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The rotation states of small asteroids and meteoroids are deter-
mined primarily by their collisions, gravitational torques due to
the Sun and planets (in the case of close encounters), and inter-
nal dissipative effects (that relax the free-precession energy toward
the fundamental state of principal-axis rotation). Rubincam has
recently pointed out that thermal reemission on irregular-shaped
bodies also results in a torque that may secularly change both the
rotation rate and the orientation of the spin axis (the so-called
YORP effect). Here we pursue investigation of this effect. Keep-
ing the zero thermal-relaxation approximation of Rubincam and
the assumption of the principal-axis rotation, we study the YORP
effect both for precisely determined shapes of near-Earth asteroids
and also for a large statistical sample of automatically generated
shapes by the Gaussian-sphere technique of Muinonen. We find
that the asymptotic state of the YORP evolution is characterized
by an arbitrary value of the obliquity, with higher but nearly equal
likelihood of 0◦/180◦ and 90◦ states. At the adopted approxima-
tion, the most typical feature of this end state of the YORP evo-
lution is secular deceleration of the rotation rate, which means
that at some instant collisions will randomize the rotation state.
In a minority of cases, the final state of the obliquity evolution
leads to a permanent acceleration of the body’s rotation, eventu-
ally resulting in rotational fission. The YORP-induced slow evolu-
tion may also play an important role in driving the rotation state
of small asteroids toward the resonances between the forced pre-
cession due to the solar torque and perturbations of the orbital
node and inclination. We find that for small Themis asteroids these
resonances are isolated in the relevant range of frequencies, and
the YORP evolving rotation may be either temporarily captured
or rapidly jump across these resonances. In contrast, the possi-
ble values of the forced precession for small Flora asteroids may
be resonant with clustered, nonisolated lines of the orbital pertur-
bation. The individual rotation histories of small Flora asteroids
may be thus very complicated and basically unpredictable. We
comment on possible astronomical consequences of these results.
c© 2002 Elsevier Science (USA)
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1. INTRODUCTION
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Small asteroids and meteoroids acquire their rotation states at
the instant of their birth as ejecta from a parent body (e.g., Love
and Ahrens 1997, Giblin and Farinella 1997). At later stages, mu-
tual collisions keep modifying the rotation state, which means
that the size–distribution collisional model needs to be consis-
tently coupled with the rotation rate–distribution model (e.g.,
Harris 1979, Farinella et al. 1992). Thus, none of the small Solar
System bodies have primordial rotation states that are steady
over a billion year timespan.

Though collisions represent the most extensively studied as-
pect of the long-term evolution of the small bodies’ rotation state,
other effects may be also involved. Recently, Rubincam (2000)
pointed out that the thermal radiation by a surface of an irregular-
shaped object results in a torque which may secularly affect both
the rotation frequency and the obliquity of the spin axis. Fol-
lowing Rubincam’s suggestion we shall speak about the YORP
effect (named after Yarkovsky–O’Keefe–Radzievskii–Paddack,
scientists who all contributed to this topic in the past). The cor-
responding time scale to change the rotation rate or obliquity is
unrealistically long for asteroids larger than ≈20 km in size, but
it becomes short enough for kilometer-sized (or smaller) bod-
ies. The YORP effect may require a timespan comparable, or
even shorter than, the collision time scale to significantly change
the rotation state (≈tens or hundreds of Myr) in this size range.
For decameter-sized meteoroid precursors, the YORP time scale
may even become so short that this effect would dominate over
collisions (Rubincam 2000). We note in advance that this con-
clusion may not be certain because the strength of the YORP
effect could be diminished by the finite conductivity of the me-
teoroid surface. This, as yet unaccounted for fact in the YORP
determination will be removed in the second paper of this series.
However, the YORP effect certainly continues to be an important
factor for modifying the rotation state of meteoroids.

The previous “YORP facts” are important as such, since they
may have interesting implications on the statistical distribution
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of the rotation periods of small asteroids, occurrence of close
binaries produced by rotational fission, etc. However, there is an
additional and very important implication of the YORP effect
related to the Yarkovsky orbital effect. Actually, both effects—
the Yarkovsky effect and YORP effect—have a common phys-
ical origin, namely, the surface recoil force due to the thermal
radiation of the body. The Yarkovsky effect has been studied
extensively over the past few years with a number of new ap-
plications related to the transport of meteorites toward the Earth
(e.g., Farinella et al. 1998, Hartmann et al. 1999, Bottke et al.
2000, Vokrouhlický and Farinella 2000), origin and transport
of large near-Earth asteroids (e.g., Farinella and Vokrouhlický
1999, Bottke et al. 2001a), processes in the asteroid families
(e.g., Vokrouhlický et al. 2001, Nesvorný et al. 2002, Bottke
et al. 2001b), or the possibility of directly detecting the
Yarkovsky orbital perturbations of the near-Earth asteroids (e.g.,
Vokrouhlický et al. 2000). It is well known that the Yarkovsky
effect sensitively depends on the orientation of the spin axis
(e.g., Rubincam 1995, 1998, Vokrouhlický 1998, 1999). This
mainly applies to the diurnal variant of the Yarkovsky effect,
which leads to an opposite orbital effect when the prograde ro-
tation of the body is changed by the retrograde rotation. Frequent
variations of the spin axis orientation thus diminish the result-
ing (accumulated) Yarkovsky orbital perturbation, and this may
have important implications on the relevance of the Yarkovsky
effect as described here. Note that thus far most of the developed
applications of the Yarkovsky effect do not include any (or just
very simplified) evolution of the spin axis orientation. We thus
need to understand whether some of the past investigations of
the Yarkovsky effect have to be modified if the YORP-induced
evolution of the spin axis is taken into account.

In this paper we investigate in a more quantitative detail the
YORP effect in Rubincam’s approximation. The major restric-
tion of this approach is that of zero thermal inertia of the surface
material. Following Rubincam (2000) we shall thus assume ef-
fectively immediate thermal reemission of the absorbed energy.
This assumption applies rather well for small asteroids, possibly
down to hundreds of meters across, that are likely covered with a
thin regolith layer. Our results for the YORP evolution of several
small asteroids, for which we use a very precise shape model
(mostly from the analysis of the radar ranging data), are therefore
justified. We shall demonstrate that the individual YORP results,
such as the asymptotic values of the obliquity and the rotation
rate, depend sensitively on the shape of the asteroid so that there
is “no generic YORP result.” To obtain information about “aver-
age YORP results” we need a larger statistical sample of objects
than the few real asteroids with accurately known shapes. To
that end, we analyze YORP results for a sample of small (syn-
thetic) asteroids generated by the Gaussian-sphere technique
introduced by Muinonen (e.g., Muinonen 1996, 1998). Moti-
vated by the analysis of the proper element dispersion in the
asteroid families (e.g., Nesvorný et al. 2002), we shall deter-

mine the characteristic YORP results (relevant time scales, etc.)
for small members of the Flora and Themis families.
´ AND ČAPEK

As already mentioned, the YORP effect is certainly not alone
in affecting the rotation state of small asteroids. Of major im-
portance are mutual collisions and, under certain circumstances,
gravitational torques due to the Sun or planets. In this paper we
neglect the collisional influence on rotation, since this appears
to be a complicated and, to some degree, separate problem, and
we focus on the long-term dynamical effects that influence the
rotation state of small asteroids. Apart from the YORP effect,
we pay attention to the role of the gravitational torque due to
the Sun. We show that the rate of the forced precession due to
this effect may resonantly beat with planetary perturbations of
the orbit. Obliquity may then undergo rapid jumps or periods of
random wandering on a large scale. The possible past histories
of the rotation of terrestrial planets, especially Mars, Venus, and
Mercury, may give an idea about the degree of chaotic effects that
are predicted here for small asteroids (e.g., Laskar and Robutel
1993). The YORP effect may be instrumental in driving the
rotation state of small asteroids toward these resonant phenom-
ena. Our analysis thus indicates that the rotation state evolu-
tion of small asteroids on a Myr time scale (or longer) may
be very complicated and it that may sensitively depend on the
asteroid shape (and its history, which may be sculpted by
collisions).

The assumption of zero thermal inertia, used throughout this
paper, is most likely violated for smaller bodies, such as
decameter- or meter-sized meteoroids, for the following two rea-
sons: (i) these bodies likely rotate fast, and (ii) their surface is
likely not insulated by regolith layer but characterized by much
higher thermal conductivity (affected possibly by porosity only).
We thus relegate a more detailed discussion of the YORP effect
on meteoroids to the second paper in this series. In particular, we
shall generalize the current YORP model by including the ther-
mal relaxation between the absorption of the solar radiation and
thermal reemission, there by relaxing the restrictive assumption
of the Rubincam approximation.

In the final paper of this series, we shall investigate the YORP
effect within a full-fledged formulation. This means that we shall
solve numerically the complete Euler’s equations for the rota-
tion state of the body on a secularly evolving orbit in the Solar
System. Gravitational torque due to the Sun, as well as the ther-
mophysical model of the YORP effect, will be included. Initial
rotation will not necessarily be constrained to the principal-axis
mode.

2. THEORY

Given a skin force df acting on a body at the oriented surface
element dS with a position vector r, referred to the center of mass
system, we can evaluate the total torque on the whole body as

T =
∫

r × df, (1)
where the integration is assumed over the whole surface. The
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recoil force df due to the thermally emitted radiation is given
by df � −2εσ T 4 dS/3, where ε is the thermal emissivity, σ is
the Stefan–Boltzmann constant, and T is the temperature. Note
the minus sign due to the recoil property of the radiation effect.
This formula holds for an isotropic (Lambertian) thermal emis-
sion law. Certainly this law only approximates the directional
properties of thermal emission of real objects, but a more com-
plex approach goes beyond the scope of this paper. However,
an even cruder simplification, which we are going to accept,
follows an estimation of the surface temperature T . In principle
we need a thermophysical model for its determination. Only at
the limit of zero thermal relaxation, satisfied when the surface
is highly insulating, can we further approximate from energy
conservation εσ T 4 � (1 − A)�(n · n0), if (n · n0) > 0 and the
element is not shadowed by another surface element; otherwise
εσ T 4 � 0. Here n is the outward normal to the surface element,
n0 is the direction toward the Sun, � is the solar flux at the dis-
tance of the body from the Sun, and A is the hemispheric albedo
(Vokrouhlický and Bottke 2001). Moreover, since albedo A is
typically small, and additionally a part of the radiation in the op-
tical band is also diffusely reflected (the same directional char-
acteristics as we assume for the thermal emission), we further
approximate (1 − A) � 1. Combining the previous results we
have

df � −2�

3c
(n · n0) dS (2)

(here again we set formally (n · n0) = 0 when the surface ele-
ment is not illuminated or shadowed). Following the suggestion
of Rubincam (2000) we additionally multiply df from (2) by a
“fudge factor” 2/3 to accommodate at a very rough approxima-
tion the effect of the surface thermal inertia. Though we shall
see in the next paper of this series that this approximation rather
weakly expresses the inertia effect, we keep the Rubincam for-
mulation in this paper.

The formula (2) for the infinitesimal surface force df is then
used in (1) to obtain the total radiative torque T. For a spherical
body we would have r ∝ n, which together with df ∝ n leads
trivially to the conclusion that the YORP torque vanishes. How-
ever, for a body of a generically irregular shape the torque T
does not vanish. After we specify the way that the body’s shape
is modeled, the integral in (1) is computed numerically as a sum
over infinitesimal surface facets.

Assuming then the principal-axis rotation of the body, we
obtain (e.g., Rubincam 2000)

dω

dt
= Ts

C
,

dε

dt
= Tε

Cω
(3)

for the rate of change of the rotation angular velocity ω and the

obliquity ε (hence cos ε = N · s, with N normal to the orbital
plane and s the spin axis). Here C is the principal moment of
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inertia around the spin axis and we define

Ts = T · s, Tε = T · e⊥, (4)

and e⊥ = (s cos ε − N)/ sin ε. Note a difference between our
variables and those used by Rubincam (2000). Namely, we sys-
tematically refer the projections Ts and Tε of the YORP torque T
to the spin vector (a unit vector of the rotational angular momen-
tum) and not to the body axis ez (hence we prefer the notation Ts

instead of Tz used by Rubincam). When the sense of rotation is
changed, or in other words the spin axis is inverted with respect
to the body (s → −s), the YORP torque T and the projection
Tε do not change their sign but the projection Ts does change
sign. With Eqs. (3) this means that when the spin axis is in-
verted with respect to the body the rotation is accelerated in one
case and decelerated in the other; the effect on obliquity is also
reversed, since the axis inversion means the obliquity transfor-
mation ε → 180 − ε. Another symmetry, involving averaging
over a circular orbit, will be discussed in the following.

Let us emphasize our assumption that the internal processes
resulting in dissipation of the free-wobble energy are strong
enough to maintain the shortest axis rotation state. In Section 3.3
we shall summarize the current knowledge of the strength of
these dissipative effects and we shall give the corresponding time
scale to align the generic rotation state toward the lowest energy
state. Note, however, that the YORP effect tends to destroy the
principal-axis rotation, since the projection of YORP torque on
all axes in the body frame are of comparable magnitude. This
is still true for the averaged quantities discussed in the follow-
ing. Only if the YORP evolution time scale were (much) longer
than the estimated time scale for the wobble dissipation would
principal-axis rotation be justified. We shall see that this is true
for multikilometer-sized asteroids, but it becomes questionable
for kilometer-sized objects. A thorough analysis of the YORP
effect in the non-principal-axis rotation state, with the YORP
contribution used to trigger this state, is beyond the scope of this
introductory paper. The third paper in this series will be devoted
to this problem.

Since we are interested in the long-term evolution of the rota-
tion state, it is appropriate to average Ts and Tε in the right-hand
sides of (3) over both rotation and revolution cycles. This pro-
cedure may require care in the case of a very slow rotation, but
in the majority of cases of interest the rotation period is sev-
eral orders of magnitude smaller than the revolution period. The
double averaging can therefore be performed in rotation and
revolution phase angles independently. Unlike in the case of the
torque due to the direct (absorbed) solar radiation pressure, the
YORP torque does not average to zero. For circular orbits, as-
sumed throughout this paper, the resulting averaged torques T̄s

and T̄ε depend on the obliquity ε. In the case of an eccentric orbit
the phase angle of the spin axis projection onto the orbital plane
would appear as a second parameter of the (T̄s, T̄ε) torques.
In assuming a circular orbit, we should notice another “sym-
metry” related to the spin axis inversion (not identical, however,
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to that just discussed). For a conserved sense of rotation, or in
other words a conserved position of the spin axis in the body-
fixed frame, we may be willing to investigate how the averaged
torques T̄s and T̄ε change at the inversion of the spin axis in
space. For a given instant of the revolution around the Sun, this
operation results in a different value of the YORP torque, since
a different part of the body’s surface is illuminated. However,
there is a symmetric configuration, as far as the surface illumina-
tion is concerned, after half revolution on the circular orbit. The
YORP torque projected onto the body-fixed axes is the same, and
thus so is the Ts quantity, but the Tε variable changes its sign.
As a result, the obliquity transformation ε → 180 − ε, with the
conserved orientation of the spin axis in the body-fixed frame,
results in the following (anti)symmetry of the averaged YORP
torques: T̄s(180 − ε) = T̄s(ε) and T̄ε(180 − ε) = −T̄ε(ε). Note
also the fine difference between this symmetry and the one ac-
companied by the spin axis inversion in the body-fixed frame.
In the latter case both T̄s(ε) and T̄ε(ε) change their sign.

Throughout the text we assume that the averaging approach
is applicable. In the real astronomical situations we have in
mind, this constrains the rotation period to be smaller than a
few months (a constraint that is essentially always satisfied). We
shall see in the following that the YORP evolution may result in
an asymptotic phase characterized by a permanent despinning
of the rotation. We should thus keep in mind that the adopted ap-
proximation, based on the averaging technique, does not allow
us to extrapolate this asymptotic phase too long. However, such
long periods are probably not relevant because of collisional
evolution, which is also neglected in this paper.

Adopting the preceding physical approximations we realize
that the appropriate modeling of the irregular shape of the body
is the most important issue. In the next two sections we briefly
explain our approach in this respect. We investigate about a
dozen cases of small asteroids for which the shapes are accu-
rately known. Unfortunately, this represents too small a sample
for characterizing statistically the YORP effect on the long-term
spin dynamics of asteroids. Therefore, in Section 2.2 we recall a
powerful technique for generating irregular-shaped (synthetic)
objects with mean characteristics fitting small asteroids. This
will allow us to produce a larger sample of objects for which we
may determine the “mean YORP effect” on their rotation state.

2.1. Polyhedral Model of the Asteroid Shape

Though the ellipsoidal shape model for small asteroids is by
far the most common and was thus used for computing their
lightcurves in majority of cases, real asteroids typically indicate
a much higher degree of irregularity. In addition, the fact that
the YORP effect depends sensitively on the asteroid shape, as
already noted by Rubincam (2000), prompts us to use a more
accurate shape model.

There are basically two approaches that are often used for de-

scribing of an arbitrarily shaped body: (i) spherical harmonics
development of the distance r (θ, φ) toward the surface along
´ AND ČAPEK

the direction characterized by the spherical angles θ and φ, and
(ii) polyhedral model consisting of a list of surface vertexes
and their identification as infinitesimal surface elements (facets).
Both methods have been used for shape modeling of planetary
satellites and small asteroids. The polyhedral model is clearly
a more general tool (e.g., Simonelli et al. 1993). First, fine sur-
face structures (such as crater morphology or linear faults) are
difficult to accommodate into a “reasonable-degree” spherical
model; yet they may have influence on the exact value of the
YORP torque. Second, the most irregular shapes cannot even
be described by a single series within the spherical harmonic
approach, since there might be several surface facets seen along
a given direction from the center of mass. This situation oc-
curs, for instance, in the case of the asteroids Kleopatra and
Geographos. These reasons led us to use the polyhedral model
description of the asteroid shape in this paper. A practical bonus
is the fact that the best-determined shapes of the near-Earth as-
teroids (except Eros), acquired by radar ranging, are directly
exported in this format. We thus use data of six detailed aster-
oidal shapes available from http://echo.jpl.nasa.gov/links.html
(their polyhedral approximation contains typically 4092 surface
elements; the finest model of Toutatis has 12,796 surface ele-
ments). The polyhedral model of asteroid 6053 (1993BW3) is
taken from Ďurech (2002). Additionally, we use data on asteroids
and martian satellites acquired through satellite observations and
available as spherical harmonics models [e.g., 24-degree Eros
data are available from http://near.jhuapl.edu/(see also Yeomans
et al. 2000) and a six-degree Deimos model is taken from
Rubincam et al. 1995]. In each of these cases we have trans-
formed the original data to a polyhedral model with typically
4000 surface elements. We started with nodes given by even
coverage of a sphere in latitude and longitude but then iterated
nodal positions so that the surface elements have approximately
the same area.

Given the goal of our study, we need to compute a number of
physical parameters of the studied objects: total mass (volume),
surface area, inertia tensor, etc. For that purpose we basically
follow the paper by Dobrovolskis (1996), generalizing it for a
few complicated cases with several surface facets in a given
(single) direction in the center of mass system.

A particular problem we faced when computing the YORP
torque is that of illumination of a given surface facet. Given a
frequent concave shape of small objects, there exists a possi-
bility that some surface elements may produce a shadow which
prevents illumination of other surface elements. Interestingly,
a similar problem is encountered in satellite geodesy, in par-
ticular for accurate determination of the atmospheric and ra-
diation drag on irregular-shaped artificial satellites. The most
precise approach, notably the individual ray-tracing technique
(e.g., Klinkrad et al. 1990), is typically a rather time-consuming
procedure. We have thus chosen a compromise between the com-
putational accuracy and computer-time demands. For all surface

elements we precomputed a list of other, potentially shadowing
facets. The minimum local zenith angle is also precomputed and
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stored in computer memory. A special test is then performed
when a potentially shadowing situation is detected in the course
of computing the YORP effect. Notably, we investigate whether
centers of the potentially shadowing facets are projected onto
the given surface element (as seen from the solar direction).

At a still higher degree of precision one should take into ac-
count self-irradiation of the irregular shape (i.e., thermal radia-
tion from one surface facet can illuminate another facet and thus
produce a corresponding radiation pressure). The ray-tracing
technique can tackle complexities of this kind, but we neglect
this effect in this study.

The precision with which we can compute the averaged values
of the YORP torques T̄s and T̄ε is limited mainly due to finite
area of the surface facets (modeled as planar). However, we have
verified that by taking more than 1000 facets, as we always do,
the YORP torques can be computed with at least 1% precision in
all our cases. The fact that the computed quantities are averaged
over the rotation and revolution cycles helps to diminish the error
of numerical evaluation of the resulting torques.

2.2. Gaussian Random Spheres

Muinonen (1996, 1998), following previous studies of the
Finish school dealing with light scattering on small, irregular
dust particles, pointed out that the Gaussian-sphere model is
a robust scheme for describing shapes of small Solar System
objects (asteroids and comets). Within this model, radii of a
large sample of the objects satisfy log-normal statistics with a
variance σ and a characteristic dimensional factor a (if properly
scaled). In the center of mass system the radius r (θ, φ) in a
direction given by spherical angles θ and φ may be expressed as

r (θ, φ) = a√
1 + σ 2

exp[s(θ, φ)], (5)

where the s(θ, φ) function obeys spherical harmonic develop-
ment,

s(θ, φ) =
∞∑

�=0

�∑
m=0

Pm
� (cos θ )(a�m cos mφ + b�m sin mφ). (6)

The coefficients (a�m, b�m) of these series are independent
Gaussian random variables with zero mean and variance reading

β2
�m = (2 − δ�0)

(� − m)!

(� + m)!
c� β2, (7)

with β2 = ln(1 + σ 2) and δ�0 the Kronecker symbol. The model
then depends on the variance σ of the distribution of surface
heights and on a set of parameters c� from (7). These latter
parameters describe how the height anomalies fluctuate over
the sphere, or more precisely they describe autocorrelation of
the log radii for a given angular distance of two surface ele-

ments. A convenient single parametric choice for this autocor-
relation function was suggested by Muinonen (1996); the sec-
F SMALL ASTEROIDS 453

ond Gaussian-sphere model parameter is then �, the correlation
angle of the surface fluctuations. This model was later general-
ized by Muinonen (1998), who constructed the autocorrelation
function of surface heights at given angular distance by a lin-
ear combination of two different functions of � (the weighting
factor represents then an additional parameter of the model).

The most relevant, in our context, is then the work by
Muinonen and Lagerros (1998). These authors analyzed accu-
rately known shapes of 14 asteroids to verify whether they satisfy
the Gaussian-shape hypothesis. They obtained the best estimates
of the parameters (σ, �) for their sample of asteroids, and also
for a subset of 7 small asteroids (with sizes smaller than 10 km).
In what follows we generate a large sample of “synthetic” shapes
of small asteroids, represented by the Gaussian spheres with the
previously mentioned parameters determined by Muinonen and
Lagerros (1998) for small asteroids. Notably, we haveσ = 0.274
and � = 30.9◦; in fact we consider directly the values of c� as
determined by Muinonen and Lagerros (1998) and accept a cut-
off at � = 10 (see Table 5 of this reference). The scale parameter
a, in Eq. (5), is obviously arbitrary and we typically fix its value
at 1 km. As already indicated, we then convert each of the gen-
erated objects in the finite-element triangulation of the surface
(polyhedral model); for the sake of statistical tests that follow we
use 1004 surface elements. Figure 1 shows four typical synthetic
asteroids in our sample.

Figures 2 and 3 show distribution of the dynamical ellip-
ticity (C − (A + B)/2)/C and the triaxiality factor A/B for
a sample of 1000 Gaussian random spheres generated by this
procedure. Symbols indicate the values of the same parameter
for the few real asteroids (and Deimos) with accurately known
shape. Figure 2 confirms that the small Solar System objects
are significantly different from spheres with a typical dynamical

FIG. 1. Typical shapes of four synthetic asteroids generated by the
Gaussian-sphere method; statistical parameters of the model correspond to those

determined for small asteroids by Muinonen and Lagerros (1998). Each of the
objects is represented by a polyhedral model with 1004 surface elements.
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FIG. 2. Distribution of the dynamical ellipticity (C − (A + B)/2)/C for
a set of 1000 generated artificial objects by the technique described in the text.
The peak value is at about 0.3; symbols denote values of this parameter for the
nine asteroids and Deimos, for which we have precise shape models from the
inversion of the radar data or satellite observations.

ellipticity value of ≈0.3. The distribution of both variables for
the synthetic Gaussian spheres represents relatively well the den-
sity determined from real asteroid data. This confirms that our
synthetic asteroids describe the asteroid population realistically.
A curious exception is the ≈30-m-sized asteroid 1998KY26
(Ostro et al. 1999b).

3. RESULTS AND DISCUSSION

Hereafter we shall demonstrate the possible diversity of the
YORP results through the parameter dependence of the averaged
torques T̄s and T̄ε [see Eqs. (4)]. In particular, we find that the
YORP effect on these few asteroids, which basically differ just
by their shape, may span all possible combinations of results.
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FIG. 3. Distribution of the triaxiality parameter A/B for a set of 1000
generated artificial objects by the technique described in the text. The peak value
is at about 0.7; symbols denote values of this parameter for the nine asteroids and

Deimos, for which we have determined precise shape models from the inversion
of the radar data or satellite observations.
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After classifying these individual results, essentially according
to the dependence of T̄ε on the obliquity (with circular orbits
assumed), we perform a statistical study to understand which of
the different cases is the most typical. To that purpose we use a
sample of 500 Gaussian random spheres generated as described
in Section 2.2.

Though we use shapes of real (mostly near-Earth) asteroids
we relegate the results to a single value of distance from the Sun,
notably 2.5 AU. It is easy to understand from Eq. (2) that the
results for the averaged torques scale as ∝1/d2, with d being
the mean distance from the Sun. Similarly, though in all cases
of real asteroids we keep their true dimensions, it is easy to
see that T̄s and T̄ε scale as ∝1/L2, where L is the linear scale
of the object. In the case of a statistical sample of Gaussian
spheres (Section 3.1.5), we set a = 1 km for the scale parameter
in Eq. (5). If qualitative results are reported, we always assume
homogeneous bodies with a density of ρ = 2.5 g/cm3. If another
density is more appropriate, such as for the C-type asteroids, the
magnitude of the YORP torques scales as ∝1/ρ.

3.1. Examples of the YORP Results

3.1.1. Type I: Eros, 1998KY26, 6053, and Toutatis

Figure 4 shows the averaged YORP torques T̄s/C and T̄ε/C
from the right-hand sides of Eqs. (3) for an Eros-shaped ob-
ject at 2.5 AU. Obviously, we adopt the real orientation of the
spin vector in the Eros’ body-fixed frame as it corresponds to
the real asteroid; only the obliquity (today’s value for Eros is
≈82◦ is allowed to span the entire (0, 180) degree interval. As
already discussed, the averaged YORP torques then satisfy the
following properties of (anti)symmetry: T̄s(ε) = T̄s(180 − ε)
and T̄ε(ε) = −T̄ε(180 − ε). The result from Fig. 4 corresponds
to that of Rubincam (2000) qualitatively, but as far as the
quantitative value is concerned Rubincam indicates YORP to-
rques ≈3 times larger. We have checked our result several times
and believe that it is correct. Nonetheless, this minor difference
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FIG. 4. Obliquity dependence of the averaged YORP torques T̄s (dashed

line) and T̄ε (solid line) for an Eros-shaped object at a circular orbit with radius
of 2.5 AU. The torques are divided by the principal moment of inertia C .
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cannot change any of the conclusions from either our or Rubin-
cam’s work. Notice, in particular, that the positive value of T̄ε

in the (0◦, 90◦) obliquity range means that the YORP evolution
always asymptotically reaches εf = 90◦ obliquity. Since T̄s is
negative at this value of obliquity, the final state of the YORP
evolution corresponds to a permanent deceleration of the rota-
tion. Note, however, that T̄s is positive up to obliquity of 62◦,
which means that in the course of the YORP evolution the body
may undergo a phase of spinning up of its rotation. This evolution
characterizes type I cases in our classification. A similar result
was found for asteroids 1998KY26 and 6053 (1993BW3), and
Rubincam (2000) reports the same result for Gaspra and Ida.

The strength of the YORP effect may be illustrated in the case
of the small asteroid 1998KY26. Rubincam (2000) argued that
a characteristic time scale for doubling the rotation period is
given by ≈Cω/T̄s . Applying this estimation to 1998KY26 with
a mean value of T̄s ≈ 10−15 s−2, we obtain a doubling of its
rotation period in only ≈104 years. This is a surprisingly short
time. We anticipate that a more complete YORP model, which
includes the effects of the thermal inertia of the surface (which is
neglected here but is likely for such a small object), may prolong
this time scale by a factor ≈10–100. Still, a 0.1–1 Myr timespan
to significantly alter the rotation state of 1998KY26 (or similar
objects) is smaller than the dynamical lifetime of its orbit. It is
also interesting to note that the rotation period of 1998KY26
has been measured with �4 × 10−5 fractional uncertainty dur-
ing the 1998 observational campaign. Considering our result,
its fractional change due to the YORP effect in 26 years, at the
next close approach to the Earth in May 2024, is expected to
be �5 × 10−3. We thus predict that the YORP effect is likely to
be observable for this object. The previous conclusion also con-
firms that the YORP effect should still be important for obliquity
evolution of the meteorite precursors. Implications of this fact
in a combined model with their Yarkovsky delivery toward the
Earth (e.g., Bottke et al. 2000, Vokrouhlický and Farinella 2000)
needs to be studied in the future.

Finally, we mention that the YORP effect on a Toutatis-shaped
object was found of this type I (Fig. 5). We should, however,
recall that here we assumed the principal-axis rotation of a
Toutatis-shape object. Rather than indicating the YORP effect
on the real Toutatis we are thus reporting a result for a ficti-
tious asteroid of the same shape (Toutatis is presently in a tum-
bling rotation state; Ostro et al. 1999a). An interesting feature of
the YORP solution of the principal-axis rotator of the Toutatis-
shaped body is a permanent deceleration of the rotation period
(T̄ s is always negative).

3.1.2. Type II: Deimos and Kleopatra

Deimos presents an inverted case of the Eros results (see
Fig. 6); namely, T̄ε is negative in the (0◦, 90◦) obliquity range. As
a result, the asymptotic obliquity value of the YORP evolution is
εf = 0◦ (or 180◦, depending on the initial value of ε). The asymp-

totic despinning of the rotation (T̄s(0) < 0 and T̄s(180) < 0) is
a common feature with the previously discussed type I cases.
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FIG. 5. The same as in Fig. 4, except for a Toutatis-shaped object rotating
along its shortest principal axis.

Rubincam (2000) noticed this “anomalous” behavior of YORP
on Deimos, but he artificially inverted the rotation axis with re-
spect to the body (or the sense of its rotation). He rightly noted
that the inversion causes Deimos to despin rather than to spin
up its rotation for the given value of the obliquity, but he missed
the point that the asymptotic YORP state is despinning in both
cases.

The YORP effect on Kleopatra is qualitatively the same as for
Deimos, but its larger size makes the YORP effect on this partic-
ular body negligible. The YORP time scale to double Kleopatra’s
rotation period is of the order of 1000 Gyr, an entirely irrele-
vant number from the astronomical point of view. However, a
kilometer-sized object of Klepatra’s shape would double its ro-
tation period in ≈100 Myr only (thanks to the quadratic scaling
of the YORP torques in the objects size).

3.1.3. Type III: Castalia and Geographos

The third type of our classification is represented by Castalia
(see Fig. 7). The value of T̄ε is positive up to some critical value
ε� of the obliquity, while for large values it becomes negative
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FIG. 6. The same as in Fig. 4, except for a Deimos-shaped object.
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FIG. 7. The same as in Fig. 4, except for a Castalia-shaped object.

(ε� � 30◦ for Bacchus). This means that ε� (or 180 − ε�) is the
asymptotic value of obliquity that is reached by the YORP evolu-
tion at large time. Castalia’s peculiarity is because the T̄s torque
is always positive. This latter fact means that the YORP effect
permanently accelerates the body’s rotation. This finding is in-
teresting, since there is apparently a single outcome of this evo-
lution, namely, rotational fission. Obviously, in particular cases
we should investigate the corresponding time scale needed to
reach the fission state. For instance, in Castalia’s case we have
estimated that its ≈4-h rotation will reach ≈2 h, an approximate
disruption limit, in about 10 Myr. Though this estimation of
the time scale for doubling Castalia’s rotation frequency is not
much longer than the estimated dynamical lifetime of its orbit
(tens to a hundred million years), and thus it is astronomically
relevant, it needs to be validated within a more general model
(including eccentricity of Castalia’s orbit, possible changes in
its shape when approaching the critical rotation limit, deviation
from the principal-axis rotation state, etc.). Castalia’s rotational
fission may also be facilitated by the fact that the cohesion at the
junction of the two lobes of this asteroid, believed to be small
asteroids that collided in a “subcatastrophic way” (e.g., Ostro
et al. 1989), may be little lower. In any case, Castalia’s result
indicates that the YORP-induced bursting of small Solar System
objects (see Rubincam 2000) may indeed occur is some special
cases. Recall that this was the original motivation for studying
the radiation torques (e.g., Radzievskii 1954, Paddack 1969).

The YORP effect on Geographos resembles closely that of
Castalia (see Fig. 8). The T̄s is nearly always positive.
Geographos’ rotation is thus virtually always accelerated. One
easily estimates that the Geographos rotation frequency doubles
in about 50 Myr. Again, though interesting, this number needs
to be validated by a more precise model as already outlined.
Geographos is thought to have undergone a “recent” close ap-
proach to the Earth that modified both its shape and its rotation
state (e.g., Bottke et al. 1999). Such events are rare enough that
the YORP effect may secularly change its rotation state before

the next deep encounter, but the ≈10- to 100-Myr dynamical life-
time of the Geographos orbit may prevent a significant effect.
Ý AND ČAPEK
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FIG. 8. The same as in Fig. 4, except for a Geographos-shaped object.

Anyway, we found it interesting that the sub-kilometer-sized
near-Earth asteroids have YORP time scales (to double the ro-
tation frequency) comparable to their dynamical lifetimes.

3.1.4. Type IV: Golevka and Bacchus

The final type of our classification is again characterized by
a single node of T̄ε in the (0◦, 90◦) obliquity range. An example
is given by Golevka, whose averaged YORP torques are shown
in Fig. 9. The YORP effect drives the obliquity either to 0◦

(or 180◦) or to 90◦ depending on the initial state. Assuming a
random initial state, there is (cos ε�) probability that 0◦ will be
a final state obliquity; as before, ε� is the node of T̄ε(ε) = 0.
Interestingly, the rotation rate behaves in a different way for the
two possible asymptotic states;namely, it decelerates at 0◦ (and
180◦) and accelerates at 90◦. An inverse asymptotic behavior is
observed in the Bacchus case (Fig. 10).

In the case of the real asteroidal shapes studied here we did
not encounter a situation going beyond our classification, no-
tably with more than one node of T̄ε(ε) in the (0◦, 90◦) obliquity
range. In principle, this may not be excluded, but it appears
less common. Occasionally, two nodes of T̄ε were observed
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FIG. 9. The same as in Fig. 4, except for a Golevka-shaped object.
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FIG. 10. The same as in Fig. 4, except for a Bacchus-shaped object.

among the randomly generated shapes discussed in the next
section.

3.1.5. Statistical Results for a Sample of Gaussian Spheres

The quantitative values, though interesting in particular cases,
are not the most important conclusion from the previous sec-
tions. Rather, we would like to point out the diversity of the
YORP results despite the very restricted (and randomly chosen)
sample of objects taken into account. This means that there is no
“generic” YORP result. We have seen that the obliquity may be
driven to any value (with probably a slight preference to 0◦, 90◦,
and 180◦) and the asymptotic states may be characterized by ei-
ther deceleration or acceleration of the rotation rate (with more
likely the case of despinning). In several applications, mostly
related to the Yarkovsky orbital perturbations on a large sample
of “individually undefined” objects, we might be interested in a
statistical description of the YORP results. This is the case of un-
derstanding the role of the Yarkovsky effect in meteorite or near-
Earth asteroid delivery (e.g., Farinella and Vokrouhlický 1999,
Bottke et al. 2000, 2001a, Vokrouhlický and Farinella 2000) or
Yarkovsky-driven diffusion processes in the asteroid families
(Nesvorný et al. 2002, Bottke et al. 2001b). For this purpose
we computed the YORP torques on a sample of 500 Gaussian
random spheres generated by the Muinonen technique briefly
recalled in Section 2.2. All bodies have an equivalent radius of
1 km, have a mean density of 2.5 g/cm3, and are assumed to
move on a circular orbit at 2.5 AU from the Sun.

Figures 11 and 12 show the T̄ε and T̄s torques, each for 30
and 10 typical objects (more data would make the figures too
busy). To better explore the results we distinguish the different
cases according to our previous classification; namely, Fig. 11
shows 30 type I and II results and Fig. 12 shows 10 type III
and IV results. We found that the abundance of the type I and
II cases is approximately the same, 39.2% and 40.4%, while
type III and IV cases occur statistically less frequently (only

10.2 and 6.2% of all cases). As previously, mentioned, we have
also occasionally identified peculiar cases with two nodes of T̄ε
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in the (0◦, 90◦) obliquity range that cannot be fit into any of the
four classes—there were 20 such cases in the sample of 500
generated objects. In principle, the number of these nodes is not
limited and the likelihood of the complicated cases decreases
quickly with number of nodes. Since the classification is not
a substantial result of our paper (rather it is a mean to more
easily distinguish different possible results), we do not extend
the classification given here for these more complicated cases.

Separating the results according to the classes introduced here
fixes the behavior of the T̄ε torque, but it does not constrain the
T̄s torque. Figures 11 and 12 indicate that the asymptotic decel-
eration of the rotation frequency is statistically much more likely
than its acceleration (here “asymptotic” means at the obliquity
value toward which YORP drives the spin axis at long term,
i.e., 90◦ for the type I and 0 or 180◦ for the type II solutions).
This result may look peculiar, but we want to warn the reader
not to draw hasty conclusions. We have carefully checked that
there is an equal likelihood of positive value of Ts moment at
a given point on the orbit among the sample of the randomly

FIG. 11. Behavior of the T̄ε (ε)/C (left, ε ≤ 90◦) and T̄s (ε)/C (right, ε ≥
90◦) for a randomly chosen 30 cases from the sample of Gaussian spheres.
The values in the complementary parts of the obliquity interval follow from
the obvious symmetries T̄ε (180 − ε) = −T̄ε (ε) and T̄s (180 − ε) = T̄s (ε). The
upper part of the figure corresponds to the type I solutions, while the lower
part of the figure corresponds to the type II solutions. The ordinate units are

10−18 s−2. Note that in both cases there is an asymmetry in the asymptotic
deceleration/acceleration of the rotation frequency toward deceleration.
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FIG. 12. The same as in the Fig. 11, except for for 10 randomly chosen
type III and IV results (more examples would make the figure too busy). The
ordinate units are 10−19 s−2.

generated asteroids (even when we average over the rotation cy-
cle). This finding fits the intuitive idea that might be gained, for
instance, from Fig. 1 in Rubincam (2000): YORP may equally
well accelerate or decelerate the rotation (imagine two senses of
rotation of the windmill-shaped asteroid). But here we refer on
the asymmetry of the YORP effect at the asymptotic value of
its long-term evolution (and, moreover, averaged over both the
rotation and revolution cycles). This is by no means an intuitive
quantity, and we in fact did not find such an easy argument in
favor of our result (except a careful check of our code). A part of
this problem may also be that our representation is actually not
entirely complete; as mentioned in Section 2 the YORP naturally
drives the rotation from the principal-axis state. The statistics of
the asymptotic rotation at the final state therefore need to be
substantiated within a more complete model in the future.

Note that within one type there is a significant scatter of the
magnitude of the YORP effect between the minimum and maxi-
mum strengths. Obviously, more “regular” objects are subject to
a smaller effect while YORP is larger for more irregular-shaped
objects. In Section 2 we recalled a trivial result, that the YORP
effect is nil for spherical bodies. It can however, be easily shown
that the averaged torques T̄s(ε) and T̄ε(ε) vanish for triaxial ellip-

soids (see Rubincam 2000). Figure 13 shows the distribution of
the maximum values of T̄ε(ε) for obliquities within the (0◦, 90◦)
´ AND ČAPEK

FIG. 13. Distribution of maximum values of T̄ε/C for type I and II
cases among the sample of 500 Gaussian random spheres. Abscissa units are
10−18 s−2.

range for the population of 196 identified type I cases from the
entire sample of 500 Gaussian spheres. Although the spherical
bodies are statistically absent in our sample (Fig. 2), a relative
“excess” of small values in Fig. 13 is caused by objects with
shapes that are rather well approximated by an ellipsoid.

Figure 14, showing the distribution p(ε) of the asymptotic
obliquity values from the whole sample of objects, confirms that
the values 0◦ (and 180◦) and 90◦ are dominant. The intermediate
values, corresponding to the type III class, represent a minority of
cases (in total only 6.3%). When constructing p(ε) we assume
a random initial orientation of the spin axis. This means, for
instance, that in the case of the type IV solution we assign (cos ε�)
probability of the 90◦ asymptotic solution of the obliquity and
(sin2(ε�/2)) probabilities to 0◦ and 180◦ asymptotic values of the
obliquity. The results indicate that the likelihood of the 90◦ (“in-
plane”) asymptotic obliquity is about the same as the sum of the

FIG. 14. Distribution p(ε) of the asymptotic obliquities of the YORP evo-
lution for the sample of 500 Gaussian random spheres. The maximum of the

distribution is normalized such that the integral

∫ π

0 dεp(ε) sin ε is unity.
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0◦ and 180◦ (“perpendicular”) asymptotic states. The majority
of these cases are produced by the type I and type II cases.

As mentioned in Section 1, the Yarkovsky effect, together
with a slow chaotic diffusion, may significantly influence dis-
persion of (small) members of the asteroid families and thus help
to reconcile inconsistency between the velocity fields inferred
from the families and those from the hydrocode simulations (see
Nesvorný et al. 2002, Bottke et al. 2001b). Together with the
problem of leaking of small asteroids from the main belt (e.g.,
Farinella and Vokrouhlický 1999, Bottke et al. 2001a), the histo-
ries of asteroid families strongly motivate understanding of the
spin axis evolution of the kilometer-sized asteroids.

Given this motivation, and using the YORP data on the sam-
ple of 500 Gaussian random spheres, we may investigate several
interesting problems. For instance, we sought the characteristic
YORP time scale to reach the slow-rotation state for the small
members of the asteroid families in the main belt. Starting with a
generic orientation of the spin axis, assumed isotropic in space,
and a 5-h rotation period, we found that a small member of the
Themis family with a characteristic radius of 1 km reaches the
rotation period of 100 h in ≈35 Myr (in the same time the initial
obliquity is tilted to its asymptotic value). This is a median time
computed over a large number of simulations where we consid-
ered 319 objects of YORP type I and type II from our sample
of Gaussian random spheres. For each body we performed 500
simulations of the long-term time evolution of the rotation state.
We assumed a bulk density of 1.3 g/cm3 and recalibrated the
mean distance to the Sun to 3.13 AU. Obviously, the rotation of
larger bodies would evolve more slowly, approximately with the
square of the characteristic size. A similar result was found also
for small members of the Flora family; here the closer prox-
imity to the Sun is compensated by the assumed higher bulk
density of the asteroids (≈2.5 g/cm3). Such results indicate that
the reinitialization of the rotation state of small family members
across the whole asteroid belt might be very frequent since the
family formed (≈Gyr or longer in some cases). The influence
of the YORP cycles thus needs to be taken into account, or at
least estimated, in modeling the long-term dynamical fate of the
asteroid families and leakage of kilometer-sized asteroids from
the main belt.

3.2. The Role of the Solar Torque and Precession
of the Orbit

Apart from the YORP effect and collisions, the gravitational
torque due to the Sun represents an additional phenomenon that
affects the asteroid spin axis orientation over the long term.
(Planetary torques may be relevant for the Earth-crossing pop-
ulation of asteroids, but they are negligible for the main belt
asteroids.) Were the orbit fixed in space, the resulting effect of
the solar torque would not be important for Yarkovsky appli-
cations. Namely, it would consist of a regular precession with
frequency (≈α cos ε, where α is the precession constant “at

zero obliquity”) around the normal to the orbital plane, there
by leaving the obliquity ε constant. Assuming the principal-axis
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TABLE I
Estimated Values of the Precession Constant α at

Zero Obliquity for Asteroids at Different Location in
the Main Belt Compared to the Proper Frequency s
of the Nodal Precession Rate

Family α (′′/year) s (′′/year)

Flora 27 35
Eunomia 16 52
Themis 10 103

rotation we have

α = 3

2

C − (A + B)/2

C

n2

ω

1

(1 − e2)3/2
, (8)

where (A, B, C) are principal moments of inertia, n is the mean
orbital motion, and ω is the proper rotation frequency. The es-
timated minimum periods of such forced precession range be-
tween ≈0.3 Myr and several million years, depending on the
object’s oblateness, distance from the Sun, and rotation period.
Notably, by taking the average value of the dynamical elliptic-
ity [C − (A + B)/2]/C ≈ 0.3 for small asteroids (Fig. 2) and a
5-h average rotation period we obtain the maximum precession
rates α in different parts of the asteroid belt as indicated in the
Table I.

The situation is, however, complicated by the fact that the
orbital plane is not fixed in space, but it is instead perturbed
by the gravitational influence of the planets. The fundamental
point here is that some of the frequencies by which the orbit pre-
cesses (or oscillates) may be close to the estimated frequency
(≈α cos ε) at which the asteroid spin axis precesses around the
orbit due to the solar torque (see Table I). This proximity may
cause complex resonant effects and significantly influence the
long-term evolution of the spin axis orientation (and thus its
obliquity). Even in the cases when the initial forced precession
is outside of resonance with the planetary perturbations of the
orbit, the underlying slow obliquity and rotation frequency evo-
lution due to the YORP effect may drive the rotation state toward
some of the resonances. Bottke et al. (2000) noticed the potential
importance of the spin axis precession due to the solar torque,
though they did not mention explicitly the possibility of the res-
onance phenomena [see also a previous work by Vokrouhlický
and Farinella (1998)]. Here we want to develop the problem in
more detail and show the potential complexity of individual ro-
tation histories of asteroids in different parts of the main belt.
Our particular aim is to see whether the YORP evolution itself
may represent in average the typical rotation history of a small
asteroid in the main belt (including the quantitative aspects such
as the time scale to drive the rotation to a slow rotation limit).

We should not neglect to mention that the resonant spin axis
dynamics has been extensively studied within the context of

the long-term evolution of planetary rotation. Following these
works, Skoglöv et al. (1996) and Skoglöv (1997, 1999) then
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applied the same approach to investigation of the rotation state of
asteroids. To our mind, the powerful global approach of Laskar
and his collaborators (e.g., Laskar and Robutel 1993, Laskar
et al. 1993, Néron de Surgy and Laskar 1997) is also the most
suitable for our application. We thus refer the reader for more
details to Laskar and Robutel (1993) and Néron de Surgy and
Laskar (1997), while here we just summarize the principal steps
and assumptions.

The power of Laskar’s approach is mainly that the irrelevant
degrees of freedom are eliminated by averaging, while the funda-
mental degrees of freedom are retained. In the absence of spin–
orbital resonances, appropriate for our application, we can thus
average over fast proper rotation and revolution around the Sun
(as was done for the YORP effect). Considering the effect of
the solar gravitational torque only, the fundamental degree of
freedom is described by canonically conjugated variables X =
L cos ε and ψ ; here L is the conserved angular momentum of
rotation, ε is the obliquity, and ψ is the precession in longitude.
Note that here we implicitly assume rotation about the princi-
pal axis of the inertia tensor, which seems justified for at least
multikilometer-sized asteroids (see Section 3.3). It turns out to
be suitable to introduce a complex variable χ = sin ε exp(iψ)
(with i = √−1), so that cos ε = √

1 − χχ� (where the star de-
notes a complex-conjugated quantity). The resulting equations
describing the long-term evolution of the spin axis orientation
then read (e.g., Laskar and Robutel 1993, Néron de Surgy and
Laskar 1997)

dχ

dt
= iχ (α cos ε − 2�) + �� cos ε, (9)

with the auxiliary functions

� = 1

2i

(
ζ

dζ �

dt
− ζ � dζ

dt

)
, (10)

� = 2√
1 − ζ ζ �

(
dζ

dt
− iζ�

)
. (11)

The complex variable ζ = sin(I/2) exp(i�) describes orienta-
tion of the orbital plane in space; I is the inclination and � is the
longitude of the ascending node. If ζ were constant, we easily
verify that the solution of (9) is the regular precession of ψ with
frequency α cos ε (and ε = constant). However, the complexity
of the problem stems from the fact that ζ is time dependent,
describing orbital motion due to planetary perturbations. It may
be given by a Fourier series approximation from the analytic
theory, or—as in our case—as a purely numerical output from
integration of the orbital motion of an asteroid. As a part of
another research project we have integrated orbits of hundreds
of asteroids in main belt families over hundreds of Millions of
years (e.g., Nesvorný et al. 2002), and we “borrow” these results
for our study of the long-term evolution of their spin axes.
We mention that in our simulations we actually used a slightly
modified variable χ ′ = (1 − cos ε) exp(iψ) that suitably rele-
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gates the coordinate singularity to ε = 180◦. The corresponding
dynamical equations then look a little less compact but they are
easily obtained from (9).

Equation (9) can be generalized to include the YORP effect
by extending the right-hand side by a term

(
dχ

dt

)
YORP

= χ
T̄ε

Cω
tan ε. (12)

The equation dω/dt = T̄s/C [see (3)] should be considered
along with this generalized form of (9). Note that the preces-
sion constant α from (8) depends on the rotation rate ω, which
presents an additional coupling of the resulting system of three
differential equations for variables (χ, ω). Equation (8) appar-
ently suggests α ∝ 1/ω; hence increasing the precession con-
stant as the YORP effect asymptotically decelerates the rotation
rate, but the exact dependence α(ω) may be more complicated
because the dynamical ellipticity [C − (A + B)/2]/C may also
depend on ω. As an example we mention that for planets, with
fluid or viscoelastic layers, the rotational deformation leads ap-
proximately to [C − (A + B)/2]/C ∝ ω2. For smaller asteroids
that are likely to be rubble piles we do not have an exact estimate
of the rotational deformation, so that at the zero approximation
we shall assume [C − (A + B)/2]/C ≈ constant. This should
not hold for rotation periods approaching the zero-strength dis-
ruption limit by the centrifugal force, which appears to be about
2 h (consistent with the upper limit of the observed rotation pe-
riods for asteroids larger than ≈200 m in size; Pravec and Harris
2001).

Following the motivation from the end of Section 3.1.5, we
next illustrate the complexity of the long-term evolution due
to the aforementioned effects for small members of Themis
and Flora families. Interested readers may found additional re-
sults for small asteroids in the Eunomia family on our Web site
http://sirrah.troja.mff.cuni.cz/˜davok/.

3.2.1. Example: Themis Asteroids

We intentionally start our discussion with Themis, since the
effects of the mutual interaction between the gravitational so-
lar torque and the orbital excitations is weak and restricted
to isolated events. There are several reasons for this conclu-
sion, the most important of which are (i) small orbital incli-
nation of the Themis asteroids and (ii) a good separation of
the proper and forced frequencies by which the orbital plane
is perturbed from the estimated precession rate of the spin axis
(see Table I). Fourier analysis of the orbital data, namely, the
ζ = sin I/2 exp(i�) variable and the � quantity from (11), in-
dicates that in the relevant range of frequencies their spectrum
is composed of well-isolated lines (dominant frequencies are
the proper frequency s ≈ 103′′/year and the forced frequencies
s6 ≈ 25.7′′/year, s7 ≈ 2.9′′/year, and s8 ≈ 0.7′′/year and the rel-
evant sidebands). This suggests a near regularity of the spin

axis evolution, except from singular resonant cases. The YORP
effect may obviously drive the rotation evolution toward these
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resonances, but none of them is expected to trigger a large-scale
chaotic motion of the spin axis.

As far as the YORP effect is concerned, we shall use a typical
(“average”) result from the Gaussian-sphere sample of kilometer-
sized objects discussed in Section 3.1.5 and scale them to the
appropriate distance from the Sun. In the Themis case, we also
renormalize the assumed mean density of the asteroid to 1.3 g/
cm3, which better fits the C-type asteroids. The orbital data are
taken from a 150-Myr direct numerical integration of a test par-
ticle at 3.13 AU (the eccentricity and inclination fits the mean
of the Themis family). Gravitational perturbations of the outer
planets were included. Our intention is not to investigate all
possible results spanning the whole initial data parameter space,
such as the initial period, obliquity, precession constant, and
so on, but rather to show several examples. A more systematic
search is beyond the scope of this paper.

Figure 15 shows one of the possible histories of the rotation
state of a 2-km-sized Themis asteroid (with initial data given
in the caption of the figure). As in all the examples that fol-
low, we always compare two simulations: (i) a restricted one
with only the YORP effect included, and (ii) a more complete
simulation including both the YORP effect and the gravitational
solar torque. Notice that both models yield very similar results.
In the complete model, the obliquity gets only very slightly
perturbed as a consequence of the passage through the s7 reso-
nance (when dψ/dt − s7 � 0); apart from this small effect the
restricted model, containing the YORP effect only, follows the
results of the complete model closely. In both cases, we no-
tice the outstanding characteristics of the YORP evolution (see
Rubincam 2000). Notably, the obliquity is secularly driven to
an asymptotic value of 90◦ (type I case); given the small initial
obliquity, the rotation period is first decreased to about 4 h, while
at later epochs of the YORP evolution it rapidly increases. We
terminate the simulation when the rotation period reaches 100 h,
since our model is inappropriate and incomplete for longer pe-
riods for two reasons. First, nondisruptive collisions may easily
modify the rotation state at this slow-rotation phase, and second,
the averaging method used for modeling the YORP effect may
not be applicable when the rotation period becomes a fair frac-
tion of the revolution period. It may also be noticed that about
90 Myr is enough time to reach the near-asymptotic state and
tilt the axis by 70◦ in obliquity. Regarding the size-scaling of
the YORP torques, we may conjecture that this time will scale
with the square of the characteristic length of the object. For a
10-km-sized asteroid the evolution from Fig. 15 may thus take
≈2.25 Gyr.

Figure 16 shows another possible history of the Themis
kilometer-sized asteroid rotation. The main difference from the
previous example concerns the YORP type; here, the asteroid
is assumed to belong to the type II class. The obliquity is then
driven to the 0◦ state. Nevertheless, this expected evolution is
temporarily inverted in the complete model due to a capture in

s6 and s resonances; the s7 resonance is too weak for a capture.
Figure 16c clearly illustrates that the precession rate dψ/dt is
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FIG. 15. Long-term evolution of (a) the obliquity ε, (b) the rotation period
P , and (c) the forced precession frequency dψ/dt for a typical, kilometer-sized
Themis asteroid. The simulation includes the gravitational torque due to the Sun
and the YORP effect; initial data are ε(0) = 20◦, P(0) = 6 h, and the precession
constant α = 10′′/year. The black curve (labeled 2) shows evolution with only
the YORP effect included, the gray curve (labeled 1) corresponds to evolution
with both the YORP effect and the solar gravitational torque. The asteroid orbit
evolves due to planetary perturbations. The YORP solution corresponds to type I
according to our classification (i.e., driving the spin axis to the orbital plane).

trapped to the resonance value. Since the rotation rate is per-
manently decayed, the obliquity is forced to decrease, as can
be seen between 47 and 56 Myr (Fig. 16a). The situation is
similar to a temporary capture of dust particles in the exterior
orbital resonances with planets, where eccentricity is forced to
increase when the orbit is trapped in the resonance as a result
of continuous draining of the angular momentum with “stopped
evolution” of the semimajor axis. However, even disregarding
such fine details of the evolution, it can still be rather well ap-
proximated by the restricted model with the YORP effect. This
is true, in particular, with regard to the time scale needed to reach
the near-asymptotic state of a very slow rotation.

We have seen in Section 3.1 that the YORP obliquity evo-
lution may asymptotically reach any value in the admissible

range. This is the type III case, which is illustrated in Fig. 17.
The evolution is fairly similar to that from Fig. 16, with the
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FIG. 16. The same as in the Fig. 15, except for for the initial obliquity
ε(0) = 80◦ and the YORP effect of type II (i.e., the spin axis tends to align with
the normal to the orbital plane). Notice that the precession rate dψ/dt (c) is
temporarily captured in the s6 and s resonances; since the rotation period is
constantly increased, the obliquity is forced to resonantly increase (a).

only difference being in the asymptotic value of the obliquity.
The s6 and s resonances temporarily capture the slow increase
of the precession rate, but the permanent decrease of the rota-
tion energy eventually releases the evolution from these reso-
nances. The unavoidable slow-rotation late phase will then be
interrupted by a collision with a sufficiently large projectile. Res-
onance captures may not necessarily result in prolonging the spin
axis evolution; this is actually seen in Fig. 17, since the com-
plete model evolution to the 100-h rotation period takes some
8 Myr less than in the YORP case only. Compared to the entire
≈110-Myr evolution, this is only a minor effect. However, there
are also cases where the resonances may halt the rotation evo-
lution for a more considerable period. Figure 18 shows an ex-
ample with the underlying YORP effect of type IV. We may
notice long-lasting captures in the s6 and s resonances. As a re-
sult, the rotation evolutions to the long-period state takes longer
(140 Myr compared to 90 Myr) when only the YORP effect is
taken into account.
Despite of the limited number of cases discussed here, we
may preliminarily conclude that the YORP evolution itself is
Ý AND ČAPEK

a very good approximation of the complete model. The rare
and separated resonances between the forced precession of the
spin axis due to the solar torque and the orbital excitations may
temporarily affect the smooth YORP evolution, but they do not
generally result in a large-scale wandering of the spin axis.

3.2.2. Example: Flora Asteroids

We have repeated the previous examples for the small
(kilometer-sized) members of the Flora family. In practice this
means that we rescaled the magnitude of the YORP-averaged
torques to the 2.2 AU distance from the Sun and we used a nu-
merically integrated orbit of the asteroid Flora over a 140-Myr
timespan. We assumed a mean density of 2.5 g/cm3, conformal
to the S-type asteroids. The closer proximity to the Sun results
in two important differences if compared to the Themis case:
(i) since the orbit is further from Jupiter, the proper nodal fre-
quency s is smaller (see Table I) and gets close to the forced
frequencies (especially s6 � 25.7′′/year), and (ii) since the rev-
olution period is shorter, the precession constant α increases for
a typical Flora asteroid to approximately the s6 value. The first
item means that the Fourier spectrum of the ζ and � variables

FIG. 17. The same as in the Fig. 15, except for the initial obliquity ε(0) =

80◦ and the YORP effect of type III (i.e., the obliquity is asymptotically driven
to an intermediate value of ≈44◦).
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FIG. 18. The same as in the Fig. 15, except for the YORP effect of type IV
(i.e., the spin axis asymptotically driven either to the orbital plane or into align-
ment with its normal depending on the initial value of the obliquity; in this case
it approaches the 0-obliquity state).

is no longer composed of well-isolated lines, but the bulk of the
signal is poorly periodic and the spectrum contains clusters of
lines [compare, e.g., with the spectrum of A and B variables
for Mars from Laskar and Robutel (1993)]. The resonances may
“communicate” with each other and drive the precession rate
dψ/dt over a larger range. Such a chaotic wandering of ψ may
trigger a similar effect in the obliquity, as has been found by
Laskar and his collaborators for most of the inner planets and
Skoglöv for some asteroids. The second item mentioned here
means that the typical precession rates for the Flora asteroids
should be located close to these resonance clusters. As a result
of this qualitative insight, we may expect a less regular evolution
of the obliquity than in the Themis case. Additionally, higher in-
clination of the Flora orbits may cause larger oscillations of the
obliquity.

Figure 19 formally corresponds to the same initial data as
in Fig. 15, except with the Flora orbit and YORP parameters.
Apart from larger amplitude oscillations of the obliquity (and
the precession rate), the results are comparable. The YORP evo-

lution itself corresponds rather well to the complete model re-
sult. Interestingly, the time scale needed to reach the asymptotic,
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slow-rotation state is approximately the same as in the Themis
case (see also results in Sections 3.1.5); the larger radiation flux
in the Flora zone is roughly compensated for by a higher mean
density of the Flora S-type asteroids.

Figure 20 shows a more perturbed case of the possible Flora-
asteroid rotation history, notably corresponding formally to the
same initial data as in Fig. 16. A type II YORP effect drives
the alignment with the orbital angular momentum at late epochs
of the evolution, which—together with the secularly deceler-
ated rotation rate—means that the precession rate encounters
the large resonance zone. When this occurs (at ≈22 Myr), the
obliquity undergoes large oscillations. Figure 16c indicates that
the evolution alternates in a random way between the nearby
s6 and s resonances. Eventually, the resonance lock is inter-
rupted and the evolution quickly heads the slow-rotation phase.
The entire timespan is shortened about 25% compared with the
YORP-only evolution.

Significant obliquity perturbations may be also seen in Fig. 21,
the Flora counterpart of the Themis simulation shown in Fig. 17.
Here, the obliquity approaches an intermediate asymptotic value
of about 44◦ and the resonance phenomena in the complete
model largely mask the smooth YORP-only evolution. In
FIG. 19. The same as in the Fig. 15, except for a kilometer-sized Flora
asteroid.
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FIG. 20. The same as in the Fig. 16, except for a kilometer-sized Flora
asteroid.

contrast to the previous example, the resonance effects delay the
rotation evolution toward the long-period phase by some 20%. It
is, however, very important to notice that despite the difference
in the obliquity evolution, the accumulated Yarkovsky change
in the semimajor axis would differ by only ≈10%. This actually
applies also to the example shown in Fig. 20, since the shorter
evolution is partially compensated for by a smaller obliquity (in
average), which increases the semimajor axis drift for the diurnal
variant of the Yarkovsky effect.

Our final example, Fig. 22, demonstrates a less frequent case
when the rotation histories as given by the complete and YORP-
only models are significantly different. This is the case of the
type IV YORP effect, which may be asymptotically driven ei-
ther to 0◦ or 90◦ obliquity depending on its initial value. The
chosen initial data (namely, 20◦ for the obliquity) are nominally
attracted by the 0◦-obliquity asymptotic state if only the YORP
effect is assumed. However, the large oscillations of the obliq-
uity caused by the s6 resonance may invert this evolution and
drag the obliquity toward the complementary asymptotic value
of 90◦. This case is actually seen in the evolution presented in
the Fig. 22 (we stopped the simulation at 140 Myr since this
is the time interval over which we have the orbital data). We

should, however, comment that this last example is statistically
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less frequent (see Section 3.1.5 where we found that the type IV
YORP objects comprise only ≈6% of all bodies).

3.3. Comments on Inelastic Relaxation of the Tumbling
State of Rotation

The assumption of rotation around the principal axis of the
inertia tensor is one of many approximations we adopted in this
paper. A single periodicity of lightcurves of most asteroids does
suggest that this is a commonly satisfied situation, but in some
cases we have evidence for non-principal-axis (tumbling) rota-
tion (e.g., Toutatis and Comet Halley). We have seen the YORP
effect implies at least two reasons for analyzing whether the
principal-axis rotation is appropriate for small asteroids: (i) the
YORP effect naturally produces torque components, which drive
the rotation out of the fundamental-energy state, and (ii) even if
(i) is weak the predicted long-term evolution of the asteroidal ro-
tation due to the YORP effect may include a final slow-rotation
phase, interrupted eventually by a larger collisional event that
may increase the rotation rate. After undergoing such an event,
the asteroid rotation should be generically placed in an ex-
cited (tumbling) state. On the other hand, inelastic processes
tend to dissipate the energy of the wobble. A comparison of a
characteristic time scale for such dissipative processes with that
FIG. 21. The same as in the Fig. 17, except for a kilometer-sized Flora
asteroid.
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FIG. 22. The same as in the Fig. 18, except for a kilometer-sized Flora
asteroid.

of the YORP evolution is then of fundamental importance for
understanding whether the principal-axis rotation assumption
is justified (over at least a major part of the YORP evolution).
Rubincam (2000) noted these facts and here we are try to elab-
orate the corresponding estimations in somewhat more detail.

Free precession of a rotating body causes alternating stresses
in its interior. A variety of processes, such as unpinning of dis-
locations, sliding at grain boundaries, or interaction of internal
faults, then result in irreversible dissipation of the rotation en-
ergy, which is thus damped toward the minimum state of rota-
tion around the principal axis of inertia tensor. Since a detailed
modeling of such molecular-level microscopic processes is very
complicated, if not impossible, one usually characterizes the
energy dissipated over one alternating cycle of internal forces
by an empirical quality factor Q. Its value has been determined
from a number of astronomical observations and laboratory mea-
surements for a variety of materials and frequencies of their
excitations. It has been indeed found that the Q values are com-
positional and frequency dependent. Relevant periods at which
asteroidal interiors are strained range from about half a day to
several days (excluding the slowly rotating population of aster-

oids). Not only do we luck any direct observational calibration
of the quality factor for asteroids, but also the values obtained
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by different techniques typically occur at different frequencies
and for different composition than the presumed rubble piles for
small asteroids. The quality factor Q is thus largely uncertain
in our application; admissible values range from about 100 (or
even less) to about 300. The upper value is consistent with the
high-frequency determinations for lithospheric rocks (both in
the laboratory and from the free modes of Earth oscillations).
At lower frequencies, Q typically decreases, satisfying roughly
a power law, down to about 30 for Earth tides (monthly and
semimonthly periods). A value of Q ≈ 100–150 thus seems to
be likely for small, rubble-pile asteroids with strain periods of
a few days; this value is also commonly adopted for the small
planetary satellites (e.g., Peale 1999). The low-rigidity C types
may have even a slightly smaller Q, conformal to the assumed
value for Comet Halley.

Burns and Safronov (1973) determined, from general princi-
ples and qualitative reasoning, that the characteristic time scale
to dissipate the free-precession energy is

T ≈ κ
µQ

ρR2ω3
, (13)

where R is the radius, ω is the rotation frequency, and µ is the
rigidity (or shear elastic modulus) of the asteroid. The major
uncertainty here follows from inaccurate knowledge of (i) the
quality factor Q (as already mentioned), (ii) the numerical coef-
ficient κ , and to some extent (iii) the rigidity µ. This numerical
coefficient κ depends on the geometry of the body and the fre-
quency spectrum of the internal strain. There has recently been
some discussion about the appropriate value of κ (e.g., Lazarian
and Efroimsky 1999, Efroimsky and Lazarian 2000, Efroimsky
2000), with a tendency for smaller values being favored. Burns
and Safronov (1973) determined κ ≈ 10–100 (cgs units), de-
pending on the sphericity of the asteroid (upper value for near
spherical objects), while Efroimsky and Lazarian (2000) advo-
cate a value κ ≈ 4–5. Though the latter authors seem to rightly
point out the importance of the second harmonic of the wobble
frequency, the difference in κ is ultimately not that fundamental
given the degree of other simplifications. Moreover (J. A. Burns,
private communication), the very low κ results still need to be
confirmed by a direct numerical model of a strained, rotating,
inelastic body (with currently controversial conclusions). We
shall thus assume κ ≈ 20 in the following estimations. As for
the rigidity, we shall assume ≈5 × 1011 dyne/cm2 for the sil-
icate asteroids (S types), which is consistent with laboratory
measurements of elastic moduli of the ordinary chondrites (e.g.,
Yomogida and Matsui 1983). Actually, this value fits the data
of H-chondrites, while L-chondrites have µ typically somewhat
smaller. For asteroids located in the outer belt (C types) we as-
sume a smaller value ≈5 × 1010 dyne/cm2, fitting approximately
the cometary data (with Q ≈ 100 this is about what other authors
suggest; e.g., Jewitt 1997). We thus obtain the following char-

acteristic time scales for relaxation of the free wobble due to the
inelastic internal processes: T ≈ 0.36 × (P3

hr/R2
km) for S types



Ý
466 VOKROUHLICK

and T ≈ 0.04 × (P3
hr/R2

km) for C types (here Phr is the rotation
period in hours, Rkm is the radius in kilometers, and T is then
given in millions of years). Harris (1994) also considered the
problem of the tumbling asteroids and obtains T ≈ 0.05 ×
(P3

hr/R2
km) in average. This is slightly less than our value for

S types, because this author assumed a smaller value of µQ.
Taking our estimates and 5 h for the typical rotation period of
kilometer-sized asteroids (excluding slow rotators like Mathilde
or Toutatis; see, e.g., Pravec and Harris 2001), we have a damp-
ing time scale of ≈45 Myr for the S-type and ≈5 Myr for
the C-type asteroid of Rkm ≈ 1. Since the average rotation rate
is approximately constant in the 1–10 range of Rkm, the esti-
mated damping time scales diminish as ∝1/R2

km in this range of
interest.

A comparison with the estimated YORP time scales (e.g.,
from the statistical result in Section 3.1.5 or the examples in
Section 3.2) indicates that the C-type kilometer-sized asteroids
might relax toward the fundamental state of rotation around the
principal axis of rotation on a time scale shorter than that of
YORP evolution. So, as an example, assuming a YORP model
with principal axis rotation might be rather well justified for
Themis kilometer-sized members. On the other hand, the small-
est Flora members may have a damping time scale comparable
to (or even longer than) their YORP evolution time scale and
we should consider modeling of YORP with some precaution.
However, if we would consider Harris’s (1994) estimate for the
tumbling relaxation, the principal-axis rotation would be well
justified even for the small Flora asteroids. We thus tentatively
conclude that the simplifying assumption of the principal-axis
rotation is rather well justified, being obviously violated only
for the unusual, slow-rotation population of asteroids.

4. CONCLUSIONS

The main results of this paper can be summarized as follows:

• We have investigated the role of the thermal radiation torque
on the long-term rotation history of small asteroids (up to≈10 km
in size). Except for the unrealistic cases of spherical bodies and
perfect ellipsoids, this torque always secularly affects the rota-
tion; in particular the obliquity is slowly driven to some asymp-
totic value while the rotation period typically secularly increases
(a permanent decrease of the rotation period is also possible, but
this is statistically less frequent). Four principal approximations
were assumed in this text: (i) applicability of the averaging prin-
ciple, (ii) zero thermal relaxation of the asteroidal surface, (iii)
circular orbits (this assumption, however, just conveniently con-
strains the parameter space of the solutions and does not present
a theoretical limitation of our approach), and (iv) the principal-
axis rotation state.

• By analysing the functional dependence of the obliquity-
¯
affecting torque Tε on the obliquity value, we have classified

possible cases of the YORP-induced evolution of the obliquity.
AND ČAPEK

• The YORP torques were computed for 10 shapes of real
objects (nine asteroids and Deimos) and also for a large sample
of synthetic objects generated by the Gaussian random sphere
technique. Since the Gaussian model parameters were fitted to
the known shapes of small asteroids, the sample is assumed to
well represent the shape characteristics of small Solar System
bodies. As a result we were able to estimate a statistically aver-
aged YORP influence on small members of Themis and Flora
asteroid families for such properties as the characteristic time
scale to reach the asymptotic, slow-rotation regime. This find-
ing is important for improving models of slow semimajor axis
dispersion in asteroid families.

• As a particular result, we predict that the YORP effect may
be directly observable through change of the rotation frequency
of the small near-Earth asteroid 1998KY26 during its next close
approach in May 2024.

• If YORP were the only cause of the long-term evolution of
the asteroid rotation state, it would drive the obliquity to some
particular value (depending on the type). When this value of the
obliquity is reached, and the averaging approach is still applica-
ble, the rotation frequency is preferentially decreased. This is a
result from the sample of 500 Gaussian random spheres. The less
likely case of a permanent spinning up of the body may occur,
and we found it, as an example, for an object of Castalia’s shape.

• In addition to the slow YORP-induced evolution of the
rotation state, we include in our model the influence of the grav-
itational torque due to the Sun. Since the orbital elements evolve
in time due to planetary perturbations, the forced precession of
the spin axis may resonantly beat with the orbital excitations.
This is indeed the case of small asteroids, with sizes larger than
several hundred meters across and with slow enough rotation
(≈hours). We illustrate the obliquity effects triggered by such
resonant phenomena. The YORP effect may drive the nonres-
onant states toward the resonances. Meteoroid precursors, with
sizes up to tens of meters, presumably rotate fast enough so that
the precession rate due to the solar torque is significantly dif-
ferent (smaller) than the orbital excitation. The resonant effects
studied in this text are thus likely to be unimportant for these
very small objects in the Solar System.

• The assumption of principal-axis rotation seems well justi-
fied in average for multikilometer-sized asteroids; however, the
kilometer-sized objects may relax toward the principal-axis rota-
tion state slowly. The YORP torque may also continuously drive
the rotation state away from the fundamental state of rotation.
These effects need to be studied in the future.

A major issue omitted in this paper concerns the role of colli-
sions within the model we investigated. Yet, collisions are nec-
essarily an inherent part of the model, since they must tune the
limit to which the asteroids decelerate their rotation rate by the
YORP effect. Inclusion of the collisional processes, however,
represents an entirely new and vast dimension to the studied
problem and we feel that this would already go beyond this

introductory paper of the series. We certainly need to return to
this issue in the future.
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Farinella, P., D. Vokrouhlický, and W. K. Hartmann 1998. Meteorite delivery
via Yarkovsky orbital drift. Icarus 132, 378–387.

Giblin, I., and P. Farinella 1997. Tumbling fragments from experiments simu-
lating asteroidal catastrophic disruption. Icarus 127, 424–430.

Harris, A. W. 1979. Asteroid rotation rates. II. A theory for the collisional
evolution of rotation rates. Icarus 40, 145–153.

Harris, A. W. 1994. Tumbling asteroids. Icarus 107, 209–211.

Hartmann, W. K., P. Farinella, D. Vokrouhlický, S. J. Weidenschilling,
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Vokrouhlický, D. 1998. Diurnal Yarkovsky effect as a source of mobility of
meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335,
1093–1100.
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