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ABSTRACT
The long-term orbital evolution of meteoroids and small asteroids in the size range up to several kilo-

meters is a†ected by the ““ seasonal ÏÏ Yarkovsky force, caused by radiation pressure recoil on spinning
bodies heated by solar radiation to di†erent temperatures at di†erent latitudes on their surfaces. This
e†ect leads to a draglike, secular semimajor-axis decay, which may inject the bodies into chaotic zones
associated with mean motion and secular resonances and eventually deliver them to near-Earth space.
To model the Yarkovsky force, two kinds of simplifying assumptions have been frequently made : (1) a
linearization in the ratio between temperature variation and average temperature and in the orbital
eccentricity and (2) a plane-parallel geometry, that is, body sizes larger than the penetration depth of the
seasonal thermal wave (typically, several meters). In a previous paper, we developed a new nonlinearized
theory, and here we also remove the assumption of plane-parallel geometry and extend our theory to the
more general spherical case, valid for all body sizes, by means of a new numerical approach. We also
revise the linear theory, obtaining a fully analytical literal solution, which is well suited to develop ana-
lytical and semianalytical secular perturbation theories and allows us to perform a detailed comparison
with the results of the more accurate numerical model. We Ðnd that the accuracy of the linear theory is
relatively good (20% or better) for near-circular orbits. Although the temperature variations grow with
the orbital eccentricity, we show that the linear theory can still predict the averaged drift rates of the
mean orbital elements up to eccentricities of 0.4È0.5.
Key words : meteors, meteoroids È minor planets, asteroids

1. INTRODUCTION

The so-called Yarkovsky e†ect is a subtle non-
gravitational force on small orbiting bodies discovered long
ago 1951 ; Radzievskii 1952 ; Burns, Lamy, & Soter(O� pik
1979), which has become a subject of active research in
recent times after its role in the delivery of small asteroidal
fragments to near-Earth space was convincingly demon-
strated (Rubincam 1995, 1998 ; Farinella, &Vokrouhlicky� ,
Hartmann 1998 ; & Farinella 1998a ; Fari-Vokrouhlicky�
nella & 1999). The original, or ““ diurnal,ÏÏVokrouhlicky�
component of the e†ect is due to recoil from radiation pres-
sure due to di†erential thermal emission between the
morning and afternoon hemispheres of a rotating particle ;
it causes a secular semimajor-axis e†ect whose sign depends
on the sense of rotation and which is larger for small obli-
quities between the spin axis and the perpendicular to the
orbital plane. More recently, following related work on the
dynamics of artiÐcial Earth satellites (Rubincam 1987 ;

& Farinella 1997), it has been pointed outVokrouhlicky�
that a ““ seasonal ÏÏ component of the e†ect is also to be
expected, because of the temperature asymmetry between
the winter and summer hemispheres ; this seasonal Yar-
kovsky e†ect is maximum at large obliquities and always
causes a secular, draglike semimajor-axis decay (Rubincam
1995, 1998 ; & Farinella 1998b).Vokrouhlicky�

The two components of the Yarkovsky e†ect correspond
to two limiting cases, which can be found by comparing the
rotation period with the thermal relaxation timeTrot Trel,namely, the time required to reemit the thermal energy
absorbed from solar radiation during a rotational cycle.
The diurnal e†ect is the dominant one when the corre-

sponding ratio is large (as it appears to be for slowTrot/Trelrotation), so that the surface temperature has signiÐcant
gradients both in longitude and in latitude. If the relaxation
time were exactly zero, the absorbed radiation would be
reemitted instantaneously ; in this case, the surface tem-
perature proÐle has a characteristic symmetric behavior on
the illuminated part of the body (in radiometry this approx-
imation has been often called the ““ nonrotating standard
model ÏÏ ; see, e.g., Spencer, Lebofsky, & Sykes 1989). When
the relaxation time is not exactly zero but very small, the
picture is roughly the same, but the temperature peak is
slightly shifted in the sense of the bodyÏs rotation. The recoil
force due to the thermal emission is oriented approximately
toward the point of maximum temperature, that is, opposite
to the external radiation source (the Sun), but with a small
shift in the sense of the bodyÏs rotation (see Vokrouhlicky�
1998). This gives rise to an along-track component of the
force, resulting in a secular change of the semimajor axis.

The seasonal component of the Yarkovsky e†ect is
important when the thermal relaxation time is much longer
than the rotational period of the body. In this case, there is
almost no longitude dependence of the surface temperature,
only a kind of latitude stratiÐcation, since it takes so long to
reemit the absorbed radiation that all the surface elements
on a given latitude ring ““ forget ÏÏ their individual histories
(in radiometry this approximation has been often called the
““ fast-rotating standard model ÏÏ ; see, e.g., Spencer et al.
1989). For symmetry reasons, the resulting thermal recoil
force is aligned with the spin axis, but the peak force occurs
after the solstices by a time lag depending on the ratio
between the relaxation time and the orbital period. It is this
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time lag that results in a draglike force component
(Rubincam 1995, 1998 ; & Farinella 1998b ;Vokrouhlicky�

1999). Note that if the bodyÏs sense of rota-Vokrouhlicky�
tion changes in a random fashion, e.g., as a result of colli-
sions from other orbiting particles, the seasonal e†ect is
favored over the diurnal one as a cause of semimajor-axis
drift, because the former one always provokes orbit decay,
whereas the latter results in a kind of random walk.

To model these subtle e†ects in a quantitative way,
several approximations have been frequently used, such as
(1) considering near-circular orbits (small eccentricities), (2)
assuming that the temperature variations on the surface are
always much smaller than the average temperature, and (3)
taking a very simple, one-dimensional geometry (plane-
parallel case), that is, assuming that the bodyÏs size is much
larger than the depth of the layer where the external illumi-
nation causes signiÐcant temperature changes. In a recent
paper & Farinella 1998b), we developed a(Vokrouhlicky�
theory in which approximations 1 and 2 have been removed
from the treatment of the seasonal e†ect and have shown
that this leads to some interesting discrepancies with respect
to the simpler case, linearized with respect to the amplitude
of the temperature variations. However, approximation 3
means that (for material properties typical of rocky bodies)
these results are meaningful only for objects larger than
about 10 m. Therefore, here we develop a new numerical
approach to the problem in which approximation 3 is also
removed, so that the results can be applied with conÐdence
to smaller bodies. This is important for applications related
to meteorite transport from the asteroid belt (Farinella et al.
1998), because the preatmospheric sizes of most meteorites
range from about 10 cm to 10 m. We also revise the analyti-
cal treatment of the seasonal e†ect in the linearized
approach by removing any truncation in the orbital eccen-
tricity development. This enables us to derive fairly general
analytical formulae for the long-term variations of all Ðve
mean orbital elements.

The remainder of this paper is structured as follows : In
° 2, we develop the new theory and describe the correspond-
ing numerical technique. In ° 3, we discuss a number of
examples to compare the results from the new theory with
those from the previous ones using approximations 1 to 3
above and identify the most interesting new Ðndings related
to the astronomical applications of the theory. Section 4
provides a summary of our main conclusions. In Appendix
A, we give a brief discussion of the numerical technique
used to solve the nonlinearized heat di†usion problem as
formulated in ° 2. In Appendix B, we illustrate a simpliÐed
analytical solution based on approximation 2 alone, which
is useful for comparison purposes and well suited for ana-
lytical perturbation approaches to assess the long-term
orbital e†ects.

2. THEORY

The problem of heat conduction in a passive solid body is
described by the parabolic di†usion equation

o6 C
LT
Lt

\ K+2T , (1)

which expresses energy conservation for each volume
element of the (rigid) body. The goal is to Ðnd the tem-
perature, T , distribution throughout the body at any time t
(here +2 is the Laplace operator, the density, C the speciÐco6

heat, and K the thermal conductivity). The material proper-
ties will be assumed to be constant. An extension to cases in
which the material parameters (especially the thermal con-
ductivity K) are temperature dependent or the body is not
homogeneous might be interesting, but they are beyond the
capability of the method used in this paper. For instance, we
refer to & (1999) for a linearized theoryVokrouhlicky� Broz—
of the seasonal Yarkovsky e†ect on a composite body with
a low-conductivity surface layer and a higher conductivity
core.

Conservation of energy at the bodyÏs surface provides the
additional equation

vpT 4] K
A

n Æ LT
Lr
B

\ (1[ A)E , (2)

where v is the surface emissivity ; p, the Stefan-Boltzmann
constant ; n, the surface normal unit vector ; A, the surface
albedo ; and E, the external energy Ñux (in our case, solar
radiation). Equation (2) expresses the balance between the
incoming energy (right-hand side) and the sum of the ther-
mally reradiated energy (Ðrst term on the left-hand side) and
the thermal energy conducted from the interior of the body
(second term on the left-hand side). This equation plays the
role of a boundary condition for the heat di†usion problem.
A second such condition is the regularity of the temperature
distribution throughout the body.

In what follows, we shall adopt some simplifying assump-
tions that will allow us to treat the problem efficiently. First,
we propose to study a spherical body that spins fast enough
that the temperature is constant at any given ““ latitude ÏÏ
(i.e., we deal with only the seasonal component of the Yar-
kovsky e†ect, as deÐned in ° 1). As a result, the temperature
depends only on the radial distance from the center r and
the colatitude h (hereafter we shall use the parameter
k \ cos h instead of h). Because of the fast rotation, we can
average equations (1) and (2) over one rotational cycle.
Therefore, the right-hand side of equation (2) corresponds
to the total energy Ñux emerging through the surface ring in
the latitude range (k, k ] dk). Moreover, we shall rewrite
our basic equations (1) and (2) by rescaling the physical
parameters appearing in them with appropriate units of
length and time. As we are dealing with the seasonal Yar-
kovsky e†ect, a natural scale of length is the penetration
depth of the thermal wave during one orbital revolution,l

sthat is,

l
s
\
S K

o6 Cn
. (3)

Here n is the mean motion of the bodyÏs orbit around the
Sun. Our scaled radial coordinate is then In ar@\ r/l

s
.

similar way, instead of time t we shall use the complex
nondimensional variable f, deÐned by

f\ exp (int) (4)

where i \ ([1)1@2. The origin of time in equation (4) is sup-
posed to coincide with an arbitrary pericenter passage.
Then it is easy to show that all the physical parameters
appearing in equations (1) and (2) collapse into a single
thermal parameter #, given by

# \ !Jn
vpT

*
3 (5)
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(an additional, ““ hidden ÏÏ parameter is the radius R of the
body, expressed in thermal length units Here !\l

s
).

is the thermal inertia and is an e†ective sub-(Ko6 C)1@2 T
*solar temperature (at a distance from the Sun equal to the

semimajor axis corresponding to n) deÐned by

vpT
*
4 \ (1[ A)E

*
, (6)

where is the solar radiation Ñux at the given heliocentricE
*distance. To convert equations (1) and (2) into a non-

dimensional form, we also normalize the temperature T by
and the energy Ñux E by The scaled variables will beT

*
E
*
.

denoted by primes : and Note that,T @\T/T
*

E@\E/E
*
.

following Spencer et al. (1989), we prefer to use as aT
*scaling factor, rather than the mean temperature (see eq.T1

[20] below, adopted by Rubincam 1995, 1998).
With the assumptions and deÐnitions listed above, the

heat di†usion equation (1) can be rewritten in the following
form:

ir@2f L
Lf

T @(r@, k ; f)\ "(r@, k)T @(r@, k ; f) (7)

with the operator "(r@, k) deÐned as

"(r@, k)\ L
Lr@
A
r@2 L

Lr@
B

] L
Lk
C
(1[ k2) L

Lk
D

, (8)

whereas the boundary condition (eq. [2]) at the surface of
the body (that is, at now readsr@\ R@\ R/l

s
)

T @4(R@, k ; f)] #
ALT @

Lr@
B
(R@, k ; f)\E@(k ; f) . (9)

Equations (7) and (9) represent a complicated, nonlinear
problem, as is well known from the literature (e.g., Peterson
1976 ; Rubincam 1995 ; & Farinella 1998b).Vokrouhlicky�
However, it is important to note that the only real obstacle
to obtain an analytical solution of the problem lies in the
boundary constraint (eq. [9]), where the nonlinearity in the
temperature variable occurs (Ðrst term of the left-hand side).
Without any loss of generality, we can still derive a com-
plete analytical solution of the Fourier equation (7). In par-
ticular, we may assume a mixed Fourier-Legendre
development

T @(r@, k ; f)\ ;
k | Z

t
k
(r@, k)fk

\ ;
k | Z

;
lz0

q
kl
(r@)P

l
(k)fk . (10)

Here the symbol Z means the summation is over all inte-
gers, and are the Legendre polynomials. The functionsP

l
(k)

giving the radial proÐle of the temperature in theq
kl
(r@),

body, read

q0l(r@)\ c0l r@l , (11a)

q
kl
(r@)\ c

kl
j
l
(J[ikr@) , (11b)

where are spherical Bessel functions and and arej
l
(z) c0l c

klconstants (we assume in eq. [11b]). These constantsk D 0
should be determined from the boundary condition, equa-
tion (9). In what follows, we shall also use another set of
constants that determine the solution, namely, C

kl
\ q

kl
(R@)

(k ½ Z and lº 0). Since an appropriate representation of
the energy source term E@(k ; f) in the right-hand side of (eq.

[9]) is very important in the procedure to obtain the set of
constants we brieÑy comment on this problem below.C

kl
,

The piecewise deÐnition of E@ reads

E@(k ; f) \ t(f)
n

[k/
*
(k ; f) cos h0(f)

] J1 [ k2 sin /
*
(k ; f) sin h0(f)] , (12)

(e.g., & Farinella 1998b), where we haveVokrouhlicky�
introduced the function

t(f) \
C1 ] e cos v(f)

1 [ e2
D2

(13)

[v(f) is the true anomaly along the orbit]. The auxiliary
angle is deÐned by/

*

cos /
*
(k ; f) \

4

5

6

0
0
[1 for h \ h~,

[
k

J1 [ k2
cot h0(f) for h ½ (h~, h

`
),

1 for h [ h
`

,

and The angle between the solarh
B

\ (n/2) ^ h0(f). h0(f)direction and the bodyÏs spin axis is given by

cos h0(f) \ [[s
P

cos v(f) ] s
Q

sin v(f)] , (14)

where and are the projections of thes
P
\ s Æ P s

Q
\ s Æ Q

spin-axis unit vector s onto the directions of the orbital
pericenter P and of Q \ NÂP (N being the unit vector
parallel to the orbital angular momentum). Although
several authors have attempted to obtain an elliptic expan-
sion of the insolation function in equations (12), (13), and
(14) analytically (e.g., Rubincam 1994 ; 1998,Vokrouhlicky�
unpublished notes), the result is quite cumbersome, espe-
cially for high-eccentricity orbits. Therefore, as we did for
the temperature (eq. [10]), we use a Fourier-Legendre
expansion,

E@(k ; f) \ ;
k | Z

e
k
(k)fk \ ;

k | Z

;
lz0

e
kl

P
l
(k)fk , (15)

and compute the coefficients by a direct numerical quad-e
klrature. In particular, we have

e
k
(k) \ 1

2ni
Q df

f
E@(k ; f)f~k , (16a)

e
kl

\ 2l ] 1
2

P
~1

1
dk e

k
(k)P

l
(k) , (16b)

with the integration in equation (16a) performed over the
unit circle in the complex plane.

Given the temperature T @ expressed in terms of the
Fourier-Legendre series (eq. [10]), we may similarly
develop its fourth power T @4, that is,

T @4(R@, k ; f) \ ;
k | Z

;
lz0

p
kl
(C

pq
)P

l
(k)fk . (17)

Obviously, the amplitudes of this development dependp
klon the corresponding amplitudes in equation (11).C

pqAlthough this dependence is quite complicated if it has to be
expressed analytically, we shall not need it in our numerical
scheme (for details, see Appendix A). Rather, after having
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derived the coefficients at some stage in the solution, weC
pqcompute the T @4 function on the surface and determine the

coefficients numerically by using equations (16a) andp
kl(16b) where T @4 replaces E@.

The orthogonality of the Fourier and Legendre series
then results in the following decomposition of the boundary
constraint (eq. [9]) into individual modes (it is sufficient to
assume k, lº 1 here) :

p00(Cpq
)\ e00, (18a)

p0l(Cpq
)] l

#
R@

C0l \ e0l (18b)

p
kl
(C

pq
)] t

l
(Z

k
)
#
R@

C
kl

\ e
kl

(18c)

in the last of these equations). We have introduced(k D 0

t
l
(Z

k
)\
C
z

j
l
@(z)
j
l
(z)
D
Zk

, (19)

with and the prime denoting the derivativeZ
k
\ ([ik)1@2R@

of the Bessel function with respect to the argument z.
Equations (18a)È(18c) then represent a nonlinear system

of algebraic equations for the coefficients Despite itsC
kl
.

complexity, we stress that in this way the problem of solving
the partial di†erential equations (7) and (9) has been con-
verted into the problem of solving an inÐnite set of algebraic
equations. Of course, in practice we shall restrict ourselves
to a Ðnite subset of these equations, since all the coefficients
decrease in magnitude for increasing values of k (and l too).
This conclusion holds for orbits of any eccentricity, but
Ðnding a suitable threshold for k to represent the solution
accurately enough is a matter of numerical experimen-
tation.

A suitable iteration method, starting from the linearized
approximation to the solution, which solves the system of
equations (18a)È(18b), is brieÑy described in Appendix A.
The starting solution, which is then improved by iterations,
is provided by the average temperature

C00(\ T1 @)\ g~1@4/J2 , (20)

with g \ (1[ e2)1@2 (where e is the orbital eccentricity), and
by the linearized solution

C
k1 \ [ s

k
g3@4

4J2(1 ] j)

A(X
k
)] iB(X

k
)

C(X
k
)] iD(X

k
)
, (21a)

C
kl

\ 0 for lº 0 and k º 2 . (21b)

The variables of the linearized solution are introduced in
Appendix B. Obviously, in practical implementations the
coefficients of an exact solution of equations (18a)È(18b)C

klwith some values of the thermal parameters and the orbitÈ
spin-axis geometry can be stored and then retrieved to be
used as a seed for starting the iteration procedure in
another case with similar parameter values. In this way, a
lower number of iterations is usually required to attain a
predeÐned accuracy level.

At convergence of the iteration scheme, we obtain the
coefficients with a speciÐed accuracy (see Appendix AC

klfor more quantitative discussion). Then we can determine
the surface temperature distribution by setting r@\ R@ in

equation (10) at any latitude k and any time f, that is,
T @(k ; f) \ ; This result can be used in a numberC

kl
P

l
(k)fk.

of applications, for instance, in the thermal models used in
asteroid radiometry or to study the temperature distribu-
tion inside the body (e.g., with the aim of obtaining the
thermal stresses in the interior). Here we restrict ourselves
to the orbital perturbations associated with the Yarkovsky
e†ect. The thermal recoil force per unit mass of the body
can be obtained by a numerical quadrature of the equation

ath(f) \ [ 4s
3

(1[ A)o
P
~1

1
dk kT @4(R@, k ; f)

\ [ 8s
9

(1[ A)o ;
k | Z

p
k1(Cpq

)fk , (22)

where s is the unit vector in the direction of the spin axis
and the quantity is the usual radiation forceo \ nR2E

*
/mc

factor (m is the bodyÏs mass and c is the velocity of light).

3. EXAMPLES AND COMPARISONS WITH SIMPLIFIED

SOLUTIONS

In this section, we are going to discuss several speciÐc
applications of the seasonal Yarkovsky force theory
described ° 2, and in particular, we will compare the results
with those from the simpler theories based on the two sim-
plifying approximations frequently made in the previous
literature : (1) the linear analytical solution (outlined here in
Appendix B; see also Rubincam 1995, 1998 ; Vokrouhlicky�
1999) and (2) the nonlinearized solution for the plane-
parallel case (the large-body case discussed by

& Farinella 1998b).Vokrouhlicky�

3.1. Circular Orbits
First, we discuss the solution for the surface temperature

distribution, as this is the principal factor determining the
thermal e†ects. For the sake of simplicity, we assume that
the bodyÏs spin axis lies in the orbital plane (obliquity
c\ 90¡) and compute the polar temperature at a colati-T

p
@

tude k \ 1. We also assume a circular orbit, with the time
origin chosen so that the irradiation of the pole is maximum
at the mean anomaly /\ 0 (e.g., Figure 1s

P
\[1, s

Q
\ 0).

shows the polar temperature proÐles for bodies of di†erent
radii R@ but the same thermal parameter # \ 1. The thick
curve with an O label corresponds to the plane-parallel
geometry solution of & Farinella (1998b ; seeVokrouhlicky�
also Spencer et al. 1989). When the radius of the body gets
smaller, the temperature variations become less pro-
nounced and its excursions around the mean temperature

decrease. This feature is simply due to the factT1 @B 1/(2)1@2
that thermal conduction for bodies with R@\ 1 (i.e., radius
R smaller than the thermal wave penetration depth isl

s
)

quite efficient in averaging out the temperature excursions
on the surface. Every surface element tends to ““ forget ÏÏ its
individual irradiation history and approach the tem-
perature of the whole body. As noted by Rubincam (1998),
in this case the resulting seasonal Yarkovsky force becomes
smaller and smaller. We also note that the actual mean
temperature over the body is slightly smaller than the(q00)linearized-theory value 1/(2)1@2 (e.g., for R@\ 0.5 we obtain

This di†erence is due to a contribution of theq00^ 0.698).
higher order terms, and it was noted by Peterson (1976) in
his treatment of a quadratic theory.
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FIG. 1.ÈPolar temperatures of spherical bodies with di†erent radii R@,
indicated by labels on the curves, along one revolution in a circular orbit.
The rotation axis is assumed to lie in the orbital plane (c\ 90¡) and the
thermal parameter is always Ðxed at # \ 1. The time origin is chosen in
such a way that the energy inÑux at the pole is given by the dashed line
(here the scale is normalized at 1 at the peak of the curve). The thickest
curve (label O) corresponds to the plane-parallel solution of Vokrouhlicky�
& Farinella (1998b).

A closer look at Figure 1 reveals that the previous physi-
cal scenario is an accurate description of what happens only
for bodies with R@¹ 1. Interestingly, intermediate-size
bodies (e.g., our solution for R@B 5) exhibit the opposite
e†ect. When compared with the plane-parallel solution
(thick curve), the amplitude of their temperature variations
is greater by about the same amount by which the tem-
perature peak lags behind the maximum of irradiation. This
is an interesting result because the thermal penetration
depth is about 2È4 m for stony fragments at a B 2 AU,l

sand therefore, the greatest temperature variations occur for
objects 10È20 m in radius. The uncertainty in this latter size
is due to that in and the latter comes mainly from ourl

s
,

poor knowledge of the thermal conductivity K for asteroid
fragments (see, e.g., Farinella et al. 1998).

Apart from the amplitude of the temperature variations,
the secular e†ects on the semimajor axis depend sensitively
on the angle by which the surface temperature lags behind
the incident solar Ñux. Figure 2 shows the polar tem-
perature lag angle as a function of the thermal parameter #
for bodies with di†erent radii R@. Our numerical nonlinear
solutions (solid curves) are compared with those from the
linear theory (dashed curves). We note that the linear theory
always overestimates the lag angle. This result was antici-
pated by Rubincam (1995) in the large-body case, but
apparently it is fairly general. On the other hand, the linear
theory systematically underestimates the amplitude of the
temperature variations. These two e†ects compete with
each other in a†ecting the semimajor-axis decay rate as
predicted by the linear theory. To assess which of them is
stronger, we have plotted the orbit-averaged transverse
component S of the thermal force in Figure 3. At least for
low-eccentricity orbits, this quantity is unambiguously
related to the semimajor-axis decay rate [since da/dt B 2S/
n ] O(e), where n is the mean motion]. The results from the
linear theory (see eq. [B12a] in Appendix B) are shown by
dashed curves and compared with the results from the

FIG. 2.ÈLag angle of the polar surface temperature peak from Fig. 1 vs.
the thermal parameter, #. The linear solutions (dashed curves) systemati-
cally overestimate the lag angle when compared with the more accurate
results from our numerical approach (solid curves). Labels indicate the
scaled radius R@ of the body.

numerical theory, shown by solid curves. In the limiting
case of a plane-parallel geometry (label O), we have used
equation (27) of Rubincam (1995) in the linear case and the
numerical nonlinear results of & FarinellaVokrouhlicky�
(1998b). We note that the maximum discrepancy, about
20%, occurs for large bodies (R@? 1) with # B 1. For
bodies of small size (R@¹ 1), the di†erence is less pro-
nounced and the linear approximation matches the exact
theory within a few percent. This is consistent with our
previous results on the lower temperature variations for
small bodies.

Figure 4 shows the orbit-averaged transverse component
S of the seasonal Yarkovsky acceleration, now scaled by the
product R@o, as a function of the bodyÏs radius R@. We are

FIG. 3.ÈOrbit-averaged transverse component S of the seasonal Yar-
kovsky force per unit mass along a circular orbit as a function of the
thermal parameter, #. Here S is normalized by the radiation force factor

(see text). Bodies of di†erent normalized radii, indicated byo \nR2E
*
/mc

labels on the curves, are compared. The dashed curves correspond to the
linear solution (eq. [B15]), while the solid curves have been derived by our
more accurate numerical approach. The maximum discrepancy, about
20%, is observed for large bodies (labeled O), namely, for the plane-
parallel solution.



3054 VOKROUHLICKYŠ & FARINELLA Vol. 118

FIG. 4.ÈOrbit-averaged transverse component S of the seasonal Yar-
kovsky acceleration (now scaled by the radiation force parameter o times
the normalized radius R@) vs. R@. Homogeneous bodies at the same orbital
distance satisfy R@o B const. Here the labels of the curves correspond to
di†erent values of the thermal parameter, #. Results from the complete
nonlinear model (solid curves) are compared with those from the linear
approximation (dashed curves).

still assuming a circular orbit. Because for homogeneous
bodies o P R~1, the product R@o is a function of the
thermal constants and the orbital radius a but not of the
bodyÏs size. We have chosen a range of values of the thermal
parameter # from 0.25 to 5. To understand the information
provided by this Ðgure, we recall that the following values of
# and R are relevant for realistic materials : # \ 0.323a3@4
and R\ 2.36R@a3@4 for stony bodies ; # \ 1.627a3@4 and
R\ 7.07R@a3@4 for metal-rich bodies. Here we have used the
thermal constants adopted by Farinella et al. (1998) and
assumed that the surface is not covered by a poorly con-
ducting regolith layer ; as discussed in that paper, a plaus-
ible estimate for the uncertainty in the thermal parameters
corresponds to an uncertainty of about a factor of 2 in the
constants given above. Considering objects in the main
asteroid belt (a between 2 and 3 AU), the thermal parameter
may range between 0.5 and 1 for stones and between 2.5 and
4 for metal-rich fragments.

Figure 4 shows an interesting result. Curves correspond-
ing to higher values of # (i.e., irons) exhibit sharper peaks,
implying that the maximum efficiency of the draglike e†ect
occurs in a rather limited interval of fragment sizes. On the
contrary, curves corresponding to lower values of # (i.e.,
stones) have a relatively Ñat plateau at small radii, showing
that the orbit decay a†ects a much broader range of objects.
This fact may have important consequences for the delivery
of asteroid fragments and the abundance of di†erent types
of bodies in the EarthÏs vicinity.

We also note a discrepancy between the nonlinear theory
and its linearized counterpart for small bodies (R@¹ 1).
Clearly, this e†ect has to do with both radial and latitudinal
heat conduction that tends to equilibrate the temperature
very efficiently on small bodies. The most important north-
south (latitudinal) temperature asymmetry, which causes
the seasonal thermal force, is rapidly diminished in the non-
linearized theory, and therefore, the estimated semimajor-
axis decay rate becomes somewhat smaller. On the other
hand, we note that the nonlinearized theory yields a slightly

larger Yarkovsky e†ect for small values of # (\0.25) and
large bodies (R@º 1).

3.2. Eccentric Orbits
So far only circular orbits have been considered.

However, as far as the main applications of the theory to
real solar system objects are concerned, it is important to
assess how the results described above are modiÐed for
orbits with a signiÐcant eccentricity. We refer to equation
(B13) in Appendix B for the linear-theory predictions on the
Yarkovsky force for eccentric orbits.

Let us start by computing the polar temperatures for a
spherical body during one revolution around the Sun. As an
example, we consider a body with R@\ 5, with # \ 1
(approximately corresponding to a 35 m stone near the
outer edge of the asteroid belt), and with spin-axis projec-
tions onto the orbit-related unit vectors P and Q given by

The spin axis is thus lying again in thes
P
\ s

Q
\[1/(2)1@2.

orbital plane. Figure 5 shows the two polar temperatures as
a function of the true anomaly /. As expected, the two
temperatures are just shifted by half a revolution in the case
of a circular orbit. Moreover, the amplitude of their varia-
tion about the mean temperature is relativelyT1 @B 1/(2)1@2
small. The basic assumptions of the linearized theory given
in Appendix B are rather well satisÐed in this case.

However, we remark that as the orbital eccentricity
grows, the amplitude of the temperature changes increases
in a very signiÐcant way. This behavior is clearly due to the
large variations of the heliocentric distance during one
orbit, resulting in a highly variable incident radiation Ñux.
In the case with 0.6 eccentricity, *T @ at the north pole is
nearly of the same order as the mean temperature There-T1 @.
fore, it is not surprising that for such orbits the linear theory
fails to predict accurately the orbital perturbations. Note
also that the polar temperature proÐles are very di†erent
with respect to the zero-eccentricity case. As a result of
KeplerÏs second law, the north pole becomes aligned with

FIG. 5.ÈPolar temperatures, on a spherical fragment vs. the trueT
p
@ ,

anomaly, /, along one orbital revolution : solid curves, behavior of the
north (k \ 1) pole temperature ; dashed curves, south (k \ [1) pole tem-
perature. Three orbits with di†erent eccentricities (0, 0.3, and 0.6) are con-
sidered here. Note the strong increase in the amplitude of the temperature
variations with the eccentricity and the asymmetry between the polar tem-
peratures. The dashed vertical bars mark the instant of maximum pole
illumination for the highest eccentricity orbit.
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the radiation source after the body has passed the peri-
center ; the south pole, after passing the apocenter. Thus, the
maximum radiation Ñuxes at the poles are quite di†erent,
leading to di†erent temperature proÐles. In Figure 5, the
instants of maximum pole illumination by sunlight are
marked by dashed vertical bars. In all these cases, the tem-
perature maximum lags behind the radiation Ñux, as
expected intuitively and as predicted by the linear theory,
but interestingly this lag decreases for increasing eccentric-
ities of the orbit. The north pole maximum temperature
(B1.44) is smaller than the subsolar temperature at the
maximum radiation Ñux (B1.55), which is another e†ect of
the ““ thermal memory.ÏÏ In relative terms, this e†ect is quan-
titatively about the same as in the circular-orbit case (see
Fig. 1, where the maximum temperature does not attain
unity but remains smaller).

As for the wavy pattern of the north pole temperature for
the 0.6 eccentricity orbit before pericenter passage, this is an
artifact of our numerical method, caused by truncation of
the Fourier series in equations (10) and (15). In the current
example, we took but still this order is not highkmax\ 34,
enough for an accurate derivation of the insolation coeffi-
cients in a high-eccentricity orbit. Clearly, it is a drawback
of our numerical method that facing this problem just by
increasing would require rapidly growing computationkmaxtimes. However, since the Yarkovsky force is obtained by an
integration of the temperature distribution over the entire
surface, it is not a†ected in a signiÐcant way by this
problem. The secular e†ects, derived by averaging over one
orbital revolution, should be even less sensitive.

Figure 6 conÐrms that the integral factor / dk kT @4(k)
appearing in the seasonal force in equation (22) does not
su†er from this convergence problem. For a comparison, we
have plotted here the factor computed from the nonlinear
theory (solid lines) and its linear-theory counterpart (dashed
lines). The agreement is sufficiently good for the circular
orbit ; however, as the eccentricity increases we observe a
growing discrepancy. This disagreement is not due to a
low-eccentricity expansion of the linear theory. Actually,
equation (B13) includes all the elliptic expansion terms.

FIG. 6.ÈThe integral factor / dk kT @4(k) of the seasonal Yarkovsky
acceleration for the orbits of Fig. 5 vs. the true anomaly, / : solid curves,
results from the complete nonlinear theory ; dashed curves, from the linear
approximation.

Rather, the di†erence is due to the fact that the basic
assumptions of the linear theory cease to be valid for eccen-
tric orbits, as discussed above. The results for the 0.3 eccen-
tricity orbit are already quite o† the linear-theory
predictions. This seems to be a rather negative Ðnding for a
prospect of using the linear theory of the seasonal e†ect for
analytical orbit predictions. However, we shall demonstrate
below that the mean drift rate of the semimajor axis, which
is related to an average of the integral quantity shown in
Figure 6, is much less a†ected by these nonlinearity e†ects.
This is, in turn, a positive result, indicating that the linear-
theory predictions of the orbit-averaged rates of mean ele-
ments may be used up to fairly large eccentricities (B0.5)
with some degree of conÐdence.

Figures 7 and 8 show the secular (mean) semimajor-axis
drift rate (da/dt) (scaled by the factor [oR@/n) and the
secular eccentricity drift rate (de/dt) (with the corresponding

FIG. 7.ÈSemimajor-axis secular drift rate (da/dt) (scaled by the factor
[oR@/n) vs. eccentricity e. Parameter values R@\ 5 and # \ 1 have been
selected. The di†erent curves correspond to four orientations of the spin
axis on the orbital plane, corresponding to the following projections on the
P and Q unit vectors : (1) and (2) ands

P
\ [1/J2 s

Q
\ 1/J2 ; s

P
\ 0

(3) and (4) and The solid curvess
Q

\ 1 ; s
P
\ s

Q
\ 1/J2 ; s

P
\ 1 s

Q
\ 0.

have been derived from the complete nonlinear solution ; the dashed ones,
from the linear theory.

FIG. 8.ÈSame as Fig. 7, but for the eccentricity secular rate (de/dt)
(scaled by the factor oR@/na).
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scaling factor), computed for orbits with increasing eccen-
tricity. To maximize the seasonal e†ect, we have selected
again the spin axis on the orbital plane, but since for elliptic
orbits its orientation with respect to the pericenter direction
is important, we have chosen four di†erent orientations, at
45¡ intervals. As usual, dashed and solid curves refer to
linear-theory (eq. [B16] and [B17] in Appendix B) and non-
linear numerical results, respectively. As the eccentricity of
the orbit grows, we observe again a moderately increasing
discrepancy between the two approaches, for the reason
discussed above. However, the most interesting Ðnding here
concerns the fact that the di†erence between the linearized
and nonlinearized theories remains relatively small up to
eB 0.4È0.5 (especially in the semimajor-axis case). This is
an unexpected result, since the variables discussed pre-
viously (polar temperature, the integral quantity from Fig.
6) exhibit much greater di†erences when the linear and non-
linear theories are compared.

4. CONCLUSIONS

The main results of this paper can be summarized as
follows :

1. A nonlinear, numerical solution of the heat transfer
problem in a rapidly rotating spherical body has been
developed and compared with the corresponding solution
from a linearized analytical theory. Assuming constant
values of the thermal parameters (thermal conductivity and
speciÐc heat), our method does not require solving the heat
conduction partial di†erential equation on a grid. Rather,
we use a complete analytic solution of the Fourier equation
in terms of a mixed Fourier-Legendre series, and then we
iteratively solve the nonlinear boundary constraint.

2. For circular orbits, we estimate that the accuracy of
the results from the linear theory for the semimajor-axis
decay rate is at worst 20% (for large bodies with # B 1).

3. The perturbations of all the orbital elements due to the
seasonal Yarkovsky e†ect in a linearized heat transfer
theory have been derived analytically to any order in the
eccentricity (see Appendix B). In particular, we have proved
that to any order in the eccentricity the semimajor axis
undergoes a secular decay, so that the orbit shrinks toward
the radiation source.

4. As the orbital eccentricity increases, however, the lin-
earized theory fails to match closely the results of the
numerical nonlinear theory. This disagreement is not due to
a truncation in the eccentricity expansion, but rather to the
key assumption of the linear theory that the temperature
variations about its mean value stay small. This is already
no longer the case at eccentricities B0.2È0.3.

5. However, our results suggest that the linear approach
is still capable of predicting fairly well the orbit-averaged,
long-term changes of the mean elements, in particular the
semimajor axis, for orbits up to eB 0.4È0.5. This is an inter-
esting Ðnding, since the analytic results of the linearized
theory might be used to develop semianalytic secular per-
turbation theories.

We are grateful to W. F. Bottke and D. P. Rubincam for
useful discussions on the subject of this paper. Partial
support from the Czech Grant Agency (under contract 205/
96/K119), the Italian Space Agency (ASI), and the Italian
Ministry for University and ScientiÐc Research (MURST) is
also gratefully acknowledged.

APPENDIX A

NUMERICAL SOLUTION OF THE NONLINEARIZED PROBLEM

In this appendix, we brieÑy comment on the iteration scheme that we developed to solve equation (18). As noted in ° 2, we
start the iterations with the linearized solution in equations (20), (21a), and (21b). Then, the following rearrangement of the last
two equations of the system eqs. ([18a]È[18b]) is used :

C0ln`1\ R@
#l

[e0l[ p0l(Cpq
n )] , (A1a)

C
kl
n`1\ R@

#t
l
(Z

k
)
[e

kl
[ p

kl
(C

pq
n )] , (A1b)

where n(º1) is the integer label of the iteration in eq. [A1b]). The coefficients of the fourth power of the temperature(k D 0 p
klrepresentation (eq. [17]) are computed by numerical quadrature of equations (16a) and (16b) by using RombergÏs method.

The same method is used to compute the coefficients of the energy source function E@(k ; f).e
klTo prevent ““ overshooting ÏÏ in the subsequent steps of the iteration procedure, especially when # is small and/or R@ is large,

we use the results from equations (A1a) and (A1b) to deÐne a ““ gradient ÏÏ of the C coefficients and we perform only a fractional
step along this gradient. The value of this fraction depends on the value of the thermal parameter #, the radius R@, and the
orbital eccentricity e, but generally it ranges from 0.005 to 0.5. Finally, at each iteration we solve for the coefficient (theC00e†ective mean temperature of the body) by using the equation

p00(Cpq
) \ e00 . (A2)

About 10 to 100 iterations of this procedure are needed to attain a 10~5 accuracy level in satisfying the system of equations
(18a)È(18b), depending on the orbital eccentricity and the thermal parameter. The maximum degree of the Fourier develop-
ment is typically 40 in our computations (i.e., k ¹ 40) and the corresponding maximum degree of the Legendre series
development is about 20 (i.e., l¹ 20).
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The evaluation of the t-functions from equation (19) represents a special problem in our procedure. The relation

t
l
(z) \ z

j
l
@(z)
j
l
(z)

\ l [ zCF(z, l) (A3)

has been found to be the most efficient representation, where we have introduced

CF(z, l)\ 1
(2l ] 3/2)/z[

1
(2l ] 5/2)/z[ É É É . (A4)

This continued fraction can be evaluated e†ectively by using the Lentz algorithm described, for instance, in Press et al. (1994).

APPENDIX B

LINEARIZED SOLUTION

Here we shall rederive the linear solution of the heat conduction problem in spherical bodies and rewrite it into our system
of ““ natural ÏÏ units. The motivation for this is twofold : (1) as discussed in ° 2, the linear solution can be used as a suitable
starting solution for the iteration scheme needed to solve the full nonlinear problem numerically ; and (2) it provides analytical
formulae for a number of physically signiÐcant quantitiesÈthe thermal lag angle, the averaged transverse component of the
thermal force, the semimajor-axis decay rate, etc.Èwhich may be compared with the results of the numerical solution and/or
conveniently used in analytical perturbation theories. The relevant references are the papers by Rubincam (1995, 1998) and

(1998a, 1999), who derived the corresponding linear solution for the diurnal Yarkovsky e†ect. With respect toVokrouhlicky�
this earlier work, a novel result obtained here is the expansion of all the relevant quantities to be computed to arbitrary
powers of the eccentricity, which extends the applicability of the theory beyond near-circular orbits. Also, we give untruncated
formulae for the perturbations of the complete set of Ðve mean elements, which may be exploited in semianalytical treatments
of asteroid dynamics under the seasonal Yarkovsky e†ect perturbation.

The linearity of the solution refers to the fact that we linearize the radiative term in equation (9) and thus make the problem
much simpler from a mathematical point of view. In this approximation, the temperature in any k-ring on the body is
assumed always to stay close to a mean (constant) value, so that we can write

T @(r@, k ; f) \ T1 @] *T @(r@, k ; f) . (B1)

The mean temperature is given by equation (20) and the linearization condition reads The temperature changeT1 @ o*T @ o> T1 @.
*T @ then satisÐes the heat transfer equation

ir@2f L
Lf

*T @(r@, k ; f) \ "(r, k)*T @(r@, k ; f) (B2)

(identical to eq. [7] for T @ itself, since is constant), with the linearized boundary conditionT1 @

J2g~3@4*T @(R@, k ; f) ] #
AL*T @(r@, k ; f)

Lr@
B
R{

\ *E@(k ; f) (B3)

at the surface of the body. The energy Ñux variation *E@(k ; f) is deÐned by

*E@(k ; f) \E@(k ; f) [ e00 , (B4)

where the term recall that g \ (1[ e2)1@2 with e being the eccentricity) is the same appearing in the meane00 (e00 \ 1/(4g) ;
temperature To improve with respect to the results of Rubincam (1995, 1998), we shall not neglect the higher orderT1 @.
eccentricity terms. Thus, we keep all the harmonics of the Fourier-Legendre representation

*T @(r@, k ; f) \ ;
k | Z

dt
k
(r@, k)fk

\ ;
k | Z

;
lz0

dq
kl
(r@)P

l
(k)fk . (B5)

Substituting equation (B5) into equation (B2), we easily Ðnd that the amplitudes satisfy a system of decoupled ellipticdq
kl
(r@)

Bessel equations with a general solution given in the following form:

dq
nk

(r@) \ 4
5
6
0
0
c6 0l r@l for k \ 0 ,
c6
kl

j
l
(J[ikr@) for k D 0 .

(B6)

The integration constants are to be determined from the boundary constraint (eq. [B3]) and thus are di†erent from thec6
klcorresponding constants (despite this fact, they can be used as suitable Ðrst-iteration seeds for obtaining the exact values ofc

klThe key step then consists in handling the energy inÑux term in the right-hand side of equation (B3). Rewriting equationc
kl
).

(15) as a series of Legendre polynomials, we get

*E@ \ periodic terms ] ;
lz1

eü
l
(f)P

l
(k) , (B7)
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and we look for a sufficiently simple Fourier expansion of the amplitudes The dipole (l \ 1) coefficient is the mosteü
l
(f).

important as concerns the evaluation of the thermal force in this linearized approximation. (1998, unpublishedVokrouhlicky�
notes ; 1999) showed that

eü 1(f)\
1
2

(a/r)2 cos h0

\ [1
4

;
kz1

[(s
P
a
k
[ is

Q
b
k
)fk] c.c.] (B8)

(where c.c. stands for the complex conjugate part of the previous expression), with

a
k
\ 2

d
de

J
k
(ke), b

k
\ 2

g
e

kJ
k
(ke) . (B9)

Here are the ordinary Bessel functions of the Ðrst order. Explicit expressions of the Ðrst seven coefficients and canJ
k
(x) a

k
b
kbe found, for instance, in Smart (1953) or Brouwer & Clemence (1961). We also deÐne for later use the auxiliary factors

The dipole boundary constraint readss
k
4 s
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P ek~1.
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(B10)

leading to(k D 0),
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Here is the same function as in equation (19). The following auxiliary quantities have been introduced :t1(Zk
) X

k
\ (2k)1@2R@,

whereas the functions A, B, C, and D are deÐned byj \#g3@4/X1,
A(X

k
)\ [(X

k
] 2)[ eXk[(X

k
[ 2) cos X
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Given the similarity of the representations in equations (B5) and (10) for the temperature distribution in the linearized and the
nonlinearized approaches, we may use and for the initial estimate in our iteration scheme inC00 BT1 @ C

k1 B c6
k1 j1(Zk

)
Appendix A. In principle, one might also compute the linearized estimate of the quadrupole and higher multipole coefficients

obtaining thus linear-theory initial guesses for the coefficients but this is not needed in practice.c6 2k, . . . , C
k2, . . . ,

Putting all the previous results together, we easily Ðnd the dipole part of the expansion of the temperature variation in
equation (B5). With the surface temperature variation *T @ determined at the dipole level, we may use equation (22) to
compute the thermal force. In the linearized case, for the T @4 term in the integrand we substitute (2)g~3@4*T @. As expected, the
force per unit mass is aligned with the spin axis unit vector s, namely, We are then concerned with the amplitudeath ath\ ath s.

of the thermal acceleration. After some algebra one obtainsath

ath\ 2
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with the thermal lag angles given byd
k
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(o is deÐned as in eq. [22]). The acceleration (eq. [B13]) can be used both for numerical integrations (as in 1999) and inBroz—
analytical perturbation theories. A detailed discussion of these applications is beyond the scope of this paper, and we shall
limit ourselves to a couple of speciÐc comments.

The most important orbital e†ect of the seasonal Yarkovsky force in equation (B13) is that it gives rise to a secular
semimajor-axis decay. A simple estimate can be given for a near-circular orbit. In this case, the secular rate of change of the
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semimajor axis is given by da/dt \ 2S/n ] O(e), where S is the orbit-averaged value of the transverse component of the
thermal force. Some algebra leads to

S \ 2
9

(1[ A)o
G1 sin d1

1 ] j
s1 s6 1] O(e) . (B15)

Note the geometric factor where c is the obliquity of the spin axis with respect to the normal to thes1 s6 1\ s
P
2] s

Q
2 \ sin2 c,

orbital plane (compare with the results reported by Rubincam 1987, 1995 and Farinella et al. 1998). Equation (B15) is
equivalent to the corresponding result of Rubincam (1998). As the thermal response always lags behind the external heating,
all the angles are negative (this can be easily shown using equations [B12a]È[B12d]). Since all the other factors in equationd

k(B15) are positive, including the geometric factor one veriÐes that da/dt \ 0 for any orientation of the spin axis.s1 s6 1\ sin2 c,
Let us now discuss the corrections to the previous estimate of the orbital decay rate due to the eccentricity terms. The

related algebra becomes quite cumbersome because of the increasing importance of the higher order Fourier terms in
equation (B13). However, as a rule of thumb, and this allows us to estimate the order of magnitude of thes

k
P ek~1,

contribution of any term of a given order. Luckily, when the secular perturbations in the orbital elements are concerned, this
decrease for growing eccentricities is accelerated. Carrying out the calculation to an arbitrary order in the eccentricity we
obtain

da
dt

\ 4
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. (B16)

Again the universal semimajor-axis decrease can be veriÐed, since all the lag angles are negative and the geometric factorsd
kare always positive. Note also that the eccentricity factors and thus appear quadratically ins

k
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2] s
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2 b

k
2 a

k
b
kequation (B16). This property generates an accelerated convergence of this series when compared with the instantaneous-force

formula (eq. [B13]) and may be the reason why the nonlinearized theory yields a rather good prediction for the long-term
semimajor-axis decay (see Fig. 7 and related discussion). Another consequence is that the secular semimajor-axis decay based
on the formula in equation (B15) is actually correct to the second order in the eccentricity.

The case of the secular perturbation of the eccentricity is slightly more complicated (see discussion in Rubincam 1995, 1998 ;
& Farinella 1998b). For instance, Rubincam (1995, 1998) was unable to give a sufficiently simple expression forVokrouhlicky�

this perturbation. As in the semimajor-axis case, our compact formulation allows us to obtain fairly general results. Choosing
as a variable p \ ag2 instead of the eccentricity, it can be shown that a complete formula for its secular change due to the
seasonal Yarkovsky e†ect reads
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Working to zeroth order in the eccentricity, we easily verify that dp/dt \ da/dt ] O(e2), thanks again to the quadratic
appearance of the and factors in the right-hand side of equation (B17). As a consequence, de/dt P O(e). The correcta

k
b
kproportionality factor can be obtained from a combination of equations (B16) and (B17).

The secular perturbations of the inclination I and the longitude of the ascending node ) can be given in the form
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As before, no truncation in the eccentricity has been performed here.
Finally, the untruncated mean drift of the pericenter u is obtained in the form
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dt

] sin I
d)
dt

\ 2
9n

o
1 [ A
1 ] j

;
kz1

G
k

k2 ([s
P
s
Q

aü
k

sin d
k
] bü

k
cos d

k
) , (B19)

where we have deÐned
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Interestingly, one easily veriÐes that the mean drift of the pericenter given by equation (B19), like in the eccentricity case (eq.
[B17]), is not singular at zero eccentricity.

Equations (B16)È(B19) derived above yield the secular rates of change of the mean orbital elements for arbitrarily eccentric
orbits. They can be used for semianalytical investigations of asteroid dynamics including the seasonal Yarkovsky e†ect. A
detailed study of the interaction between Yarkovsky perturbations and the mean motion resonances in the main asteroid belt
can be mentioned here as a particularly important problem (see, e.g., Bottke, Rubincam, & Burns 1999 ; 1999 ; et al.Broz— Broz—
1999).
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