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ABSTRACT
The ““ seasonal ÏÏ Yarkovsky force is due to radiation pressure recoil, which acts on anisotropically

emitting rotating bodies, heated by sunlight to di†erent temperatures at di†erent latitudes on their sur-
faces. This force gives rise to a signiÐcant draglike e†ect on rapidly spinning asteroid fragments B1È100
m in size. Here we present a new treatment of this e†ect, based on the numerical solution of the heat
transfer equation with no linearization in the ratio between the peak temperature di†erence and the
average temperature on the bodyÏs surface. Our treatment is restricted to the large-body (plane-parallel)
case, valid for radii larger than the penetration depth of the seasonal thermal wave (B1È20 m depending
on the conductivity of the surface layer). Also, we solve numerically the Gaussian perturbation equations
for the evolution of the orbital eccentricity, as well of the semimajor axis under the seasonal Yarkovsky
force. We Ðnd the results to be in broad agreement with the linearized model of D. P. Rubincam, with
two main discrepancies : (i) for the same thermal and optical parameters and near-circular orbits, the
semimajor axis decay rate predicted by the improved, nonlinearized theory is some 15% lower, and (ii)
for some directions of the spin axis relative to the perihelion direction, the Yarkovsky force can cause a
secular growth of the eccentricity. When gravitationally induced perihelion precession, spin axis precess-
ion, and collisional reorientations are accounted for, however, the eccentricity on average is found to
decrease. We also show that the theory can be easily generalized to bodies of spheroidal shapes, with
typical discrepancies of a factor of 2 in the semimajor axis decay rate with respect to the spherical case.
Key words : meteors, meteoroids È minor planets, asteroids

1. INTRODUCTION

The dynamics of bodies orbiting in the solar system is
generally considered as the paradigm of an N-body gravita-
tional problem and, as such, has been the main playing Ðeld
of classical celestial mechanics for the last three centuries.
The predominance of gravitation over all the other forces
has been interpreted as the distinctive feature of celestial
mechanics with respect to its terrestrial counterpart and
has both led to an unprecedented accuracy in the
““ deterministic ÏÏ predictions of the future and allowed the
study of subtle chaotic and/or resonant e†ects.

On the other hand, in the last few decades the relevance
of nongravitational forces for orbiting objects, both man-
made Nobili, & Farinella and natural(Milani, 1987) (Kaula

Lamy, & Soter has become apparent.1966 ; Burns, 1979),
This is obvious for microscopic dust particles, whose
motion is strongly a†ected by radiation pressure, electro-
magnetic e†ects, Poynting-Robertson drag, and solar wind ;
but the orbital evolution of larger bodies can also be domi-
nated in the very long term by nongravitational e†ects,
thanks to the conservative nature of gravitational forces
that in many cases results in nearly constant orbital semi-
major axes. The classical example of a small dissipative
process leading to important long-term consequences is
that of tidal forces in planet-satellite systems. Less knownÈ
although also discovered long agoÈis the so-called Yar-
kovsky e†ect, the radiation pressure recoil that acts on
anisotropically emitting spinning bodies, heated by sunlight
to di†erent temperatures on di†erent parts of their surfaces

et al.(O� pik 1951 ; Radzievskii 1952 ; Peterson 1976 ; Burns
Gomes, & Florczak Recently, follow-1979 ; Afonso, 1995).

ing related work on laser-tracked artiÐcial satellites (e.g.,
& Vokrouhlicky� aRubincam 1987 ; Farinella 1996),

““ seasonal ÏÏ variant of the Yarkovsky e†ect has been pro-
posed by Rubincam to be e†ective for frag-(1995, 1998)
ments B1È100 m in size in transporting them from their
source regions in the main asteroid belt (or Mars) to the
EarthÏs vicinity. We have also proposed that Yarkovsky-
driven semimajor axis drift is important in delivering col-
lisionally generated asteroid fragments to the resonant
zones of the orbital element space in the inner part of the
main belt, whence most meteorites and near-Earth asteroids
are believed to come Vokrouhlicky� , & Hart-(Farinella,
mann & Farinella et1998 ; Vokrouhlicky� 1998 ; Hartmann
al. 1997).

This paper is devoted to reÐning the available models for
the seasonal Yarkovsky e†ect, from several points of view.
First, we give up the approximation in which only linear
terms in the ratio between surface temperature changes and
average temperature are retained in the fragment thermal
models. Second, we investigate in some detail the Yar-
kovsky e†ect on other orbital elements besides the semi-
major axis, taking into account the presence of planetary
perturbations and spin axis precession. Third, we generalize
the theory to spheroidal shapes, in order to assess the sensi-
tivity of the results to the usual assumption of a spherical
fragment shape.

The remainder of this paper is organized as follows. In ° 2
we review the physics of the seasonal Yarkovsky e†ect and
summarize some previous work on this subject. isSection 3
devoted to developing a suitable quantitative model for the
thermal response of an asteroid fragment to the solar radi-
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ation inÑux and the corresponding perturbing force a†ect-
ing its orbit. In we discuss the resulting orbital e†ects in° 4
a number of speciÐc cases, and in we summarize the° 5
main conclusions from our work and the current open
problems.

2. MODELING THE YARKOVSKY SEASONAL EFFECT :
ASSUMPTIONS AND APPROXIMATIONS

Solar radiation heats anisotropically the surface of any
orbiting solar system body. If the body rotates and the
response to external heating is not instantaneous, because
of a Ðnite time lag for the conduction of part of the
absorbed energy to the interior of the body, a rather
involved thermal model must be developed to determine the
surface temperature distribution. So far, this has been done
mainly for the purpose of determining asteroid diameters
with the radiometric technique (e.g., & MatsonBrown

& Spencer Lebofsky, &1987 ; Lebofsky 1989 ; Spencer,
Sykes However, as a by-product of the surface tem-1989).
perature gradients, the thermal radiation emitted from the
warmer parts of the surface carries away more linear
momentum than that emitted from the cooler regions. The
overall momentum budget results in a net thermal force
a†ecting the orbital motion, as was Ðrst suggested by I. O.
Yarkovsky about one century ago (see the references listed
in ° 1).

From the study of similar problems in the context of
artiÐcial satellite dynamics (e.g., Rubincam 1987, 1988 ;

& Vokrouhlicky� it has beenSlabinski 1997 ; Farinella 1996),
realized that the main features of the thermal perturbations
are determined by the ratio between the thermal relaxation
time (the characteristic timescale for the thermaltrelresponse of the body to an external excitation) and the
rotation period (this ratio is the thermal parameter #,trotwhich plays a crucial role in the formulation of thermal
models ; see If the relaxation time is comparable, or° 3).
smaller, than the rotation period, the longitudinal com-
ponent of the temperature gradients on the surface is signiÐ-
cant, and the resulting force has components perpendicular
to the spin axis. This is the classical, or ““ diurnal,ÏÏ Yar-
kovsky force that is important for bodies with a relatively
slow rotation or small thermal inertia (see Peterson 1976 ;

et al. On the contrary,Farinella 1998 ; Vokrouhlicky� 1998a).
if the thermal relaxation time is much longer than the rota-
tion period (as is the case for the L AGEOS artiÐcial
satellite), the longitudinal temperature gradients on the
surface are averaged out, leaving only the latitudinal com-
ponent, so that the thermal force tends to be aligned with
the spin axis. This is the seasonal variant of the Yarkovsky
force that we are going to model in this paper. As discussed
by Rubincam et al. and(1995, 1998), Farinella (1998),

& Farinella the seasonal e†ect isVokrouhlicky� (1998),
probably more important for asteroidal fragments in the
diameter range from a few meters to B100 m, provided
their surfaces are not covered by an insulating regolith layer
and they do not have exceedingly slow rotations. This e†ect
is inherently nonlocal, as the thermal response to solar
heating occurs at a signiÐcantly shifted position along the
orbit. This feature has important dynamical consequences,
in particular, because it gives rise to a draglike dissipative
e†ect (““ thermal drag ÏÏ) that always shrinks the orbital semi-
major axis.

Both the diurnal and the seasonal Yarkovsky e†ects
work in a very di†erent way for ““ large ÏÏ and ““ small ÏÏ

bodies. The transition size is related to the typical depth
reached by the thermal wave (the region where the tem-
perature varies periodically) over the timescale of the exter-
nal energy inÑux. This timescale is of course for thetrotdiurnal e†ect and (the orbital period) for the seasonaltreve†ect. In the large-body case, the object can be modeled as a
Ñat plane of inÐnite depth, with no thermal communication
between its opposite sides ; on the contrary, in the small-
body case, the entire interior of the body is a†ected by the
thermal wave and the thermal gradients are damped down.
As stressed by the seasonal e†ect isRubincam (1998),
maximum near the transition size, because larger bodies are
less sensitive to nongravitational e†ects due to their small
area-to-mass ratio, whereas smaller bodies become more
and more isothermal. In this paper, we are going to deal
with the large-body case only ; that is, we shall use a thermal
model suited to the plane-parallel approximation. Note that
in the case of the seasonal e†ect we can still introduce the
thermal parameter deÐned above, provided we compare#

nthe thermal relaxation time to the orbital periodtrel trev \
2n/n (n being the orbital mean motion) instead of the spin
period We havetrot.

#
n
\ trel

trev
\ !Jn

vpT 3 , (1)

where is the thermal inertia, v is the infrared!\ (KoC
p
)1@2

emissivity of the surface, p is the Stefan-Boltzmann con-
stant, and T is the mean surface temperature (this may be
estimated in di†erent ways, resulting in numerical discrep-
ancies by factors of order unity between thermal parameters
deÐned by di†erent authors). The index n reminds us that
we are dealing with the seasonal Yarkovsky e†ect.

As discussed by and et al.Rubincam (1998) Farinella
the transition between the small- and large-body(1998),

regimes occurs at radii of about 10 and 30 m for rocky and
metal-rich fragments, respectively. This can be seen as
follows. Suppose that a given surface element of the body
undergoes an external radiative heating characterized by a
typical frequency l. Then, the solution of the heat di†usion
problem (e.g., et al. suggestsWesselink 1948 ; Spencer 1989)
that the temperature response decays exponentially in the
surface layer of the body with a characteristic length l

S
:

l
S
^
S K

olC
p

, (2)

where K is the mean thermal conductivity, o is the density,
and is the speciÐc heat of the body (or its surface layer).C

pBelow this depth, the temperature is almost una†ected by
the surface processes. A given body (such as an asteroidal
fragment) is ““ large ÏÏ provided that its radius UsingR

A
[ l

S
.

the thermal parameters of basalt as reported by Rubincam
i.e., K ^ 2.65 W m~1 K~1, J kg~1 K~1(1995), C

p
^ 680

and o ^ 3500 kg m~3 (similar values have been found for
silicates, see and et al. for chon-Peterson 1976 Burns 1979 ;
drites the conductivity can be up to factor of 5 lower, see

& Matsui and the seasonal frequency n,Yomogida 1983),
we obtain that is about 10 m.l

S
3. THERMAL MODEL AND YARKOVSKY FORCE

3.1. Reference Frames
We are going to use the orbital elements of a fragmentÏs

orbit deÐned in an inertial reference system. Three auxiliary
unit vectors can be associated to the mean orbit, namely,
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the vector n normal to it,

n \
1 sin I sin )
[sin I cos )

cos I

2
; (3)

the vector P directed toward the mean pericenter,

P \
1cos ) cos u[ cos I sin ) sin u
sin ) cos u] cos I cos ) sin u

sin I sin u

2
; (4)

and the vector Q lying in the mean orbital plane and deÐned
by Q \ n Â P. In the previous equations, the mean inclina-
tion I, the mean longitude of ascending node ), and the
mean argument of pericenter u appear. We shall use the
orbit-related reference frame having the x-axis along the
direction of P and the z-axis along the direction of n
(Beletskii 1975).

To derive the thermal force e†ects on the fragmentÏs
mean orbit, we need to deÐne two other geometric quan-
tities related to the s unit vector directed along the spin axis :
(i) the obliquity angle c, deÐned in the interval 0 to n,
between s and n, i.e., cos c\ s Æ n ; and (ii) the ““ longitude ÏÏ

of the projection of the spin axis onto the mean orbitaluü
plane, deÐned in the orbit-related reference frame, that is,

s
P
\ (s Æ P) \ sin c sin uü , (5a)

s
Q

\ (s Æ Q)\ sin c cos uü . (5b)

The angles c and can be interpreted as spherical anglesÈuü
colatitude and longitudeÈof the fragmentÏs spin axis vector
s in a reference system deÐned by the unit vectors (P, Q, n).

illustrates the geometrical quantities introducedFigure 1
above.

Since, in general, the orbit of the fragment undergoes
planetary perturbations and the mean orientation of the
spin axis is changed by both precession and collisions,

FIG. 1.ÈThe two reference systems used in this paper : (i) the inertial
system (XY Z) to which mean orbital elements are referred, and (ii) the
orbit-related system (xyz) deÐned by the orbital angular momentum unit
vector n and the pericenter unit vector P. Projections of the spin vector s in
the latter system deÐne the geometrical parameters c and uü .

neither c nor is constant. The indirect e†ects, due touü
planetary perturbations of the fragment orbit, dominate the
evolution of (c, on a timescale of 104È105 yr, whereas onuü )
longer times Yarkovsky e†ects themselves should be
accounted for. The direct terms include both ““ free ÏÏ and
forced precession (the latter due to the solar gravitational
Ðeld), while collisions are caused by the Ñux of small aster-
oidal and cometary debris et al. We will(Farinella 1998).
assess the precessional e†ects in although we are not° 4,
going to analyze in detail collisional e†ects here. Collisions
can be approximated as a sequence of random, instantane-
ous steps in the orientation of s. As shown by et al.Farinella

impacts imparting an angular momentum sufficient(1998),
to cause a complete reorientation of the spin axis typically
occur at intervals of 106È107 yr for fast-rotating, meter-
sized fragments. Therefore, collisions can be neglected over
times much shorter than this, whereas over much longer
times their random character is consistent with assuming an
isotropical distribution of spin axis orientations in comput-
ing averaged Yarkovsky e†ects.

3.2. Spherical Fragments
In this section we describe the thermal model of aster-

oidal fragments that will be used to compute the Yarkovsky
force. It is based on a fully numerical method, similar to
that used in et al. For the sake of simplicity,Spencer (1989).
we start by assuming a spherical shape, although later on
we will discuss how to generalize our model to spheroidal
bodies We always assume that the body is homoge-(° 3.3).
neous, with a given set of physical and thermal constants.

Since the asteroidal fragments that we deal with are
““ large ÏÏ bodies, in the sense deÐned in we are allowed to° 2,
use a planar approximation of the heat di†usion problem

et al. Also, the ““ large ÏÏ size of the body(Spencer 1989).
ensures that the thermal histories of di†erent surface ele-
ments are not correlated to each other. Therefore, we shall
start by formulating the heat di†usion problem for the tem-
perature evolution in an inÐnitely deep surface layer below
a chosen surface element. Denoting the local vertical coor-
dinate by x (oriented downward) and time by t, the local
temperature T (t, x) must fulÐll the heat equation (see, e.g.,

& LifschitzLandau 1986)

oC
p

LT
Lt

\ K
L2T
Lx2 , (6)

with boundary conditions

vpT 4(t, 0) \ K
ALT

Lx
B
(t, 0) ] aE(t) , (7a)

ALT
Lx
B
(t, O) \ 0 . (7b)

Here a is the surface absorption coefficient in the visible
band and E(t) is the radiation Ñux into the surface element.
The former equation expresses the energy balance on the
surface, while the latter means that at large depths the tem-
perature is una†ected by any external illumination.

In we pointed out a second important assumption in° 2
our study, that is, that the fast rotation of the fragment
results in a constant temperature for all the surface elements
at the same colatitude h (the angle from the spin axis). As a
consequence, we can average equations and and(6), (7a)

over a rotation period. Thus, we assume that T(7b)
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depends on time t and depth x as before, and to keep track
of the seasonal temperature variations, we add explicitly the
dependence on h. Equations and remain formally(6) (7b)
unchanged, whereas now readsequation (7a)

vpT 4(t, 0 ; h)\ K
ALT

Lx
B
(t, 0 ; h) ] aE1 (t ; h) , (8)

with the averaged radiation Ñux at a given latitude given by

E1 (t ; h) \ '
n

(sin h sin h0 sin /
*

] /
*

cos h cos h0) , (9)

with the auxiliary angle deÐned as/
*

cos /
*

\
7[1
[cot h cot h0

1

for h \ h~ ,
for h ½ (h~, h

`
) ,

for h [ h
`

.
(10)

Here we deÐned with the solar colatitudeh
B

4 n/2 ^ h0, h0in the fragmentÏs system. The scalar quantity ' represents
the solar radiation Ñux at the distance of the fragment. The
solar colatitude depends on time and can be expressed ash0

cos h0\ [sin c sin w , (11)

with v being the true anomaly of the body.w\ uü ] v,
In order to write simpler equations, we follow etSpencer

al. in deÐning nondimensional variables as follows.(1989)
The local vertical coordinate x is scaled by the thermal
length the depth of the thermal wave with a frequency ll

S
,

equal to the orbital mean motion n (see Thus, we have° 2).
Instead of time t, we use the fragmentÏs meanx ] X \x/l

S
.

orbital longitude l : with correspondingt ] l\ n(t[ t0), t0to perihelion passage. The mean radiation Ñux isE1 (t ; h)
scaled by the solar radiation Ñux at the mean semimajor
axis distance : Here with CE1 ]E1 @ \E1 /'

a
. '

a
\C/a2,

denoting the solar constant and a the mean semimajor axis
in Astronomical Units (hereafter, a will always be treated as
a nondimensional quantity). Finally, the temperature is
scaled by e†ective subsolar temperature at the meanTsssemimajor axis distance from the radiation source :

with deÐned by the relationshipT ] T @\ T /Tss, TssvpT ss4 \ a'
a
.

The heat di†usion problem in the new set of variables is
then expressed by the following parabolic di†erential equa-
tion :

LT @
Ll

\ L2T @
LX2 , (12)

with the boundary conditions

T @4(l, 0 ; h) \ #
n

ALT @
LX
B
(l, 0 ; h) ]E1 @(l ; h) , (13a)

ALT @
LX
B
(l, 0 ; h) \ 0 . (13b)

The mean energy inÑux at a given latitude can be written as

E1 @(l ; h) \ t
n

(sin h sin h0 sin /
*

] /
*

cos h cos h0) , (14)

with

t(l)\
A1 ] e cos v

1 [ e2
B2

. (15)

The auxiliary angles and are the same as deÐned/
*

h
Bbefore (see eq. [10]).

We are now ready to introduce the set of basic param-
eters that deÐne the thermal model. The only physical coef-
Ðcient entering equations and is the thermal(12) (13)
parameter (see Recalling the dependence of the#

n
eq. [1]).

subsolar temperature on the mean orbital elements, weTssshall explicitly write splitting the thermal#
n
\ #0 a3@4,

parameter into a constant part and an orbit-dependent#0part. The former term, depends only on the thermal#0,properties of the fragment, the radiation Ñux, and the
scaling factor for the mean semimajor axis a. As 1 AU has
been chosen for the latter quantity, we may alternatively
state that is the value of the thermal parameter at this#0distance from the Sun. Assuming regolith-free surfaces and
using the material constants of basalt, we obtain #0^ 0.32,
whereas for metal-rich fragments we have As for#0^ 1.62.
the orbital and rotational parameters, the thermal model
depends on the mean orbital semimajor axis a and eccen-
tricity e, plus the two angles c and as deÐned earlier. Alluü ,
of these parameters in general are time dependent.

Equations and with the heating(12) (13), function (14),
can now be solved numerically using a method very similar
to that described in detail by et al. We recallSpencer (1989).
that the thermal inertia of the fragments is supposed to be
large enough that there is a considerable time lag between
heating at a given latitude and the corresponding tem-
perature response. Thus, for a given set of mean elements we
can solve separately for the temperature history at any
given latitude along an entire orbital revolution. Typically,
we use 2000 steps in the anomaly l, along with 40 nodes in
the scaled vertical coordinate X, and we need 50È100 iter-
ations to converge to a solution of equations and(12) (13)
within a tolerance of 10~6 ; the entire procedure is repeated
for 250 values of cos h between [1 and 1 to obtain the
surface temperature distribution. We impose the periodicity
of the solution after one revolution, which is justiÐed
because the mean orbital elements evolve on a timescale
much longer than one orbital period (provided there are no
close encounters of the fragment with one of the major
bodies in the solar system and/or collisions with other
fragments). This calculation takes a computing time of the
order of a few minutes on a workstation.

Once the heat di†usion problem is solved and we dispose
of the ““ seasonal ÏÏ temperature distribution T @(l, 0 ; h) on
the fragmentÏs surface at any ““ time ÏÏ l during one revol-
ution, we can directly compute the resulting thermal force.
Since the rotation is assumed to be fast, the only nonzero
component of the thermal acceleration is directeda

S
(l),

along the spin axis and depending on l ; that is,

a
S
(l) \ [ 4a

3
A

r
a2
P
~1

1
d(cos h)T @4(l ; h) cos h

4
4a
3

A
r

a2 A(l) . (16)

This integral is also computed numerically. The order of
magnitude of is given by the usual radiation force param-a

S



2036 VOKROUHLICKYŠ & FARINELLA Vol. 116

eter (here c is the velocity ofA
r
4nR

A
2 C/Mc^ 3C/4R

A
co

light), which is scaled by the integral factor A(l). If we con-
sider an object with m and o ^ 3500 kg m~3R

A
^ 50

(basalt), we obtain ms~2. Note that, inA
r
^ 2 ] 10~11

agreement with the results of Rubincam (1995, 1998),
smaller fragments drift faster than larger ones, since A

r
P

Of course, this is true only as long as the large-body1/R
A
.

regime can be assumed to hold, as was discussed in (see° 2
also Rubincam 1998).

In order to describe the long-term evolution of the orbit,
we have to choose a suitable set of mean orbital elements.
Since according to the thermal force typi-Rubincam (1995)
cally leads to the circularization of orbits, to avoid prob-
lems with near-circular orbits, we use the following set of
nonsingular elements : mean semimajor axis a, normal
vector n to the mean orbital plane, and three components of
the Lenz vector K of the mean orbit. We normalize the Lenz
vector, so that K 4 eP, where e is the mean orbit eccentric-
ity and P is the pericenter vector as deÐned before. Only Ðve
variables are independent, because of the two constraints
n Æ n \ 1, n Æ K \ 0.

Now we have to average the right-hand sides of the
Gaussian perturbation equations (see, e.g., & Fari-Bertotti
nella chap. 11) in order to get the long-term variations1990,
of the mean orbital elements caused by the Yarkovsky
e†ect. Simple algebra yields

Ada
ds
B
t
\ 2

gJa
M[e(b ] bcc)] (1 ] e2)b

c
]s

Q
[ (b

s
] ebsc)sPN ,

(17a)

Adn
ds
B
t
\ gs

n
aJa

([b
c

Q ] b
s
P) , (17b)

AdK
ds
B
t
\ [ g

aJa
M[bsc sP[ (b ] bcc] 2eb

c
)s
Q
]P

] [(2b [ bcc] eb
c
)s
P
[ (bsc ] eb

s
)s
Q
]Q

] eb
s
sN , (17c)

with

b \
T A(l)

1 ] e cos v
U

,

b
s
\
T A(l) sin v

1 ] e cos v
U

, b
c
\
T A(l) cos v

1 ] e cos v
U

,

bsc\
TA(l) sin v cos v

1 ] e cos v
U

, bcc\
TA(l) cos2 v

1 ] e cos v
U

.

Here the brackets indicate that an average over one revol-
ution (with l as a variable) has to be done, and
g 4 (1[ e2)1@2. This average in our approach is performed
numerically, after renormalizing the time variable accord-
ing to withs \ i(t[ t0),

i \ 4a
3

A
r

n1R1
, (18)

being the mean motion of a body orbiting at a distancen1 AU from the Sun. The inverse of i corresponds toR1\ 1
the characteristic timescale over which thermal e†ects

modify the orbit. Considering as inA
r
^ 2 ] 10~11ms~2

the previous example, with a ^ 0.9 we obtain i~1^ 40
Myr.

The most signiÐcant feature of the orbit evolution process
caused by the Yarkovsky force is a slow semimajor axis
decay, according to The eccentricity evolu-equation (17a).
tion resulting from the Lenz vector dynamics expressed by

can be written asequation (17c)

Ade
ds
B
t
\ P Æ

AdK
ds
B
t

\ g
aJa

[(b ] bcc] 2eb
c
)s
Q

[ (bsc ] eb
s
)s
P
] . (19)

This equation is also relevant for solar system applications,
for at least two reasons : Ðrst, high eccentricities can cause
orbital crossings with the inner planets even for bodies with
main-belt values of a, and second, RabinowitzÏs (1993, 1994)
recent discovery of a population of near-Earth bodies,
10È100 m in size, with fairly low eccentricities. We will
discuss the eccentricity evolution in some detail in the next
section. Note, however, that whenever b [ 0 and bcc [ 0,
there is the possibility that the Yarkovsky-driven evolution
pumps up the eccentricity, provided the initial e is small and

A similar argument does not apply to the semimajors
P
^ 0.

axis because the coefficientequation (17a), (b
s
] ebsc) \SA sin vT vanishes when Indeed, our numericals

Q
^ 0.

results show that thermal e†ects always decrease the orbital
energy (that is, da/dt \ 0) for any reasonable orbital param-
eters.

For circular orbits, we have the obvious symmetry
T @(l ; h)\ T @(l] n ; n [ h), due to the fact that the tem-
perature histories at latitudes symmetric with respect to the
bodyÏs equator are shifted by half a revolution. Then we
have and therefore Thisb \ bcc\ bsc\ 0, (de/dt) o

e/0P e.
result agrees with those of Rubincam (1995, 1998).

Finally, an obvious feature of the seasonal Yarkovsky
e†ect is that equations are invariant under the(17a)È(17c)
inversion of the spin axis orientation (s ] [s), since in this
case all the b quantities change their sign.

Of course, so far we have neglected the fact that besides
the Yarkovsky e†ects expressed by equations (17a)È(17c),
planetary perturbations also a†ect the mean orbital ele-
ments of asteroid fragments. These perturbations typically
act over shorter timescales, 104È106 yr, so it is somewhat
artiÐcial to consider thermal e†ects independently of them.
However, the nonconservative character of the Yarkovsky
e†ect, resulting in a signiÐcant semimajor axis decay, is an
essential di†erence between the two types of perturbations.
Therefore, at least as far as we are mainly concerned with
the semimajor axis evolution, we can separate gravitational
and Yarkovsky-driven perturbations.

3.3. Generalization to Spheroidal Bodies
We are now going to generalize the previous results to

the case of bodies of spheroidal shape rotating around their
axis of symmetry (or having a small nutation angle ; see

for some basic geometrical resultsVokrouhlicky� 1998b
about the ellipsoids of rotation). The ratio of the polar
radius to the equatorial radius of the bodies willR

A,p R
A,ebe denoted by We discuss both oblate (e \ 1)e \ R

A,p/RA,e.and prolate (e [ 1) spheroids (similar thermal models for
ellipsoidal bodies have been discussed by Brown 1985,

and where the resultsLagerros 1996, Vokrouhlicky� 1998b,



No. 4, 1998 ASTEROIDAL FRAGMENTS 2037

have been applied to the diurnal Yarkovsky e†ect). Inter-
estingly, only minor modiÐcations of the previous formula-
tion are needed. In particular, the averaged heating function

now reads(14)

E1 @(l ; h) \ t
nJ4(h)

(e2 sin h sin h0 sin /
*

] /
*

cos h cos h0) ,

(20)

with a modiÐed deÐnition of the auxiliary angle /
*

:

cos /
*

\
7[1
[e~2 cot h cot h0

1

for h \ h~ ,
for h ½ (h~, h

`
) ,

for h [ h
`

.
(21)

Similarly, the latitude angles are now givenh
B

by cot h
B

\
It is also useful to introduce the auxiliary func-<e2 tan h0.tions (n \ 1, 2, . . .)

J
n
(h) \ Jen sin2 h ] cos2 h . (22)

The spin axisÈoriented thermal in this caseacceleration (16)
becomes

a
S
(l) \ [ 4a

3
A

r
a2
P
~1

1
d(cos h)

cos h
J24(h)

T @4(l ; h) , (23)

where Apart from these modiÐcations,A
r
4 nR

A,p2 C/Mc.
our method and results are unchanged.

4. EXAMPLES

4.1. Preliminary Tests
As the secular orbital decay is the most distinctive feature

of the seasonal Yarkovsky e†ect, we Ðrst assess the depen-
dence of the averaged transverse acceleration component
ST T on the mean semimajor axis a. whoRubincam (1995),
developed a linearized model for the thermal response to
external heating in the plane-parallel geometry (large-body
case), obtained for circular orbits the analytical result

ST T
R

P [ '1
1 ] 2'1 ] 2'12

Asin c
a
B2

, (24)

where (see Depending'1\ #
n
/2 P a3@4 Rubincam 1995).

on the proportionality constant of this relationship, we
have two extreme cases : (1) if we have approx-'1> 1,
imately which is a good match to the behav-ST T

R
P a~5@4,

ior of regolith-free basaltic fragments ; and (2) if instead
we get which holds approximately'1? 1, ST T

R
P a~11@4,

for metal-rich fragments (both cases are shown in Fig. 3 of
We remind the reader that in all cases theRubincam 1995).

transverse force decreases slower than the diurnal Yar-
kovsky e†ect (DY), for which we have ST TDY P a~7@2
(Radzievskii 1952 ; Peterson 1976 ; Vokrouhlicky� 1998a).

On the other hand, our formula for the averaged trans-
verse force component is more complex :

ST T P [ 1
a2
P
~1

1
d(cos h)

cos h
J24(h)

] S(s
Q

cos v[ s
P

sin v)T @4(l ; h ; #
n
)T , (25)

where we have evidenced the functional dependence of the
temperature solution on the thermal parameter #

n
P a3@4.

There is also a ““ hidden ÏÏ dependence of ST T on e and c
through the dependence of the heating function on theE1 @

solar latitude which, in turn, depends on sin c as givenh0,
by and the dependence of t on the eccentric-equation (11),
ity as given by equation (15).

Of course, the dependence of the orbit-averaged quan-
tities, such as ST T, on the parameter disappears for circu-uü
lar orbits. Thus, in this case we can set without loss ofuü \ 0
generality. Then, if we try to Ðt the relationship between
ST T and a with a power law, ST T P am, in the basalt
case and assuming sin c\ 1, we obtain m\(#0\ 0.32)
[1.623^ 0.012. This conÐrms the slow decrease of the sea-
sonal Yarkovsky e†ect for increasing orbital radii. On the
other hand, in the metal case we obtain(#0^ 2),
m\ [2.124^ 0.007. shows the dependence ofFigure 2
ST T on a in both cases, assuming circular orbits and the
spin axis in the orbital plane. We see that the draglike e†ect
on metal-rich objects decays much faster for increasing dis-
tances from the Sun, in agreement with the Ðndings of
Rubincam (1995).

shows the mean transverse accelerationsFigure 3 (24)
and for circular orbits of radius a \ 1 AU, as a function(25)
of (or, equivalently, in RubincamÏs notations ; this#0 '1Ðgure should be compared with Fig. 3 in Rubincam 1995).
Recall that so that small values of correspond#0P !, #0to lower thermal inertias (and vice versa). The results in
Figures and suggest that linear solu-2 3 RubincamÏs (1995)
tion somewhat overestimates the mean Yarkovsky drag, as
expected by Rubincam himself, who applied (e.g., in his
Figs. 4 and 5) a 25% reduction to his estimated acceler-
ations to account for nonlinear e†ects. Actually, we veriÐed
in detail RubincamÏs remark (see the Appendix of his paper)
that the linear approximation smears a bit the temperature
variations over one revolution, but it overestimates signiÐ-
cantly the thermal lag between the maximum radiation
heating and the maximum amplitude of the Yarkovsky
force. The net result is a somewhat larger average force in
the linear approximation than from our nonlinearized
approach. At and c\ 90¡, the discrepancy is#0^ 1.62
about 15%, and it grows slightly at lower obliquities. This is
due to the fact that the dependence of ST T on c is somewhat
steeper than in RubincamÏs theory. If we Ðt to our results a
power-law relationship such as ST T P sinm c, we obtain (in

FIG. 2.ÈAveraged along-track component of the seasonal Yarkovsky
acceleration vs. orbital distance a (in AU) from the Sun. Circu-[ST T/A

rlar orbits and spin axis in the orbital plane (c\ 90¡) have been assumed.
Two types of material have been considered : (1) basalt, with #0^ 0.32,
and (2) metal, with The solid lines correspond to the nonlin-#0^ 1.62.
earized (numerical) solution of this paper, the dashed lines to the linear
(analytical) solution of Rubincam (1995).
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FIG. 3.ÈPlot of vs. the thermal parameter Circular[ST T/A
r

#0(P!).
orbits at a \ 1 AU are assumed. Di†erent obliquity angles c have been
considered : (1) c\ 90¡, (2) c\ 60¡, and (3) c\ 30¡. The solid lines corre-
spond to the nonlinearized (numerical) solution of this paper, the dashed
lines to the linear (analytical) solution of The typicalRubincam (1995).
ranges of values of in both the basalt and the metal-rich case and for#0,orbital radii ranging from 1 to 3 AU, are also shown.

the basalt, circular-orbit case) m\ 1.956^ 0.006, to be
compared with RubincamÏs result ST T

R
P sin2 c.

Next, we compare the e†ects on spherical and spheroidal
objects, the latter characterized by a Ñattening parameter e.
Assuming again c\ 90¡ and circular orbits (e\ 0), we
compare objects with the same mean ratio between the geo-
metric cross section in the direction of the Sun and mass. If
J denotes the integral on the right-hand side of equation

we obtain(25),

ST Te
ST T1

\ p(e)
Je
J1

, (26)

with the function p(e) given by

p(e) \ n
2

e2
E(J1 [ e2)

for e \ 1 , (27a)

p(e) \ n
2

e
E(J1 [ 1/e2)

for e [ 1 , (27b)

where E(m) is the complete elliptic integral of the second
kind. can be obtained fromEquation (27b) equation (27a)
by the use of the complex transformation of the elliptic
functions (see, e.g., The subscript ““ e ÏÏVokrouhlicky� 1998b).
indicates that the corresponding quantity has been com-
puted for a spheroid with Ñattening e, while the subscript
““ 1 ÏÏ indicates the same variable computed for a spherical
body (e \ 1). If we choose a di†erent way of comparing
spherical and Ñattened bodies, would stillequation (26)
hold, but with a di†erent p(e) correspondence function. For
instance, if we compare objects with the same mass, we have
simply p(e) \ e4@3. shows the for di†erentFigure 4 ratio (26)
values of the thermal parameter and the two comparison#

nmethods mentioned above. Because of the relation #
n
P

we can interpret these curves as corresponding to#0 a3@4,
di†erent materials or to di†erent mean distances from the
Sun. The Ðgure shows that for moderate values of e, say,
between 0.5 and 2, the draglike acceleration changes by a
factor of the order of 2 with respect to the spherical case and
even more for more extreme shapes. Of course, real frag-

FIG. 4.ÈThe ratio of the seasonal Yarkovsky along-trackST Te/ST T1accelerations for Ñattened and spherical bodies, vs. the Ñattening param-
eter Two methods are used to perform this comparison : (i)e \ R

A,p/RA,e.objects having the same mass (dashed curves), and (ii) objects having the
same ratio between the mean cross section with respect to the Sun and
mass (solid curves). In each case, three di†erent values of the thermal
parameter have been assumed: (1) (2) and (3)#

n
#

n
\ 0.32, #

n
\ 1, #

n
\ 2.

ments have more irregular (e.g., triaxial) shapes than simple
spheroids, but typically their axial ratios are of the order of
2 (see, e.g., et al. et al. and weCatullo 1984 ; Giblin 1994),
can expect that the discrepancies with respect to the ideal-
ized spherical case are about the same as for the spheroids.

4.2. Yarkovsky Seasonal E†ect for Planar Orbits
To investigate the orbital evolution of fragments under

the Yarkovsky seasonal e†ect, we Ðrst deal with a simpliÐed
case. We neglect planetary perturbations and assume that
the spin axis of the fragment lies in the orbital plane and
keeps a constant direction. In this case, c4 90¡ and s

n
4 0 ;

we arbitrarily choose s \ (1, 0, 0)T. thenEquation (17b)
gives n \ constant, namely, a constant orientation of the
orbital plane, as expected. In this case, we can simplify our
notations by choosing the reference system so that n \ (0, 0,
1)T, leaving only two nontrivial components and ofK1 K2the Lenz vector. In a similar way, the vectors P \ (P1, P2,0)T and 0)T have only two nontrivial com-Q \ ([P2, P1,ponents in the XY reference plane, and the orbital eccen-
tricity can be expressed as Thee\ oK o\ (K12] K22)1@2.longitude of pericenter - and the parameter can be easilyuü
obtained by the relationships -, sin -) \(K1, K2) \ e(cos
e(sin [cos The dynamical equations for the threeuü , uü ).
independent variables (a, readK1, K2)

eg
Ada
ds
B
t
\ [ 2

Ja
M(b

s
] ebsc)K1

] [e(b ] bcc) ] (1 ] e2)b
c
]K2N , (28a)

e2
g
AdK1

ds
B
t
\ [ 1

aJa
[(bsc] eb

s
)K12

] (2bcc [ b ] eb
c
)K1K2 [ bsc K22] , (28b)

e2
g
AdK2

ds
B
t
\ [ 1

aJa
[(b[bcc)K12] (2bsc]eb

s
)K1K2

] (bcc] eb
c
)K22] b ] eb

c
] . (28c)

Note that here all the b quantities depend on semimajor
axis a and eccentricity e through their dependence on the
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thermal force integral A(l). Therefore, this system of equa-
tions is highly nonlinear and has been integrated numeri-
cally. There is a symmetry that helps in limiting the range of
pericenter longitudes to be considered : if is a(a ; K1, K2)solution of equations then (a ; is(28a)È(28c), [K1, [K2)also a solution (note that when -] -] n, the b quantities
change their sign).

To integrate equations we have selected the(28a)È(28c),
following initial conditions : a \ 2.5 AU, e\ 0.25, and - in
the range (0¡, 180¡). illustrates the results for a setFigure 5
of Ðctitious bodies, with each curve corresponding to an
object with a di†erent initial value of -). All bodies are
assumed to be regolith-free basalt spheres of radius R

A
\ 50

m. The ticks along the curves correspond to intervals of 250
Myr. Of course, for smaller objects, the orbital evolution
would be faster (see the discussion in Several conclu-° 3.2).
sions can be drawn from these results.

As for the rate of semimajor axis decrease, we conÐrm the
result of that a time of the order of 0.5È1Rubincam (1995)
Gyr is required to bring fragments 50 m in radius from the
main asteroid belt to a Mars-crossing orbit. Interestingly
enough, the semimajor axis decay process is almost inde-
pendent of the particular value of and can be approx-uü
imately expressed by a simple relation of the form
a(0)[ a(s) P s0.98.

A novel result of our approach concerns the behavior of
the eccentricity. Whereas linearized models such as those
discussed by Rubincam indicate that the sea-(1995, 1998)
sonal Yarkovsky e†ect should always circularize orbits, we
Ðnd that both secular increases and decreases of the eccen-
tricity are possible, depending on the initial position of the
pericenter. Actually, despite the fact that the value of the
eccentricity averaged over the entire range ofderivative (19)
pericenter arguments is always negative, inspection of

would suggest a mean tendency to increase theFigure 5
eccentricity. The reason for this is the following : whenever
we do not ““ force ÏÏ the pericenter argument to circulate, due
to planetary and other perturbations (as it will be discussed
below), its secular Yarkovsky-driven evolution is attracted

FIG. 5.ÈYarkovsky-driven orbital evolution of Ðctitious basalt frag-
ments in the a (semimajor axis in AU) vs. e (eccentricity) plane. Ticks
correspond to intervals of 250 Myr for objects 50 m in radius ; for smaller
objects, evolutionary times would be shorter. Here the spin axis is assumed
to lie in the orbital plane and we have used four di†erent initial(s

n
\ 0),

values of the pericenter longitude - : (1) -\ 0¡, (2) -\ 45¡, (3) -\ 90¡,
and (4) -\ 135¡. The Earth- and Mars-crossing curves are also shown
(neglecting the planetary eccentricities).

by a particular value, for which the eccentricity derivative is
positive.

4.3. Planetary Perturbations and Spin Axis Precession
An artiÐcial feature of the previous examples of orbital

evolution is that the pericenter longitude -, and conse-
quently the parameter were assumed to drift very slowlyuü ,
due to the Yarkovsky perturbation only. shows theFigure 6
cumulative change d-(t)\ -(t) [ -(0) as a function of time
for the four cases shown in However, there are atFigure 5.
least two reasons why in reality - and/or undergo auü
rather fast circulation (with typical periods in the range
104È105 yr) : (i) planetary perturbations on the orbit, and (ii)
forced precession of the fragmentÏs spin axis in the solar
gravity Ðeld, leading to the corresponding changes in the uü
variable. As a consequence, the intervals of increase/
decrease of the orbital eccentricity, corresponding to di†er-
ent values of are rapidly following each other, and whatuü ,
matters is only the average evolution. We are now going to
show that in this case the averaged trend is to slowly
decrease the eccentricity. First we discuss the planetary per-
turbation terms in equations while keeping con-(28a)È(28c),
stant the orientation of the fragmentÏs spin axis, and then
we include the spin axis precession.

4.3.1. Planetary Secular Perturbations

Remaining in the frame of a planar problem and identify-
ing now the XY -plane with the mean ecliptic, we repeated
our investigation of the combined secular planetary pertur-
bations and the seasonal Yarkovsky e†ect on the motion of
the asteroidal fragments, described in & Fari-Vokrouhlicky�
nella Our analytical treatment of the planetary terms(1998).
is based on the averaged perturbing potential developed to
a very high order in the fragmentÏs orbital eccentricity (15th
order). In our previous work & Farinella(Vokrouhlicky�

we considered only a very simple model for the1998),
thermal e†ects, namely, a secular change of the semimajor
axis, whereas now we take into account all three equations

for the Yarkovsky perturbations of semimajor(28a)È(28c)
axis, eccentricity, and longitude of perihelion. Such a model
is useful to describe accurately the strong perturbations
a†ecting the orbital elements when the mean semimajor
axis crosses the secular resonance at the inner edge of thel6

FIG. 6.ÈYarkovsky-driven evolution of the argument of pericenter -
where is the starting value, in degrees) vs. time (in Myr).(d-\- [ -0, -0The four cases are the same shown in Fig. 5.
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main asteroid belt (at this resonance, the rate of perihelion
longitude becomes equal to the proper frequency of theg6planetary system). Of course, the semimajor axis is changed
by the thermal e†ects alone, according to equation (28a).

In general, our current results agree well with those
described in & Farinella As shown inVokrouhlicky� (1998).

when compared with the evolution illustrated inFigure 7,
the main di†erences are (i) the high-frequencyFigure 5,

oscillations due to the planetary terms and (ii) the sudden
eccentricity growth due to resonance crossing (at a semi-l6major axis of about 2.10 AU). Apart from the resonance
crossing, also shows an underlying very slowFigure 7
secular decrease of the mean eccentricity, due to the Yar-
kovsky e†ect. The time span of the integration is about 700
Myr, consistent with the Yarkovsky semimajor axis decay
resulting from Figure 5.

It is also interesting to note that the Yarkovsky pertur-
bation of the perihelion longitude is small enough not to
a†ect signiÐcantly the position of the resonance, which isl6mainly determined by the planetary terms. Quantitatively,
according to the thermal perturbations contributeFigure 6,
only B10~4 arcsec yr~1 to the perihelion precession rate,
compared with about 27.5 arcsec yr~1 at the resonance.l6

4.3.2. Spin Axis Precession and T hree-dimensional Orbits

Let us brieÑy discuss the problem of the fragmentÏs spin
axis orientation, which so far has been assumed to lie in the
orbital plane. In general, the spin axis undergoes a complex
evolution that, if we leave aside the random component due
to collisions, can be approximately split into to two di†er-
ent modes : (i) free precession and (ii) forced precession due
to the solar gravitational torque.

First, we can estimate the typical periods for the two
modes. Assuming a homogeneous spheroidal body having
polar and equatorial radii and (withR

A,p R
A,e e \R

A,p/RA,eas before), we obtain (1[ e2)/2 for the dynamical Ñattening
*4 (C[A)/C of the body (here C and A are the moments
of inertia along the polar and equatorial axes). It follows
that the ratio of the free-precession period to the propertfreerotation period is approximately given bytrot tfree/trot ^ 1/*

For a reasonable range of values of e, we(Beletskii 1975).

FIG. 7.ÈE†ects of the secular planetary perturbations and the seasonal
Yarkovsky force on the orbital evolution of a stony body 50 m in radius.
As in the evolution is shown in the a vs. e mean element plane. TheFig. 5,
initial conditions are the same as for curve 2 in and the integrationFig. 5,
time span is about 700 Myr. The Earth- and Mars-crossing curves are also
shown (dashed lines).

can estimate that the free precession period is at most of the
order of a few days, even assuming that is as long astrotseveral hours. This timescale is much shorter than the
averaging period of one revolution around the Sun. There-
fore, the free precession mode can be neglected, simply by
considering the averaged orientation of the spin axis (which
coincides with the spin angular momentum vector) instead
of its instantaneous orientation.

The situation is quite di†erent in the case of the forced
precession due to the solar gravity Ðeld. We can estimate its
period as where is the orbitaltfor tfor B n(trev/trot)(trev/*), trevperiod, and obtain values of 105È106 yr for These valuestfor.are much longer than the averaging time trev.In order to assess the inÑuence of the spin axis precession
on the Yarkovsky orbital e†ects, we neglect the forced nuta-
tions and assume that the solar torque just causes s to
precess uniformly around the normal to the mean orbit. In
this case, (ds/dt P s Â n), and using our variables we have

c\ constant , (29a)

duü
dt

^ [ 3
2

*
(1 [ e2)3@2

n2
urot

cos c (29b)

(e.g., Here n is the orbitalFitzpatrick 1970 ; Beletskii 1975).
mean motion as before and is the rotational frequency.urotAssuming for instance *^ 0.1, hr, and e^ 0, thetrot ^ 3
resulting forced precession period is about 0.02 a3/cos c
Myr.

We have integrated together with theequation (29b)
system (17a)È(17c) for a Ðctitious body having *\ 0.1 and

hr. The initial orbital elements were a \ 2.5 AU,trot \ 3
e\ 0.25, I\ 10¡, and )\ u\ 0. The initial spin axis
orientation was speciÐed by andc\ 82¡.9 uü \ 135¡. Figure

shows the evolution of the orbit in the a versus e mean8
element plane. For the sake of comparison, we have also
plotted the evolution assuming a constant spin axis orienta-
tion (note that in this case the parameters are very close to
the case 2 integration of The forced precessionFig. 5).
a†ects the evolution in two ways : (i) the eccentricity under-
goes long-term oscillations with the precessional period
(their amplitude is too small to be noticed in the scale of

FIG. 8.ÈYarkovsky-driven evolution of the mean orbital elements of a
50 m basalt fragment in the a (semimajor axis in AU) vs. e (eccentricity)
plane. (1) The solid curve corresponds to a fragment whose spin axis
undergoes the forced precession due to the solar torque and (2) the dashed
curve to a fragment with a constant orientation of the spin axis. Ticks are
at intervals of 100 Myr.
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and (ii) the eccentricity shows a secular decrease,Fig. 8),
instead of the increase found in the constant spin axis case.
The latter result conÐrms our remark that, although for
some values of the mean eccentricity is pumped up by theuü
thermal perturbation, the average over all possible values of

yields a net decrease of the eccentricity.uü
In this numerical example, we found that the inclination

and the longitude of the node of the integrated orbit oscil-
late around their initial values. However, this is a peculiar
case. When the planetary terms are considered together
with the forced precession of the fragmentÏs spin axis, the
inclination, like the eccentricity, in general exhibits a slow
change. Of course, sudden jumps may occur at resonance
crossings, as discussed in & FarinellaVokrouhlicky� (1998).

5. CONCLUSIONS

The main results of this work can be summarized as
follows :

1. We have developed a new nonlinearized model for the
seasonal Yarkovsky e†ect acting on ““ large ÏÏ bodies (i.e., in
the plane-parallel approximation). By solving the corre-
sponding equations with a numerical technique, we have
found that the linear approximation of Rubincam (1995)
leads to an overestimation of the rate of semimajor axis
decay by about 15% for circular orbits.

2. Based on a generalization of our theory for spheroidal
bodies, we estimate that nonspherical shapes of asteroid
fragments can result in semimajor axis drift rates up to a
factor of 2 faster or slower than in the spherical case.

reports a similar conclusion in theVokrouhlicky� (1998b)
case of the diurnal Yarkovsky e†ect.

3. By introducing the seasonal Yarkovsky force in the
Gaussian perturbation equations, we have found that for
some orientations of the spin axis relative to the perihelion
direction a secular increase of the eccentricity may arise. In
the long term, if the spin axis were Ðxed and no other per-

turbation were present, the argument of perihelion would
always be ““ attracted ÏÏ to a value for which there is a secular
eccentricity growth. On the contrary, according to the esti-
mates from linearized models, Yarkovsky e†ects should
always circularize orbits.

4. When the circulation of the argument of the pericenter
due to planetary perturbations and/or the forced spin axis
precession are taken into account, the mean secular e†ect
on the eccentricity is a slow decrease. However, both for the
eccentricity and for the inclination, secular perturbations
are typically more important than Yarkovsky-driven
e†ects, especially when the semimajor axis decay leads to a
secular (or mean motion) resonance crossing.

A number of problems, not addressed in this paper, are
open to further investigations. An obvious generalization of
this work is to the ““ small body ÏÏ case, when the depth
reached by the seasonal thermal wave is comparable to or
larger than the size of the body. We also need to better
understand the interplay between Yarkovsky-driven secular
e†ects and planetary perturbations, especially near or at
secular and mean motion resonances. Finally, we need to
develop realistic models for the evolution of fragments spin
axes, in particular, under a Ñux of randomly oriented colli-
sions by projectiles spanning a wide range of masses. On the
observational side, we miss reliable estimates on the physi-
cal, thermal, and rotational properties of asteroid fragments
in the 1È100 m size range, where the seasonal Yarkovsky
e†ect is particularly important.

We are grateful to W. F. Bottke, W. K. Hartmann,
F. Marzari, D. P. Rubincam, and S. J. Weidenschilling
for useful discussions and comments. D. V. worked on
this paper while staying at OCA/CERGA, Grasse (France).
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Agency (ASI) and the Italian Ministry for University and
ScientiÐc Research (MURST).
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