available the radar observat
of about 50 NEAs, some of which have been observed w
radar even during two apparitions. We intend to demonst
that data of such a superb quality may reveal the influence o
Yarkovsky effect on several NEA orbits.

The plan of the paper is as follows: in Section 2 we briefly
call the physical essence of the Yarkovsky effect and discus
mathematical approach that will be used. Though we basic
put together previous results, new results presented in this
per include the definition of algorithms to determine the mo
parameters of the diurnal Yarkovsky acceleration (the sur
thermal conductivity and the orientation of its spin axis). W
shall also point out that modeling of the Yarkovsky effect on
NEA orbits presents a special problem not encountered in
similar orbital analysis of the main-belt objects, and that is th
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high eccentricity. Then, in Section 3, we determine the sec
semimajor axis drift (the main orbit perturbation) caused by
Yarkovsky effect for selected, known NEAs and we estima
using simple analytical formulas, a characteristic orbital cha
produced by this effect. These results offer a first glimpse
a more complete understanding of the way the Yarkovsky
fect affects NEA orbits. We shall also consider how the res
depend on the value of the surface thermal conductivity of
asteroid, which is a particularly important issue in the con
of this paper. However, the detection of the Yarkovsky eff
via NEA observations and orbit determination requires als
detailed consideration of both observational and orbit dete
nation errors. The observation errors are small enough to a
for the detection of the Yarkovsky effect, since the present pr
sion of the radar ranging technology is on the level of a frac
of a microsecond or about 60 m in range and about 100 m
in the range–rate measurement. However, the global orbi
termination uncertainty must be considered, and it substant
excludes the possibility of detection of the nongravitational p
turbations within the currently available data. We then disc
which additional observations would be sufficient for this d
tection, and find some very interesting possibilities for the n
few years. We devote Section 4 to this topic.

2. YARKOVSKY EFFECT: THE SPLIT ONTO DIURNAL
AND SEASONAL VARIANTS

The applications of the Yarkovsky effect in Solar System
namics have undergone a remarkable renaissance over th
few years. This situation results from a fruitful conjunction
progress in several fields. On one side, the classical unders
ing of the Yarkovsky effect has been enlarged by a more
tailed theoretical analysis that finally resulted in the recogni
of the mean-motion mode of the thermal effect (now called
“seasonal” variant of the Yarkovsky effect; see, e.g., Rubinc
1995, 1998; Farinellaet al.1998; and herein). On the observ
tional side, direct and indirect knowledge of the dynamics of
small Solar System bodies has dramatically increased durin
past few years. Here we have in mind the systematic searche
NEOs with powerful CCD systems, the previously mention
radar ranging to NEAs and also more detailed and precise m
surements of the cosmic-ray exposure ages of meteorites (w
provide indirect evidence of the transfer time from the main
teroid belt toward the Earth; e.g., Graf and Marti 1995, Her
et al.1997).

Although the role of Yarkovsky perturbation has been rece
discussed in relation to meteorite properties (e.g., Farinellaet al.
1998, Hartmannet al. 1999, Vokrouhlick´y and Farinella 2000
Bottke et al. 2000), the replenishment of large NEAs (e.
Farinella and Vokrouhlick´y 1999), and asteroid family agin
processes (e.g., Farinella and Vokrouhlick´y 1999, Vokrouhlick´y
et al. 2000), so far there has not been any direct measurem
of the Yarkovsky perturbation in the orbital motion of the na

ral bodies in the Solar System (despite extensiveobservational
LL NEAR-EARTH ASTEROIDS 119
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evidence of the Yarkovsky effect in the case of the motion of
tificial Earth satellites such as LAGEOS, e.g., Rubincam 198
Although the Yarkovsky effect is unavoidable from the perspe
tive of physical principles, its direct measurement might valida
the available (and necessarily approximate) models for nat
bodies like asteroids and their fragments. In this way it wou
also enhance the credibility of the other ongoing work rela
to the Yarkovsky effect. This line of thinking is a principal mo
tivation of the present work.

It is also worth mentioning that the orbit analysis of som
NEAs has suggested evidence of nongravitational phenom
by requiring an anomalous secular decrease of their semi
jor axis (e.g., Sitarski 1992, 1998). At that stage of analysis
precise physical mechanism was mentioned apart from a p
sible, but vague, reference to outgassing, comet-like proce
(conformal to using the classical empiric approach to mo
the nongravitational effects on cometary orbits:apert' (ȧ/2a) v;
Sitarski 1998). Involving the Yarkovsky effect in the orbit ana
ysis of these cases might offer an additional and perhaps m
sophisticated approach.

As mentioned above, the Yarkovsky effect is a recoil for
from the thermal radiation of cosmic bodies that accumulate
energy by absorbing solar radiation in the optical band. A
result, an anisotropic distribution of the surface temperature
necessary condition for a nonzero Yarkovsky force. For a giv
surface element of the body, the incoming solar radiation fl
in the body-fixed reference frame is essentially modulated
two frequencies: (i) the rotation frequency of the body arou
an instantaneous spin axis and (ii) the mean-motion freque
that is given by the body’s revolution around the Sun (plus th
multiples and linear combinations). In the context of a simp
(linearized) heat diffusion theory the temperature variation
the surface element basically keeps the same spectral chara
istic with one exception: the individual spectral lines are pha
shifted in a precisely determined way. When performing t
inverse Fourier map these phase shifts obviously then appe
time lags. Taking into account the assumed spherical geom
of the body and the individual temperature history of the surfa
elements, computed according to the theory mentioned ab
we may determine the net recoil force of the thermal radiat
(by performing a surface integration of the infinitesimal effec
on the sphere).

Theoretical reanalysis of the Yarkovsky effect over the p
few years (e.g., Rubincam 1995, 1998; Farinellaet al. 1998;
Vokrouhlický 1998a,b, 1999) has revealed the following im
portant results. The surface-integrated Yarkovsky accelera
terms that depend on the rotation frequency of the body
tightly clustered around the spectral line with this frequen
(showing up as mean-motion sidebands) and yield accelera
components perpendicular to the spin axis. Thanks to the
ically big difference between the periods of rotation (≈hours)
and revolution (≈years), these acceleration terms in practi
“collapse” to the single spectral line corresponding simply

the rotation frequency. Another aspect of the same reasoning
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comes from the fact that the thermal relaxation time scale co
sponding to the rotation frequency of the body (approximat
the time between the sunlight absorption and the thermal e
sion) is comparable to the rotation period, and thus the bo
shift along the orbit around the Sun may be neglected. W
these force components are transformed to the inertial re
ence frame, to which the orbital perturbations are referred,
have close to zero frequency with amplitude still depending
the rotation rate of the body. Because of their relation to
rotation period the acceleration terms mentioned above are
ally called “diurnal.” Their modeling is sufficiently simple sinc
they depend uniquely on the instantaneous state vector o
body in its orbit. In particular, the eccentricity of the orbit do
not enter the computation of the diurnal Yarkovsky accelera
components at this level of approximation. However, in his p
neering work, Rubincam (1995, but see also his related wor
satellite dynamics, Rubincam 1987) has shown that there e
another class of thermal acceleration terms, computed by
surface integration mentioned in the previous paragraph, tha
not depend on the rotation frequency of the body but only on
revolution frequency around the Sun (and its multiples). Th
terms, usually called “seasonal” because of their frequency c
acteristics, are always aligned with the body’s spin axis. Si
we assume a fixed orientation of the spin axis in the iner
space, the seasonal component of the Yarkovsky force pres
its revolution frequency even in the inertial frame. If described
an approximate way, the seasonal acceleration terms are re
to the changing geometry of the north/south hemisphere ins
tion of the body. Each of these two effects, diurnal and seaso
may be important in the dynamics of small cosmic bodies
NEAs.

Keeping the terminological and practical split into the diu
nal and seasonal variants of the Yarkovsky effect mentio
above, we shall summarize our mathematical approach in
remainder of this section. In the case of the diurnal variant
shall essentially follow the approach developed by Vokrouhlicy
(1998a). The necessary formulas are given in Section 2.1
the partials with respect to the most important parameters
computed analytically. The seasonal variant of the Yarkov
effect deserves more attention since it hides more complic
problems. The latter arise mainly because of high orbital
centricities (which can range from 0.3 up to very “extreme,”
cometary-like values, e.g.,' 0.823 in the case of 1566 Icarus
so that the analytic evaluation of the incoming solar radiation fl
becomes troublesome. On top of this difficulty, Vokrouhlicy
and Farinella (1998) have pointed out another problem in e
uating the seasonal component of the thermal force. For hi
eccentric orbits the variations of temperature along the orbi
particular over a thermal relaxation time scale of the seas
effect, are large enough so that the basic assumptions of
earization of the heat diffusion problem are violated. Avoidi
the linearization approach yields a precise result, but requ
a completely numerical solution. In what follows, we shall u
the model of Vokrouhlick´y and Farinella (1998), which solve

the thermal state of the body along an arbitrarily eccentric
ANI, AND CHESLEY

rre-
ly
is-

y’s
en

fer-
ey

on
he
su-

the
s

ion
io-
on
ists
the
t do
its
se
ar-
ce
ial
rves
in

lated
ola-
nal,
ke

r-
ed
the
we
k´
and
are
ky
ted
c-

,
ux
´
al-
hly
, in
nal
lin-
g

ires
se

bit in the “large-body” approximation (penetration depth of t
seasonal thermal wave is much smaller than the geometric
of the body). The amplitude of the seasonal Yarkovsky acce
ation is then formally given in terms of an integral in which t
integrand contains the latitude stratification of the surface t
perature. The latter, in turn, results from a solution of a pa
differential heat-diffusion equation. The corresponding form
las are outlined in Section 2.2.2. Though precise, this mo
for the seasonal Yarkovsky force may not be well suited for
routine orbit determination process because of its comple
We thus also consider a less precise, but analytical solutio
Vokrouhlický and Farinella (1999), which is based on lineari
tion of the heat diffusion problem. The corresponding formu
are outlined in Section 2.2.1.

2.1. Yarkovsky Diurnal Acceleration

There are two basic assumptions of the Vokrouhlick´y (1998a)
model of the diurnal variant of the Yarkovsky effect: (i) temp
ature throughout the body is close to a mean value, and (ii
body is spherical (with radiusR). The first of these two item
allows linearization of the heat diffusion problem and, thus,
alyticity of the solution. Since the thermal relaxation time, e
mated above, is not much shorter than the rotation period,
(i) might be a fairly good approximation. The second ite
(ii) might present an obstacle for small NEAs, since they are u
ally of a rather irregular shape (e.g., Ostroet al.1996, 1999a for
the most extreme cases of 1620 Geographos and 4179 Tou
some are fortunately less-elongated objects, like 1566 Ic
with the following ratio of the dimension along the inerti
moment principal axesa/b = 1.23± 0.04 andb/c = 1.40±
0.10, e.g., De Angelis 1995). Vokrouhlick´y (1998b) has devel
oped a theory for computing the diurnal Yarkovsky accelera
on spheroidal objects (whose size is much larger than the p
tration depth of the diurnal thermal wave), but his results are
easily incorporated into numerical integrations, especially
the nonprincipal axis rotators; moreover, their generaliza
for triaxial bodies would only increase the complexity. Giv
the substantial uncertainty in our knowledge of the surface t
mal parameters, we believe that errors incurred by the use o
spherical assumption may be partly aliased into the estima
of the surface conductivity (or the effective size of the bod
Tailoring the thermal model for a given shape of an asteroid
is typical in the case of artificial satellites) will probably turn o
to be necessary in the future, but this topic is beyond the s
of this paper.

The diurnal variant of the Yarkovsky acceleration can be w
ten in the form (see also Broˇz et al.2000)

ad = 4α

9

8(r )

1+ λG[sinδ + cosδs×]
r × s

r
, (1)

whereα is the absorptivity of the asteroid surface in the op
cal band (complementary to albedo),s is the unit vector of the
or-spin axis, andr is the heliocentric position vector (r = |r |). The
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A′(x) = d A(x) = −1+ ex[cosx + (2x − 1) sinx], (13)
YARKOVSKY EFFECT ON SM

standard radiation force factor8 is defined by

8(r ) = 3F(r )

4Rρc
, (2)

with F(r ) being the solar radiation flux at the instantaneo
distancer from the Sun (henceF(r ) ∝ 1/r 2), c the speed of
light, andρ the mean density of the fragment. The instantane
solar radiation fluxF(r ) determines the local (in terms of th
orbital revolution) subsolar temperatureT(r ) through

εσT4(r ) = αF(r ), (3)

with σ being the Stefan–Boltzmann constant. The subsolar t
perature defines the diurnal thermal parameter2 = √KρsCω/
εσT3(r ) and the local value of the penetration depth of the d
nal thermal waveld =

√
K/ρsCω. HereK is the thermal con-

ductivity, C is the thermal capacity,ω is the rotation frequency
andρs is the surface density. In principle, this latter quant
may not be identical to the mean bulk densityρ from Eq. (2).
The argumentX in Eq. (4) isX = √2 R/ ld and the paramete
λ is defined byλ = 2/X.

Finally, the amplitudeG and the phaseδ in Eq. (1) are given
by

Gei δ = A(X)+ i B(X)

C(X)+ i D(X)
, (4)

(i = √−1 is the complex unit) with the auxiliary functions

A(x) = −(x + 2)− ex[(x − 2) cosx − x sinx], (5)

B(x) = −x − ex[x cosx + (x − 2) sinx], (6)

C(x) = A(x)+ λ

1+ λ {3(x + 2)+ ex[3(x − 2) cosx

+ x(x − 3) sinx]}, (7)

D(x) = B(x)+ λ

1+ λ {x(x + 3)− ex[x(x − 3) cosx

− 3(x − 2) sinx]}. (8)

A few remarks are in order to illuminate the features of
diurnal acceleration (1).

• Note that the diurnal acceleration (1) is perpendicula
the body’s spin axis (ad · s= 0). The along-spin acceleratio
component is then given by the seasonal variant of the Yarko
effect and it will be discussed below.
• For future use we introduce functionsa(x) andb(x) by the

formulas

C(x) = A(x)+ λ

1+ λa(x) and D(x) = B(x)+ λ

1+ λb(x).

• As a reference check of the numerical simulations, we m

tion here the analytical estimation of the semimajor axis drift d
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to the diurnal variant of the Yarkovsky effect (e.g., Vokrouhlicky
1998a, 1999)

da

dt
= −8α

9n
8(a)

G sinδ

1+ λ cosγ +O(e) (9)

(8(a) = 8(r = a) since (9) is correct for the circular orbit only)
Here,n is the mean motion andγ is the obliquity of the body’s
spin axis. Numerical tests indicate that for high eccentricity o
bits (like 1566 Icarus,e' 0.827) the approximate result (9
should be increased by a factor of 1–5.

Some of the Yarkovsky effect parameters might be adjus
in the orbit determination procedure. For this goal we wou
need to calculate partial derivatives of the diurnal Yarkovs
acceleration (1) with respect to those parameters. Some of th
are given below.

Since the surface thermal conductivityK is the principal un-
known parameter of the thermal model outlined above, the o
determination should focus on fitting this parameter. Anticipa
ing the results of this paper, we note that the NEA orbits/obje
can have either a weak or a strong dependence of the resu
orbital perturbations on the surface conductivityK . Both cases
can be interesting. In the first case the results do not depen
a badly constrained parameter in the model, while in the sec
case we might wish to determine, or at least constrain, the s
face conductivity value. We recall that knowledge of the latt
might have imposed constraints on the physical character of
surface (degree of particularization, existence of regolith, e
that, in turn, has cosmogonic implications.

The corresponding partial derivative of the diurnal Yarkovs
acceleration (1) is

K∂K (ad) = 4α

9
8(r )

{
K∂K

(
G sinδ

1+ λ
)

+ K∂K

(
G cosδ

1+ λ
)

s×
}

r × s
r

(10)

(∂K = ∂/∂K ). The partial derivatives on the right-hand side ca
be determined from the relation

K∂K

{
G expi δ

1+ λ
}
= −G expi δ

1+ λ ξK , (11)

where the complex factorξK is given by

ξK = λ

1+ λ

×
{

1+ X

2

[ A′(X)+ i B ′(X)][a(X)+ ib(X)]− [ A(X)+ i B(X)][a′(X)+ ib′(X)]

[ A(X)+ i B(X)][C(X)+ i D(X)]

}
.

(12)

Here we have used the derivatives
ue dx
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B′(x) = d B(x)

dx
= −1− ex[(2x − 1) cosx − sinx], (14)

a′(x) = da(x)

dx
= 3+ ex[(x2− 3) cosx

+ (x2− 4x + 3) sinx], (15)

b′(x) = db(x)

dx
= 2x + 3− ex[(x2− 4x + 3) cosx

− (x2− 3) sinx]. (16)

In general, the thermal conductivityK , and to a lesser exten
the thermal capacityC and the densityρ, are functions of the
temperature. A higher mean temperature results in the me
the surface particles to a larger matrix that enables more effic
conduction, but decreases the role of the intergrain radia
transport. Given such physical concepts of the heat transpo
the surface material, several parametrizations of theK vs T de-
pendency were theoretically proposed and experimentally te
(e.g., Wesselink 1948, Glegget al.1966, Wechsleret al.1972).
However, given the other simplifications of our approach
shall neglect the temperature dependence of the thermal m
parameters in this paper.

As mentioned above, the asteroids that we have select
our study for a possible measurement of the Yarkovsky ef
were all observed with radar technology. These were sele
in order to obtain the highest precision of orbital data. Mod
radar measurements allow the capability of determining both
orbit (“center-of-mass” position and motion) and the shape
the asteroid. This is, for instance, the case with 4179 Tou
(Ostroet al.1999a), 1620 Geographos (Ostroet al.1996), and
6489 Golevka (Hudsonet al.2000). The objects are generally
a rather irregular shape, which is conventionally approxima
by a triaxial ellipsoid. Since our model for the Yarkovsky for
assumes a spherical body, we shall determine its effectiv
dius R by an “equal-mass-condition,”R3 = abc, wherea, b,
andc are radii along the principal axis of the ellipsoid mod
In some other cases, however, we have much less reliabl
formation about the size of the body. For instance Veederet al.
(1989) report the radiusR= 450 m for 1566 Icarus provide
its albedo is about 0.4. This albedo, however, seems to be qu
large, and Harris (1998) advocated a larger size for this aste
and a correspondingly smaller optical albedo. In a recent pa
Mahapatraet al.(1999) however seem to indicate that the ori
nal solution of small-size Icarus might be correct. (This issu
carefully considered in Section 3.3.)

In these latter cases especially, it might be interesting to
strain the radiusR of the body via the orbital perturbation o
the Yarkovsky thermal effect. In other words, solving for t
formal, Yarkovsky-determined radius of the body, we may a
gain insight into the reliability of the Yarkovsky model for th
particular body. To that end we need the partial derivatives o
Yarkovsky acceleration with respect to the radius of the bo

The resulting formula is rather simple and, moreover, does
ANI, AND CHESLEY
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demand supplementary computational expense

R∂R(ad) = −1+ 2λ

1+ λ ad− 2K∂K (ad), (17)

where the derivative in the last right-hand-side term is giv
in (10) and was thus already computed. Obviously, both s
face thermal conductivityK and the radiusR of the body affect
the semimajor axis change. Their simultaneous determina
would not be possible. However, the situation might be intere
ing in several cases where the semimajor axis mobility depe
little on theK value (see Section 3 below).

2.2. Yarkovsky Seasonal Acceleration

As explained above, the seasonal component of the ther
Yarkovsky acceleration is collinear with the orientationsof the
spin axis, hence,

as = fZs . (18)

Vokrouhlický (1999) obtained a simple analytic expression f
fZ that is, however, only valid for circular orbits, while
Vokrouhlický and Farinella (1999) obtained a solution for th
fZ amplitude in terms of elliptic series that is formally valid fo
eccentric orbits. Both solutions are based on the linearization
the heat diffusion problem on a spherical body and, thus, can
be fully precise. Obviously, the convergence of the elliptic-ser
solution of Vokrouhlický and Farinella (1999) is violated in the
case of highly eccentric orbits (e.g., 1566 Icarus), so appro
mating the series by the first few terms, as we practically alwa
must do, may produce misleading results. The only precise
proach then is a completely numerical solution. However, sin
this solution is computationally very difficult, we shall adop
two possible options for the seasonal Yarkovsky acceleratio

The first, “lower precision” solution is based on the analytic
results of Vokrouhlick´y and Farinella (1999). Our experienc
shows that it can be used up to eccentricity of 0.4–0.5 witho
a major corruption of the results. Its main advantage cons
of its analyticity and thus high speed of numerical evaluatio
For special cases of very eccentric orbits we shall use the “hi
precision,” numerical solution. Both approaches are briefly d
scribed in the following two paragraphs.

2.2.1. The low-precision model.At a lower precision of
modeling the seasonal Yarkovsky effect we have adopted
linearized solution by Vokrouhlick´y and Farinella (1999). The
acceleration amplitudefZ from (18) then takes the form (for
more details see Broˇz et al.2000)

fZ = 2α

9

8(a)

1+ λ′
∑
k 6=0

χkGkei δkζ k. (19)

Here,λ′ = λ η3/4 (η = √1− e2). In principle, the summation in

not(19) is to be performed over all integer and nonzero values ofk;
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however, in our program we restrict to|k| < 8. This is justified
for low-eccentricity orbits, since theχk factors decay fast with
increasing value of the indexk. In quantitative terms

χk ≡ sPαk − isQβk ∝ ek−1, (20)

with ebeing the eccentricity. Obviously, the convergence of
series (19) is not guaranteed for high values of eccentricity.
is the principal caution behind using the lower-precision mo
for evaluation of the seasonal Yarkovsky acceleration.

VariablessP andsQ stand for projection of the spin vect
s onto the orbit-defined unit vectorsP (direction of pericenter
sP = s · P) andQ = N× P (with N being normal to the orbi
plane;sQ = s ·Q). The eccentricitye dependent functionsαk

andβk read

αk = 2
d

de
[ Jk(ke)], (21)

βk = 2
η

e
k Jk(ke), (22)

whereJk(x) are the ordinary Bessel functions of the first ord
Explicit expressions of the first seven coefficientsαk andβk can
be found, for instance, in Brouwer and Clemence (1961).

The thermal characteristics of the seasonal effect are expr
by the amplitudesGk and phasesδk given by

Gkei δk = A(Xk)+ i B(Xk)

C(Xk)+ i D(Xk)
, (23)

where we assumek ≥ 1. Terms with the negative value of th
index k are obtained by the identityG−k expi δ−k = Gke−i δk .
Thek-indexed arguments on the right-hand side of (23) areXk =√

2k R/ ls, with the radiusRof the body scaled by the penetrati
depthls of the seasonal thermal wavels =

√
K/ρCn, and the

functionsA, B, C, andD are defined by Eqs. (5) to (8) abov
Finally, the complex quantityζ in Eq. (19) denotesζ = expi `,
where` is the mean anomaly.

Notice that the structure of the acceleration (19) is very sim
to that of the diurnal effect in (1). For an evaluation of the par
derivatives, with respect to the surface thermal conductivityK )
and the radius (R) of the body, we may straightforwardly us
the formulas given in the previous Section 2.1.1. Obviously,
seasonal-effect-related variables, e.g., scaling the radius o
body by the penetration depth of the seasonal thermal wavls,
must be used. In particular, the partial derivative of thefZ ampli-
tude with respect to the surface conductivityK reads (compare
with Eq. (10))

K∂K { fZ} = −2α 8(a) ∑
χkGkei δkξ k ζ k, (24)
9 1+ λ′
k 6=0

K
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where the complex factorsξ k
K are

ξ k
K =

λ′

1+ λ′

×
{

1+ Xk

2

[ A′(Xk)± i B ′(Xk)][a(Xk)± ib(Xk)]− [ A(Xk)± i B(Xk)][a′(Xk)± ib′(Xk)]

[ A(Xk)± i B(Xk)][C(Xk)± i D(Xk)]

}
(25)

(the minus signs are for negative values of the indexk). Similarly
the partial derivative with respect to the radiusR of the body is
given by

R∂R(as) = −1+ 2λ′

1+ λ′ as− 2K∂K (ss), (26)

which is identical (apart from the changeλ→ λ′) to Eq. (17).

2.2.2. The high-precision model.In the case of orbits obey
ing a very high eccentricity, we shall use a nonlinearized, fu
numerical model developed by Vokrouhlick´y and Farinella
(1998). Then the amplitudefZ from (18) is formally given as
an integral over all latitudesθ on the body

fZ = −4α

3
8a

∫ 1

−1
d(cosθ ) cosθT ′4(θ ), (27)

with8a = πR2F(a)/mcandF(a) being the radiation flux at the
semimajor axis distance from the center as before. The temp
tureT ′ in the integrand of (27) is scaled by the subsolar temp
ature at “the semimajor axis distance,” i.e.,εσT4

a,? = αF(a). Its
latitudinal distributionT ′(θ ) results from a numerical solutio
of the 1-D heat diffusion equation with an appropriate bound
condition (see Vokrouhlick´y and Farinella 1998). Hence, ou
code first computes numericallyT ′(θ ) at any instant along the
orbit (of any eccentricity) and then computesfZ by numerical
quadrature (27).

Since the implementation of the high-precision seaso
Yarkovsky acceleration is completely numerical, we must a
compute the partials by the finite difference method. To prev
numerical errors while computing the seasonal acceleration
two close values of the parameter for which we anticipate po
nomial dependence (thermal conductivityK and radiusR) we
may use

∂ fZ

∂K
= 1

K

∂ fZ

∂ ln K
(28)

and similarly for the radiusR.

3. THE FIRST GLIMPSE: SEMIMAJOR AXIS MOBILITY
OF NEAs AND TESTS

In this section, we shall compute the expected drift of
semimajor axis for selected asteroids that might be the m
promising candidates for determination of the Yarkovsky
fect. Note that the secular change of the semimajor axis is
principal indicator of the Yarkovsky orbital perturbation th

can lead to observable effects (the perturbation of the other
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TABLE I
Candidate Asteroids for Detection of Yarkovsky Effect

Spin axis orientation parameters (◦)

Asteroid a (AU) R (km) P (h) ` b γ Ref.

1566 Icarusa 1.08 0.45 2.273 214 5 103 1, 2
1620 Geographosb,c 1.25 1.21 5.225 56 −47 150 3, 4, 5
1685 Toro 1.37 1.7 10.19 210 40 41 1, 2
4179 Toutatisb,d 2.51 2.76 6.93 180 −52 143 4
6489 Golevkab 2.51 0.27 6.03 202 −45 134 6
1998 KY26e 1.23 0.015 0.17837 — — 0(180)? 7

Note.For each of the objects we give the semimajor axisa (in AU), radiusR (in km), rotation periodP (in hours), the ecliptic longitude and latitude (`, b) of
the spin axis orientation, and its obliquityγ . The obliquity is helpful in getting an idea of which of the variants of the Yarkovsky effect dominates;γ ' 90◦ means
the seasonal variant is dominant,γ ' 0(180)◦ means the diurnal variant is dominant. Source references are listed in the last column. References: (1) Veeet al.
(1989); (2) De Angelis (1995); (3) Ostroet al. (1996); (4) Ostroet al. (1999a); (5) Magnussonet al. (1997); (6) Hudsonet al. (2000); (7) Ostroet al. (1999b).

a The quoted radius has been reported by Veederet al. (1989). However, since these authors have used a rather high value of the albedo (0.4), the 0.45-km
radius of 1566 Icarus may be just the lower estimate. In this context, note the test we have performed in Section 3.3. For the spin axis orientation wedata by
De Angelis (1995), whose analysis discarded the ambiguity in the sense of orientation of the Icarus spin axis.

b A triaxial model has been determined from radar observations, and we have estimated an “effective radius” byR3 ' abc, wherea, b, andc are the dimensions
along the principal axis of the moment of inertia.

c Spin axis orientation by Magnussonet al. (1997).
d We approximate the “spin axis orientation” by the direction along the angular momentum vector.
e This is one of the smallest objects observed so far by the radar technique. (Its smallness obviously favors the influence of the Yarkovsky effects.) Theobservations
of 1998 KY26 might indicate the spin axis nearly perpendicular to the ecliptic plane (without possibility of resolving the sense of rotation; P. Pravec, personal
communication).
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elements are less important except, perhaps, the inclinat
As far as the “candidate bodies” are concerned we have
lected the asteroids that had been observed by radar at tw
more apparitions (according to the list given athttp://ssd.

jpl.nasa.gov/radar data.html ). These are generally th
best known orbits among the NEAs. A list of the selected b
ies is given in Table I, where the assumed size and rota
parameters are also indicated. As far as the orbital para
ters are concerned we used theOrbFit software, developed
by the OrbFit Consortium (seehttp://newton.dm.unipi.it/

˜asteroid/orbfit/ ), which enables precise orbit determin
tion (including radar observation processing). A check with
independent JPL solutions for individual objects has also b
performed (e.g., Ostroet al. (1999a) for 4179 Toutatis). Sinc
detailed information about the surface properties of these
jects is usually not available, we shall span the surface ther
properties (in particular, the thermal conductivityK ) in some
physically reasonable range. The absorption coefficientα in the
optical band is typically 0.9 (corresponding thus to an albedo
0.1), but in specific cases we accept the published values (
the case of Icarus and Golevka). The emission coefficientε in
the thermal band is always set to 0.9.

The integrations performed in this section represent a p
turbed two-body problem; i.e., no planetary effects have b
included. This is already a fairly good approximation since
do not expect any significant coupling between the plane
and Yarkovsky perturbations. However, in Section 4 we sh
proceed with a full numerical simulation involving a comple

model for the orbit determination (including planetary perturb
n).
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tion and general relativity effects). We consider the effect of t
diurnal and seasonal variants of the Yarkovsky effect separat
The total effect is then a simple superposition of the two varia
at this level of approximation.

To understand how the computed drift in the semimajor a
translates into an orbital shift we perform the following estima
The principal effect consists of a quadratic term in the aster
anomaly on the order1M ' − 3

4n(da/dt)(1t)2/a, wheren is
the mean motion,da/dt the estimated semimajor axis drift du
to the Yarkovsky effects,1t the elapsed time between two ob
servations, anda the semimajor axis. This effect produces bo
transverse displacement1τ ' aη1M and a radial displacemen
1r ' ae1M/η with η = √1− e2 (see, e.g., Casotto 1992; no
tice that the radial displacement is to be dominated by the l
gitudinal term rather than by a change in the semimajor a
since the former effect is quadratic in time). The total displac
ment thus reads1ρ ' a1M , where the fourth-order terms in
eccentricity have been neglected. In terms of physical units
means

1ρ ' 7ȧ4(110t)
2a−3/2

AU km, (29)

whereȧ4 is the Yarkovsky drift of the semimajor axis in 10−4 AU/
Myr (this is a typical order of magnitude of the Yarkovsky e
fects on the near-Earth objects; see below),110t is the time
difference in tens of years (a characteristic temporal sepa
tion of two “radar apparitions”), andaAU is the semimajor axis
in astronomical units. We should mention that the actual d
placement of the asteroid with respect to the radar station of

a-Earth then depends on a particular Earth–asteroid geometry. This
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effect may partly decrease the estimated value of1ρ from (29),
though not by orders of magnitude. We shall check this cla
in Section 4 where we shall perform a full numerical simu
tion of the objects’ displacement in their future apparitions.
the case of some NEAs we have a rather long series of op
observations (e.g., 1566 Icarus) or prediscovery identificati
(e.g., 4179 Toutatis). Then, we also express the longitude
placement1M directly:

1M ' 0.01′′ȧ4(110t)
2a−5/2

AU . (30)

As the small NEAs are often observed at close approache
the Earth only, this change in the mean anomaly may then im
a sky displacement (usually in the right ascension) given
1M × (a/rmin), wherermin is the minimum distance to the Eart
at the approach. The latter factor can sometimes result in a fa
of 10–100 amplification of (30).

In what follows we shall assume the nominal estimates of
radii (given in Table I). We have checked that the semimajor a
drift due to the Yarkovsky effects scales as∝R−1 for objects of
sizes larger than about 20 m (see, e.g., Farinellaet al.1998), a
condition that applies for all the considered cases.

3.1. Diurnal Yarkovsky Effect

In this section we shall deal with the diurnal variant of th
Yarkovsky effect. Figure 1 shows the estimated values of
secular semimajor axis drift as a function of the surface c
ductivity K . If the surface is particularized (covered with th
impact-produced regolith) or has a high degree of micropor
ity (due to the impacts of dust particles) its conductivity w
be low: 0.001–0.01 W/m/K. On the other hand, if the body ha

FIG. 1. The estimated secular drift|da/dt| of the semimajor axis due to the
diurnal variant of the Yarkovsky effect for selected asteroids vs the surface
ductivity K . In the case of 1685 Toro the semimajor axis drift is positive (dash
line), while in all other cases the orbits decay (da/dt negative, solid lines). Nom-

inal values of the spin axis orientation and radii (from Table I) are assumed.
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a fresh, solid surface the conductivity would be significan
higher:'1 W/m/K. A lower degree of porosity of otherwis
solid rock results in the thermal conductivity of about 0.1 W/m/K
(e.g., Wechsleret al. 1972, Yomogida and Matsui 1983). Thi
latter case is likely for very small objects such as 1998 KY26

(radius of only 15 m), while a value of 0.01 W/m/K seems the
most likely value for the larger objects in our sample. Notice t
Müller et al. (1999) report typically very low values of the su
face thermal conductivity ('0.001 W/m/K in our units) for the
large main-belt asteroids from the thermophysical processin
the ISO measurements. This would indicate that these obj
have regolith-like surfaces. It seems reasonable to assume
the NEA surfaces (smaller and presumably younger obje
might have about a factor 10 times higher thermal conductiv
as mentioned above.

We note that the diurnal effect may result in both semima
axis increase and decrease, depending on the obliquity o
spin axis. In one case (1685 Toro) we have foundda/dt to be
positive (dashed line in Fig. 1), while in all other casesda/dt is
negative (solid lines in Fig. 1). In the former case the contribut
of the seasonal Yarkovsky effect may partially cancel the diur
drift, while in the latter case it adds to the diurnal value.

The results in Fig. 1 indicate that a few times 10−4 AU/Myr
are the typical values of the semimajor axis drift due to the
urnal variant of the Yarkovsky effect on our sample of bodi
This order of magnitude fits well the previous estimates giv
by Farinellaet al.(1998) or Bottkeet al.(2000). There are both
“obvious” and “unexpected” features in this figure. Among t
obvious results we notice that smaller objects (6489 Golev
exhibit higher mobility than the large ones (4179 Toutatis).
the other hand, we also present results that have not bee
ported so far. In the case of Icarus, for instance, the higher
urnal mobility appears for higher surface conductivity, whi
is just opposite to the previous experience (e.g., Farinellaet al.
1998). This reversal is most probably caused by the very h
eccentricity of the orbit. In some cases (4179 Toutatis and
lesser extent also 1685 Toro and 1620 Geographos) the diu
mobility of the semimajor axis depends only very weakly on t
surface conductivity. This is, in fact, a favorable circumstan
since this parameter is unconstrained by other observation
has been mentioned above.

The principal effects that may cause computed values ofda/dt
to be uncertain are: (i) badly estimated characteristic size of
body, (ii) nonsphericity of its shape, and (iii) badly determined
nonstationary (precessing) spin axis. All these factors toge
may result in a factor of 2 or 3 of mismodeling the semima
axis drift (see, e.g., Vokrouhlick´y 1998b). As far as the charac
teristic size of the body is concerned we have two comme
First, in cases where triaxial characteristics have been reso
(e.g., Toutatis and Geographos) from combination of the opti
infrared, and radar observations, we have used an approx
tion by a sphere of equivalent volume (see above). By do
so we at least keep approximately the same volume and

mass of the body. However, in some cases the body might not be
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conductivity K . In all cases the orbit decays. Nominal values of the spin axis
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fitted well even with an ellipsoid, for instance, Toutatis (Os
et al.1999b). Secondly, we recall that the semimajor axis d
(da/dt) scales inverse-proportionally with the characteristic
dius of the body. As a result a change in the radius affects
semimajor axis mobility in a very simple way.

Next, we comment on the issue of the spin axis orientat
The pole characteristics (longitude and latitude) are usually
termined upto a few degrees of uncertainty (in the best cases
the contrary, in several cases (4179 Toutatis or 1620 Geogra
we know the rotation state very precisely from the detailed a
ysis of the radar data. As expected, some bodies do not exh
simple (uniform) rotation about a spatially fixed axis but rat
tumble around the constant vector of the total angular mom
tum (as in the case of Toutatis; Ostroet al.1999b). To understan
the sensitivity of our results to changes in the orientation of
spin axis we have performed the following test. We have c
sidered fictitious configurations with the spin axis sweepin
cone with some aperture around the nominal value of the
orientation (given in Table I). We have taken 2.5◦, 5◦, 7.5◦, and
10◦, respectively, for the aperture angle. Fixing the value of
surface conductivity (to 0.01 W/m/K), we have computed th
semimajor axis drift for bodies rotating about the fictitious s
axes (the position of which on the cone has been paramet
by an angleα). No changes in the rotation period were assum
The results are shown in Figs. 2 and 3. In some cases (
Geographos and 4179 Toutatis), the results from Fig. 1 are
robust on changing the spin axis orientation since theda/dt drift
on even the 10◦ cone stay close to the central value. 1566 Ica
and 6489 Golevka show larger sensitivity to changes in the
axis orientation. However, assuming that the spin axis is t
bling along the cone, we observe that the mean value o
semimajor axis drift remains close to the value derived from
configuration with the nominal orientation of the spin axis. O
viously, here we neglect the fact that the tumbling period ma
comparable to the rotation period, an effect that has been
eled precisely by Vokrouhlick´y (1998b). Any offset of the mea
orientation of the spin axis with respect to the “nominal” va

FIG. 2. Sensitivity of the secular driftda/dt on changing the nominal or
entation of the spin axis. The diurnal variant of the Yarkovsky effect is assu
for 1566 Icarus (left) and 1620 Geographos (right). Low value of the sur
thermal conductivityK = 0.01 W/m/K is assumed. The curves of increas
amplitude of variation correspond to sweeping the spin axis of the asteroid
a cone with aperture 2.5◦, 5◦, 7.5◦, and 10◦, respectively, around the nomin

orientation. The angleα (abscissa) parametrizes the position on the cone.
ANI, AND CHESLEY
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FIG. 3. The same as described in the legend to Fig. 2 but for 4179 Touta
(left) and 6489 Golevka (right).

from the Table I may result in a net change of the semimaj
axis drift. From the maxima and the minima of the oscillatio
cycles in Figs. 2 and 3, we have an indication of the amount
uncertainty introduced by possible spin axis errors.

3.2. Seasonal Yarkovsky Effect

Figure 4 depicts the results of the mobility of the semimajo
axis due to the seasonal effect. We have always used the hig
precision model from Section 2.2.2; however we also check
reliability of the lower precision model (giving at maximum
10% different results). In general, the seasonal drift is alwa
smaller than the diurnal drift, which is again in good agreeme
with the previous results of Farinellaet al. (1998) or Bottke
et al. (2000). Bodies with an insulating layer on their surface
K ≤ 0.1 W/m/K, have typically negligible seasonal mobility
which is again an expected result. The same holds for larg
mobility determined in the case of smaller bodies in our sam
ple (6489 Golevka) and smallest mobility for the largest bod
(4179 Toutatis).

FIG. 4. The estimated secular drift−da/dt of the semimajor axis due to
the seasonal variant of the Yarkovsky effect for selected asteroids vs the sur
orientation and radii from Table I are assumed.
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FIG. 5. The estimated secular driftda/dt of the semimajor axis due to the
superposition of both variants of the Yarkovsky effect for selected asteroid
the surface conductivityK . Nominal values of the spin axis orientation and rad
from Table I are assumed.

As in the case of the diurnal effect, the principal source
error of the previous results may emerge from the size con
erations, nonsphericity, and spin axis mismodeling. On top
these factors, Vokrouhlick´y and Brož (1999) discussed anothe
aspect that may affect the computed seasonal value ofda/dt.
They showed that for bodies with a very thin low-conducti
layer on the surface (regolith or porosity limited just to surfa
slab) the seasonal effect mobility may be enhanced by pene
tion of the seasonal thermal wave below this surface layer.
higher conductive core then helps increase the thermal la
the seasonal effect and thus the semimajor axis drift rate.
a result the values ofda/dt determined forK ≤ 0.01 W/m/K
might be increased by a factor of 5–10. However, even apply
this factor the overall seasonal mobility is rather small in nea
all cases.

3.3. Total Yarkovsky Effect and Discussion

As was specified above, the total Yarkovsky perturbation r
resents a simple superposition of the diurnal and seasonal p
Figure 5 shows such a composition of the results from Figs
and 4. It is worth mentioning that in the cases of 6489 Golev
1620 Geographos, and 1566 Icarus we have checked ou
sults with those obtained by J. Spitale (personal commun
tion; see Spitale and Greenberg 1999, 2000). Although his
proach is fairly different from ours, the results match reasona
well. For 1620 Geographos we obtained nearly identical resu
In the case of 6489 Golevka, our results indicate about h
of the Yarkovsky mobility than that obtained by Spitale, wh
in the case of 1566 Icarus our results are larger by a facto
about 1.5. In the next paragraphs of this section we shall disc

some additional sensitivity tests and will also consider the o
LL NEAR-EARTH ASTEROIDS 127
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ject 1998 KY26. We leave a detailed discussion of the potent
detection of the Yarkovsky effect from the orbit determinati
of each of the asteroids to Section 4.

We can conclude that in the three cases out of five conside
(1620 Geographos, 1685 Toro, and 4179 Toutatis) the res
ing Yarkovsky semimajor axis drift depends only very weak
on the surface conductivity value. This is in fact a very favo
able circumstance, since it partially frees us from doubts ab
the uncertainty of our results stemming from the poorly kno
value of this parameter (we warn the reader, however, that
conclusion does not exactly apply to the more realistic sit
tion when the surface conductivity changes along the orbit;
Section 2.1). The principal uncertainty of our results then c
cerns a possible mismodeling of the body’s size and estima
of its albedo, and its nonspherical shape. The case of Gole
is illuminating because until the recently decisive results
Hudsonet al. (2000) the size of this object was poorly know
The Hudsonet al.result confirmed the estimate of Zaitsevet al.
(1997), which was about twice as large as the estimate give
Mottola et al. (1997). This lower size estimate was associa
with an unusually high albedo of 0.6, while the results of Hudson
et al.and Zaitsevet al. include an albedo of 0.15.

With this case in mind, we may question the very high value
the 1566 Icarus albedo (0.4) and the corresponding possible u
derestimation of its radius (R= 450 m) reported by Veederet al.
(1989). We have thus decided to consider an alternative m
for Icarus with twice the radius (900 m) and a correspond
simultaneous decrease of the albedo to 0.1 (so that the absolute
magnitude is unchanged). The total Yarkovsky drift rate of
Icarus semimajor axis (i.e., diurnal plus seasonal effects) in b
simulations is shown in Fig. 6. A decrease of the net semima

FIG. 6. The estimated total secular driftda/dt of the semimajor axis of
Icarus due to the Yarkovsky effect vs the surface conductivityK . The solid line
represents the “nominal” Icarus’ parameters (radius of 450 m and 0.4 albedo)
from Table I, the dashed line a fictitious Icarus withR= 900 m and a lower

b-albedo of 0.1.
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axis drift by about 30–40% in the most important conductiv
interval of 0.01–0.1 is apparent.

For completeness of our discussion, we note that the Ic
orbit determination history is somewhat interesting in the c
text of our work. Sitarski (1992) announced that his ana
sis of Icarus’ optical data may reveal a nongravitational ef
perturbing its semimajor axis at the level of (da/dt)Sitarski'
−(7.5± 4.0)× 10−4 AU/Myr (our units). This value is slightly
larger than the expected Yarkovsky drift; only assuming a h
value of the surface conductivity (K ' 1 W/m/K) allows our
results to fall into the error bar of Sitarski’s result. In the case
a lower value of the surface conductivity, which is more pro
ble for Icarus, the semimajor axis drift determined by Sitarsk
larger by a factor of about 5 than the expected Yarkovsky va
However, the large uncertainty of Sitarski’s result suggests
his detection may be of only marginal quality. Indeed, Yeom
(1992) recomputed the Icarus orbit and found no need for s
lar change in its orbit (after he had corrected an error in his c
that led him previously to a conclusion similar to Sitarsk
Yeomans 1991). Our orbit determination with today’s data a
does not require any additional nongravitational effect above
uncertainty of the observations.

A somewhat similar, but more complicated, history surrou
the orbit of 4179 Toutatis because of its two 1934 prediscov
observations. Sitarski (1998) argued that the nominal orb
Toutatis, based only on modern observations from 1988,
to match these early observations if only conservative fo
are taken into account. By curiosity he observed that the
match might be cured by introducing an empirical accelera
apert' (ȧ/2a)v, whereȧ is the solved-for mean change of th
semimajor axis of the orbit. Sitarski (1998) observed that tak
an empirical value of (da/dt)Sitarski' −58.4× 10−4 AU/Myr
(in our units) may significantly improve the misfit of the 1934 o
servations. Though of the correct sign, Sitarski’s value is ne
two orders of magnitude larger than the expected value
to the Yarkovsky effect (between 0.5 and 1× 10−4 AU/Myr
principally given by the diurnal variant of the Yarkovsky e
fect; see Figs. 1 and 5). Indeed, propagating back in time
mean anomaly effect given by Eq. (30), and taking into acco
da/dt ' −0.5× 10−4 AU/Myr, we would expect a right ascen
sion displacement of about 0.2 arc-sec, far too small to expla
the misfit of the 1934 observations.

The above contradiction can be eliminated with one of
following explanations: (i) the 1934 observations are either m
taken or, at least, subjected to uncertainty larger than assum
Sitarski, (ii) our solution for the theoretical drift of the Touta
semimajor axis due to the Yarkovsky effect is seriously und
estimated, or (iii) there is an additional nongravitational eff
acting on the Toutatis orbit that is exceeding the Yarkovsky ef
by two orders of magnitude. Any of these possibilities (or a co
bination of them) may be correct, but presently we are not
to discriminate between them. In our opinion, however, ite
(ii) and (iii) are less likely than the hypothesis in (i). Indeed

statistical analysis of the observational errors for that epoch
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the observatory involved indicates an expected RMS erro
2.7 arc-sec for these early data (M. Carpino, personal com
nication; seehttp://newton.dm.unipi.it/neodys/ where
these data are published for each observatory). The predis
ery observations then fall within 3σ and there is no strong reaso
to conclude that they indicate a phenomenon to be explaine

Finally, we pay attention to the Yarkovsky perturbation of t
small asteroid 1998 KY26. Although this body has been observe
by radar only once (June 1998) it represents a new type of ob
that may be very valuable in detecting the Yarkovsky eff
and testing current methods. Since there are possibilities
during the next years we may monitor the orbit until its ne
close approach to the Earth in June 2024 (see Section 4.5)
that in the future we shall accumulate data about similar bod
in the Earth’s vicinity, we have included discussion of 19
KY26 in this paper. The principal factor that favors measuri
the Yarkovsky effect is the small size of 1998 KY26: R' 15 m
(Ostroet al. 1999b). Figure 7 shows the expected drift of t
asteroid semimajor axis due to the diurnal and seasonal var
of the Yarkovsky effect. Unfortunately the 1998 observatio
of this object did not reveal a precise orientation of the s
axis, although it seems likely to be roughly perpendicular
the ecliptic plane (P. Pravec, personal communication). Si
the inclination of the orbit is low ('1.5◦) this situation would
favor the diurnal variant of the Yarkovsky effect and inhibit th
seasonal variant (solid line in Fig. 7). For the sake of compari
we have also simulated the case when the spin axis would b
the plane of the ecliptic (along the nodal line). The contributi
of the diurnal effect would be minimum, while the season
effect would be maximized (dashed line in Fig. 7).

FIG. 7. The estimated secular drift|da/dt| of the semimajor axis of the
small object 1998 KY26 vs the surface conductivityK . The solid line represents
the diurnal variant of the Yarkovsky effect and the spin axis perpendicular to
ecliptic plane (a more likely situation; P. Pravec, personal communication)
dashed line the seasonal variant of the Yarkovsky effect and the spin axis a
the orbital node (in ecliptic; for this latter case the diurnal effect vanishes
andthe seasonal effect is maximized).
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Assuming the ecliptic-pole orientation of the spin axis,
note a diurnal Yarkovsky mobility of the 1998 KY26 semimajor
axis several orders of magnitude larger than that of the o
objects we have discussed so far. At the time of its next c
approach to the Earth (June 2024) the predicted orbit displ
ment ranges in the interval of 1600 km (for high conductiv
K ' 1 W/m/K) up to about 4500 km (for very low conductiv
ity K ' 0.01 W/m/K). However impressive might be such
number, and it indeed provides a large potential for probing
Yarkovsky effect, we must also warn the reader that it migh
of about the same order as the orbit uncertainties if the orbit is
carefully monitored (notice that 1998 KY26 has been observe
for only about two weeks in summer 1998). In Section 4.5
envisage an optimum observation program for this object so
at its next close approach (June 2024) it might be well suited
the Yarkovsky effect study.

4. SIMULATION OF FUTURE APPARITIONS

After gaining insight concerning the order of magnitude of
possible perturbation due to the Yarkovsky effect, its depende
on the unconstrained model parameters (such as the surfac
ductivity), and some other issues, we now face the questio
the observability of the Yarkovsky effect. Obviously, this task
quires us not only knowing the expected orbital perturbation,
more importantly, that we must compare the predicted pertu
tion with the orbit determination uncertainty. Only when the u
certainty with which we know the given orbit, and with which w
may expect to observe the orbit in the future, is smaller than
Yarkovsky perturbation may we assume the effect is detecta

First, we note that we have performed orbit determinat
for all bodies in Table I. The observational data sets compr
all optical and radar observations available to us as of Nov
ber 1999. The optical observations were obtained by subs
tion from the Minor Planet Center, and the radar observat
are publicly available from the Jet Propulsion Laboratory
http:/ /ssd.jpl.nasa.gov/radar data.html . The combined
data sets are republished athttp:/ /newton.dm.unipi.it/

neodys/ .
The force model included planetary perturbations to the p

Newtonian order 1/c2 (c is the velocity of light) with planets
modeled as massive monopoles (the so-called EIH approx
tion). Optionally, we incorporated also the solar quadrupoleJ2

term as adopted by the JPL DE405 ephemerides. Three
sive asteroids (Ceres, Pallas, and Vesta) were also includ
our model. As far as the radar data are concerned, we
the procedure outlined in Yeomanset al. (1992). Relativistic
and ionospheric delay effects of the radar signal were app
We also included careful treatment of the time scales, ad
ing the TDB time scale as a fundamental independent vari
in our model. When necessary, in particular for the Earth
tation model, a transformation to the TDT time scale was p
formed. Our force model included both variants of the Yarkov

acceleration.
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In each of the cases we performed two orbit determinatio
one with the nominal model that does not contain the Yarkov
acceleration and one with a model including the Yarkovsky
celeration. In none of the cases have we observed a statisti
important change of results. From this we conclude that
Yarkovsky effect cannot be detected using the currently av
able data since the corresponding perturbation is well wit
the orbital uncertainty. A closer look at the formulas (29) a
(30) helps understand this conclusion. First, we do not ha
very long series of precise optical observations for NEAs, wh
would aid in the observability of the mean anomaly effect (3
The radar measurements are thus necessary for a tight cons
of the orbit. The radar-measured orbits are of two types: ei
(i) we have available two radar apparitions that are favorably w
separated in time (110t is large, e.g., 1566 Icarus and 1685 Tor
but they are of rather low quality, or (ii) we have available tw
high-quality radar measurements that are not separated en
in time (110t small, e.g., 1620 Geographos, 4179 Toutatis,
6489 Golevka). Obviously, when only one radar measureme
available (e.g., 1998 KY26) the orbit is not constrained enoug
Note that the time separation110t of the first and last radar mea
surements is a decisive factor since the Yarkovsky perturba
propagates quadratically with time. This remark also provide
strategy for determining the Yarkovsky effect in the future.
considering the next close approach to the Earth we shal
cus on cases with the orbit constrained well enough to poss
reveal existence of the Yarkovsky perturbation.

Before we embark on discussing individually the cases
asteroids from Table I, we mention that we have discar
1685 Toro from further considerations. This does not mean
the object might not be potentially interesting in the cont
of our work, but the present orbit uncertainty does not all
the detection of the Yarkovsky effect at the next apparition (a
probably even in the next two apparitions). The low quality of
previous radar measurements (in 1980 and 1988) is the prin
reason for this conclusion. However, since Toro will appea
close approach regularly in the next decades (close approach
Jan 2008, 2016, 2024, and 2032) the orbit might contain valu
information about the Yarkovsky effect if regularly observed
radar and a precise model of the asteroid is determined. H
ever, we postpone a detailed discussion of this case for fu
work.

4.1. 6489 Golevka

Golevka is a very interesting target for attempting the det
tion of the Yarkovsky effect. It has been observed by rada
1991 and 1995. Both delay and Doppler measurements w
obtained on the two occasions. The 1995 measurement ana
made it possible to reconstruct Golevka’s shape model an
reduce the radar astrometric data to the center-of-mass of th
teroid. The formal uncertainty of these measurements are a
30 m in range. Complementary to these precise measurem

the appreciable semimajor axis mobility of Golevka’s orbit due
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center of the nominal orbit ellipsoid at each day. For the Yarkovsky effect we
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to the Yarkovsky effect (Fig. 5) strongly favors its detection. T
only unlucky circumstance is a lack of radar astrometric m
surement during the 1999 close approach of this object, altho
such data may yet be forthcoming (S. Ostro, private commu
cation). The next possibility for taking radar observations
this asteroid occurs in June 2003. Our effort in the rest of t
section is to demonstrate that radar measurements at this e
could indicate the Yarkovsky perturbation on this orbit.

Assuming a surface thermal conductivity of 0.01 W/m/K we
obtain the approximate valueda/dt ' −6× 10−4 AU/Myr for
the semimajor axis drift. Equation (29) then yields an estim
of 15.2 km for the orbit displacement during the time interv
bracketed by the first (1991) and the last (2003) radar ob
vations. If the surface conductivity is an order of magnitu
larger (0.1 W/m/K) this estimation does not change marked
In either case these perturbations are appreciably larger tha
formal error of the radar measurements (which already incl
the shape model uncertainty). We thus need to focus on un
standing the orbit determination error at the epoch of June 20
The methodology of our work, similar for all cases below, w
be described in some detail in the next few paragraphs.

First, we perform the orbit determination by taking into a
count all available observations and the nominal force and m
surement model that does not include the Yarkovsky effect
the weighted midpoint of these observations we construct
initial state vector together with a complete covariance ma
analysis. Then, we propagate these initial data to the epoc
the next close approach of the object, for instance, June 2
in Golevka’s case, and project the uncertainty hyperellips
onto the range (R) and range–rate (d R/dt) plane. These are
basically the radar observables. The algorithm to perform
projection is essentially the same used to project onto the ce
tial sphere (with coordinates right ascension and declinatio
and is described by Milani (1999) in two versions, linear a
semilinear. (Because of the very accurate orbit determina
needed to detect the Yarkovsky effects, the linear approxi
tion is satisfactory in all cases of interest for this paper.) In t
way the radar observation at a given time can be predicte
belong to a confidence region that is the inside of an elli
in the (R, d R/dt) plane. For sake of a more detailed analys
we compute the confidence region not only at the instant of
close approach of the nominal orbit but also a few days be
and after that instant. TheOrbFit software package has bee
updated, starting from version 2.0, to allow for both process
and predicting radar observations with the necessary accur

Second, we perform the same orbit analysis with a force mo
that includes the Yarkovsky effect. As mentioned above, the
bit determination with observations available at present yie
the same residual size in both cases. Typically, both proced
lead to a fit of the radar data and the optical astrometry be
a weighted 1σ uncertainty of the observations. The differen
between the fits with the standard model and the fits with
Yarkovsky-included model is at the level of the statistical no

in the observations. However, having computed the second
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lution we may propagate,with the Yarkovsky acceleration, the
initial data (i.e., the initial state vector and the covariance matr
to the epoch of the next close approach when we shall have
possibility of taking radar measurements. We again project
uncertainty hyperellipsoid onto the range vs range–rate pla
The comparison of the uncertainty regions of the two solutio
may indicate whether these future data will have the capabi
to reveal the Yarkovsky effect. In particular, if the 3σ ellip-
soids of the two solutions in theR–d R/dt plane do not overlap
we have a good statistical confidence that the Yarkovsky eff
might be detected at this level (3σ is just a conventional measure
that corresponds to 98% probability if the errors have gauss
statistics).

Let us now consider this method for Golevka and its next a
parition in June 2003. Figure 8 shows the range vs range–
plane projections of the 3σ uncertainty ellipsoids of the nominal
solution (dashed ovals) and the Yarkovsky-included solutio
(solid ovals). The solution for the epoch of the closest approa
of the nominal orbit is labeled 0 and we also plot solutions f
±3 and±6 days around the close approach. The center of
nominal-orbit uncertainty ellipsoids at each of the epochs we
shifted to the origin of theR–d R/dt plane. The centers of the
Yarkovsky-included uncertainty ellipsoids were shifted accor
ingly and are shown by the solid boundaries in Fig. 8. In th
solution we assumed a surface thermal conductivity of Golev
of 0.01 W/m/K and the other physical parameters as in Table

FIG. 8. Projection of the orbit solution uncertainty ellipsoid onto the rang
R and range–rated R/dt plane for next close approach of 6489 Golevka i
May 2003. The formal 3σ ellipsoids are considered for both the nominal orbita
solution without the Yarkovsky effect included (dashed lines) and the solut
extended by the Yarkovsky effect (solid lines). The ellipsoids correspond to fi
observation dates, each labeled with numbers indicating the number of d
after the closest approach of the nominal orbit. The origin (0, 0) refers to the
so-assumed 0.01 W/m/K for the surface thermal conductivity.
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We note that the range displacement of the two solution
the closest approach is about 12 km, in a fairly good agreem
with the previous simple estimation. As expected, the range
certainty is much larger than the 2003 measurement error
the fact that the 3σ ellipsoids do not intersect in theR–d R/dt
plane is a salient point. Even more important is that this c
clusion holds also for epochs both before and after the c
approach. From Fig. 8 we would conclude that the Yarkov
effect could be detected by radar observations of Golevk
2003. Furthermore, this conclusion can be extended to a f
wide range of surface thermal conductivities since, accordin
Fig. 5, the Yarkovsky mobility for Golevka is weakly sensitive
variations in thermal conductivity, especially in the most like
range of 0.001–0.01 W/m/K.

We mention finally that for Golevka the next close approa
after 2003 does not occur until June 2046; thus the 2003 r
observations should be given very high priority.

4.2. 1620 Geographos

Like Golevka, Geographos is another very good target for
vestigating the Yarkovsky perturbation. Two radar appariti
are available out of which only the second, in August 1994, i
high quality (Ostroet al.1996). The former, taken in Februa
1983, is of lesser quality but still represents a valuable c
straint on the orbit. Moreover, in the case of Geographos
optical astrometry data span back to 1951; thus they give
other important constraint.

According to results in Fig. 5 the Geographos orbit und
goes a rather fast inward semimajor axis drift that is to a la
extent independent of the exact value of the surface the
conductivity. We shall thus use 0.01 W/m/K for this paramete
throughout this section. Estimating the formal displacemen
using Eq. (29) during the 1983–1994 period we get1ρ ' 10 km.
However promising, there are several reasons why such a
placement is not enough to reveal existence of the Yarkov
effect. Most importantly, the 1983 radar observation has a
mal error of about 4.5 km. Secondly, Geographos has a rat
complicated shape with axes of about 5.11/2.76/1.85 km (Ostro
et al.1995, 1996), a fact that adds to the uncertainty of the 1
observation (since that was not reduced to the center-of-ma
the asteroid). Besides these two observational reasons, we
that Geographos’ elongated shape, together with possibly c
plicated spin axis evolution, might partly invalidate our estim
of the Yarkovsky semimajor-axis drift by a factor of about 2–
Our work will thus again focus on understanding whether
servations at the next close approach of Geographos, in M
2008, may reveal the Yarkovsky perturbation.

Figure 9 shows the projections of the 3σ uncertainty ellipsoids
of the nominal and Yarkovsky-included solutions in March 20
(we again trace the orbit in the interval±6 days around the clos
approach of the nominal orbit). The mean range displacem
of the Yarkovsky-included orbit is about 41.5 km, which cor-

responds fairly well to the estimate of 47 km obtained fro
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FIG. 9. Projection of the 3σ uncertainty ellipsoids onto the range (R) vs
range–rate (d R/dt) plane for the next close approach of 1620 Geographos
March 2008. Notation is as described in the legend to Fig. 8. In particu
the Yarkovsky-included solution is shown by solid lines (the surface ther
conductivity K = 0.01 W/m/K) and the solution not including the Yarkovsk
effect by dashed lines.

the simple formula (29). We note that the uncertainty ellipso
of the two solutions partly overlap so that determination of t
Yarkovsky effect still might not be decisive, although there is
substantial chance that the effect will be apparent. In this res
however, we admit that our thermal model for Geographos m
be oversimplified (see our comments above). Developing a
tailed, Geographos-tailored thermal model in the future wo
be of great importance but it is beyond the scope of this pap

However, even assuming the “worst case situation,” i.e.,
2008 radar observations at the overlap of the uncertainty
lipsoids shown in Fig. 9, we may perform the following tes
We have simulated three delay observations by radar in m
March 2008 that fall in the mentioned overlap of the two u
certainty areas and assumed their formal error of 100 m. T
we considered this new set of the observations and perfor
the orbit determination analysis with the two models (nomin
and Yarkovsky-including). We have propagated the obtained
tial state data until the next close approach of Geographo
March 2015. The 3σ uncertainty ellipsoids projected into th
R–d R/dt plane are shown in Fig. 10. We notice that the u
certainty areas are disconnected at the 3σ level, a feature that
is to be expected due to the secular character of the Yarkov
perturbation. Notice that the 2015 displacement of the two so
tions in Fig. 10 is only about 17.8 km; hence the disconnectio
is essentially the effect of reduced orbit uncertainty. This is
derstandable since we assumed a good quality radar observ
in 2008 that has been added to the data, but the reduced se
tion deserves a brief comment. It might appear puzzling why

mdisplacement is smaller than that in 2008. There are two reasons:
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FIG. 10. 3σ uncertainty ellipsoids in the range vs range–rate plane
Geographos close approach in March 2015. Aside from the currently avail
observations, the solution also assumes a one-week astrometric campaig
three radar observations during the 2008 close approach (see the text for
details). The notation is as described in the legends to the previous figures

(i) the weighted center of the observations had shifted tow
later epoch (since the 2008 radar observation contribute) so t
is a shorter time interval over which the Yarkovsky perturbati
accumulates, and (ii) we used a “worst case scenario” for
2008 observations by placing them in the overlap of the unc
tainty ellipsoids of the two solutions. This means that in fa
they do not fit well either of the two solutions and “forces
them to get closer to each other. As a result of these two f
tors the 2015 Yarkovsky displacement in this scenario becom
only 17.8 km as shown in Fig. 10. Had the observation b
ter suited one of the solutions the divergence at 2015 would
larger.

We may thus conclude that the 2015 apparition data
Geographos will very likely allow us to test for the presen
of the Yarkovsky effect on its orbit. However, a Geographo
tailored thermal model, including in particular its very elongat
shape, would be necessary to exploit in detail this informatio

4.3. 1566 Icarus

Icarus, with its very elongated orbit and close encount
to all terrestrial planets, presents a challenge both for the
bital dynamics and for computation of the Yarkovsky effect.
low perihelion has also made it a target of studies attempt
to test relativity theory (e.g., Lieske and Null 1969, Shap
et al.1971). Although Icarus was the first radar-detected as
oid in 1968 (Goldstein 1969), and was later observed during
1996 apparition, the radar data are unfortunately of lower qu
ity since only Doppler observations were obtained. Moreov
though quite numerous and dating back to 1949, the sparse
often erroneous optical astrometry measurements make the

certainty of the orbit determination quite large so that the pres
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FIG. 11. Projection of the 3σ uncertainty ellipsoids onto the range (R) vs
range–rate (d R/dt) plane for the next close approach of 1566 Icarus in 20
The Yarkovsky-included solution is shown by the solid lines (K = 0.01 W/m/K
surface conductivity), while the solution without the Yarkovsky effect is sho
by the dashed lines.

orbit solution cannot reveal the existence of the Yarkov
effect.

The next possibility for radar observations of Icarus will occ
in June 2015. Assuming the time base from the first radar ob
vations, the formal estimation of the orbit displacement du
the Yarkovsky effect is about 110 km forda/dt ' −0.8× 10−4

(i.e., K ' 0.01 W/m/K) and even 248 km forda/dt ' −1.8×
10−4 (i.e.,K ' 0.1 W/m/K). The results of the uncertainty ana
ysis outlined above are shown in Figs. 11 and 12. Becaus

FIG. 12. The same as described in the legend to Fig. 11 but for

entYarkovsky solutions with a surface conductivity of 0.1 W/m/K.
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the geometry of Icarus’ orbit, the range displacement estim
above is reduced by about half, which is still an apprecia
large value. However, the orbit uncertainty expressed by
size of the 3σ uncertainty ellipsoids is also quite large, refle
ing observations of poorer quality than those in the previ
cases of Golevka and Geographos. When the lower surface
mal conductivity is assumed (Fig. 11) the nominal orbit a
Yarkovsky-included orbit uncertainty ellipsoids overlap to so
extent, while the case with higher thermal conductivity (Fig.
is more favorable for detecting the Yarkovsky effect.

From August 2000 until the close apparition in 2015 Ica
could be observed optically during several periods when its
sual magnitude decreases below'18th mag. (such that thes
observations would not require a very powerful telescope). S
optical observations would better constrain the 2015 uncerta
ellipsoid in the radar–observables plane and thus allow a gre
possibility of detecting the Yarkovsky effect on Icarus’ orbit.

4.4. 4179 Toutatis

Very high-quality radar measurements at two Toutatis
paritions, in 1992 and 1996, are presently available. Both
are referred to the center-of-mass of Toutatis and have a r
uncertainty at the level of 75 m (the 1996 data are even tw
as good). This presents Toutatis as a potentially good targe
investigating the Yarkovsky effect despite a somewhat sma
Yarkovsky drift of its semimajor axis, principally due to its larg
size (see Fig. 5). On the other hand, a weak dependence o
resulting Yarkovsky perturbation on the surface conductivity
duces the uncertainty of our Yarkovsky model for this bo
However, although they are very good, the 1992 and 1996 r
observations do not define a long enough temporal baselin
detection of the Yarkovsky perturbation. On the other hand,
are facing a sequence of Toutatis close approaches in 2000,
2008, and 2012. Hereafter, we investigate whether regular r
observation of Toutatis at each of these occasions might
mately reveal the Yarkovsky perturbation on its orbit. We
ways assume nominal parameters of the Yarkovsky model f
Table I and surface conductivity equal to 0.01 W/m/K, which
we believe to be a probable mean value for this asteroid.

Using the current optical and radar observations of Touta
we have repeated the above analysis for the October 31,
close approach. The 3σ uncertainty regions of the two solution
projected onto theR–d R/dt plane are shown in Fig. 13. The
overlap to a large extent, meaning that the potential radar ob
vations in 2000 would not be conclusive about the existenc
the Yarkovsky perturbation on Toutatis’ orbit.

To more fully consider Toutatis’ orbit we shall assume in
next paragraphs that precise radar observations have been
during each of the successive close approaches to the Earth
time the uncertainty ellipses in the range vs range–rate pla
the following close approach are reanalyzed, and the possib
to detect the Yarkovsky effect is considered.

As an example we show in Fig. 14 the comparison of
nominal model and the Yarkovsky-included model uncerta

projections onto theR–d R/dt plane in September 2004. Two de
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FIG. 13. The 3σ uncertainty ellipsoids projected onto the range (R) vs
range–rate (d R/dt) plane for the October/November 2000 (the close approa
of Toutatis appears on Oct. 31). Notation is as described in the legends to
previous figures. The Yarkovsky solution corresponds to a surface conduct
of 0.01 W/m/K.

lay observations during the previous close approach (in Octo
2000) were simulated with formal uncertainty of 40 m an
added to the data set of the current observations. We notice
the uncertainty regions of the two solutions are partially se
rated but not completely disconnected at the 3σ level. Moreover,
the principal shift occurs at the range–rate direction by a va
that is comparable with the radar technology performance.
instance, the best Doppler accuracy for the the 1996 Tout
observations in range–rate are about 0.1 km/day.

FIG. 14. The same as described in the legend to Fig. 13 but for the Sept
ber 2004 close approach of Toutatis. The solution is based on the present To
observations plus two simulated radar delay measurements during the Oc

-2000 close approach to the Earth.
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FIG. 15. The same as described in the legend to Fig. 14 but for the Nov
ber 2008 close approach of Toutatis (close approach appears on Nov. 9
solution is based on the present Toutatis observations supplemented by si
ulated delay measurements during the October 2000 and September 2004
approaches to the Earth.

Continuing the analysis, we have simulated four delay m
surements during the September 2004 Toutatis apparition in
overlapping zone of the uncertainty ellipsoids of the two mod
shown in Fig. 14. Then, we propagate the newly determined o
to the following close approach in November 2008. The res
in the R–d R/dt plane are then shown in Fig. 15. The unc
tainty regions become highly stretched, having the principal a
aligned with the apparent motion direction. The phenomenon
consequence of the previous (2004) close approach to the E
notably its unusually small minimum distance to the Earth (o
about 0.01 AU compared to about 0.05 AU for the other close
approaches). A closer look at the results indicate that the 3σ un-
certainty regions of the two models actually are disconnec
though they nearly touch. However, the distance between the
confidence regions is too small with respect to the current a
racy in range–rate. Thus confirmation of the Yarkovsky effec
Toutatis is possible, but not certain, with the 2008 data. Howe
the observations during the last close approach in the serie
December 2012, should reveal the Yarkovsky effect. In this c
we have verified that observations from the model without
Yarkovsky effect cannot be well fitted with the model inclu
ing the Yarkovsky effect (and vice versa). Notice that add
radar observations in 2012 means already a fifth consecu
apparition precisely measured by the radar technique.

Trying to summarize the above analysis we may concl
that although the 2000–2012 radar observations of Toutatis
perhaps unnecessary from the point of view of shape mode
they would be of great significance for the orbit determinat
of this asteroid. This conclusion is supported not only by
analysis of the possible Yarkovsky perturbation, but also by

still not conclusively solved problem of the 1934 prediscove

och
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observations. We do not rule out the possibility that the corr
force model for Toutatis still hides some unnoticed surpris
although we prefer the more “conventional” conclusion of a
suming measurement errors in the 1934 observations (see
discussion in Section 3.3).

Finally, we note that the Yarkovsky effect is anyway not e
pected to be large enough to invalidate the conclusions of O
et al.(1999a) about the subsequent close approaches of Tout
because the uncertainty in position due to the chaoticity of
orbit propagates exponentially (and thus faster than that du
the Yarkovsky effect).

4.5. 1998 KY26

We have already mentioned in Section 3.3 that the Aster
1998 KY26 is a prototype of a new class of objects that might
ideally suited for studying the Yarkovsky effect. We thus devo
the last part of this paper to outline an ideal schedule of fu
exploiting 1998 KY26 to study the Yarkovsky effect. Such car
is necessary since we presently have available only less than
weeks of observations from the summer of 1998. Objects of t
size are frequently lost, which luckily should not be the case
1998 KY26 thanks to the radar observations taken shortly af
discovery.

The nearest possibility for observing this object in the futu
occurs on Feb. 16, 2002, when it will have a visual magnitu
of 24.7 at nearly zero phase. Though still very faint, this obje
should be observable by the better modern telescopes. M
over, the recovery uncertainty at this epoch, shown in Fig. 16
quite moderate so that no extraordinary effort would be need
to perform this observation. We have listed the majority of t
other observational possibilities until the next close approa

FIG. 16. Orbit uncertainty (3σ ) ellipsoid projected onto the sky plane (righ
ascension and declination) for 1998 KY26 computed for Feb. 16, 2002 (8h UTC)
Coordinates are relative to the nominal position noted in the figure. At this ep

rythe object visual magnitude will be 24.7 at solar elongation of 176◦ (see Table II).
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TABLE II
Observation Opportunities for 1998 KY26 before the Next Close

Approach on May 2024

Visual App. motion 3σ uncert.
Date magnitude Elongation (◦) (arcsec/hr) (arcsec)

2002, Feb. 16 24.7 176 85 16
2006, Jan. 9 25.0 178 84 30
2009, Dec. 2 24.3 179 85 57
2013, Mar. 17 23.9 174 84 100
2013, Sept. 20 23.4 115 285 240
2017, Jan. 29 25.0 177 85 57
2020, Dec. 22 24.8 179 85 62

Note.Of particular interest is the second apparition in 2013, since the
centric distance of the object would be only 0.12 AU. A possible radar ranging
at this epoch, not considered in the “schedule” outlined in the text, woul
valuable.

in Table II (considering only epochs when the apparent ma
tude is smaller than 25). Though challenging, all observat
at all epochs listed in the Table II are possible even with
day’s technology. Since in this case we follow a presuma
known orbit, several observations during only one night provi
enough information, but multiple nights are generally preferr
We stress that taking observations at the first of the poss
windows (around February 16, 2002) is useful, but not esse
to ensure recovery at subsequent apparitions.

In what follows we envisage a schedule with optical astro
etry observations taken on 2002, 2009, and at two occasio
2013. Each time we assume three exposures during one
of observations with a formal error of an arc-second in ri
ascension and half this value in declination. The position
1998 KY26 at the assumed observation time was computed u
the nominal force model and a random noise of 0.25 arc-sec was
superimposed. We have checked that the possible sky-plan
placement produced by the Yarkovsky effect is within the quo
observational uncertainties until 2013. In passing, we men
that 1998 KY26 comes within 0.12 AU of the Earth in Septembe
2013. Given expected improvements in the radar technology
asteroid might be even observed with radar at that time; howe
we shall neglect this possibility in our considerations.

We have added these assumed observations to the cur
available optical and radar observations and performed the s
analysis as for the previous asteroids. We have propagate
initial data (state vector and covariance matrix) to the close
proach in June 2024, keeping the two-solution method expla
in Section 4.1. The 3σ uncertainty hyperellipsoids were the
projected onto the radar observables plane, since we as
the possibility of the radar measurements. In this case we
sidered up to four days before and after the close approac
the nominal orbit. As far as the Yarkovsky model parame
are concerned, we assumed the surface thermal conductiv
0.1 W/m/K, which appears to us the most likely value in th
case, and the ecliptic pole orientation of the spin axis of the
teroid. Dependence on both parameters will be discussed b

The results are compared in Fig. 17. We note the statistic
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FIG. 17. Range vs range–rate plane with 3σ uncertainty regions at the
next close approach of 1998 KY26 in June 2024. Notation is as described in th
legends to the previous figures. Labels mean days before and after the no
close approach of the asteroid. The solution assumes optical observatio
2002, 2009, and 2013 (see the text for details). The Yarkovsky orbits (s
lines) assume 0.1 W/m/K for the surface thermal conductivity, and the spin ax
is aligned with the ecliptic pole.

very significant separation of the uncertainty regions in the t
models, at the level of 17σ . The Yarkovsky perturbation is the
not only a surely noticeable phenomenon, but large enoug
probe some features of the thermal model of the asteroid. In
estingly enough, the Yarkovsky perturbation is sufficiently lar
to produce an observable shift of the sky position of 1998 KY26.
In Fig. 18 we have projected the 3σ uncertainty regions onto the

FIG. 18. The same as described in the legend to Fig. 17 but projec
onto the sky plane parametrized by right ascension (abscissa) and declin
ally(ordinate). Note the different scale of the axes.
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sky plane. As expected, based on the low inclination of the o
and the nature of the Yarkovsky effect, the difference of the
solutions shows mainly in right ascension.

We recall that we used 0.1 W/m/K for surface conductivity
of 1998 KY26, but by inspecting the results in Fig. 7 we noti
that this does not maximize the effect. Taking the lowest
“reasonable” value of the surface thermal conductivity, nota
0.01 W/m/K, the perturbation would be larger by a factor
about 2.5. However, the orientation of the spin axis of 1998 KY26

is probably the principal unknown parameter in our computat
We have used a suggestion by P. Pravec that the axis migh
be far from the ecliptic pole, which in fact favors the Yarkovs
perturbation. Since the diurnal variant of the Yarkovsky eff
dominates the perturbation we might approximately scale
result by the value sinb if the ecliptic latitudeb of the spin axis
is not equal to 90◦. A 45◦ latitude would still lead to a Yarkovsk
perturbation reduced by a factor of only 1/

√
2' 0.7. Moreover,

the 2024 close approach might offer photometric observat
at phases different than that of the 1998 observations so
we would get a better constraint of the axis orientation (
intermediate 2002, 2009, and 2013 observations taken at
phase could also add to this understanding).

We also mention that the first trace of the Yarkovsky per
bation on the orbit of 1998 KY26 may already be evident in th
December 2020 optical observations (see Table II). Note
such observations have not been used in the previous analy
that they can serve as a probe for the Yarkovsky perturbatio
the orbit in the same way as the radar data during the 2024 c
approach. Figure 19 shows the sky-projected 3σ uncertainty
ellipsoids of the nominal and Yarkovsky-included solutions
before. The polar spin axis of the asteroid andK = 0.1 W/m/K
surface thermal conductivity are assumed. We note that
Yarkovsky perturbation shows as a slight right ascension
FIG. 19. The same as described in the legend to Fig. 18 but for a poss
observation of 1998 KY26 in December 2020.
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set of about 1.5′′. This value is much smaller than the mea
offset in Fig. 18 since at the December 2020 epoch the aste
is at a distance of 0.47 AU from the Earth while in June 2024 it i
at only 0.03 AU. The difference between Figs. 18 and 19 is w
explained by the ratio of the corresponding geocentric dista
(note that the four years between the two observations do
significantly increase the Yarkovsky displacement). As a res
the 2020 observation of 1998 KY26 might not only help con-
strain the orbit for the 2024 close approach but might also al
the detection of the Yarkovsky effect on this particular objec

4.6. More objects

We have already mentioned that the asteroids discusse
detail above only sample a potentially broader class of obje
for which the Yarkovsky perturbation might grow to an obse
able threshold in the next decades. Toro has been pointed
in this respect. We finish this section by listing a few addition
noteworthy asteroids.

• 3908 Nyx has been observed by radar in September
November 1988 and will approach the Earth in November 20
All physical data necessary for modeling the Yarkovsky for
are available (Drummond and Wisniewski 1990). The estima
radius of this asteroid ranges from 0.5 to 1.1 km, depending on
the assumed albedo, which implies a nonnegligible semim
axis drift by the Yarkovsky effect.
• 4769 Castalia has radar observations in August 1989, w

the next close approaches in August 2012 and 2023 and in A
2027. Shape and rotation models were resolved from the 1
radar campaign (Hudsonet al.1997).
• 1990 OS was observed with radar in August 1990, with

next close approaches in November 2003 and July 2027. Th
a particularly small object with radius of 150–340 m that m
exhibit a fast Yarkovsky drift of the semimajor axis. Unfortu
nately, no information about the rotation period and orientat
of the spin axis is currently available.
• 7341 (1991 VK) has a single radar apparition in Janu

1997. Of particular interest is the fact that this asteroid return
have a close approach to the Earth every 5 years, and that the
one is in January 2002. The regular observability of the orbit
radar offers a unique chance to obtain a very precise orbit for
object. Depending on the assumed albedo, the radius is in
range 0.7–1.6 km, still a promisingly small value for detectio
of the Yarkovsky effect. The rotation period is known precise
enough (Pravecet al.1998), but we need to determine the sp
axis orientation.
• 1996 JG has been observed by radar in May 1996, and

next possibility appears in November 2003. An appreciably la
Yarkovsky perturbation may be expected due to the small siz
this asteroid (only 150–350 m in radius). The echo bandwidth
the 1996 radar observations suggests a couple of rotation cy
per day. No information about the spin axis orientation is know
• 1999 FN19 was observed with radar in April 1999, short
ible

after its discovery. The next radar-observing opportunity is in
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2018. Its small size, in the range 100–200 m, makes it an ex
lent candidate for revealing the Yarkovsky effect at that time
is worth noting that its recovery in 2018 would be improbab
without the 1999 radar astrometry.

5. CONCLUSIONS

Although the problem of high orbital eccentricity has bee
successfully dealt with in this paper, there remain a number
challenging problems for future work. Most importantly, in a
computations of this paper we have applied a thermophys
model based on a spherical body. For each of the asteroids
used a sphere with properly adjusted radius (so that the mas
the asteroid is equal to the mass of its spherical approximatio
However, the actual shape of these small objects is typica
highly irregular, and at the lowest level of approximation the
should be represented by a triaxial ellipsoid rather than b
sphere. Developing the asteroid-tailored thermophysical m
els for each of the cases would be valuable for refining resu
reported in this paper. Moreover, such models should take i
account the complex evolution of the asteroid spin axis, in co
trast to the assumption of a constant orientation used through
this work.

In light of the previous discussion we may say that alrea
in the next decade the orbit determination models of near-Ea
asteroids will necessarily require that the Yarkovsky effect
modeled. However, we note that the conclusions of this pa
may go even beyond this level. Acquiring radar observation
data for very small near-Earth asteroids, of which the obje
1998 KY26 may be a first example, can leave us in a positi
of studying the Yarkovsky effect in some detail. The size of t
orbital perturbation may allow us to not only detect the effe
itself, but also to constrain some of the model parameters
particular the surface thermal conductivity. These paramet
might, in turn, indicate the physical character of the objec
surface, thus complementing other types of observations.
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Vokrouhlický, D., and M. Brož 1999. An improved model of the se
sonal Yarkovsky force for the regolith-covered asteroid fragments.Astron.
Astrophys.350, 1079–1084.
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