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ABSTRACT

Although not yet detected, pairs of exoplanets in 1:1 mean motion resonance probably exist. Low eccentricity,
near-planar orbits, which in the comoving frame follow horseshoe trajectories, are one of the possible stable
configurations. Here we study transit timing variations (TTVs) produced by mutual gravitational interaction of
planets in this orbital architecture, with the goal to develop methods that can be used to recognize this case in
observational data. In particular, we use a semi-analytic model to derive parametric constraints that should facilitate
data analysis. We show that characteristic traits of the TTVs can directly constrain the (1) ratio of planetary masses
and (2) their total mass (divided by that of the central star) as a function of the minimum angular separation as seen
from the star. In an ideal case, when transits of both planets are observed and well characterized, the minimum
angular separation can also be inferred from the data. As a result, parameters derived from the observed transit
timing series alone can directly provide both planetary masses scaled to the central star mass.
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1. INTRODUCTION

Stable configurations of planets in 1:1 mean motion resonance
(MMR) comprise three different cases: (1) tadpole orbits, which
are similar to the motion of Trojan asteroids near Jupiter’s L4
and L5 stationary points, (2) horseshoe orbits, which are sim-
ilar to the motion of Saturn’s satellites Janus and Epimetheus,
and (3) binary-planet orbits, in which case the two planets re-
volve about a common center of mass moving about the star on a
Keplerian orbit. Numerous studies explored these configurations
with different aims and goals. Some mapped stability zones in
orbital and parametric spaces. Other studies dealt with formation
and/or capture of planets in 1:1 MMR and their survivability
during planetary migration. Still other works explored obser-
vational traits such as the radial velocity (RV) signal in stellar
spectrum or transit timing variations (TTVs) in the case where
one or both planets transit the stellar disk. While we still do not
know details of dominant formation and evolutionary processes
of planetary systems, as well their variety, a general consensus
is that planets in 1:1 MMR should exist. Here we briefly recall
several important studies directly related to our work.

Laughlin & Chambers (2002), while studying methods that
would reveal a pair of planets in 1:1 MMR from the RV analysis
(see also Giuppone et al. 2012), pointed out two possible
formation scenarios: (1) planet–planet scattering that would
launch one of the planets into a co-orbital zone of another planet
(including possibly one of the high-eccentricity stable orbital
configurations3), and (2) in-situ formation of a smaller planet
near the L4 or L5 points of a Jupiter-class planet. These authors
also noted that 1:1 MMR would persist during subsequent
migration, since the balance between angular momentum and
energy losses prevents an eccentricity increase. This behavior
stands in contrast with planets captured in other (higher-order)
resonances. Moreover, if significant gas drag is present, the
libration amplitude may be damped, thus stabilizing the co-
orbital configuration.

3 Note that there is a surprising variety of 1:1 MMR planetary configurations,
many of which have large eccentricities or inclination (e.g., Giuppone et al.
2010, 2012; Hadjidemetriou et al. 2009; Schwarz et al. 2009; Hadjidemetriou
& Voyatzis 2011; Haghighipour et al. 2013; Funk et al. 2013). In this paper, we
do not consider these cases.

The suggested scenario of in-situ formation by Laughlin
& Chambers (2002) has been modeled by several groups.
Beaugé et al. (2007) started with a population of sub-lunar
mass planetesimals already assumed to be present in the tadpole
region of a giant planet, and studied conditions of co-orbiting
planet growth. They took into account mutual gravitational
interaction of the planetesimals as well as several gas-density
models. With this set-up, Beaugé et al. (2007) noted that only
�0.6 Earth-mass planets grow in their simulations. Beaugé
et al. also conducted simulations of planet growth during the
migration phase and found essentially the same results. Notably,
the Trojan planet orbit has not been destabilized and safely
survived migration with a low final eccentricity.

A more detailed study has been presented by Lyra et al.
(2009). Using a sophisticated model of gas and solid dynamics
in a self-gravitating thin disk, these authors modeled planet
formation starting with centimeter-size pebbles. They showed
that pressure maxima associated with macroscopic vortexes
may collect enough particles to generate instability followed
by gravitational collapse. Up to 5–20 Earth mass planets may
form this way in the tadpole region of a Jupiter-mass primary,
depending on size distribution of the pebble population.

Another pathway toward the formation of low-eccentricity
planets in 1:1 MMR has been studied by Cresswell & Nelson
(2006). These authors analyzed the orbital evolution of a
compact system of numerous Earth- to super-Earth-mass planets
during the dynamical instability phase. If the planetary orbits
were initially several Hill radii apart in their simulations, the
co-orbital configuration emerged as a fairly typical case for
some of the surviving planets. A similar set-up, though with
different assumptions about the gas-disk density profile, has
also been studied by Giuppone et al. (2012), who showed
that even similar-mass planets may form in the 1:1 MMR
configuration. Additionally, these authors also simulated the
co-orbital-planet formation and stability during the gas-driven
migration. Common to these works was that the 1:1 MMR
configuration formed in a sufficiently low-eccentricity state,
assisted by efficient gas friction, prior or during the migration
stage. If, on the other hand, most close-in planets formed as a
result of tidal evolution from a high-eccentricity state, acquired
during the planet–planet scattering (e.g., Beaugé & Nesvorný
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2012), and the gas drag was of no help to keep the eccentricities
low at any stage of evolution, the fraction of surviving 1:1 MMR
configurations may be very small.

Orbital evolution and survival of planets in 1:1 MMR during
migration has also been studied in some detail. For instance,
Cresswell & Nelson (2009) considered dynamics of co-orbiting
planets during and after the gas-disk dispersal and generally
found the system to be stable. In some cases, the late migration
stage with low-gas friction, or after nebula dispersal, has resulted
in an increase of the libration amplitude of the tadpole regime
and transition into a horseshoe regime, or even destabilization
(see also analysis in Fleming & Hamilton 2000). Rodrı́guez
et al. (2013) also included tidal interaction with the star
and found that equal-mass planets may suffer destabilization
during their inward migration. On the other hand, unequal-mass
configurations that naturally form in the in-situ scenario may
thus be more common.

As far as the detection methods are concerned, the easiest
idea would be to seek photometric dips about 1/6 for the hot-
Jupiter orbital period away from its transit (as expected for a
planet located in the Lagrangian stationary points L4 or L5).
However, this approach did not yield so far a positive result
(e.g., Rowe et al. 2006; Moldovan et al. 2010). For that reason
researchers sought other detection strategies. For instance, Ford
& Gaudi (2006) found that a Trojan companion to hot Jupiter
might be revealed by detecting an offset between the mid-time of
its transit and the zero point of the RV of the star (assuming that
barycenter motion is subtracted). This effect would be detectable
with available technology for planet companions with at least
several Earth masses. While interesting, this method requires a
combination of high-quality TTV and RV observations. So far,
only upper limits of putative Trojan companions were obtained
with this method.

A method based uniquely on analysis of the TTVs of hot
Jupiter, if accompanied by a Trojan planet, was discussed by
Ford & Holman (2007). While finding the TTV amplitude
large enough for even low-mass Trojan companions, Ford &
Holman (2007) also pointed out difficulties in interpretation of
the data. For instance, a Trojan planet on a small-amplitude
tadpole orbit would produce nearly sinusoidal TTVs in the orbit
of giant planet. Such a signal may be produced by a distant moon
and/or resonant perturbations due to additional planets in the
system. It would take further tests and considerations to prove
the signal is indeed due to a Trojan companion.

Haghighipour et al. (2013) presented so far the most detailed
study of TTVs produced by a Trojan companion of a transiting
hot Jupiter. Their main goal was to demonstrate that the
expected TTV amplitudes were within the detectable range
of Kepler (or even ground-based) observations. With that
goal, they first numerically determined the stable region in
the orbital phase space. Next, they modeled the TTVs in
the hot Jupiter orbit, giving several examples of how the
amplitude depends on key parameters of interest (mass of the
Trojan companion and eccentricity of its orbit, orbital period
of the hot Jupiter, etc.). While confirming a confidence of
detectability of the produced TTVs, this work did not give any
specific hints about the inversion problem from TTVs to the
system’s parameters; neither did it discuss the uniqueness of the
TTV-based determination of Trojan-planet properties.

In this work, we approach the problem with different tools.
Namely, we develop a semi-analytic perturbative method suit-
able for low-eccentricity orbits in 1:1 MMR. While our method
can be applied to the tadpole regime, or even the binary planet

configuration, we discuss the case of co-orbital planets on horse-
shoe orbits. This is because in this case the TTV series have a
characteristic shape, which would allow us to most easily iden-
tify the orbital configuration (see also Ford & Holman 2007).
While the final TTV inversion problem needs to be performed
numerically, the multi-dimensionality of the parameter space is
often a problem. Our formulation allows us to set approximate
constraints on several key parameters such as planetary masses
and amplitude of the horseshoe orbit. This information can be
used to narrow the volume of parameter space that needs to
be searched. Analytic understanding of TTVs is also useful to
make sure that a numerical solution is physically meaningful.

2. MODEL

Following Robutel & Pousse (2013), we use the Poincaré
relative variables (r0, r1, r2; p0, p1, p2) to describe the motion
of the star with mass m0 and two planets with masses m1 and
m2. It is understood that (m1,m2) � m0. The stellar coordinate
r0 is given by its position with respect to the barycenter of
the whole system, and the conjugated momentum p0 is the total
(conserved) linear momentum of the system. Conveniently, p0 is
set to be zero in the barycentric inertial system. The coordinates
(r1, r2) of the planets are given by their relative position with
respect to the star, and the conjugated momenta (p1, p2) are
equal to the corresponding linear momenta in the barycentric
frame. The advantage of the Poincaré variables stems from their
canonicity (e.g., Laskar & Robutel 1995; Goździewski et al.
2008). Their slight caveat is that the coordinates and momenta
are given in different reference systems, which can produce non-
intuitive effects (see, e.g., Robutel & Pousse 2013). These are,
however, of no concern in our work.

Heading toward the perturbation description, the total Hamil-
tonian H of the system is divided into the unperturbed Keplerian
part,

HK =
2∑

i=1

(
p2

i

2 μi

− G
μiMi

ri

)
, (1)

and the perturbation,

Hper = p1 · p2

m0
− G

m1m2

|r1 − r2| . (2)

Here we denoted Mi = m0 + mi and the reduced masses
μi = m0mi/Mi for the planets i = 1, 2. The gravitational
constant is denoted by G.

For the sake of simplicity, we restrict the analysis to the
planar configuration. The reference plane of the coordinate
system is then chosen to coincide with the orbital plane of
the two planets around the star. As a result, the planetary
orbits are described by only four orbital elements: semi-major
axis a, eccentricity e, longitude of pericenter � , and mean
longitude in orbit λ. To preserve the canonicity of the orbital
parameters, and to deal with orbits of small eccentricity, we
adopt Poincaré rectangular variables (λ, Λ; x,−ıx̄), instead of
the simple Keplerian set, to describe the orbits of both planets
(ı = √−1 and over-bar meaning complex conjugate operation).
Here the momentum conjugated to the longitude of the orbit
λ is the Delaunay variable Λ = μ

√
GMa. The complex

coordinate x = √
Λ

√
1 − √

1 − e2 exp(ı� ) has its counterpart
in the momentum −ıx̄, both fully describing eccentricity and
pericenter longitude. In a very small eccentricity regime we may
also use a non-canonical, but simpler, variable z = e exp(ı� ) =√

2/Λ x + O(x3).
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Since the difference in mean longitudes of the two planets
becomes the natural parameter characterizing co-orbital motion,
it is useful to replace variables (λ1, Λ1; λ2, Λ2) by

θ1 = λ1 − λ2, J1 = 1

2
(Λ1 − Λ2) , (3)

θ2 = λ1 + λ2, J2 = 1

2
(Λ1 + Λ2) . (4)

The advantage is that (θ1, J1; θ2, J2) remains a set of canonical
variables and θ1, with J1, are the primary parameters describing
the co-orbital motion.

The total Hamiltonian H, expressed in Equations (1)
and (2) as a function of Poincaré relative variables can
be transformed with a lot of algebraic labor into a
form depending on modified Poincaré rectangular variables
(θ1, J1; θ2, J2; x1,−ıx̄1; x2,−ıx̄2; see, e.g., Laskar & Robutel
1995; Robutel & Pousse 2013). In general, H = HK + Hper =
H0 +

∑
k�1 Hk , where Hk ∝ x

p1
1 x

p2
2 x̄

p̄1
1 x̄

p̄2
2 with positive ex-

ponents such that p1 + p2 + p̄1 + p̄2 = k. Hence, Hk are
of progressively higher orders in the eccentricities of the two
planets. We restrict ourselves to the lowest order.

The elegance of the co-orbital motion description for small
eccentricities is due to a simple, though rich, form of the
fundamental Hamiltonian H0. While we shall return to the role
of H1 and higher-order terms in Section 2.2, we first discuss the
H0 term. Note that H0 contains both the Keplerian term HK and
the fundamental part of the planetary interaction in Hper.

2.1. Dynamics Corresponding to the H0 Term

We find that

H0 = −G
μ1M1

2a1
− G

μ2M2

2a2

+ Gm1m2

[
cos θ1√

a1a2
− 1

Γ (a1, a2, θ1)

]
, (5)

where the dependence on the orbital semi-major axes a1 and
a2 of the planets only serves to keep this expression short; the
Hamiltonian is truly a function of the momenta (J1, J2) via

a1 = (J1 + J2)2

Gμ2
1M1

, (6)

a2 = (J1 − J2)2

Gμ2
2M2

. (7)

Additionally, we have

Γ (a1, a2, θ1) =
√

a2
1 + a2

2 − 2a1a2 cos θ1, (8)

which is not to be developed in Taylor series for description
of the co-orbital motion at this stage. We also note that a
factor m0/

√
M1M2 has been omitted in the first term of the

bracket in Equation (5). This is a fairly good approximation
for planetary masses much smaller than the stellar mass. We
observe that the coordinate θ2 is absent in H0, implying that the
conjugated momentum J2 is constant. The J2 conservation is
just a simpler form of a general angular momentum integral

2J2 − |x1|2 − |x2|2 = C1 at this level of approximation
(eccentricities neglected). The motion is thus reduced to a single
degree of freedom problem H0(θ1, J1; J2) = C2, where C2
is constant. The C2 isolines in the (θ1, J1) space provide a
qualitative information of the system’s dynamics.

Further development is driven by observation that in the co-
orbital regime a1 and a2 are both very close to some average
value a0. As discussed by Robutel & Pousse (2013), a0 may
conveniently replace the constant J2 momentum using

J2 = 1

2
(μ1

√
GM1 + μ2

√
GM2)

√
a0. (9)

In the same time, it is advantageous to introduce a small quantity,
which will characterize the small deviation of a1 and a2 from
a0. This is accomplished by replacing (θ1, J1) with (θ, J ) using
a simple shift in momentum:

J1 = 1

2
(μ1

√
GM1 − μ2

√
GM2)

√
a0 + J, (10)

and θ1 = θ . So now H0 = H0(θ, J ; a0). Finally, it is useful to
define a dimensionless and small parameter u instead of J by
J = (μ1 + μ2)

√
Gm0a0 u even at the expense of u not being

canonically conjugated to θ . The dynamical evolution of the
system is then described by the quasi-Hamiltonian equations

du

dt
= −1

c

∂H0

∂θ
,

dθ

dt
= 1

c

∂H0

∂u
, (11)

with c = (μ1 + μ2)
√

Gm0a0. At this moment it is also useful to
relate (θ, u) to the semi-major axes of the two planets via

a1 = a0

(
1 +

μ1 + μ2

μ1

√
m0

M1
u

)2

, (12)

a2 = a0

(
1 − μ1 + μ2

μ2

√
m0

M2
u

)2

, (13)

and H0 is still given by Equation (5). These relations permit us
to differentiate with respect to u using the chain rule, such as

∂

∂u
= ∂a1

∂u

∂

∂a1
+

∂a2

∂u

∂

∂a2
. (14)

Once the solution of the planet motion in new variables u(t)
and θ (t) is obtained, we will also need to know the mean
longitudes, λ1 and λ2, to determine the TTVs. To that end we
invert Equations (3) and (4), obtaining

λ1 = 1

2
(θ2 + θ ) , (15)

λ2 = 1

2
(θ2 − θ ) , (16)

and find θ2(t) from the integration of

dθ2

dt
= ∂H0

∂J2
. (17)

Differentiation with respect to J2 is obtained using the chain
rule with Equations (6) and (7).

3



The Astrophysical Journal, 791:6 (10pp), 2014 August 10 Vokrouhlický & Nesvorný

It is also useful to recall that θ evolves more slowly than θ2,
since to the lowest order in u, dθ2/dt ∝ u0, while dθ/dt ∝ u1.
In fact, the unperturbed solution reads θ2 � 2 n0(t − t0), with

n0 =
√

Gm0

a3
0

, (18)

implying λ1 = λ2 � n0 (t − t0) to the lowest order.
Note that so far we considered the exact solution of H0,

without referring to approximations given by its expansion in
small quantities: u, and m1/m0 and m2/m0. The reason for this
was twofold. First, we found that such a series may converge
slowly and truncations could degrade the accuracy of the solu-
tion. Second, although we find it useful to discuss some aspects
of such a development in the small parameters below, we note
that the system is not integrable analytically at any meaningful
approximation. This implies that a semi-numerical approach is
inevitable. Most importantly, considering the complete system,
as opposed to approximations given by the truncation of the
series in the above-mentioned small parameters, does not ex-
tend the CPU requirements. In fact, Equations (11) and (17)
are easily integrated by numerical methods (in our examples
below we used simple the Burlish–Stoer integrator leaving the
implementation of more efficient symplectic methods for future
work).

While the numerical approach provides an exact solution, it
is still useful to discuss some qualitative aspects by using ap-
proximate forms of H0. The smallness of u permits denominator
factors such as 1/Γ in Equation (5) to be developed in a power
series, of which we preserve terms up to the second order (see
also Robutel & Pousse 2013):

H0(θ, u; a0) = G

a0
(A0 + A1 u + A2 u2). (19)

The A-coefficients read

A0 = σ

2

(
2 − γ 2 − 2

γ

)
, (20)

A1 = −σ+σ−
2

(1 − γ )2

(
1 +

2

γ

)
, (21)

A2 = −3

2

m0σ
3
+

σ

+
σ 2

+

σ

[(
σ 2

+ − 3σ
) (

4 − γ 2

2
− 1

γ

)
+

2σ 2
+

γ 3

]
, (22)

with the mass-dependent parameters σ± = m1 ± m2 and
σ = m1m2, and γ = √

2 − 2 cos θ . Terms to the second power
of planetary masses have been retained in Equation (19). In fact,
the simplest form is obtained by dropping the linear term in u,
and approximating A2 by the first factor only.4 This results in

H0 = −3

2

G

a0

m0σ
3
+

σ
u2 +

Gσ

a0

(
cos θ − 1

γ

)
, (23)

4 Note that the second term in A2 is by a factor ∝ σ+/m0 smaller than the
first term. The smallness of the term that is linear in u is obvious in the limit of
planets with a similar mass for which σ− � 0. In the regime of planets with
unequal masses, m2 � m1, one finds that A1u/A0 ∝ (m1/m0)1/3, again
rendering the omitted linear term small (see Equations (27) and (28) in Robutel
& Pousse 2013).

Figure 1. Example of two trajectories in the (u, θ ) phase space of Hamiltonian
H0; for sake of illustration we used m0 = 1 M�, m1/m0 = 10−3, and
m2/m0 = 2 × 10−5. The trajectory in a horseshoe regime, labeled H, is
characterized by (1) minimum and maximum value of |u| parameter (denoted
here u1 and u2), and (2) minimum angular separation θmin of the co-orbiting
planets. The trajectory labeled T shows an example of a tadpole orbit, librating
about the Lagrangian stationary point L4 for comparison.

which has already been introduced by Yoder et al. (1983; see
also Sicardy & Dubois 2003). The Hamiltonian Equation (23)
corresponds to a motion of a particle in the potential well

U (θ ) = cos θ − 1

γ (θ )
. (24)

As discussed by Robutel & Pousse (2013), in both approxi-
mations (19) and (23) the exact character of the motion is not
represented near Γ � 0, corresponding to a collision configura-
tion, but this is not of great importance for us.

Unfortunately, the Hamiltonian Equation (23) is not inte-
grable analytically. Still, the energy conservation H0 = C2 pro-
vides a qualitative insight into trajectories in (u, θ ) space and
also allows us to quantitatively estimate some important param-
eters. Figure 1 shows examples of two trajectories in the phase
space of (u, θ ), one corresponding to a horseshoe solution (H)
and one corresponding to a tadpole solution (T) librating about
the L4 Lagrangian stationary solution. Here, we set m0 equal
to solar mass, m1/m0 = 10−3 and m2/m0 = 2 × 10−5. Since
we are primarily focusing on the horseshoe co-orbital regime,
we determine relations between parameters characterizing the
H-trajectory in Figure 1. These are the (1) minimum u1 and max-
imum u2 amplitudes of |u| along the trajectory, (2) minimum
separation angle θmin, and (3) half-period T of motion along the
trajectory in the (u, θ ) space. One easily finds that u1 corre-
sponds to planetary opposition θ = ±π , and u2 corresponds to
the longitude of the Lagrangian stationary solutions θ = ±π/3.
As a result,

u2
2 − u2

1 = 2

3

σ 2

m0σ 3
+

. (25)

The symmetry of H0 in u implies that θmin corresponds to u = 0,
and thus

u2
1 = 1

3

σ 2

m0σ 3
+

(
2 Σmin +

√
2

Σmin
− 5

)
, (26)

where we denoted Σmin = 1 − cos θmin. The inverse relation
requires solving a cubic equation, conveniently given in the
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Figure 2. Top: semi-major axis a1 of the heavier planet (left) and the lighter planet a2 (right) as a function of time for the horseshoe trajectory in Figure 1. Their mean
value a0 = 0.5 AU for definiteness. The time span covers two cycles of the circulation along the trajectory. The lighter planet experiences larger perturbations and
thus larger-amplitude variations of the semi-major axis. Bottom: normalized rates of change of the longitude in orbit (dλ1/dt)/n0 − 1 of the heavier planet (left) and
the lighter planet (dλ2/dt)/n0 − 1 (right). The dashed horizontal lines are the numerically computed mean values. They are offset from zero for reasons discussed in
the main text.

standard form. Using the trigonometric formulas, one has

Σmin = 4 K

3
cos2

[
1

3
acos

(√
27

8 K3

)
− 2π

3

]
, (27)

with

K = 3

2

m0σ
3
+

σ 2
u2

1 +
5

2
. (28)

The critical trajectory, representing the transition between the
horseshoe and tadpole orbits, has u1 = 0, and thus K = 5/2.
Equation (27) then provides a formula for the maximum value
of the θmin separation in the horseshoe regime, roughly 23.◦9.
The minimum value of θmin is approximately set by the La-
grangian L1 and L2 stationary points of the H0 Hamiltonian.
Robutel & Pousse (2013) show that this minimum separa-
tion value is � (4/5)(σ+/6m0)1/3. Depending on the planetary
masses defining σ+/m0, this may be a few degrees.

Finally, the relation between T and θmin is obtained from the
energy conservation5:√

3

2

σ+

m0
n0T =

∫ π

θmin

dθ√
U (θ ) − c2

, (29)

where c2 = C2(a0/Gσ ) = U (θmin) = 1 − K , with K given
above. Obviously, a0 is now needed to gauge n0, while c2 may

5 Equation (29) can be readily obtained by expressing u using dθ/dt from the
second of the Hamilton Equations (11), and plugging it in the Hamiltonian
Equation (23).

be obtained as a function of any of the parameters u1, u2, or
θmin (see Equation (28)). If one wants the right-hand side in
Equation (29) to be solely a function of θmin, we have

c2 = 1 −
(

Σmin +
1√

2 Σmin

)
. (30)

Figure 2 shows the time evolution of the semi-major axes a1
and a2, and the mean orbital longitude rates for the exemplary
system shown in Figure 1 (m0 = 1 M�, m1/m0 = 10−3,
m2/m0 = 2 × 10−5, and a0 = 0.5 AU). In this case we focus on
the horseshoe orbit denoted H on Figure 1. The longitude rates,
computed from their definition (Equations (15) and (16)) and
using Equations (11) and (17), are represented in a normalized
way by (dλ1/dt)/n0 −1 and (dλ2/dt)/n0 −1. As the trajectory
moves along the oval-shaped curve in the phase space, the
orbits periodically switch their positions with respect to the
star causing their semi-major axis to jump around the a0 value.
Each orbit stays at the higher/lower-a regime for time T, which
is approximately ∝ √

m0/σ+/3 longer than its orbital period.
The switch in semi-major axes is reflected in the corresponding
variations in longitude rate. Note that the average λ rates for
both orbits are not equal to n0 from Equation (18), producing an
offset shown by the difference between the dashed line and zero
at the bottom panels of Figure 2. This is because the planetary
masses also contribute to their mean motion about the star, while
the definition of n0 as a nominal reference fast frequency did
not take this into account. In fact, we find that the longitude
rate normalized by n0 and averaged over the co-orbital cycle
2 T is approximately 1 + (mi/2m0) + 6 (σ+/mi)2u2

	 + . . . for each
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of the orbits (i = 1, 2), with u	 being a characteristic value
of the u-parameter over one of the half-cycles (e.g., one could
approximate u	 � (u1 + u2)/2). When the planetary masses
are unequal, as in our example, the more massive planet has
the mean longitude rate primarily modified by its own mass.
In our case (dλ1/dt)/n0 − 1 � m1/(2m0). The lighter planet’s
longitude rate is dominated by the second term, i.e., in our case
(dλ2/dt)/n0 − 1 � 6 (σ+/m2)2u2

	.
Even more important for the TTV analysis is to consider how

much the mean rates in longitude change during the co-orbital
cycle. We find that the change in longitude rates during the
low/high-a states for each of the planets is approximated by
� ±6 n0 (σ+/mi) u	 (i = 1, 2). If large enough, this value may
build over a timescale T to produce large variations in the mean
longitude of planets, and thus result in large TTVs. We will
discuss this in Section 3.

2.2. Eccentricity Terms

So far, we approximated the interaction Hamiltonian H with
the leading part H0 from Equation (5) that is independent of
eccentricities e1 and e2. In order to extend our analysis to the
regime of small e values, we include the lowest-order interaction
contributions. Neglecting the second-order eccentricity terms,
we have (z = e exp(ı� ))

dz

dt
= −2ı

Λ
∂H
∂z̄

, (31)

where we insert H = H1 and the secular part from H = H2,
the first- and second-order terms in eccentricity development
of H. When δz(t) = z(t) − z(0) is known for both orbits from
solution of Equation (31), we can compute their effect on TTVs
by defining (e.g., Nesvorný & Vokrouhlický 2014)

δλeff = ı(δz e−ıλ0 − δz̄ eıλ0 ). (32)

Here λ0 is the unperturbed longitude in orbit for which we
substitute the zero-order solution λ0 = n0(t − t0) plus a phase,
individual to each of the two planets. This is an effective
change in orbital longitude given here to the first order in
eccentricity (see Nesvorný 2009 for higher order terms), which
together with the direct effect in λ contributes to TTVs. It is
not known a priori which of these contributions should be more
important. For instance, in the case of closely packed (but not
co-orbiting) orbits studied by Nesvorný & Vokrouhlický (2014),
the eccentricity term (Equation (32)) was generally larger than
the direct perturbation in λ over a short-term timescale.

We should also note that the H1 and H2 Hamiltonians would
also contribute to variations of the (u, θ, θ2) variables. Perhaps
the most interesting effect should be a slight modification of the
planetary mean motion through the change in θ2(t). However,
since it is not our intention to develop a complete perturbation
theory for co-orbital motion here, we neglect these terms,
focusing on the lowest-order eccentricity effects. We verified
that a slight change in initial conditions, specifically the u
parameter value, would equivalently represent the eccentricity
modification of the θ2(t) angle.

2.2.1. First-order Terms

We start with the first-order eccentricity terms in H1. While
apparently of a larger magnitude in H than H2, they are short-
periodic and this diminishes their importance. An easy algebra

shows that the perturbation equations read (recall that the
overbar means complex conjugation)

dz1

dt
= −n0

m2

m0
Φ (θ ) eıθ2/2, (33)

dz2

dt
= n0

m1

m0
Φ̄ (θ ) eıθ2/2, (34)

with

Φ (θ ) = ı e3ıθ/2 +
sin 1

2θ

γ 3
(3 + eıθ ). (35)

We neglected terms of the order of u and higher in the right-
hand sides of Equations (33) and (34), and used γ = γ (θ ) =√

2 − 2 cos θ . Since θ2/2 � n0(t − t0), the power-spectrum
of the right-hand sides in Equations (33) and (34) is indeed
dominated by the high (orbital) frequency n0, modulated by
slower terms from Φ dependence on θ .

2.2.2. Second-order Terms

The second-order eccentricity terms in H2 are important,
because they are the first in the higher-order H expansion part to
depend on low-frequencies only. Restricting to this part of H2,
thus dropping the high-frequency component in H2, we obtain
(see Robutel & Pousse 2013)

dz1

dt
= −2ı n0

m2

m0
(Az1 + B z2) , (36)

dz2

dt
= −2ı n0

m1

m0
(B̄ z1 + Az2), (37)

with

A = 1

8γ 5
(5 cos 2θ − 13) − cos θ

2

(
1 − 1

γ 5

)
, (38)

B = 1

2

(
1 − 2

γ 5

)
e2ıθ

+
1

8γ 5
[ı sin θ (9 − e2ıθ ) + 8 eıθ ]. (39)

We again neglected terms proportional to u and its powers in
expressions for A and B for simplicity. While the right-hand sides
of Equations (36) and (37) are of the first order in eccentricities
e1 and e2, they do not contain high-frequency terms and thus the
corresponding perturbations may accumulate over time to large
values. Indeed, these are the secular perturbations dominating
the eccentricity changes.

Equations (33)–(37) do not possess analytical solutions.
Therefore, we numerically integrated them together with those
for u, θ , and θ2 to determine z1(t) and z2(t).

3. AN EXEMPLARY CASE

We now give an example of a co-orbital system about a solar-
mass star and compute TTVs by two methods: direct numerical
integration of the system in Poincaré relative variables and using
the theory presented in Section 2.

We used the same planetary configuration whose short-term
dynamics was presented in Figures 1 and 2. In particular,
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Figure 3. Transit timing variations (TTVs) of the heavier planet δt1 (top) and the lighter planet δt2 (bottom). Planetary masses and mean semi-major axis value as in
Figures 1 and 2. The gray symbols are the TTVs obtained from direct numerical integration in Poincaré relative variables (Equations (1) and (2)). The solid line is
from the semi-analytic theory given by Equation (40). The dashed and sloped lines in both panels are from our expected amplitude of the change in longitude rate
during the switching between legs in the co-orbital cycle; the slope estimate is �3 (σ+/mi )u	, with u	 � 3.55 × 10−4 and planets i = 1 (top) and i = 2 (bottom). See
the main text for more details.

m0 = 1 M� star with a Jupiter-mass planet m1 = 10−3 M� co-
orbiting with a sub-Neptune mass planet m2 = 2 × 10−5 M�.
The mean distance from the star was set to be a0 = 0.5 AU. The
initial orbits were given small eccentricities of e1 = e2 = 0.01,
and colinear pericenter longitudes �1 = �2 = 0◦. The initial
longitude in orbit of both planets were λ1 = 180◦ and λ2 = 0◦,
such that at time zero they were at opposition.

Starting with these initial data, we first numerically integrated
the motion using Poincaré relative coordinates (r1, r2; p1, p2)
introduced in Section 1. The equations of motion were obtained
from the Hamiltonian H = HK + Hper, with the two parts
given by Equations (1) and (2). For our simple test we used
a general purpose Burlish–Stoer integrator with a tight accuracy
control. The integration timespan was �22.7 yr covering two
cycles of the co-orbital motion (see Figure 2). For the sake of
definiteness, we assumed an observer along the x-axis of the
coordinate system and we numerically recorded times of transit
of the two planets. The TTVs were obtained by removing linear
ephemeris from transits.

Next, we assumed that the system is described by a set of pa-
rameters (u, θ, θ2; z1, z2) introduced and discussed in Section 2,
and numerically integrated their dynamical Equations (11), (17),
and (33–39). For each of the planets we then computed
TTVs from (e.g., Nesvorný & Morbidelli 2008; Nesvorný &
Vokrouhlický 2014)

− n	 δt = δλ + δλeff, (40)

where n	 is the effective mean motion of the unperturbed
motion. We use the mean values of the longitude in orbit rate

discussed in Section 2.1, for instance n	 = n0 (1 + m1/2m0)
for the Jupiter-mass planet. Having θ (t) and θ2(t) integrated,
we recover the time dependence of the longitudes λ1(t) and
λ2(t) from Equations (15) and (16). From these numerically
determined functions, we subtracted the average mean motion
trend n	 (t − t0) and obtained the variation δλ of both planets
as needed for the computation of TTVs (Equation (40)). The
effective eccentricity terms δλeff were computed from their
definition in Equation (32).

Figure 3 shows a comparison between the synthetic TTVs
from direct numerical integration (gray symbols) compared
to the δt function from Equation (40) (black line). For the
sake of the example we assumed an ideal situation with both
planets transiting. As mentioned in Section 2.2, we used a small
change in the initial conditions of the secular theory, namely,
we fractionally rescaled the u parameter by a ∝ e2 value to
represent the H2 effect on the mean motion of planets. With
that adjustment, the match between the synthetic TTV series
and the modeled function δt is excellent. We also note that
the contribution of the second term in the right-hand side of
Equation (40) is negligible and basically all effect seen on the
scale of Figure 3 is due to the first term (i.e., direct perturbation
in orbital longitude). The dashed sloped lines on both panels
of Figure 3 show the effect of a change in mean motion of
the planets, as estimated from the simple Hamiltonian (23). In
particular, their slopes are (1) 3 (σ+/m1) u	 in the top panel, and
(2) −3 (σ+/m2) u	 in the bottom panel (u	 � 3.55 × 10−4). The
match to the mean behavior of the TTVs is good, since in the
simplest approximation the planets’ motion may be understood
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Figure 4. Transit timing variations (TTVs) of the heavier planet δt1 (top) and the lighter planet δt2 (bottom) from Figure 3 if the data set is limited to observations
between 2.6 yr and 8.3 yr. In this case, the analysis would reveal a misleading signal with quasi-periodicity of �4.2 yr and much smaller amplitude (solid lines).

as a periodic switch between two nearly circular orbits. Since
the period T is about 15 times longer than the orbital period of
the planets in our case, the effect may accumulate into a large
amplitude TTV series.

It is interesting to point out that recognizing the planet’s
configuration requires observations covering at least the fun-
damental period T of the co-orbital motion. For instance, if the
observations would have covered a shorter interval, say between
2.6 yr and 8.3 yr in Figure 3, one may not recognize the co-orbital
signature in the TTVs. Figure 4 shows how the data would have
looked in this case. The TTV series of both planets would look
quasi-periodic with a period ∼T/2 � 4.2 yr, reflecting the be-
havior of the planets’ mean motion variation over one-quarter of
the co-orbital cycle (i.e., when θ leaps from θmin to 360◦ − θmin,
Figure 1). Equation (29) indicates that T ∝ a

3/2
0 (m0/σ+)1/2,

thus making the necessary observational timescale (1) shorter
for closer-in planets and (2) longer for less massive planets. So,
for instance, the �12 yr periodicity of the TTV series shown
in Figure 3 would also hold for about 8 Earth mass co-orbiting
planets at about 0.15 AU distance (i.e., �20 day revolution
period) from a solar-mass star. These are very typical systems
observed by the Kepler satellite.

Consider now an ideal situation when both planets are
transiting and a long enough series of TTVs are recorded for
both of them (e.g., Figure 3). Analysis based on the approximate
Hamiltonian Equation (23) then suggests (Section 2.1) that the
ratio of the maximum amplitudes of the TTV series, to be
denoted T1 for the more massive planet and T2 for the less
massive planet, is equal to the ratio of their masses: T2/T1 =
m1/m2. Since T2/T1 can be measured from the observations,
the mass ratio of the co-orbital planets is readily constrained. To

verify the validity of this conclusion, we numerically integrated
a complete Hamiltonian in Poincaré rectangular coordinates
with a solar-mass star having two co-orbital planets with masses
m1 = 10−3 M� and m2, with values ranging from 2 × 10−5 M�
to 10−4 M�. We used a0 = 0.5 AU and set the planets initially at
opposition, i.e., giving them λ1 = 180◦ and λ2 = 0◦. The initial
eccentricity values were assumed small, e1 = e2 = 0.001, and
pericenter longitudes �1 = �2 = 0◦. For each of the mass
configurations considered, we followed the system for 1000 yr
and derived the synthetic TTV series as shown by the symbols
in Figure 3. We then fitted the maximum amplitudes T1 and T2.
Their ratio is shown by black circles in Figure 5, while the gray
line is the expected direct proportionality relation mentioned
above. We note the linear trend is a very good approximation.

Another useful parametric constraint is hinted by
Equation (29), again obtained from the simplified Hamiltonian
form (Equation (23)). Denoting, for short,

J (θmin) =
∫ π

θmin

dθ√
U (θ ) − c2

, (41)

solely as a function of the minimum angular separation θmin of
the planets, we have

6

(
T

P0

)2
σ+

m0
= 1

π2
J 2 (θmin) . (42)

Here P0 = 2π/n0 is a good proxy for the mean orbital period of
the planets, T is the half period of the co-orbiting cycle (i.e., time
between minima and maxima of the TTVs, Figure 3), and σ+ =
m1 + m2 as above. Since T/P0 can be directly constrained from
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Figure 5. Ratio T2/T1 of the maximum amplitude of the TTV series for the
less massive planet (T2) vs. those of the more massive planet (T1) placed onto a
horseshoe orbit in the 1:1 MMR as determined from the full-fledged numerical
integration (ordinate). The abscissa is the planetary mass ratio m1/m2. The gray
line is the direct proportionality rule obtained from the simplified analytical
theory (Section 2.1). Details of the set-up are described in the main text.

the observations, Equation (42) provides a link between the mass
factor σ+/m0 and θmin. We tested the validity of Equation (42)
by directly by integrating the planetary system in Poincaré
rectangular coordinates. The model parameters were mostly the
same as above, except for (1) now fixing the planetary masses
m1 = 10−3 M� and m2 = 2 × 10−5 M�, and (2) starting the
two planets at a nominal closest approach, λ1 = θmin, λ2 = 0◦
and a1 = a2 = a0 = 0.5 AU. Both were given a small initial
eccentricity e1 = e2 = 0.001, and the system was propagated
for 1000 yr with the Burlish–Stoer integrator. We recorded series
of planetary transits and constructed synthetic TTVs, similar to
ones shown in Figure 3. The code also provided numerical mean
values of the planetary orbital periods, used to compute P0, half-
period T of the TTV series, and the mean value of the minimum
planetary separation. This last parameter was obviously very
close to the given initial distance θmin, but typically differed
from it by few tenths of a degree because of the effect of
planetary eccentricities. With those parameters determined for
the direct numerical model, we have all the data needed to
test the validity of Equation (42). The results are shown by
black circles in Figure 6. The gray line is the J (θmin) integral
from Equation (41), computed using Romberg’s scheme with
controlled accuracy. Note that this integration needs a simple
parameter transformation to remove the integrand singularity
at the θ = θmin limit. We note a very good correspondence of
the numerical results with the expected trend from the analytic
theory.

Once we verified the validity of Equation (42), we can use
it as shown in Figure 7. Here the abscissa is the minimum
planet separation θmin, while the ordinate is now the ratio T/P0
given for a set of different m0/σ+ values (solid lines). The T/P0
factor may be directly constrained from the observations and
Figure 7 hints that this information may be immediately used
to roughly delimit the m0/σ+ factor. This is because θmin can
span only a limited range of value for the horseshoe orbits:
(1) θmin cannot approach too closely to the theoretical limit
�23.◦9 derived in Section 2.1, especially if e1 and e2 are non-
zero, otherwise instability near the Lagrangian point L3 would
onset, and (2) θmin cannot be too small, otherwise instability
near the Lagrangian points L1 and L2 would onset. While not
performing a complete study here, assume for the sake of an

Figure 6. Correlation between the 6 (T/P0)2 (σ+/m0) parameter (ordinate) and
the minimum angular separation θmin of the co-orbiting planets (abscissa). Here
P0 is the mean orbital period of the planets, T is the half period of the co-orbiting
cycle, σ+ = m1 + m2 is the total mass of the planets, and m0 is the stellar mass.
The black symbols are from direct numerical integration. The gray line is the
J (θmin) function from Equation (41), suggested from a simple analytic theory.
Beyond θmin � 25◦ the orbital configuration transits to the tadpole regime.

Figure 7. Observationally available ratio T/P0, where is T the half-period of the
TTV series and P0 the orbital period, on the ordinate vs. the minimum separation
angle θmin of the planets during the co-orbital cycle. The solid lines, evaluated
using Equation (42), are given for five different values of the mass ratio m0/σ+
(labels). The gray line at θmin = 23.◦9 indicates the maximum theoretical value,
while the true stability limit of θmin is lower as discussed in the text. The dashed
gray lines a and b just set two examples of the T/P0 values (see discussion in
the text).

example that θmin could be in the interval �10◦ to �22◦. Then
if T/P0 = 10 obtained from the observations (as shown by the
dashed gray line a in Figure 7), the m0/σ+ ratio cannot be much
larger than ∼2000. On the other hand, if T/P0 = 30 from the
observations (as shown by the dashed gray line “b” in Figure 7),
the m0/σ+ ratio cannot be much smaller than ∼3000. Hence,
the observations may directly hint at the nature of planets in
co-orbital motion.

So far we discussed properties of TTVs obtained for the two
planets. This is because these series rely on transit observations
of each of the planets individually. While we have seen that a
more complete information could be obtained when we have
TTVs for both planets, some constraints were available even if
only transits of the larger planets are observed. We now return
to the ideal case, when transits of both planets are observed and
note that even more complete information may be obtained by
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Figure 8. Difference between the transit time t1 of the more massive planet
and the immediately preceding transit time t2 of the less massive planet in the
simulation shown in Figure 3. The abscissa is the transit number of the first
planet. The average value of t2 − t1, shown here as δtav, is half of the mean
orbital period of the planets. The minimum and maximum values of t2 − t1,
shown here as δtmin and δtmax, correspond to the extreme configurations, when
θ = λ1 − λ2 is either minimum or maximum.

combining the transit series of both planets. Consider a series
of transit instants t2 of the second (less massive, say) planet and
the consecutive transit instants t1 of the first planet. We may
then construct a series of their difference t1 − t2 as a function of
the transit number. Using our example system from above, this
information is shown in Figure 8. As expected, t1 − t2 has the
characteristic triangular, sawtooth shape which basically follows
from the time dependence of the planets’ angular separation θ (t)
and spans values between zero and the mean orbital period of
the planets. Consequently, the minimum value of t1 − t2, which
we denote δtmin, is directly related to the minimum angular
separation θmin of the planets. Similarly, the average value of
t1 − t2, say δtav, is one-half the mean orbital period of the planets
(and when t1 − t2 � δtav, the planets are at opposition). As a
result,

θmin/π = δtmin/δtav. (43)

Since δtmin and δtav are in principle discerned from observations,
θmin can be fairly well constrained as well. In the same way, the
maximum value of t1 − t2, say δtmax, provides

θmin/π = 2 − δtmax/δtav. (44)

As an example, θmin estimated from the series in Figure 8 is
�21.◦9, which is very close to the numerically obtained value
of �21.◦4. With θmin constrained, we note that the TTVs anal-
ysis using Equation (42) provides an independent, correlated
constraint of θmin and the normalized sum of planetary masses
σ+/m0 = (m1 + m2)/m0. Henceforth, σ+/m0 can be directly
obtained. If combined with the information about their ratio
m1/m2 discussed above, we finally note that individual plane-
tary masses m1 and m2 (given in m0 units) can be determined
from the observations.

4. CONCLUSIONS

While still awaiting for the first confirmed exoplanetary
co-orbital configuration, we derived here simple parametric

relations that could be revealed from the TTV series of a
such a system. From all possible co-orbital architectures we
chose here the horseshoe case, which provides TTVs having
the most singular nature. This is because at the zero order one
may consider this situation as two non-interacting planets that
periodically switch their orbits around some mean distance a0
from the star. Instead of being sinusoidal in nature, the TTVs
thus resemble a triangular-shaped series with the half period T
of the co-orbital motion.

In an ideal case, where TTVs of both planets are observed,
we find that the characteristics of a sufficiently complete
data set of planetary transits may directly provide information
about their masses. This is because the ratio of the TTV
amplitudes constrains directly the ratio of the planetary masses.
Additionally, time separation between the transits of the two
planets allows to constrain their minimum angular separation
θmin as seen from the star. This information, if combined
with Equation (42), then provides a constraint on the sum
σ+ = m1 + m2 of the planet’s masses in units of the stellar
mass m0.

Even if TTVs of only larger co-orbiting planets are observed,
say, one may use Equation (42) to relate the total mass of the
planets, σ+, to their minimum angular separation θmin. This only
requires the data constrain T and the mean orbital period P0,
or rather their ratio T/P0. Since the available range of the θmin
value is limited for stable orbital configurations, the value of
T/P0 itself roughly sets a possible range of planetary masses,
allowing us to distinguish cases with Jupiter-mass planets as
opposed to the super-Earth-mass planets in co-orbital motion.
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useful suggestions on the submitted manuscript.
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