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A B S T R A C T

The long-term evolution of stellar orbits bound to a massive centre is studied in order to

understand the cores of star clusters in central regions of galaxies. Stellar trajectories undergo

tiny perturbations, the origins of which are twofold: (i) the gravitational field of a thin gaseous

disc surrounding the galactic centre, and (ii) cumulative drag arising from successive

interactions of the stars with the material of the disc. Both effects are closely related because

they depend on the total mass of the disc, assumed to be a small fraction of the central mass. It

is shown that, in contrast to previous works, most of the retrograde (with respect to the disc)

orbits are captured by the central object, presumably a massive black hole. Initially prograde

orbits are also affected, so that statistical properties of the central star cluster in quasi-

equilibrium may differ significantly from those deduced in previous analyses.

Key words: accretion, accretion discs – celestial mechanics, stellar dynamics – galaxies:

nuclei.

1 I N T RO D U C T I O N

This paper extends previous studies on interaction between stars

and an accretion disc near a massive galactic nucleus. Relevant

references are, in particular, Syer, Clarke & Rees (1991: these

authors estimate time-scales for the evolution of stellar orbital

parameters in the Newtonian regime) and Vokrouhlický & Karas

(1993: relativistic generalization dealing with individual trajec-

tories). Pineault & Landry (1994) and Rauch (1995) studied

statistical properties of stellar orbits in a dense cluster near a

galactic core with an accretion disc.

Observational evidence and theoretical considerations suggest

that many galaxies harbour very massive compact cores

(Mc < 106–109M(), presumably black holes. In particular, high-

energy output, variability, spectral properties, and production of jets

in active galactic nuclei (AGN) can be understood in terms of the

model with a supermassive central object surrounded by an accre-

tion disc (e.g. Courvoisier & Mayor 1990; Urry & Padovani 1995).

However, linear resolution of present observational techniques

corresponds at best to several hundreds of gravitational radii of

the hypothetical black hole. The innermost regions of these galaxies

cannot thus be resolved and conclusions about their structure must

be inferred from integral characteristics (integrated over the angular

and temporal resolution of the device used for observation).

Distribution of stars and gaseous material close to the galactic

centre is one of the most important tools in this respect because

velocity dispersion and the corresponding luminosity profile of the

nucleus reflect the presence and properties of the central massive

object and the disc (Perry & Williams 1993; cf. Marconi et al. 1997

for recent observational results).

We will study the situation in which the central object is

surrounded by an accretion disc and a dense star cluster. It is the

aim of the present contribution to examine the role of periodic

interactions of the stars with the disc material, simultaneously

considering the gravitation of the disc. Mutual gravitational inter-

action of stars forming a dense cluster has been studied since the

early works of Ambartsumian (1938) and Spitzer (1940) while the

importance of star–disc collisions for the structure of galactic

nuclei has been recognized since the early 1980s (Goldreich &

Tremaine 1980; Ostriker 1983; Hagio 1987). Huang & Carlberg

(1997) studied a related problem in the dynamics of galaxies.

The gravitation of accretion discs was neglected in previous

works because its mass, Md, is presumed to be very small compared

to the mass of the central object (m ; Md=Mc p 1; m is a free

parameter in our study). We also assume m p 1 so that the gravity of

the disc acts as a perturbation on the stellar motion around the

central mass. We will show, independent of the precise value of m,

that the effect of the disc gravity on the long-term evolution of

stellar orbits must be taken into account together with star–disc

interactions. In particular, we will show that circularization of

many of the orbits, evolution of their inclination, and stellar capture

rate are visibly affected by the disc gravity. We will also argue that

the physical reason for this fact is the existence of three different
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time-scales involved in the problem: (i) the orbital period of the star

around the central mass (short time-scale), (ii) the period of

oscillations in eccentricity and inclination of the orbit (medium

time-scale, these oscillations are a result of the disc gravity), and

(iii) the time for grinding the orbital plane into the disc (long time-

scale, due to successive interactions of the stars with the disc).

Effects which can be ascribed to the medium time-scale present a

new feature, discussed in this paper within the context of galactic

nuclei surrounded by an accretion disc, although analogous effects

of oscillations or sudden changes in orbital parameters are well-

known from other applications (cf. recent discussion on dynamics

of planetary motion by Holman, Touma & Tremaine 1997; Lin &

Ida 1997).

Details of the model are described in the next section. Then, in

Section 3, long-term evolution of stellar orbits is examined. Finally,

conclusions of our present paper are summarized in Section 4.

2 T H E M O D E L

The discussion in the present paper is completely Newtonian.

Stellar orbits under consideration are bound to the central mass

which determines their form but the orbits are not exact ellipses for

two reasons which principally influence their long-term evolution,

namely:

(i) the gravitational field of the disc material acts on the star as a

tiny perturbation, and

(ii) successive interactions with an accretion disc also affect

trajectories in an impulsive manner, when the star intersects the disc

plane.

Each star is treated as a free test particle moving in the combined

gravitational field of the centre and the disc; collisions with the disc

material act as instantaneous periodic perturbations of the trajec-

tory. All other effects are beyond the scope of the present paper

(although they will have to be taken into account in a future self-

consistent model).

One can speculate that other effects, ignored in this paper, may

have a comparable result on stellar orbits. In particular, general

relativistic dragging of inertial frames as a result of rotation of the

central object and the disc material will break the spherical

symmetry of the gravitational field and result in sudden excursions

of the mean orbital parameters. On the other hand, gravitational

radiation will result in a slow decay of the orbit in a manner

analogous to the effect of direct collisions of the body of the star

with the disc material. These effects also support our conclusion

that star–disc collisions should not be considered to be the only

perturbation of stellar orbits when their long-term evolution is

discussed. Nevertheless, our very restricted choice of the two

effects listed above, (i) and (ii), has an additional reason. These

effects are linked to each other, because both of them are deter-

mined by the mass of the disc: increasing the mass of the disc affects

the stellar trajectories more by its gravitational attraction, and, at the

same time, star–disc collisions also become more important (being

on average proportional to the surface density of the disc). We will

demonstrate that a consistent model involving any one of the two

effects must take the other effect into account too. The main novelty

of this paper, however, is in an even stronger claim: it is the first of

the effects mentioned above – the gravity of the disc – which

dominantly influences the long-term evolution of the stellar orbits,

while collisions with the disc material represent an underlying

mechanism causing a slow and continuous orbital decay. In other

words, changes in eccentricity and inclination are driven

dominantly by the disc gravity and they can occur rather abruptly.

From this perspective, Rauch (1995)’s statistical model of the star-

cluster evolution due to interactions with the central accretion disc

also requires the inclusion of the influence of the disc gravity.

It is also worth mentioning that, in analogy with Rauch (1995),

we disregard, at this stage of the model, mutual interactions of the

stars, considering the star cluster as a collisionless system. A

rigorous approach will require us to solve the Fokker–Planck

equation in a manner analogous to Bahcall & Wolf (1976, 1977;

see also Peebles 1972; Young 1980; Shapiro & Teukolsky 1985,

1986; Zamir 1993; Quinlan, Hernquist & Sigurdsson 1995;

Sigurdsson, Hernquist & Quinlan 1995.) Obviously, this neglect

represents a large simplification, especially in the nuclear region

close to the central galactic object (Statler, Ostriker & Cohn 1987;

Lee & Ostriker 1993). Nevertheless, a demonstration of the effect of

the disc gravity upon stellar orbits which we want to discuss

hereafter does not call either for the general theory of relativity

nor for mutual interactions among stars themselves to be taken into

account. We expect, however, that the capture rate of stars by the

central object can be only roughly estimated in this approach

(the capture rate has been discussed in various approximation by,

e.g., Frank & Rees 1976; Nolthenius & Katz 1982; Novikov,

Pethick & Polnarev 1992; Hameury et al. 1994; Sigurdsson &

Rees 1997).

2.1 Gravitational field

We describe the gravitational field as a superposition of the

spherically symmetric field of the central object [potential

VcðrÞ ¼ ¹GMc=r; r is radial distance from the centre] and an axially

symmetric field of the disc [potential VdðR; zÞ; cylindrical coordi-

nates ðR; zÞ, z ¼ 0 is the disc plane]. The disc is geometrically thin

and it is described by surface density kðRÞ. We assumed m ¼ 10¹3

for definiteness. It is worth mentioning that our kðRÞ corresponds to

vertically integrated density which is introduced in the standard

theory of geometrically thin discs. With this correspondence one

can compare our results with other works which employ Shakura–

Syunaev (1973) and Novikov–Thorne (1973) discs. We do not

consider a more complicated case of geometrically thick tori in this

paper.

An analytical expression for the disc potential can be found for

some particular forms of the density distribution (Binney &

Tremaine 1987; Evans & de Zeeuw 1992). Despite the fact that

such models can approximate real astrophysical discs only roughly,

their main advantage is the analytical expressions for the gravita-

tional field which they offer. Obviously, a careful check is needed in

order to verify that none of the important qualitative features of the

solution has been altered. We shall follow this line of reasoning by

working mainly with highly simplified Kuzmin’s class of discs.

The surface density–potential pair for Kuzmin’s model reads

kðRÞ ¼
MdA

2p

1

ðA2 þ R2Þ3=2
; ð1Þ

VdðR; zÞ ¼ ¹
GMd

R2 þ A þ jzjð Þ2
� �1=2

; ð2Þ

where A is a free parameter of the model. An easy exercise then

yields components of acceleration due to the disc gravitational field.

Kuzmin’s discs are of infinite radial extent but their mass is finite

because the surface density decreases with radius fast enough.

Relevant formulae for discs of finite radial size and arbitrary surface

density profile are summarized in Appendix A.
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In our numerical code for the integration of stellar orbits we have

used either the simple Kuzmin formulae given above or, in the case

of discs with a priori unconstrained surface density distribution,

pre-computed Vd and components of the gradient ð∂Vd=∂R; ∂Vd=∂zÞ

for a given distribution of k in a fixed grid of ðR; zÞ. Then we

employed six-point interpolation formulae and evaluated the grav-

itational force acting on a star at any position. By performing

several tests we have tuned parameters of the grid in order both to

optimize computer time necessary for the integration of the stellar

orbits and, simultaneously, to preserve a pre-determined accuracy.

2.2 Interaction with the disc material

The physics of collisions of the stars with the disc material can be

represented by a prescription for the change of the velocity of a star.

The prescription is based on a simplified hydrodynamic scenario in

which the star crossing the disc is treated as a body in hypersonic

motion through fluid. The resulting change of velocity (which

occurs always at z ¼ 0, once or twice in each revolution) is obtained

by integration over a short period when star moves inside the disc

material (as is done with all quantities in the thin-disc approxima-

tion). Since the pioneering works of Hoyle & Lyttleton (1939),

Chandrasekhar (1942), and Bondi & Hoyle (1944), the drag on a

cosmic object has been considered for various astrophysical

problems. It has been recognized that in the case of a supersonic

flow which resembles our situation (Ostriker 1983; Zurek,

Siemiginowska & Colgate 1994, 1996) the hydrodynamic drag

consists of a component given directly by the flow of material on to

the stellar surface (or into a stellar-mass black hole; Petrich et al.

1989) and a long-range component given by the interaction of the

flow with a conical or a bow shock surrounding the star. The relative

importance of the two components is sensitive to the details of the

flow as well as to complicated turbulent processes in the wake (e.g.

Livio et al. 1991; Zurek et al. 1996). In what follows we will adopt

a somewhat simplified empirical model which, however, we

argue still reflects, rather conservatively, physical effects in our

consideration.

We adopt a simplified formula for the mutual interaction between

star and disc as in Vokrouhlický & Karas (1998). Conclusions

drawn from the present paper can be thus compared with previous

results in which the gravity of the disc was ignored (see also Syer et

al. 1991; Artymowicz, Lin & Wampler 1993; Rauch 1995). The

impulsive change of the velocity of the star, dv, when it crosses the

disc will be described by

dv ¼ SðR; vÞ vrel ð3Þ

with SðR; vÞ ¼ ¹pzkðR
2
,=m,Þðvrel=v'Þ, and z < 1 þ ðv,=vÞ

4 ln L.

Here, vrel denotes the relative velocity of the star with respect to

the disc matter, R is the radial coordinate in the disc, R, stellar

radius, m, its mass and v, the escape velocity from surface of the

star; v' is the normal component of the velocity of the star to the

disc plane, and ln L is the long-range interaction factor. Obviously,

the latter term is to be considered for transonic flows only, i.e. when

the Mach number M < ðR=HÞ > 1 (this condition is well-satisfied

in standard thin accretion discs of Shakura & Sunyaev 1973; cf. also

Zurek et al. 1994, who estimate the amount of the disc material swept

out of the disc by a star’s passages). Finally, H is the geometrical

thickness of the accretion disc at distance R. Ostriker (1983) gives a

rough estimate of L < ðH=R,Þðv=v,Þ
2. Again, for standard thin discs

one obtains L q 1. We note again that the main concern is not to

underestimate the role of the hydrodynamic drag. We shall thus rather

conservatively assume that the factor z is equal to 103.

It is worth mentioning that Artymowicz (1994) proved that

formula (3) also approximates the interaction of the star with

density and bending waves excited on the disc surface by the star

itself (see also Hall, Clarke & Pringle 1996). This additional effect

can be accommodated by an appropriate modification of the drag

factor z. Taking into account an upper estimate on z, we effectively

include this effect in our considerations as well.

To conclude this paragraph, we recall that the factor S in

equation (3) is proportional to the surface density and therefore

depends linearly on the total mass of the disc (given the density

profile). When expressed in units of the central mass: S ~ m, with a

numerical factor depending uniquely on the characteristics of the

moving object (neutron star, white dwarf, stripped star, etc.) and of

the disc material. Though simplified, this model reflects the

intuitive guess that more mass in the disc makes the effects of

the hydrodynamic drag more profound.

3 E VO L U T I O N O F S T E L L A R O R B I T S

Hereinafter, we examine stellar orbits. First, we discuss how the

gravity of the disc influences individual trajectories (Section 3.1).

This will help us to illustrate the main differences with respect to

previous works (especially Rauch 1995). Next, we consider the

combined effect of the disc gravity and the drag due to collision

with the disc material (Section 3.2). In both cases, we will integrate

orbits numerically and then we will describe orbital evolution in

terms of osculating Keplerian elements. The elements relevant for

our work are: semimajor axis a, eccentricity e, inclination I with

respect to the disc plane (I > 908 corresponds to retrograde orbits

while I < 908 corresponds to prograde orbits), and argument of

pericentre q as measured from the ascending node. The longitude of

the node does not appear in the following discussion because of the

axial symmetry of gravitational field. The (assumed) small value of

the disc mass parameter m and the value of z guarantee that the time-

scale of the orbital evolution is much longer than the period of a

single revolution. Therefore, we will average relevant quantities

over individual revolutions around the centre whenever it is appro-

priate. One can verify that m controls the ratio of medium versus

short time-scale while z affects the ratio of long versus medium

time-scale. We accept physically substantiated values for m

(& 10¹3) and z (1–103) which guarantee that the three time-

scales are well separated from each other.

3.1 Effects of the disc gravity

The motion of cosmic objects in gravitational fields of discs or rings

of matter has been considered in the context of solar system studies

(e.g. Ward 1981; Heisler & Tremaine 1986; Lemaitre & Dubru

1991; McKinnon & Leith 1995), recently discovered planetary

systems (Holman, Touma & Tremaine 1997), and in galactic

dynamics (Huang & Carlberg 1997).

As mentioned above, we are interested in the long-term varia-

tions of orbits around a massive centre and a much less massive

disc. The averaging technique is a very useful approach for under-

standing the qualitative behaviour of the system (Arnold 1989). It

can be formalized in terms of a series of successive canonical

transformations in which rapidly changing variables (e.g. mean

anomaly along the osculating ellipse) are eliminated (Brouwer &

Clemence 1961). Since the reader may not be very familiar with this

technique we briefly reiterate several basic concepts.

Suppose we consider the motion of a particle in the Keplerian

field, determined by an integrable Hamiltonian H0 and a weak
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perturbation. Perturbation is described by a potential eV . The

parameter e indicates the smallness of the perturbation (in our

case, the disc/hole mass ratio m plays the role of e). The Hamiltonian

of the central field in terms of the Keplerian elements reads

H0 ¼ ¹GMc=ð2aÞ, depending uniquely on the semimajor axis,

while the perturbing potential V depends, in general, on all

Keplerian parameters. For this reason, a general solution cannot

be found but the problem is simplified when some symmetry

appears. For instance, the axial symmetry induces independence

on the longitude of node. Since the averaging technique is based on

canonical transformation theory, one should rather use a set of

canonical elements of the two-body problem. Delaunay parameters

are the most common choice (see, e.g., Brouwer & Clemence

1961).

In order to grasp the long-term evolution of the system one needs

to get rid of the ‘fast’ (i.e. rapidly changing) variables. In our

problem there is the only one fast variable: the mean anomaly. The

idea of the averaging method is then formalized by seeking a set of

new Delaunay variables using a canonical transformation under the

constraint of the independence of the transformed Hamiltonian on

this fast variable. It is possible, indeed, by formal development in

the small parameter e. The original perturbing potential V reads,

after the transformation,

eV → eV̄ ¼ eV̄1 þ e
2
V̄2 þ e

3
V̄3 þ . . . : ð4Þ

Various iterative and computer-algebra adapted methods for recur-

sive generation of the potentials V̄1, V̄2, etc. were developed (e.g.

Hori 1966; Deprit 1969). We note that the first term in this series,

notably V̄1, is just the average of the original potential V over the

mean anomaly. Obviously, a rigorous proof of the convergence of

the series (4), and thus the success of the whole procedure, remains

a very difficult task. Despite this fact, the averaging technique is

often very useful. Typically, results based even on a highly trun-

cated section of this series are valid on a limited time interval,

though they fail to predict the evolution of the system on an infinite

time-scale. In many applications such a weakened demand is

sufficient (see, for instance, Milani & Knežević 1991 for the

application to the long-term evolution of asteroidal orbits).

Regarding the independence of the new Hamiltonian on the fast

variable (i.e. mean anomaly) we immediately conclude that the

mean perturbing potential V̄ is the first integral of motion:

eV̄ ¼ eV̄1 þ e2
V̄2 þ e3

V̄3 þ . . . ¼ eCðeÞ : ð5Þ

Factorizing out the small parameter e one can see that the first order

perturbing function, V̄1, is nearly constant – provided that the

higher order contribution is neglected. Notice that the right-hand

side constant C is a function of the small parameter e. However, in

the most truncated level of averaging, accounting for the first order

term of the right-hand side of (4) only, we have

V̄1 < Cð0Þ þ OðeÞ ; ð6Þ

and the averaged perturbation potential V̄1 is (approximately)

constant. In the following we shall drop out the argument (which

is zero) and write C for simplicity. In the case of an axially

symmetric system the integral (6) is sufficient for global

integrability. Now the problem is reduced to a single degree of

freedom and the whole phase space can be plotted in a simple two-

dimensional graph. Qualitative features of the solution can be

illustrated by isocurves of the C-integral (6).

In the remaining part of this section we shall apply the previous

brief review of averaging to our problem. We shall restrict ourselves

to the first-order procedure in which the perturbation potential Vd is

substituted by its average V̄d over the mean anomaly:

V̄d ¼
1

2ph

�2p

0
dv

r

ā

� �2

VdðR; zÞ; ð7Þ

where r, R, and z are functions of true anomaly v, h ¼
�������������

1 ¹ ē2
p

(ē

denotes mean eccentricity of the orbit). One can write, in terms of

mean inclination Ī and mean argument of pericentre q̄,

r ¼
āh2

1 þ ē cos v
; ð8Þ

z ¼ r sin Ī sin q̄ þ vð Þ; ð9Þ

R ¼ r
������������������������������������������

1 ¹ sin2 Ī sin2 q̄ þ vð Þ
p

: ð10Þ

At this level of approximation, the mean semimajor axis ā stays

constant and differs from the osculating semimajor axis a by short-

period terms only. Owing to axial symmetry of V̄d there exists an

additional first integral of motion which relates Ī to the correspond-

ing value of ē in the course of their evolution,
�������������

1 ¹ ē2
p

cos Ī ¼ c ; constant : ð11Þ

Equation (11) is often called Kozai’s integral (Kozai 1962). Here

again, the overbar distinguishes the mean elements from the

corresponding osculating elements. The problem is reduced to the

evolution of ē and q̄ which are constrained by

V̄d ē; q̄; c; āð Þ ¼ C : ð12Þ

We will introduce a pair of non-singular canonical variables ðk; hÞ:

k ¼

��������������������������������

2ð1 ¹
�������������

1 ¹ ē2
p

Þ

q

cos q̄; ð13Þ

h ¼

��������������������������������

2ð1 ¹
�������������

1 ¹ ē2
p

Þ

q

sin q̄; ð14Þ

ðk; hÞ are often called Poincaré variables, since they were introduced

to orbital dynamics by Poincaré (1892). Levels of C ¼ constant in

the ðk; hÞ plane offer a convenient representation of the long-term

evolution of mean orbital elements. At small values of eccentricity

ē, the radial distance from the origin in the ðk; hÞ plane is equal to the

mean eccentricity itself, while the polar angle has the meaning of

the argument of pericentre q̄. The final task is to evaluate the

averaged potential, V̄d ē; q̄; c; āð Þ. Since we are interested in aver-

aging over orbits which intersect the disc, no simple analytical

techniques based on expansion in orbital elements (common in

celestial mechanics) can be applied to a general distribution of

surface density kðRÞ (see the Appendix). Even in the case of simple

Kuzmin’s discs (2) the averaging cannot be performed in analytical

functions and must be obtained numerically.

Fig. 1 illustrates contours C ¼ constant of the first integral (12) in

the case of a Kuzmin disc with scaling parameter A ¼ 75. The size

of the orbit is characterized by a value of mean semimajor axis

ā ¼ 200. Geometrized units of length have been used; in the

following, we will use half of the gravitational radius of the central

object as a natural unit of length (this choice is motivated by

interpreting the central object as a black hole; otherwise, our

discussion is Newtonian).

Kozai’s integral c spans the whole interval ð¹1; 1Þ, but we can

restrict ourselves to positive values because c occurs in V̄d only

squared. Large values of c (Fig. 1a, c ¼ 0:9) correspond to quasi-

circular orbits with low inclination to the disc plane and small

oscillations in mean eccentricity. The argument of pericentre

circulates in the whole interval ð0; 2pÞ. When c is decreased

(Fig. 1b, c ¼ 0:7), larger inclinations occur and two regions of

libration with associated stable points at q̄ ¼ 6p=2 develop and

bifurcate into a figure-of-8-shaped region. Orbits outside this
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libration region still circulate with 0 # q̄ # 2p (0 is to be identified

with 2p). Notice that circulating trajectories which are close to the

separatrix of the two regions exhibit large oscillations in the mean

eccentricity. At still smaller values of c (Fig. 1c, c ¼ 0:2), the

circulation region bifurcates in its inner part near the origin. Stable

points in the libration regions are expelled farther to higher

eccentricities. Setting c ¼ 0 (Fig. 1d) the inclination is constrained

to Ī ¼ p=2 (polar orbits). There is a maximum eccentricity above

which the orbits are trapped by the central object (this situation

corresponds to a pericentre distance equal to 2 in our example). We

observe that a large portion of the plot (indicated by shading)

corresponds to orbits which emerge from or fall into the centre,

while only a very minor part – namely the inner circulation region

with a stable point ē ¼ 0 – contains orbits which survive the long-

term evolution. In the following, this property turns out to be

essential for the fate of orbits counter-rotating with respect to the

disc. We will argue that most initially retrograde orbits cannot last

long enough to be tilted over the polar orbit and inclined into the

disc plane because, in course of this process, their eccentricity is

being pumped up to such a high value that they get captured by the

central object.

Fig. 2 shows the same graphs as in Fig. 1 but for a different ratio

of the scaling parameters of density distribution (A ¼ 75, as before)

and the orbit (ā ¼ 75, changed). All features in the ðk; hÞ plane

described before remain unchanged, except for the fact that libra-

tion regions and the inner zone of circulation cover a larger portion

of the graphs. At small values of Kozai’s integral we again observe

that eccentricity is forced to large oscillations which eventually lead

to capture (shaded area).

We have verified that qualitatively similar results hold for

different, astrophysically relevant disc density–potential pairs. In

particular, using formulae from the Appendix we have numerically

computed potential of discs with R
¹1, R

¹2 and R
¹3 surface density

laws and then averaged over corresponding quasi-elliptical orbits.

3.2 Influence of star–disc collisions

We now consider inclusion in our model of the influence of the

hydrodynamic drag affecting the orbit when the star crosses the

accretion disc. We will use the approximations described in

Section 2.2, and, for definiteness, we will assume that the central

cluster of stars is formed by white dwarfs or stripped cores of

ordinary stars and will use relevant parameters for estimating the

numerical factor in the relation S ~ m (equation 3, above). Before

embarking on a description of our results, we recall that Rauch

(1995) has considered long-term evolution of stellar orbits in which
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Figure 1. Contours C ¼ constant of the first integral (12) in the plane of non-singular variables ðk; hÞ. Radial distance from origin determines mean eccentricity ē

according to equations (13)–(14). Polar angle (measured from the horizontal k-axis) is the argument of pericentre q̄. A separatrix (thick curve) is drawn on the

border between regions of different topology in panels (b)–(d); there is no separatrix in (a). Contour lines with polar angle acquiring values in the full range of

0 # q̄ # 2p correspond to a zone of circulation, while some values of q̄ are not allowed in zones of libration. In this example, Kuzmin’s disc with A ¼ 75 (in units

normalized by half of the gravitational radius of the central mass) has been assumed. Graphs are shown for four values of Kozai’s integral representing

topologically different situations: (a) c ¼ 0:9 (0 # ē # 0:436); (b) c ¼ 0:81 (0 # ē # 0:586) – notice a figure-of-8-shaped separatrix between the libration and

circulation regions; (c) c ¼ 0:7 (0 # ē # 0:714) – notice the appearance of the second (inner) circulation region around the origin; (d) c ¼ 0 (0 # ē # 1). In all

these cases, trajectories have semimajor axis ā ¼ 200. Shaded area indicates highly eccentric orbits which must be trapped by the central object at some stage.

More details are given in the text.



he took into account the impulsive drag acting twice per revolution

only (he did not take into account the gravity of the disc; see also

previous studies by Syer et al. 1991, and Vokrouhlický & Karas

1993, 1998).

All stellar orbits interacting with the disc, independently of their

initial conditions, exhibit long-term decay of the semimajor axis,

and monotonous decrease of eccentricity and inclination (grinding

to the disc plane). For initially low-inclination orbits, the character-

istic time-scale of circularization is comparable to the grinding time

after which the orbital plane becomes inclined into the disc. Orbits

with large initial inclination, in particular all initially retrograde

orbits, are circularized before they incline to the disc. Rauch (1995)

argues that, for orbits with an initially moderate eccentricity, a

particular combination of the mean elements, āð1 ¹ ē
2
Þ cos4

ðĪ=2Þ, is

quasi-conserved in the course of evolution (see also Vokrouhlický

& Karas 1998). This property is insensitive to a particular model of

the star–disc interaction, surface density profile, and the total mass

of the disc. For further use we recall the way in which the hydro-

dynamical drag affects the mean semimajor axis ā and the Kozai

parameter c (two integrals of the long-term evolution when star–

disc interactions are neglected): because of the drag effect, ā under-

goes permanent decay while c typically increases from its initial value

to the final value of cf ¼ 1, corresponding to a circular orbit in the disc

plane. Initially retrograde orbits behave in a somewhat different way:

their circularization time-scale is significantly shorter than the grind-

ing time. For these orbits, the value of Kozai’s parameter first

decreases slightly before exhibiting monotonous increase to cf .

The main result of the present paper is that most of the above-

mentioned properties cease to be true in our generalized model

which, as well as star–disc collisions, also includes the gravita-

tional influence of the disc matter. The key point is the fact that the

characteristic time-scale ā= ˙̄a < c̄= ˙̄c of the hydrodynamical drag

effects is much longer than the characteristic time-scale for

circulation and libration of pericentre. Circulation and libration

along C ¼ constant lines are a result of the disc gravity, and the

corresponding period is also the time-scale for gravity-driven

oscillations in eccentricity and inclination. As a consequence, the

principal features of orbital variations explained in the previous

section remain unchanged apart from a very slow adiabatic evolu-

tion of quasi-integrals ðā; cÞ. However slow this evolution is, stellar

orbits are strongly and abruptly affected at some stages, e.g. when

they cross the separatrix (because of some perturbation) or when the

libration region bifurcates. In the following paragraphs we will

illustrate these facts by showing typical orbits. Kuzmin’s disc with

A ¼ 75 has been assumed in examples described below. The mass

of the disc has been set to m ¼ 10¹3 for definiteness (units of the

central mass). It should be mentioned that the results depend only

very weakly on the particular value of m, provided it is sufficiently

small. The reason emerges from the fact that the disc mass

parameter can be factorized out of all expressions containing the

averaged potential V̄d (which determines all important dynamical

features). On the other hand, and in contrast to the results of Rauch

(1995), one expects dependence on the surface density profile kðRÞ.

In the first example of this section, we consider an orbit with the

initial parameters: ā ¼ 200 (in units of one half of the gravitational

radius), ē ¼ 0:6, Ī ¼ 34:48 (c < 0:66), and q̄ ¼ 908. Fig. 3 shows

mean eccentricity ē as a function of the semimajor axis ā during the

course of orbital evolution. For sake of comparison we have also
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Figure 2. The same as in Fig. 1 but for orbits with a smaller semimajor axis, ā ¼ 75. Values of Kozai’s integral are: (a) c ¼ 0:9; (b) c ¼ 0:84; (c) c ¼ 0:7;

(d) c ¼ 0.



plotted three curves of orbital evolution if the gravitational influ-

ence of the disc is ignored. These curves can be compared directly

with corresponding results of Vokrouhlický & Karas (1993) and

Rauch (1995). The curve labelled ‘s’ corresponds to the same initial

conditions as the orbit of the complete model with gravitational

effects taken into account (notice the difference in predicted radius

of the terminal orbit); the other two curves correspond to different

initial eccentricities. As expected from the previous discussion, the

most evident features are (i) large oscillations in eccentricity, and

(ii) permanent decay of the semimajor axis. The radius of the

resulting circularized orbit in the disc plane, af ¼ 120:2, differs

slightly from the estimation based on Rauch’s (1995) formula,

a
R
f < aið1 ¹ e

2
i Þ cos4

Ii=2 ¼ 106:5. A closer look at orbital evolution

explains a remarkable bump in eccentricity near ā < 141. In the

initial state, the pericentre of the orbit librates in one of the two

lobes of the 8-shaped zone, around q̄ ¼ 908, as shown in Fig. 4(a).

As the Kozai parameter c slowly increases as a result of the

hydrodynamic drag, the libration zone shrinks and the orbit

approaches the separatrix. At a particular instant, the orbit is

expelled from the libration zone, crosses the separatrix and enters

the zone of circulation (see Fig. 4(b)). This transition is accom-

panied by large oscillations of the mean eccentricity and temporal

slowing down of the eccentricity decay.

Our second example of the orbital evolution (Fig. 5) appears even

more peculiar (from the viewpoint of previous results neglecting

gravity of the disc). Initial orbital parameters are as follows:

ā ¼ 200 , ē ¼ 0:638, Ī ¼ 678 (c < 0:3), and q̄ ¼ 0. The first part

of the orbital evolution ends at a < 71:5 by a significant increase of

mean eccentricity. The oscillations of eccentricity eventually settle

down and the evolution terminates as a circular orbit in the disc

plane, af < 49:2. The latter radius is to be compared with Rauch’s

approximative result: a
R
f < 54:3. Obviously, this estimate fails to

predict the final radius correctly but the difference is still within the

uncertainty of Rauch’s quasi-integral (Vokrouhlický & Karas

1998). Again, a closer look at the evolution of pericentre in the

ðk; hÞ plane sheds light on properties of this model. Initially the orbit

is confined to the inner zone of circulation around the origin (Fig. 6).

An adiabatic increase of Kozai’s parameter results in the collapse of

this zone and the orbit is expelled towards the separatrix. At the

instant of crossing the separatrix, the orbit either enters the libration

zone surviving for larger values of c, or it terminates in the large

circulation zone. It can be argued that orbits close to the separatrix

spend most of their time near the hyperbolic points which lead

preferentially to capture in the circulation zone. This indeed

happened in our example, as indicated by a thick line in Fig. 6.

The form of the 8-shaped libration zone results in a significant

increase of eccentricity. Fig. 7 shows a projection of the orbit on to

the plane of mean eccentricity ē and inclination Ī. One can notice

that individual oscillations are confined to the underlying grid of

constant Kozai’s integral (11). Slow (adiabatic) diffusion across the

lines c ¼ constant reflects a long-term feature of the orbital evolu-

tion. Transition from the inner to the outer circulation zones is

accompanied by a large increase of eccentricity, but only a mod-

erate decrease of inclination.

So far we have demonstrated the intricate role of the disc gravity

in evolution of stellar orbits with initially prograde inclination

(Ii < 908). Even though details of the orbital evolution are different

when compared to models neglecting disc gravity, overall features

remain approximately unchanged. Most importantly, radii of cir-

cularized orbits in the disc plane are comparable. However, as
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Figure 3. Mean eccentricity ē versus semimajor axis ā. The curly curve corresponds to the trajectory from the first example in Section 3.2. Both axes are

logarithmic. Kuzmin’s disc model with scaling parameter A ¼ 75 and mass parameter m ¼ 10¹3 has been used. Initial semimajor axis ā ¼ 200, eccentricity

ē ¼ 0:6, inclination Ī ¼ 34:48, and argument of pericentre q̄ ¼ 908: For the sake of comparison, three hypothetical orbits, the evolution of which disregards

gravitational influence of the disc, are also plotted (monotonic curves); one of these curves (labelled ‘s’) corresponds to the same initial conditions as the

complete solution.
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Figure 4. Long-term evolution of the orbit from Fig. 3 projected on to the ðk; hÞ plane. Initial librations around the fixed point at q̄ ¼ 908 are shown in panel (a).

As the Kozai’s parameter c increases, the libration zone shrinks and the orbit approaches the separatrix. Eventually, the orbit crosses the separatrix and starts

circulating around the origin; see continuation of orbital evolution in panel (b). Still further continuation in (c) shows that the orbit terminates in the inner zone of

circulation, with zero eccentricity.

Figure 5. Eccentricity ē versus semimajor axis ā (the second example in section 3.2). The same parameters of the disc as in Fig. 3, different initial parameters of

the orbit: ā ¼ 200, ē ¼ 0:67, Ī ¼ 678, and q̄ ¼ 0. Again, the gravitation of the disc induces oscillations and an abrupt increase of eccentricity (curly curve) which

cannot be seen when the disc gravity is neglected (two monotonic curves).



mentioned before, one has to pay particular attention to orbits with

initially large, retrograde inclination where the results become

qualitatively and quantitatively different. Two subsequent examples

deal with this class of orbits.

Fig. 8 corresponds to an initially retrograde orbit with parameters

ā ¼ 200, ē ¼ 0:1, Ī ¼ 1208 (c < ¹0:5), and q̄ ¼ 908: Similar to the

previous example, this orbit is originally locked in the inner zone of

circulation. This is necessary (but insufficient as we shall see later)

if the orbit is to be tilted over the polar orbit to a prograde one and

survive further evolution. Otherwise, it gets captured rather quickly

by the central mass. Just before the separatrix of the inner circula-

tion zone shrinks to origin, the orbit is released to the outer zone of

circulation. The existence of the libration lobes then leads to a

significant increase of the mean eccentricity, up to 0:9. The ðk; hÞ

plane representation of the orbit evolution is given in Fig. 9. The

circular equatorial orbit with radius af < 7:8 is a final state of this

evolution. Its radius is to be compared with a
R
f < 12:4 (no gravity of

the disc). The difference between terminal radii predicted by the

two models amounts to 30 per cent. Starting with various initial

conditions we found that terminal radius and corresponding time

are comparable, typically within a factor of 2.

A truly fundamental difference between the complete model,

with the disc gravity taken into account, and the simplified model,

disregarding effects of the disc gravity, is observed when the initial

eccentricity of the previous orbit is slightly increased to 0:3. The

corresponding orbital evolution is shown in Fig. 10. The orbit is

again initially locked in the inner zone of circulation. Now, how-

ever, at the transition to the outer circulation zone, eccentricity

increases over a critical level and the orbit is captured by the central

object (pericentre is less than 2). This is in contrast to the fact that a

hypothetical orbit with no disc gravity grinds to the disc plane at

final radius af < 11:4. Concerning retrograde orbits, we can con-

clude that even those that have started within the inner zone of

circulation are not safe from capture (obviously, orbits with initial

eccentricity larger than 0:3 in our example are also captured). We

have also verified that retrograde orbits which are initially locked in

the libration lobes or in the outer circulation zone do not survive

tilting over the polar orbit, being quickly captured by the centre as a

result of large oscillations in eccentricity. All these orbits are

ground safely to the equatorial plane in the framework of the

simplified model of Rauch (1995), when the disc gravity is

neglected. We would like to stress again that this difference is not

based on the particular value of the disc mass we have chosen in our

examples (m ¼ 10
¹3

); rather it is present for an arbitrary non-zero

mass of the disc (naturally, evolution takes place on a longer time-

scale for smaller values of m). The same results also hold for less

massive discs.

A theoretical substantiation for the reported m-independence of

our results is based on the existence of the quasi-integral (6)

mentioned above. Notice that the small parameter e (i.e. m in our

case) can be factorized from this formula. Only when the higher-

order terms of the exact integral (5) are taken into account do the
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Figure 6. Orbital evolution from Fig. 5 projected on to the ðk; hÞ plane. Initial circulation in the inner zone of circulation (thin curve) is followed by transition to

the external zone of circulation (thick curve) at a critical value c < 0:78 of the Kozai parameter. At this moment eccentricity is increased back to a high value.

Notice also a reversal of the sense of circulation.
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Figure 7. Mean inclination Ī versus mean eccentricity ē of the orbit from Fig. 5. A background grid of constant values of the Kozai parameter, c ¼ constant, is

also plotted. Orbital evolution consists of fast oscillations along the lines of c ¼ constant and slow diffusion towards the maximum value of cf ¼ 1 (ē ¼ Ī ¼ 0).

Kozai’s quasi-integral is not isolating because the transition between the inner and the outer (shaded) circulation zones crosses one of the c ¼ constant curves.

Rauch’s solution is also shown by the monotonic curve (labelled ‘R’).

Figure 8. Mean eccentricity ē versus semimajor axis ā (the third example in the text; an initially retrograde orbit). The same parameters of the disc as in Fig. 3;

starting parameters of the orbit are as follows: ā ¼ 200, ē ¼ 0:1, Ī ¼ 1208, and q̄ ¼ 908: Complete model orbit is represented by a curly curve with oscillations in

eccentricity, while the two orbits of a simplified model (no gravity of the disc) exhibit monotonic decrease of eccentricity during the whole evolution.



results (phase portraits, in particular) depend on m. As soon as m is

sufficiently small, which means smaller than about 10
¹3

in practice,

the averaging technique offers a simple explanation for the m-

insensitivity of the results.

We have verified our principal conclusions for discs with differ-

ent surface density profiles. In particular, we have considered stellar

orbits around discs with density profiles proportional to R
¹1, R

¹2,

and R
¹3. Obviously, the values of parameters obtained when

transitions occurred between zones in the ðk; hÞ plane are quanti-

tatively different in individual cases, but what holds unchanged are

the qualitative results. Most importantly, a significant fraction of the

initially retrograde orbits is captured by the central mass.

3.3 Notes on statistical properties of the cluster

In this section, we briefly comment on the possible influence of our

results on statistical properties of a cluster of stars near a galactic

nucleus.

The important finding, in this respect, concerns the significant

portion of orbits which increase eccentricity and then become

captured by the centre, many of them being initially retrograde.

These orbits are missing in the final configuration of the system.

The form of this final configuration appears to be sensitive to the

detailed nature of the situation under consideration. Rauch

(1995) specified the initial distribution of stars as a power-law
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Figure 9. Long-term evolution of the orbit from Fig. 8 projected on to the ðk; hÞ plane. Evolution in the inner zone of circulation is shown in panel (a), until the

trajectory escapes to the outer zone of circulation. Form of the 8-shaped separatrix is indicated at the moment of transition to high eccentricity. Subsequent

evolution continues in panel (b) with a steady decrease of eccentricity. The trajectory eventually approaches the origin of the ðk; hÞ plane.

Figure 10. Eccentricity ē versus semimajor axis ā (the fourth example in Section 3.2; initially retrograde orbit). The same disc and orbit parameters as in Fig. 8

except for the initial mean eccentricity ē ¼ 0:3. The orbit which follows from our complete model has been captured by the central mass due to a large increase of

eccentricity at the moment of transition from the inner to the outer zone of circulation, while the simplified model orbit ground down safely to the equatorial

plane.



in binding energy. Then the system evolved under interactions

with a disc for infinite time, stellar orbits were inclined into the

disc plane or captured by the centre, and the index of the power

law has been evolved accordingly. No new stars have been

inserted into the system. Since retrograde orbits end up with

smaller radii in the disc plane than initially prograde ones [due

to the term cos4
ðI=2) in Rauch’s estimate], we expect, in our

model, a deficiency of orbits very close to the central object

when compared to the results of Rauch. As a consequence a

softer power law of the final distribution is to be expected in

comparison to the Rauch’s work.

Alternatively, one can look for equilibirum in which the

number density of stars remains constant at all radii. Stars that

are captured by the central mass must be substituted by new

ones which come from infinite radius. Now it is important to

take into account the fact that the time interval for grinding the

orbit into the disc depends on the initial inclination (it is longer

for initially retrograde orbits than for prograde). Discussion in

this area is to be verified by detailed numerical simulations

(work in progress).

4 C O N C L U S I O N S

It has been recognized in previous works that statistical properties

of central galactic clusters are influenced by an accretion disc

surrounding the nucleus because of twice-per-revolution interaction

which affects stellar motion. The main results of this paper can be

summarized as follows.

(i) We demonstrated that any consistent model of the star–disc

interaction has to take the influence of the disc gravity into account,

in addition to the effects of direct collisions with gaseous material.

(ii) As a result of the disc gravity, individual stellar orbits exhibit

evolution which is different from that obtained when collisions are

considered but gravity neglected. Most importantly, we found that a

significant fraction of initially retrograde (i.e. counter-rotating with

respect to the disc material) orbits are captured by the central object.

This is a result of large oscillations in eccentricity which affect polar

orbits.

We wish to note that our two findings mentioned above are to

some extent different in their nature. The first point, (i), is

essentially a statement of consistency claiming that any reason-

able model which involves the effects of direct star–disc physical

interaction must also take disc gravity into account. We argued

that this claim is valid for all astrophysically reasonable objects

expected in central clusters of galaxies: neutron stars, white

dwarfs and stripped stars. The logic behind this result is based

on the fact that both effects are controlled by the total mass of the

disc. The second point, (ii), then states how the model supple-

mented by the effects of the disc gravity differs from previous

simpler models. The gravity of the disc induces dynamical

structures, libration and circulation zones of the argument of

pericentre. Adiabatic changes of quasi-integral quantities and

related transitions of trajectories between the two zones are the

essence of our results.

It is worth recalling that the above-mentioned results did show

sensitivity on a particular model of the disc, especially on the

radial gradient of the surface density. Indeed, while Rauch (1995),

considering only star–disc collisions, reported his results to be

insensitive to a particular profile of the surface density or even to

the model of the star–disc interaction, we observed that the

fraction of retrograde orbits captured by the central mass in the

course of their evolution depends on details of both star–disc

collisions and the effects of the disc gravity. On the other hand,

our results show only a weak sensitivity to the total mass of the

accretion disc. This feature can be easily understood by realizing

that the disc mass parameter m factorizes out (in the first order of

approximation) from the averaged potential V̄d. As a conse-

quence, the value of m ¼ 10¹3 taken in our examples in

Section 3 is not essential, and similar results also hold for less

massive discs.

Note: we have prepared a Java animation which illustrates the

long-term evolution of stellar orbits in the two zones of the ðk; hÞ

plane (libration and oscillation in eccentricity); see the ‘http://

astro.troja.mff.cuni.cz/karas/papers/discapplet.html’ site on the

World Wide Web.
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A P P E N D I X A : G R AV I TAT I O N A L F I E L D O F A

T H I N D I S C

In this section we describe a general method for evaluating the

gravitational potential, and its gradient, of an axisymmetric disc.

We introduce cylindrical coordinates ðR; z; fÞ with origin in the

centre of the disc and the plane z ¼ 0 coinciding with the disc plane.

The gravitational potential of the disc (outer radius bd) evaluated at

arbitrary position ðR; zÞ is given by (see, e.g., Binney & Tremaine

1987)

Vd R; zð Þ ¼ ¹ 4G
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Here, KðkÞ is the elliptic integral of the first kind. [The dependence

of functions BðR
0
Þ and kðR

0
Þ on coordinates R and z is not indicated

explicitly.]

No apparent reduction of integral (A1) is possible until the radial

distribution of the density kðR
0
Þ is specified. An important example

which we will need below is a uniform disc, kðR
0
Þ ; k0. The

potential (A1) expressed in terms of elliptic integrals K, E and P

reads, for R < bd (Lass & Blitzer 1983),

VdðR; zÞ|k¼k0
; Vu R; z; k0

ÿ �

¼ 2Gk0

�

pjzj ¹ B bd

ÿ �

E k bd

ÿ �� �

¹
b

2
d ¹ R

2

B bd

ÿ � K k bd

ÿ �� �

¹
bd ¹ R

bd þ R

z
2

B bd

ÿ � P a2; k bd

ÿ �� �

�

ðA4Þ

with

a2
¼

4bdR

ðbd þ RÞ2
: ðA5Þ

Formula (A4) also holds in the region R > bd , provided the first

term in brackets of the right-hand side is suppressed. The expression

for the potential inside the disc ðz ¼ 0; R < bdÞ can be simplified by

applying the Gaussian transformation of elliptic functions (Byrd &

Friedman 1971). One finds that

VuðR; 0; k0Þ ¼ ¹4Gbdk0E R=bd

ÿ �

; ðA6Þ

a more compact formula than the one given by Lass & Blitzer

(1983).

The components of gravitational force are given by the gradient

of the potential (A1). Direct algebraic manipulation results in

∂Vd

∂R
¼ ¹

2G

R

�

bd

0

kðR
0
ÞR

0

BðR0Þ

�

E k R
0

ÿ �� �R
02

¹ R
2

þ z
2

A2 R0ð Þ

¹ K k R
0

ÿ �� �

�

dR
0
; ðA7Þ

∂Vd

∂z
¼ ¹4Gz

�bd

0

kðR
0
Þ R

0
E k R

0
ÿ �� �

BðR0Þ A2 R0ð Þ
dR

0
; ðA8Þ

where we denoted

A
2

R
0

ÿ �

¼ z
2

þ R ¹ R
0

ÿ �2
: ðA9Þ

For a uniform disc one obtains

∂Vu

∂R
¼ ¹

2Gk0

RB bd

ÿ �

n

B
2

bd

ÿ �

E k bd

ÿ �� �

¹ z
2

þ b
2
d þ R

2
ÿ �

K k bd

ÿ �� �

o

; ðA10Þ

∂Vu

∂z
¼ 2Gk0

��

6 p ¹
z

B bd

ÿ �

n

K k bd

ÿ �� �

þ
bd ¹ R

bd þ R
P a2

bd

ÿ �

; k bd

ÿ �� �

o

��

: ðA11Þ

The integrands in equations (A1) and (A7)–(A8) diverge in the disc

plane, z → 0; although the result of integration must be finite

because the potential is continuous across the disc. Taking into

account relation

KðkÞ ~ ln 1 ¹ k
2

ÿ �

ðA12Þ

for k < 1, one concludes the divergence in the potential is propor-

tional ln z. To get rid of numerical errors one conveniently splits the

integrals into two parts by setting kðR
0
Þ ; ½kðR

0
Þ ¹ kðRÞÿ þ kðRÞ.

Then the potential is

Vd R; zð Þ ¼ ¹4G

�

bd

0

kðR
0
Þ ¹ kðRÞ

� �

R
0

BðR0Þ
K k R

0
ÿ �� �

dR
0

þ Vu R; z; kðRÞ½ ÿ ; ðA13Þ
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where the second term corresponds to the potential of the disc with

constant density kðRÞ given by equation (A4). Now the integrand in

(A13) is well behaved. A sharp decrease of the integrand near

R
0
< R; z < 0 can be treated by appropriate numerical methods. The

same approach can be applied successfully to evaluate the compo-

nents of force in equations (A7)–(A8).

Previous formulae are easily generalized to the case in which the

inner edge of the disc is at radius ad Þ 0. The lower integration limit

in (A1) and (A7)–(A8) is changed to ad, and in the case of formulae

(A4) and (A10)–(A11) for the uniform density disc one employs a

superposition of the field of a fictitious uniform disc with radius ad

and formal density ¹k0.
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q 1998 RAS, MNRAS 298, 53–66


