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Abstract. A linear theory for heat conduction in a sphericakulting into a significant long—term mobility of the orbital semi-
solid and rotating body illuminated by solar radiation is devefnajor axis and a complex interaction with resonances.
oped. The recoil force due to the thermally re-emitted radiation To assess the relevance of the Yarkovsky effect in Solar
by the surface of the body is computed, including all the ternSystem dynamics one needs, as a first step, to develop a reliable
depending both on the body’s rotation frequency and the meamysical model of the thermal processes occurring within solid,
motion of its revolution about the Sun. The present soluti@pinning and orbiting bodies. A significant amount of work has
thus overcomes a drawback of the previous approaches, whielen performed on this problem in recent years, after Rubincam
have been tailored separately either to the diurnal or to the sE895) resurrected the interest in the dynamical consequences
sonal variant of the so—called Yarkovsky effect, corresponding these thermal effects. Most importantly, Rubincam (1995,
to different limiting cases of the current theory. We pay a specit®98) and Farinella et al. (1998) recognized the existence of
attention to compute the secular effects on the semimajor atvi® distinct variants of the Yarkovsky effect: a “diurnal” vari-
of the body’s orbit about the Sun. The results from the genegait depending on the rotation frequency of the body around its
model coincide with those of the previous approaches to a higistantaneous spin axis,(), and a “seasonal” variant depend-
level of accuracy, as the relative size of the additional “mixedfig on the mean motion frequency of the body around the Sun
terms is smaller than) —3 for plausible parameter choices. Thigw,c. ).
confirms that the use of the simplified formulee is warranted in Technically speaking, the diurnal variant is obtained when
the relevant Solar System applications. one entirely neglects the orbital motion around the Sun (see

e.g. Vokrouhlick 1998a,b), whereas in dealing with the sea-
Key words: celestial mechanics, stellar dynamics — meteorsonal variant ona priori averages all relevant quantities over
meteoroids — minor planets, asteroids the (assumedly) fast rotation of the body (e.g. Rubincam 1995,
1998; Vokrouhlick & Farinella 1998b). This classification is
meaningful and useful, since the two variants of the Yarkovsky
effect result in qualitatively different long—term changes of the
semimajor axis. The diurnal version is maximum at zero oblig-
uity and can lead either to semimajor axis decrease or increase,
The so—called Yarkovsky effect, a recoil force due to thermal rdepending on the sense of rotation; on the contrary, the seasonal
diation from anisotropically heated orbiting bodies, has recentlgrsion is maximum &20° obliquity and can only result in or-
attracted a considerable attention in the frame of the studiestital decay (e.g. Rubincam 1995, 1998; Farinella et al. 1998;
the delivery of meteorites and the dynamics of small bodiegrtmann et al. 1998). At the essence, however, the two vari-
in the Solar System. Specific issues for which the Yarkovsignts of the Yarkovsky effect are just two different limiting cases
effect is probably relevant are: the cosmic—ray exposure ag@g¢% single physical mechanism, i.e., the recoil force associated
of stony and iron meteorites, which are much longer than tigthermal radiation from a body having an anisotropic tempera-
dynamical lifetimes of particles delivered from the asteroigire distribution on its surface. As their names imply, the diurnal
belt (Farinella et al. 1998; Hartmann et al. 1998; Morbidelli &nd seasonal variants correspond to different periodicities and
Gladman 1998); the overabundance of decameter—sized ne@emetries of the external illumination on the body’s surface.
Earth objects (Rubincam 1995, 1998; VokrouhfiéFarinella  From this perspective, it seems desirable to develop a unified,
1998a), the dynamical evolution of large 6 km) main—beltas- self-consistent theory for the Yarkovsky effect, including at the
teroid fragments and their delivery to Mars— and Earth—crossiggme time both the diurnal and the seasonal periodicities, such
orbits (Farinella & Vokrouhliclg 1999). In all these cases, thethat the two classical variants can be derived computing suitable
Yarkovsky effect plays the role of a dissipative mechanism, rexathematical limits.

Although the classical variants of the Yarkovsky effect are

Send offprint requests t®rague address present as particular limiting cases, the unified theory inevitably
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will contain additional, “mixed” terms, depending on both th&om the center of the body to its surface fat= R) is to be
relevant frequencies,.; andw,.,. This conclusion holds evenscaled by the penetration depth of the seasonal thermal wave
in the frame of a linear theory for the temperature changes, sugh= \/ K/pCuwyey: ' = /1. Here,K is the thermal conduc-

as that developed in the following sections. Thus, the majivity, C' the thermal capacity, angithe density of the material.
novelty of this paper consists of the derivation of these “mixedFinally, the timet will be represented by a complex quantity
(or “diurnal-seasonal”) terms. Specifically, we shall show that= exp(i)\) [A = wrey (t — to)], With ¢y being an arbitrary time

the “diurnal” variant does not exist as an effect depending omigin to be specified below (heie= /—1).

the rotation frequency alone, but inevitably contains a linear The temperature variatioh7’ = AT /T, satisfies the heat
combination of the two frequencies. As expected, in the limit diiffusion equation (see, e.g., Vokrouhlick998a)

a very rapid spin rate this doublet tends to merge into a single

line, depending just om,o. iCa*C AT' (156, ¢5¢) = 1)
Then, we shall assess the contribution of the new terms to

the {secular changes in the semimajor axis of the body’s prbital - % {8/ (T@ 8/) + A (6, ¢)} AT (150, ¢;¢) ,

motion. As noted above, such changes probably play an impor- or or

tant role in several problems of astronomical interest, and Wt the operaton (¢, ¢) given by
guantitative results obtained so far have always been computed

as a simple superposition of the diurnal and seasonal effegtg) ) — 1 [8 (sinea) 1 62} (2)
(e.g. Farinella & Vokrouhlick 1999), neglecting any possible sinfg | 00 00 sin 6 0p?
“mixed” effects. (hered and¢ are the usual spherical coordinates with the pole

To make 'the 'callculations as simple as possible,. we sh@dfined by the body’s rotation axis). Ef. (1) is supplemented by
make three simplifying assumptions: (i) a circular orbit aroungle |inearized boundary condition

the Sun; (i) a spherical shape of the body; and (iii) a com- ,
mensurability between the rotation and revolution periods. [floAT" + © (8AT ) = A&, (3)
particular, we shall introduce a parameter= w;ot /wyey, and o' )

we shall assume that is an integer number. However, we stresgjith the seasonal thermal paramegedefined by

that while the first two assumptions correspond to physical sim-

plifications, the third one is just a suitable mathematical stepgp— [yrey (4)
simplify the derivation of our results, and that this assumption eoT?

can be easily removed by the technique used by Farinella(ﬁérer = /pCK is the thermal inertia). The right—hand side
Vokrouhlicky (1996). Therefore, our final results will be validigrm in Eq.[B) is defined by’ = iJrAg/ & = 1/4beingthe

1 Yav

for any (real) value of the parameter. averaged irradiation of the fragment’s surface. The temperature
variation AT is a function of the coordinatgs’, 0, ¢) inside
2. Theory the body and of tim€.

As in Vokrouhlicky (1998a), we shall solve fakT” in a ro-
tating, body—fixed reference frame, with theaxis coinciding
Hereafter, we use the mathematical approach and the notati@ii its spin vector. At the reference tintg, the X -axis of this
introduced by Vokrouhlick (1998a,b). We refer to those papersystem points toward the radiation source (the Sun). After ex-
for a historical background and a more detailed discussiongtssing the thermal force vectbin this reference frame — see
thermal physics, while here we shall just provide a few generdis. [1#) and (15) below — we will compute its projections in
concepts and definitions required to derive a unified solution fgre orbit—related reference system and obtain the force compo-
the thermal Yarkovsky force on a spherical body. nents appearing in the Gauss perturbation equations. The latter

Since we plan to remain in the framework of a linear theowyperation is simple vectorial algebra.
to describe the thermal response of an orbiting body to external
heating, we suppose that the temperafuteroughout the bod : :
is closg toa copnpstant mean va[ﬁgz T.., and tgherefore writg 2.2. The insolation term
T =T, + AT (AT < T,,). A suitable scaling of the temper-As discussed in detail by Vokrouhligk1998a), a particular at-
atureT', as well as other variables, simplifies the mathematidantion has to be paid to a suitable development of the irradiation
formulation of the problem. The temperatdravill be normal- term A&’ on the right—hand side of Eql(3). In general, we can
ized by an auxiliary valu@, defined byesT}! = of,. Here,e use a series of spherical functions
is the thermal emissivity coefficient of the bodythe Stefan— n
Boltzmann constanty the optical absorption coefficient andag’ — 3~ 3™ 4,,,(¢) Yo (6, ) , (5)

&, the solar radiation flux at the mean distance along the orbit. o1 he—n

Since we shall restrict our analysis to the case of a circular orbit § .
the scaled mean temperature re@ls= T, /T, = 1/v/2[see where only the dipoler(= 1) part
Vokrouhlicky 1998a; the normalized quantities will be always T

denoted by a prime]. Similarly, the radial coordinateeasured ~ 410\&) = \/; cos bo(C) »

2.1. Formulation of the problem

(6)
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_ T Tido which gives the thermal recoil force per unit of mass of the body.
a1£1(¢) :F\/; sinfo(C)e D Here,» — (€. mR?/mc) is the usual radiation force facton
is the body’s mass; the velocity of light anda the unit vector

will be relevant. Herd), and¢, are the solar colatitude (mea- . .
sured from the spin a?ds) ang longitude in the body—fixed r%i}‘_ormal to the surface. Given the multipole developmient (10) of

- , . : "
erence frame (a mathematical technique allowing one to obt i temperature variationT", we easily obtain the following

most elegantly these results has been discussed in Vokrojahli Q{mulae for the thermal force components

1998a). To simplify the following algebra, the origin of the mean ) 8 , ,

longitude (i.e. t) has been chosen so that Ix(©Q+ify(Q) = NG a®ty 4 (R5(), (14)
(o = —sinysin A = - sin (C—¢™) 8) 112 e (R

cosfl = —sinysind = 5 siny ! 12(0) = —3\/5- a®th(RQ) (15)

Whir97 IS tt;g oblliquity_ of the spinbaxis. E.(EI(B) a”O\INS rl:S toconfirming that only the dipole part(= 1) of the temperature
make imme lately an important o .sclarvatlon, nameyt at tE]Svelopment[@O) is relevant at the level of a linear theory. The
Fourier spectrum of thes,(¢) coefficient contains only the ¢ . componentd_(14) anf_{15) are given in the co-rotating

revolution frequency. b . . i
: ody—fixed reference frame defined in Sect. 2.1.
On the other hand, the Fourier development for the tesserafjy

coefficientsa;+1(¢) is more complicated. It contains a linear _
combination of the rotation and revolution frequencies, since2-4. Solution for the seasonal component

sin 0 X% = gin? 1 CFOnHD 62 2l (Fm=1) 9) Hereafter, we give a solution for the “zonal” paft,(r'; ()_of
2 2 the temperature distribution, which yields the along—spin com-
As an alternative way of obtaining these results, one may use B&&ent of the thermal force [see EQ.[(15)]. Given the simplicity
insolation function development of Rubincam [1994; Eq. (6)]0f the corresponding, (¢) coefficient from Eq(B), we may as-
sumetio(r';¢) = k4 (r')¢ + k_(r")¢ 1. The radial functions

. . . satisfy the equation
2.3. Linear solution and thermal force evaluation i fy q

The linearity of the systerfil(1) £1(3) and the developmignt (5) i/ (r’le) -(2+ ir'Q)} ke(r)=0. (16)
the insolation term allows us to make a suitable decompositiorf” dr
of the temperaturd\7” into multipole components whose solution is given by
n 4. -
AT' (30,60 =S S (730 Yar(0,0) . (10) R=(r) =cTn(VFr). (17)
n>1 k=—n

Here,j1(z) is the spherical Bessel function of orderDeter-
The coefficientst!, ('; ¢), weighing the different multipole mining the proportionality factors®™ in Eq. [IT) by the surface
terms, satisfy the following system of decoupled differenti#loundary constrainf (12), we obtain the following expression

equations for the zonal dipole coefficiertt,,(r’; () at the surface of the
P body (' = R'):

(== thp(r;() = 11

ZC&C nk(T7C) ( ) , , T . Er Sin()\-i-(SR')
t10(R5¢) =—4 /= siny ——= . (18)

1 9 2 0 It 6 I+x
= 2V \" gy ) ) (0

Following the notations of Vokrouhligk(1998a), we introduce

with the boundary constraints the amplitudeF iz, and the phaség: by

ot A(x) +iB(z)
V2t (R'; +@< "k> =a, 12) Ep Op) = ——t 1
k(R Q) o o k(C) (12) Eg exp (idp) Clo)+iD() (29)

at the surface of the body. The regularityt9f at the central with » = \/2R’. The auxiliary functionsA(z), B(z), C(x),

positionr’ = 0 is also assumed. In the next sections we shal)(z) read
obtain a general solution of Eq§{11) aadl(12) for the dipole
(n = 1) part of developmenkl5). A(r) = — (v +2) —€"[(z — 2)cosz — zsinz] , (20)

When determining the recoil force due to thermal radiatiom (z) = —z — e® [z cosz 4 (x — 2)sinz] | (21)
we assume — in agreement with the boundary condifibn (3) - X
that the isotropic Lambert's law holds as far as the direction&l(*) = A(*) + Ty (22)
characteristics of the emission are concerned. Linearizing the{g (z+2)+e" [3(x —2)cosa +a (z — 3)sina]}
fourth power of the surface temperature as before, we obtain X

D(z) = B(z)+ —— X (23)

1+ x
£(¢) = —Z?Ifa@/dQAT’(R';&@Onv 1) (2@ +3) - [v(z—3)cosz — 3 (z — 2)sinz]} ,
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with the parametey in Eqgs.[I8), [[2R) and(23) defined by:(31) also depend on a linear combination of the rotation and rev-
x = ©/(v/2R’). Note that the same quantity had been calledolution frequencies, but not on the rotation frequency itself. This
by Vokrouhlicky (1998a). statement is obviously “coordinate dependent”. To make a more
As we are mainly interested in the mean rate of changevious link to the results of Vokrouhligk(1998a; Eq. 30), one
(da/dt) of the orbital semimajor axisdue to Yarkovsky effects, may transforni fx, fy ) force componentsto the body—centered
we look for the perturbations caused by the along—spin thernfi@me with the axis: along its spin axis and the axisso that
force component inthe along—track direction’y . Assuming the local direction to the Sun lies in the—plane (this system

a quasi—circular orbit we have has been used by Vokrouhligk1998a). Denoting the equato-
rial Yarkovsky force components in this reference system by we
T, = fzsinycos A+ Ofe) . (24)  obtain
Averaging over one revolution of the body around the Sun (i.ﬁ +if, = fx +ify (sz v ¢ + cos? v 471) . (32)
one cycle of the mean longitudg we finally obtain sin 0y 2 2
da lo ® Epsindp Fourier development of (32) contains infinite series of spectral
() = /= sin?ny. (25) lines depending on both rotation and revolution frequencies. In
dt ), 9 wev 14X what follows, we us€e[(31) because of its simplicity.

This formula coincides exactly with the semimajor axis decay AS inthe previous section, we are primarily interested in the
rate due to the seasonal variant of the Yarkovsky effect (see €@jatribution of the(fx, fy) force components to the along—

Rubincam 1998; Farinella et al. 1998). track perturbation on a quasi—circular orbit. Simple algebra
yields

2.5. Solution for the diurnal/mixed components Ty = %(fy —ifx) (sin2 % ¢ cos? % Cm—1) 4+ C.C.

Next, we determine the “tesseral” coefficietits, (r'; ¢) of the +0(e) (33)

temperature developmehi{10), which are related to the out—
axis thermal force componentgy, fv) [see Eq.[(14)]. Given
the Fourier expansion of the insolation coefficienis. (¢)
from (@) and[(®) we may expect

?c];Fthe along—track perturbation force; C.C. means the complex
conjugate quantity of the previous term. Taking the average of
Ty over one revolution around the Sun we obtain the mean rate
of change of the semimajor axis

tas ('3 Q) = 71 (F) UMD 72, () (D (26) gda> 8o @ {cos* T Ep sins
- = — COs™ = Lpr SINOR/
and we find again from Ed.(lL1) that the radial amplitude dt J 4 Iwrev 1+ x 2
Tfl(r/) satisfy a system of decoupled homogeneous spherical _gnt? Ep sindp } ) (34)
Bessel equations. Their solution reads 2 *
where the indexd reminds us that we are dealing with the
Tli(rl) = cli J1 {\/q:i (m+ 1)4 , (27) diurnal componentsfx, fy) of the thermal force. Interest-
N N ingly, Eqg.(34) shows that the diurnal effect on the semima-
() = & h [\/ Fi(m — 1)7“/} : (28) jor axis is not simply proportional to the cosine of the oblig-

) o uity — as most commonly used — but dependsydn a more
So far, we have been keeplng the normalization of the radt%implicated way. However, the classica v result can be re-
coordinate" by the penetration depth of the seasonal thermal coyered realizing that in the typical astronomical applications
wave. However, a normalization by the penetration dépth Wrot /wrey = m > 1. Then, to a high accuracy we can set
ls/+/m of the diurnal wave is more suitable now, and will b&y ~ R’ andcos® /2 — sin*~/2 = cosy. Then, Eq.[(34)
used hereafter in this section. Thus becomes identical with the classical result (e.g. Vokrouklick
4+ + - / 1998a), confirming that in the fast rotation limih(— o) the
. £, 11 } : 29) : :
() “a { Fi(l+1/m)r (29) diurnal variant of the Yarkovsky effect is naturally decoupled

T_il(T/) _ Ci i [ /Fi (1- l/m)r’} ) (30) from.its seaspnall counterpgrt. Itis easy to check thatin all gstro—
nomical applications listed in Sect. 1 the exact re§ult (34) differs

After deriving the constant factor&, from the boundary con- from the classical formula by less than one parti.
ditions we obtain Another consequence of EQ.{34) is that the diurnal effect
on the semimajor axis does not vanish exactl§(atobliquity.
. 4 ad .9 ) _ . . ) . L .

fx+ify=—= {Sm2 ~ Ep exp(—id% )¢t (31) This asymmetry implies that the corresponding semimajor axis
9 1+x 2 77 - drift does not average out to zero when an isotropic distribution

+eos2 L Ep exp(—idt )C} . of spin axes is assumed (e.g., due to frequent and random im-

2 - N pact reorientation events). Denoting by angled brackets such an

Here we defined?, = /1= 1/m R', while the remaining average over all the spin orientations, we obtain
guantities are the same we used previously. Note that, like t{ida) > _ 8a i)
d

insolation coefficienta; 11 (¢), the “diurnal” force components dt 2Twrey 1+ X
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X { Ep sindp — Eg sinép } . (35) into account only the limit variants of the Yarkovsky effect,
+ + - - : ; - ;
namely the diurnal and seasonal effects, in dealing with the
However, unless the: parameter is unrealistically small, col- meteorite delivery issue. Only in the case of very slowly
lisional events will anyway tend to spin up the rotation rate rotating bodies orbiting in the inner Solar System (a possible
besides reorienting the spin axis, the long—term avetagde (35) of case would be that of Mercurian ejecta escaped from the
the diurnal semimajor axis effect is very small. Quantitatively, planet's gravity field), the more exact solution derived in
one can easily show thétda/dt),) « 1/m at largem. this paper might be used to improve the accuracy of the
results.
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