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ABSTRACT

Aims. We evaluate thermal stresses in small, spherical, and homogeneous meteoroids with elastic rheology and regular rotation. The
temperature variations are caused by the absorbed sunlight energy being conducted into the interior layers of the body. Our model
assumes arbitrary thermal conductivity value, but restricts itself to a linearized treatment of the boundary conditions of the heat
diffusion problem. We consider the diurnal insolation cycle only as if the body were in a fixed position along its heliocentric orbit.
This constrains the upper limit to the object size to which our modeling is applicable.
Methods. We derive analytical expressions for the components of the thermal stress tensor throughout the body. Using two sets of
material properties (ordinary and carbonaceous chondrites), we study the conditions required for material failure caused by thermal
stress leading to fission.
Results. Our results indicate that the onset of thermal failure in the meteoroid depends on a number of parameters including the
heliocentric distance, the size, the rotation frequency, and the orientation of the spin axis with respect to the solar direction. In
our case, we find large, centimeter- to meter-size, slowly rotating meteoroids or those with a spin axis pointing towards the Sun
or both, are the most susceptible to the thermal bursting. This may have implications for the (i) size distribution of meteoroids in
various streams depending on their heliocentric orbit and the physical characteristics of their parent bodies; (ii) orbital distribution
of sporadic complexes of meteoroids in the planet-crossing zone; and/or (iii) fate of fragments released during comet disintegration
events, especially those with low perihelia (e.g., Kreutz class).
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1. Introduction

Small bodies in the inner parts of the Solar System are frequently
brought to small heliocentric distances, well within the orbit of
Mercury. They might either originate in orbits with such a low
pericenter value (e.g., particles in meteoroid streams; Jenniskens
2006) or temporarily reside in these orbits during an evolution
driven by chaotic dynamics in the planet-crossing region (e.g.,
meteoroids or small near-Earth asteroids; Marchi et al. 2009). In
the harsh radiation environment within a distance of ∼0.15 AU
from the Sun (equilibrium temperatures ≥700 K), the surface
layer and/or the whole volume, for objects of small sizes, can
undergo interesting physical alteration processes such as release
of the volatile elements and/or partial melting of silicate com-
ponents (e.g., Čapek & Borovička 2009; Marchi et al. 2009).
Those effects can directly influence spectral characteristics, put
cometary objects into either a depleted or dormant state, and/or
accelerate space weathering processes.

Yet another property related to the strong solar heating at
small heliocentric distances is the growth of the thermal stress,
namely a mechanical stress caused by a non-uniform temper-
ature field in the solid body that, under some circumstances,
may exceed the material strength. Either crack formation or a
break-up of the body may occur (thermal shock material fail-
ure). Mechanical integrity of the material may be affected even
when the thermal stress value does not directly reach the crit-
ical failure value. This is the case for periodic temperature

� Appendix A is only available in electronic form at
http://www.aanda.org

variations with large enough gradients that produce a slow but
steady propagation of pre-existing micro-cracks leading eventu-
ally to the break-up. In this case, we refer to the thermal fatigue
(Hall 1999).

The role of thermal stresses in the physics of small Solar
System bodies has been studied by many of authors. Their im-
portance to the evolution of cometary nuclei was advocated
and discussed, for example, by Kuehrt (1984), Tauber & Kuhrt
(1987), and Tambovtseva & Shestakova (1999). In their view, as
the cometary nucleus approaches the Sun, the thermal stresses
may become several orders of magnitude larger then the esti-
mated solar tidal stresses. They may be able to exceed the mate-
rial strength locally or globally, producing cracks at the surface,
resulting in an increase in the cometary activity, or leading to a
splitting of the whole nucleus.

Grinin et al. (1996) pointed out that even non-icy plan-
etesimals residing on highly eccentric orbits can be de-
stroyed by thermal stresses in the neighborhood of UX
Orionis-type young stars producing a heavy-element-rich
gaseous envelope radiatively expelled from the parent region.
Shestakova & Tambovtseva (1997) applied similar ideas to our
own Solar System. In their scenario, meteoroids approaching
the Sun on highly eccentric orbits experience gradual heating.
A steep thermal gradient between the cold core and hot surface
slowly grows up, resulting in thermal stresses that can even-
tually result in thermal fission for bodies of range from about
10 cm to 10 m. For larger bodies, in their model, the thermal
gradient and the associated thermal stresses are not large enough
to cause material failure. These authors also noted that surface
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melting at very high temperatures may be able to stop the steep-
ening of the thermal gradient between the surface and the core.
At lower temperatures, sublimation may indeed lead to surface
cooling. Another important process may be the built-up of a low-
conductivity surface (regolith-like) layer that may shield the bulk
of the body from large temperature variations and thus thermal
stresses. This is most likely the fate of large bodies that may be
able to form this protective layer on their surface. On the other
hand, small bodies are heated throughout their volume by ef-
ficient thermal conduction and become nearly isothermal. The
lack, or small value, of the thermal gradient in this case means
that the associated thermal stresses are insufficient for break-up
to occur.

While the previous analyses of Kuehrt (1984), Shestakova
& Tambovtseva (1997), and Tambovtseva & Shestakova (1999)
considered the time dependence of the temperature field caused
by the approach to the Sun along a parabolic orbit, they adopted
significant simplifications that our approach attempts to remove.
Most importantly, they (i) circumvented the difficulty in solv-
ing the thermal boundary condition by assuming exact equi-
librium between the incident solar flux and thermal emission
(neglecting heat conduction into the body); and (ii) assumed
only a radial temperature dependence (neglecting the latitudi-
nal and longitudinal dependence related to the specific location
of the Sun). Thus, according to their approximation, the thermal
stresses result merely from temperature difference between the
cold-maintained core and the solar-heated surface. But in reality
the temperature is also affected by a variation in the insolation
caused by the body’s rotation about the spin axis. While bodies
with rapid rotation typically have axially symmetric temperature
profiles with only latitudinal temperature gradients complement-
ing the radial ones, those that can rotate slowly can also build
longitudinal thermal fields and gradients. In that case, the overall
analysis of the thermal field may be complicated, but may hold
important information about whether the conditions of thermal
failure originate near the center of the body or affect subsurface
layers. With this goal in mind, we refrain from including sea-
sonal temperature variations in this work, leaving this to a forth-
coming paper, and focus on including the whole complexity of
non-radial features in the temperature field. This is the main nov-
elty of this work compared to previous studies mentioned above.

As discussed in some detail in the next section, the lack
of seasonal features in the time dependence directly causes a
size constraint to which our approach is applicable. It turns out,
though, that our results are fully applicable to typical particles in
the meteoroid streams (sizes ≤10 cm, say), which are the main
focus of this paper. By using analytical, rather than numerical,
methods, we trade quantitative exactness for qualitative under-
standing. This obviously requires necessity to adopt simplifica-
tions, most of which are summarized in the next section.

2. Theory

2.1. Formulation of the problem

Our goal is to determine thermal stress field in small meteoroids
using an analytical approach and analyze the conditions required
for their thermal disruption. To ensure, that our calculations are
manageable, we adopt a number of simplifying assumptions.
The generally irregular shape of meteoroids is described by a
sphere of radius R. In the same way, the generally tumbling state
of rotation is represented by regular rotation about a fixed (spin
axis) direction eω and a constant rotation angular frequency ω.

Based on these assumptions, it is most straightforward to de-
scribe physical quantities, such as the temperature or stress ten-
sor fields, using spherical coordinates (r, θ, φ) with the origin
r = 0 at the center of the body, colatitude θ measured from
the spin axis eω, and longitude φ being defined arbitrarily in
our approach. Physical parameters, such as thermal and elastic
constants, are assumed to be homogeneous, isotropic, and inde-
pendent of the temperature1. We also restrict ourselves to the
approximation of elastic rheology.

2.2. Temperature distribution

As far as the temperature T distribution in the body is con-
cerned, we assume that it responds primarily to the solar heating.
This means that we assume quasi-static thermoelasticity (Parkus
1976), neglecting the deformation field as a heat source. In ad-
dition, we adopt two assumptions about the meteoroid rotation
frequency and size: (i) the former is low enough for the ther-
mal relaxation to occur throughout its whole volume on a much
shorter timescale than the revolution period about the Sun. For
reasonable material parameters, the thermal relaxation timescale
is not much longer that the rotation period. Therefore, the instan-
taneous heliocentric position determines the thermal and stress
state of the meteoroid independently of its orbital history; (ii) the
diurnal-cycle approximation from (i) has also a consequence on
the assumed maximum size of the meteoroid. This is because the
modeled insolation field has all mean-motion-induced Fourier
modes “mistakenly” collapsed to zero frequency. This static part
of the temperature field can penetrate arbitrarily deeply into the
body, while the true minimum frequency of the insolation en-
ergy loading, namely the mean motion frequency n of the he-
liocentric revolution, allows the temperature field to penetrate
only to a certain maximum depth �s (usually called the penetra-
tion depth of the seasonal thermal wave). One can easily see that
(e.g., Vokrouhlický 1999; Vokrouhlický et al. 2007)

�s =
√

K/(ρcn), (1)

where K is the thermal conductivity, ρ is the bulk density, and c
is the heat capacity. Our results in this paper are thus valid only
for bodies with R < �s. For characteristic values of meteoroids
(see e.g. Sect. 2.5), we obtain R < 1−4 m. This constraint is to
be kept in mind especially when discussing the implications of
our results in Sect. 4.

Having defined the approach and simplifying assumptions,
we now proceed with the solution for the temperature distribu-
tion. This is determined by solving the heat diffusion equation

ρc
∂

∂t
T = K ∇2T, (2)

complemented with appropriate boundary conditions, which in
our case are (i) regularity of the solution in the center; and (ii) en-
ergy conservation at the surface. The latter can be expressed as

εσSBT 4 + K en · ∇T = (1 − A)E, (3)

where ε is the thermal emissivity, σSB = 5.67× 10−8 W m−2 K−4

is the Stefan-Boltzmann constant, en is the unit outer normal to
the surface, A represents the albedo value, and E is the solar
radiation flux. In principle, A is the hemispheric albedo value,

1 We later consider their dependence on the mean temperature of the
body to compare results across a range of different heliocentric distance
but do not take into account their temperature dependence when solving
the heat diffusion problem.
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which depends on the zenith angle of the incident sunlight (e.g.,
Vokrouhlický & Bottke 2001), but we refrain from enter this
level of complexity, assuming instead that A is a constant rep-
resentative value of the the sunlight reflection by the surface. We
note that we also neglect the cooling effects of the sublimation
processes at the surface.

The main obstacle to an analytic solution of the problem is
the fourth-order, non-linear term in Eq. (3). The traditional way-
around this issue is to assume that the temperature variationsΔT
throughout the body are small compared to its mean value Tav
(T = Tav + ΔT ). In this case, the difficult boundary term can be
linearized in terms of a small parameter ΔT/Tav (quadratic and
higher-order terms omitted). This approach has been carried out
by a number of authors using different mathematical tools. Our
description directly follows from the notation in Vokrouhlický
(1998, 1999, 2006). For that reason, we only briefly summarize
the solution referring to these indicated papers for more details.

The insolation term E on the right-hand side of Eq. (3) can
be expressed using a coupled series of spherical harmonics in
parameters (θ, φ) and a Fourier series in time t

E = E�
∞∑

n=0

n∑
k=−n

bnk(θ0) exp(ıkωt) Ynk(θ, φ), (4)

where E� is the solar flux at the given heliocentric dis-
tance and θ0 is the colatitude of the solar direction in the
body-frame system introduced above2. We recall that the di-
urnal approximation adopted in this paper implies that θ0 is
a constant, time-independent parameter. The solar colatitude-
dependent functions bnk are given by (e.g., Vokrouhlický 2006)

b00 =
√
π/2, (5)

b10 =
√
π/3 cos θ0, (6)

b1±1 = ∓
√
π/6 sin θ0, (7)

bnk = (−1)k+1

√
π(2n + 1)

(n − k)!
(n + k)!

Pn(0)Pk
n(cos θ0)

(n − 1)(n + 2)
, (8)

where the last row applies to n ≥ 2, and Pn and Pk
n are Legendre

polynomials and the associated Legendre functions, respectively.
We note that Pn(0) = 0 for n odd such that only even-degree
terms appear in the insolation (4) for n ≥ 2. Thus, the dipole term
with n = 1 is the only imprint of the north-south asymmetry.

Similarly to the insolation term, the temperature field
can also be expressed using a mixed Fourier and spherical-
harmonics expansion

ΔT (r, θ, φ, t) =
∞∑

n=1

n∑
k=−n

tnk(r, t) Ynk(θ, φ). (9)

We note we are mainly interested in the temperature variations
ΔT because only they can result in thermal stresses. The ampli-
tude functions tnk(r, t) can again be given in Fourier series

tn0(r, t) = Cn0 rn, (10)

tnk(r, t) = Cnk jn(zk) exp(ıkωt), (11)

where jn(z) denote the spherical Bessel function of order n and
complex argument zk =

√−ık r/�d. We note that the zonal terms

2 Note that we always work in the reference system attached to the
body such that the solar longitude φ0 = −ωt is represented by the
rotation-frequency-dependent term in Eq. (4); we also denote ı =

√−1.
The last two terms in Eq. (4) may also be rewritten exp(ıkωt) Ynk(θ, φ) =
Ynk(θ, φ − φ0) to illustrate this property.

(n = 0) represent a stationary and axisymmetric field with no
time dependence3. The radial profile is simply given by a poly-
nomial for zero frequency terms and jn-functions for the time-
dependent terms. A simple analysis shows that the latter terms
show a quasi-exponential decay in ≥�d depths below the sur-
face; �d =

√
K/(ρcω) is thus appropriately called the penetra-

tion depth of the diurnal thermal wave. Since ω 
 n, �d is typi-
cally much smaller than �s and the generic temperature field of a
rapidly rotating meteoroid will have a static, but not isothermal,
core, and a thin, dynamic surface layer. Only when the rotation
becomes decelerated (see Sect. 3.2) may the dynamic compo-
nent of the temperature field penetrate more deeply into the me-
teoroid.

Finally, the numerical coefficients Cn0 and Cnk in Eqs. (10)
and (11) have to be determined from the boundary-condition
constraints (3). One directly obtains (see also Vokrouhlický
1998, 1999, 2006)

Cn0 = T�
bn0(θ0)√

2 (1 + Λn)

1
Rn
, (12)

Cnk = T�
bnk(θ0)√

2 [1 + Λψn(Zk)]

1
jn(Zk)

, (13)

where Λ = Θ�d/(
√

2R), Θ =
√
ρcKω/(εσSBT 3

�) is the thermal
parameter, Zk =

√−ık R/�d, and

ψn(z) =
z

jn(z)
d jn(z)

dz
· (14)

In addition, T� is given by εσSBT 4
� = (1−A)E�, and the average

temperature Tav = T�/
√

2. With this formulation, we retain all
radial and angular information about the temperature field. Most
importantly, the decomposition into zonal and non-zonal terms
allows us to separately study the effects of the (quasi-)static field
penetrating within the whole meteoroid and, if necessary, ana-
lyze the importance of dynamic stresses in its surface layer.

2.3. Thermal stress field

We now turn to the formulation of the stress field including
the thermal component (see Boley & Wiener 1960; Kupradze
et al. 1979; or Turcotte & Schubert (2002) for general discus-
sion of the topic). We assume a model for the homogeneous and
isotropic body undergoing small deformations characterized by
the components of a symmetric strain tensor

ε =
1
2

[∇u + (∇u)t], (15)

where u is the displacement vector and index t represents the
transverse operation of the appropriate matrix compound of par-
tial derivatives of the displacement vector. While leaving our for-
mulation in a general vectorial form in this section, we later use
the system of orthonormal spherical coordinates to express com-
ponents of τ. Using the model of a linear and isotropic solid, the
relation between components of the stress tensor τ and the strain
tensor ε is given by Hook’s law. Thermal gradients contribute
merely by a volume expansion terms, that, in the linearized the-
ory are proportional to the temperature variation T − T0 with

3 It is obviously mainly in these terms that the seasonal, mean-motion
variations would appear, if we were to include also the meteoroid revo-
lution about the Sun.
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respect some reference value T0. Placing all the terms together,
we have a generalized Hook’s law in the form

τ = λ(∇ · u)1 + 2με − α(3λ + 2μ)(T − T0)1, (16)

where λ and μ are the Lamé parameters from traditional linear
elasticity theory and α is the linear coefficient of thermal expan-
sion. All of these parameters have to be assumed to be dependent
on the chosen reference temperature T0, which we conveniently
identify with the average temperature Tav of the body introduced
in the previous section. Thus, the explicit thermal component
in the stress tensor τT = −α(3λ + 2μ)ΔT 1 may be directly ex-
pressed using Eq. (9). There is, however, also an implicit compo-
nent of the thermal contribution in the total stress field given by
Eq. (16) by its contribution in the strain (deformation) field. This
has to be determined by solving the Duhamel-Neumann relation
(e.g., Boley & Wiener 1960; Kupradze et al. 1979; Turcotte &
Schubert 2002)

μΔu + (λ + μ)∇(∇ · u) − α(3λ + 2μ)∇T + f = ρ
∂2

∂t2
u, (17)

which for vanishing volumic forces f (such as the fields of solar
tides or inertial forces in a rotating body) reduces to a simpler
form

μΔu + (λ + μ)∇(∇ · u) − ρ ∂
2

∂t2
u = α(3λ + 2μ)∇T. (18)

In the presence of temperature gradients ∇T � 0, u = 0 is no
longer a valid solution and needs to be determined by solving
Eq. (18). Its uniqueness follows from the regularity of the solu-
tion in navrhuje of the whole volume of the solid and a boundary
conditions (free, unload surface)

τ · en = 0, (19)

where en is again the outer normal to the surface (as in Eq. (3)).
We provide some details of the general solution in the

Appendix and outline here its major steps:

– we first determine a sufficiently general form of the solution
uH of the homogeneous form of Eq. (18);

– next we determine a particular solution uP of the inhomoge-
neous form of Eq. (18);

– because the Duhamel-Neumann Eq. (18) is linear, the gen-
eral solution u is a simple superposition of the two previ-
ously determined modes: u = A uH + B uP;

– we finally seek constants (A, B) such that the resulting stress
field τ, once u is substituted in Eq. (16), satisfies the bound-
ary condition in Eq. (19).

Once we have determined the constants (A, B), we obviously
also obtain a solution of the stress field τ throughout the whole
volume of the body and can analyze whether conditions for ma-
terial failure (Sect. 2.4) are reached at some point.

Because of the linearity of the Duhamel-Neumann equation
and the convenience with which we can develop the thermal gra-
dients on its right-hand side, the mixed spherical harmonics, and
Fourier series, in a similar way as the temperature field itself in
Sect. 2.2, we express the displacement vector u in the same type
of series. The only difficulty now is that we have to use vectorial
spherical harmonics for u instead of scalar spherical harmonics
for T . This is, however, a well-known analysis and we shall use a
decomposition into spheroidal and toroidal modes as discussed,
e.g., in Kaula (1968) or Bullen (1975). The temperature gradient
in the right-hand side of Eq. (18) is indeed a pure spheroidal field

and thus we do not need the toroidal component in u. The dis-
placement vector will consist of two spheroidal terms because
the differential operator on the left-hand side of the Duhamel-
Neumann equation in general produces their mixture.

The Fourier (temporal) part of the series for u is even sim-
pler. Very conveniently, all zonal (axisymmetric) modes are
stationary, while only the non-zonal modes represent time-
dependent (periodic) part. As we saw in Sect. 2.2, the former
part always penetrates throughout the whole volume of the body
and thus defines the stationary stress field (only to be modified
by seasonal effects), while the latter part is typically confined to
a surface layer.

2.4. Material failure criterion

The proper goal of our paper is to seek conditions in which the
thermal gradients, and the associated thermal stress field, exceed
the material strength and cause a failure such as crack formation
or the entire disruption of the body. Defining this critical condi-
tion accurately is a difficult task and we shall confine to a sim-
ple version known as the Griffith criterion for the brittle fracture
(see, e.g., Paterson & Wong 2005). The convention used here
(only for the failure criterion) is that the tension has a negative
sign, whereas a positive sign represents a compression. We de-
fine τ1 and τ3 to be the maximum and the minimum eigenvalues
of the stress tensor4 −τ (i.e., principal stresses) respectively. The
Griffith criterion for brittle failure is then expressed by a single
parametric condition (e.g., Paterson & Wong 2005)

(τ1 − τ3)2 + 8σt(τ1 − τ3) > 0 if τ1 > −3 τ3, (20)

τ3 < σt if τ1 < −3 τ3, (21)

where σt < 0 is the uniaxial tensile strength determined, or esti-
mated, from experimental data. An example of the critical curve
given by Eqs. (20) and (21) in the (τ1, τ3) space is shown in
Fig. 1. In this case we have σt = −32 MPa, a value that cor-
responds to the estimated strength of typical ordinary chondrite
material (Sect. 2.5.1).

The three principal components of the stress tensor are com-
puted using the Jacobi method (Press et al. 1992), which pro-
vides an efficient for determining their value at any location. We
obviously use analytical expression for the stress tensor given in
Sect. 3.1.

2.5. Material parameters

The quantitative evaluation of the thermal stresses based on the
theory outlined above, and results reached below, require a num-
ber of material parameters to be known or at least estimated.
Classifying them according to their relevance to the tempera-
ture or stress-field solutions, we have two groups: (i) the bulk
density ρ, the thermal conductivity K, the heat capacity c, the
albedo value A, and the infrared emissivity ε primarily neces-
sary for the temperature solution (Sect. 2.2); and (ii) the Lamé’s
parameters λ and μ, the linear coefficient of thermal expansionα,
and the uniaxial tensile strength σt primarily necessary to deter-
mine the volumic thermal stresses (Sect. 2.3). Moreover, since
several of these parameters exhibit a strong temperature depen-
dence, we would ideally need to know them as a function of T

4 Eigenvalues of tensor −τ instead of τ are computed and this assures
the sign convention mentioned in the text. Typically, τ1 is positive (i.e.,
compression) and τ3 negative (i.e., tension).
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D. Čapek and D. Vokrouhlický: Thermal stresses in small meteoroids

Fig. 1. Griffith’s criterion for the brittle fracture of a material with a
tensile strength σt = −32 MPa: τ1 and τ3 are the maximum and the
minimum eigenvalues of stress tensor −τ. Note the positive values of τ3

describe a compression, while the negative values describe a tension.
The material (ordinary chondrite in this case) fails above, and to the left
of the critical curve shown in the figure.

in the range from a few hundred K to more than a thousand K
relevant for the 0.05−0.2 AU heliocentric distances.

Because of the large diversity between the meteorite and
meteoroid physical properties, we consider two grossly differ-
ent cases (e.g., Ceplecha et al. 1998): (i) ordinary chondrite-like
(OC for short) material analogous to the group I meteoroids; and
(ii) primitive carbonaceous chondrite-like (CC for short) mate-
rial analogous to the group III meteoroids. Some physical pa-
rameters of OC and CC materials have been determined from
direct laboratory measurements of the corresponding meteorite
samples (e.g., Yomogida & Matsui 1983; Medvedev et al. 1985;
Britt & Consolmagno 2003). However, since measurements of
different physical parameters require different instrumentation
and often use different samples, no series of experiments has
provided us with the complete information we need to achieve
what. We therefore inspected the available literature and tried
to adopt typical parameter values, and their temperature depen-
dence, for the given class of objects, generally compiling data
from several sources. These are to be considered sort of median
values with a scatter of a factor of few within typically an order
of magnitude.

2.5.1. Ordinary chondrite (group I) material

The room-temperature measurements of ρ, K, λ, μ, and σt of
a H5-class meteorite Pultusk were taken from Medvedev et al.
(1985). To extrapolate them to higher temperatures, we used data
provided by Anderson et al. (1991), who measured them for a
forstetite (taken here as an analog of the chondrite-like mate-
rial). We ensured that there is a good match between the room-
temperature values in the two series of measurements. The re-
sulting relationships used in our work are

ρ = 3560 − 0.12 (T − 300) kg m−3, (22)

λ = 36.2 − 0.0081 (T − 300) GPa, (23)

μ = 29.1
λ(T )
λ(300)

GPa. (24)

We then used measurements of the linear thermal expansion pa-
rameter α given by Anderson et al. (1991) and preformed a linear
fit approximation

α = (8.49 + 0.004 T ) × 10−6 K−1. (25)

The same reference provided us with temperature-dependence
measurements of the forsterite’s specific heat capacity c
(J K−1kg−1)

c = 72.0 + 3.74 T − 4.40 × 10−3 T 2 + 1.83 × 10−6 T 3 (26)

for T < 900 K, and

c = 1020.4 + 0.21 T (27)

for T > 900 K. The above given functional dependence c(T )
yields a value 847 J K−1kg−1 for T = 300 K, while Medvedev
et al. (1985) obtained c = 830 J K−1kg−1 for the Putulsk mete-
orite, indicating a good match5. We assumed the thermal con-
ductivity depends on temperature as 1/T in the studied temper-
ature range because of interference of phonons (e.g., Opeil et al.
2010). This dependence can be described by the formula:

K = Kref
T

Tref
· (28)

Here we assumed Kref = 3.05 W m−1 K−1 is the thermal conduc-
tivity of the Putulsk meteorite for a temperature Tref = 300 K.

The tensile strength value, for which we did not find a direct
temperature-dependence measurements, was approximated with
the temperature dependence for the shear strength (Rocchi et al.
2004; Ohnaka 1995)

σt = σt0 tanh

[
Q
Rg

(
1
T
− 1

T1

)]
, (29)

where Q is the activation energy, Rg is the gas constant, and T1
is the reference temperature. We adopt Q/Rg = 1100 K and T1 =
2500 K given by Ohnaka (1995). The constant σt0 was assumed
to correspond to the measured value of the Putulsk meteorite,
namely σt0 = −32 MPa.

Finally, the characteristic albedo value A was assumed to be
0.15, typical of S-type asteroids, and the thermal emissivity was
estimated to be 0.85.

2.5.2. Carbonaceous chondrite (group III) material

Fewer experimental data are available for the fragile CC mate-
rial. We adopted the mean bulk density for CI meteorites de-
termined by Britt & Consolmagno (2003) and the Lame’s pa-
rameters for Axtell CV3 meteorite determined by Flynn (2004).
Owing to the lack of data, we assumed the same temperature
dependence of these quantities as given above for the forsterite
(Anderson et al. 1991)

ρ = 2260 − 0.12 (T − 300) kg m−3, (30)

λ = 17.2 − 0.0081 (T − 300) GPa, (31)

μ = 17.6
λ(T )
λ(300)

GPa. (32)

5 Interestingly, the adopted c(T ) dependence corresponds quite well to
the model of lunar soil given by Urquhart & Jakosky (1997).
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We were unable to find an appropriate laboratory measurement
for the other parameters we need for this class of objects. In this
situation, we basically adopted the same parametric relationships
as given above for the OC class with the following modifica-
tions: (i) the nominal tensile strength σt0 in Eq. (29) was given a
value of −2 MPa to express the weaker nature of CCs compared
with OCs (the assumed order of magnitude difference between
the σt0 values roughly corresponds to the difference between
the observationally-determined dynamic pressures of the group I
and III meteoroids; e.g., Ceplecha et al. 1998; Borovička 2007);
(ii) the thermal conductivity Kref = 0.5 W m−1 K−1 of the Cold
Bokkeveld CM2 meteorite for temperature Tref = 200 K (Opeil
et al. 2010) was considered in Eq. (28); and (iii) the albedo value
A = 0 and thermal emissivity ε = 1 was considered in this case
to be consistent with the overall darker character of the CC ma-
terial.

3. Results

3.1. Expressions for the thermal stress tensor

We summarize our final expressions for the thermal stress tensor
components based on the formulation given above and the inter-
mediate results given in the Appendix. Since we use the system
of spherical coordinates (r, θ, φ) to parameterize the dependence
of both temperature T and the stress tensor τ on position, it ap-
pears most efficient to project the components of the latter onto
the system of three orthonormal vectors

er =
∂r
∂r
, eθ =

1
r
∂r
∂θ
, eφ =

1
r sin θ

∂r
∂φ
, (33)

where r is the position vector of a chosen point in the body. We
thus compute the components τrr = er · τ · er, τrθ = er · τ · eθ and
so on. Since the outward normal en to a sphere is equal to er, the
boundary conditions in Eq. (19) are easily expressed by the three
relations τrr = τrθ = τrφ = 0.

As noted above, the thermal deformation, expressed by the
displacement vector u, is given in terms of a mixed vectorial
spherical harmonic series in (θ, φ) coordinates and a Fourier se-
ries to represent its time dependence. Applying the differential
operators in Eqs. (15) and (16) that relate the displacement vec-
tor to the stress tensor, we obtain components of the resulting
stress tensor in terms of a series of spherical functions Ynk(θ, φ)
and their derivatives. Conveniently, the structure of the Fourier
series in time remains the same. In particular, all axisymmet-
ric (zonal) terms are stationary, whereas all non-axisymmetric
terms are time-dependent and correspond to a frequency kω for
the order k in the spherical harmonics functions.

3.1.1. Time-independent part of the thermal stress tensor

We begin with the stationary part of the solution since it allows
more compact final expressions for the components of the stress
tensor and this is often a more important part of the deformation.

We introduce auxiliary functions

Gn(r) = αCn0(θ0)Fn(λ, μ)Rnxn−2, (34)

where x = r/R and

Fn(λ, μ) =
μ(3λ + 2μ)

λ(2n2 + 4n + 3) + 2μ(n2 + n + 1)
; (35)

we suppressed the parametric dependence of the radial profile
G-functions keeping note only of its r-dependence. With these
functions defined, we then have

τrr = (1 − x2)
∞∑

n=2

n(n − 1) Gn(r) Yn0(θ, φ), (36)

τrθ = (1 − x2)
∞∑

n=2

(n − 1) Gn(r)
∂

∂θ
Yn0(θ, φ), (37)

τθθ =

∞∑
n=2

Gn(r)
{
n
[
1 − (2n + 1) x2

]
Yn0(θ, φ)

+ (1 − 3x2)
∂2

∂θ2
Yn0(θ, φ)

}
, (38)

τφφ =

∞∑
n=2

Gn(r)

⎧⎪⎪⎨⎪⎪⎩n
[
(n + 2) x2 − n

]
Yn0(θ, φ)

− (1 − 3x2)
∂2

∂θ2
Yn0(θ, φ)

⎫⎪⎪⎬⎪⎪⎭. (39)

All other components of the stress tensor vanish. We note that the
φ-dependence in the argument of the spherical functions above
is dummy because here we always have zonal terms only and
thus the field functions are truly axisymmetric. A few comments
are in order.

We note the above given series start with the quadrupole term
(n = 2) only, while for instance the temperature field in Eq. (9)
contains also the dipole part6. This is because the corresponding
linear temperature field across the body produces a deformation
equivalent to a linear displacement that is not capable of cau-
seing stress (e.g., Ieşan & Scalia 1996). The bulk of the body
is mainly affected by the quadrupole part because higher multi-
poles have gradually steeper∝xn−2 decays for small r. We should
also point out that because its amplitude G2 is proportional to
C20(θ0) ∝ P2(cos θ0), the quadrupole contribution vanishes near
the node θ0 � 55◦ of the second-degree Legendre polynomial.
This effect produces anomalously small stresses in the body
when the solar direction is tilted by this angle with respect to
the spin axis of the body. The boundary conditions are readily
satisfied by the (1− x2) term in τrr and τrθ (τrφ is nil). In terms of
physical parameters, the stress field is (i) linearly proportional to
the thermal expansion parameter α; (ii) roughly linearly propor-
tional to the Lame’s parameters μ and λ (both of which have the
same order of magnitude); and (iii) increases with increasing R
in some range of values, near R ∼ �d, up to a saturation value.
The last property reflects that Cn0 ∝ R−n, and thus it depends
on R only through the R-dependence of Λ in the denominator
factor 1/(1 + Λn) in Eq. (12). Because Gn ∝ Cn0 ∝ T�, the ther-
mal stresses in Eqs. (36) to (39) increase roughly inversely pro-
portionally to the square root of the heliocentric distance making
them more important close to the Sun. This is obviously a fairly
expected trend.

The stationary part of the stress field readily dominates in
the two limits: (i) very fast rotation of the body (ω 
 1); and
(ii) solar direction along the spin axis of the body (θ0 = 0◦ or
θ0 = 180◦). In the first case, the penetration depth of the diurnal
thermal wave �d ∝ ω−1/2 shrinks to zero and all time-dependent
components of the field are pushed to an infinitesimal slab near

6 This dipole part is most responsible for the overall temperature de-
crease from the solar-illuminated hemisphere to the opposite side of the
body.
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the surface of the body7. In the second case, the axisymmetry is
clearly imposed by the geometry of the problem. In terms of a
mathematical description, we note that the time-dependent part
of the field is proportional to the coefficients Cnk ∝ Pk

n(cos θ0)
that vanish for cos θ0 = ±1 and k � 0.

3.1.2. Time-dependent part of the thermal stress tensor

We now consider the time-dependent part of the deformation and
the stress field, which is expressed by the non-zonal (k � 0)
terms. In this case, we were unable to derive as compact a form
of the final result as for the stationary part and we give it in a
piecewise form.

We mentioned above, in Sect. 2.3, that the total stress tensor
is composed of two parts

τ = τ(u) + τT, (40)

the first one of which, τU = τ(u), depends on the deformation
field u in the usual way given by the Hook’s law, and the sec-
ond part τT being the explicit temperature-dependent term in
the generalized Hook’s law (16). The deformation vector u is a
linear superposition of two free, spheroidal modes uS1 and uS2,
derived in Sect. A.1, and a particular solution uP of the com-
plete Duhamel-Neumann equation, given in Sect. A.2. All of
them share the spherical-harmonics development and Fourier-
development structure introduced above. We may therefore write

unk = Q1
nkuS1

nk + Q2
nkuS2

nk + uP
nk (41)

for the harmonics term of degree n, order k, and frequency kω
in the Fourier space. The constants Q1

nk and Q2
nk need to be de-

termined to satisfy the surface boundary conditions (19) and
Sect. A.3. We then spectrally decompose the stress-tensor field

τ =
∞∑

n=1

n∑
k=−n

(
τU

nk + τ
T
nk

)
exp(ıkωt), (42)

where

τU
nk = τ (unk) = Q1

nkτ
(
uS1

nk

)
+ Q2

nkτ
(
uS2

nk

)
+ τ

(
uP

nk

)
. (43)

The explicitly temperature-dependent stress field is given by
τT = −α(3λ + 2μ)ΔT 1, and its spectral decomposition τT

nk fol-
lows directly from the decomposition of the temperature field
ΔT given in Sect. 2.2.

In the next few paragraphs, we provide expressions for the
individual terms in Eq. (42). We list the non-zero components
of the stress tensor field only and provide their projections onto
the orthonormal basis (er, eθ, eφ) given by Eq. (33). To make
the notation shorter, we drop the index nk of the stress tensor
field components, which should nevertheless be understood from
their presence in right-hand sides of the formulae given below.

First, we consider the components of τS1 = τ
(
uS1

nk

)
and τS2 =

τ
(
uS2

nk

)
corresponding to the two spheroidal modes that provide a

solution to the homogeneous Duhamel-Neumann equation. For
the first mode, we obtained

τS1
rr = 2 μrn(n + 1)

λ(n2 − n − 3) + μ(n2 − n − 2)
λ(n + 3) + μ(n + 5)

Ynk(θ, φ),

(44)

7 The applicability of our theory obviously reduces when �d becomes
comparable to or smaller than the granularity level of the surface.

τS1
θθ = −2 μrn(n + 1)

λ(n + 3) + μ(−n + 2)
λ(n + 3) + μ(n + 5)

Ynk(θ, φ)

+2μrn ∂
2

∂θ2
Ynk(θ, φ), (45)

τS1
φφ = −2 μrn(n + 1)

λ(n2 + 4n + 3) + μ(n2 + 4n + 2)
λ(n + 3) + μ(n + 5)

×Ynk(θ, φ) − 2μrn ∂
2

∂θ2
Ynk(θ, φ), (46)

τS1
rθ = 2 μrn λ(n2 + 2n) + μ(n2 + 2n − 1)

λ(n + 3) + μ(n + 5)
∂

∂θ
Ynk(θ, φ), (47)

τS1
rφ = 2 μrn λ(n2 + 2n) + μ(n2 + 2n − 1)

λ(n + 3) + μ(n + 5)
ık

sin θ
Ynk(θ, φ),

(48)

τS1
θφ = 2 μrn ık

sin θ

(
∂

∂θ
− cos θ

sin θ

)
Ynk(θ, φ). (49)

The computations are simpler for the divergence-free second
spheroidal mode (∇ · uS2 = 0), for which we obtain

τS2
rr = 2 μrn−2(n − 1) Ynk(θ, φ), (50)

τS2
θθ = 2 μrn−2

[
n Ynk(θ, φ) +

∂2

∂θ2
Ynk(θ, φ)

]
, (51)

τS2
φφ = −2 μrn−2

[
n2 Ynk(θ, φ) +

∂2

∂θ2
Ynk(θ, φ)

]
, (52)

τS2
rθ = 2 μrn−2(n − 1)

∂

∂θ
Ynk(θ, φ), (53)

τS2
rφ = 2 μrn−2(n − 1)

ık
sin θ

Ynk(θ, φ), (54)

τS2
θφ = 2 μrn−2 ık

sin θ

(
∂

∂θ
− cos θ

sin θ

)
Ynk(θ, φ). (55)

We next indicate the thermal stress components of the particular
solution of the Duhamel-Neumann equation: τP = τ

(
uP

nk

)
. We

find it suitable to define8

ξn(z) =
z2

jn(z)
d2 jn(z)

dz2
(56)

and the auxiliary radial functions

Hnk(r) = −α3λ + 2μ
λ + 2μ

Cnk(θ0)
jn(zk)

z2
k

. (57)

With them, we have

τP
rr = Hnk(r)

[
2μ ξn(zk) − λz2

k

]
Ynk(θ, φ), (58)

τP
θθ = Hnk(r)

[
2μψn(zk) − λz2

k

]
Ynk(θ, φ)

+ 2μHnk(r)
∂2

∂θ2
Ynk(θ, φ), (59)

τP
φφ = Hnk(r)

{
2μ

[
ψn(zk) − n(n + 1)

] − λz2
k

}
Ynk(θ, φ)

− 2μHnk(r)
∂2

∂θ2
Ynk(θ, φ), (60)

τP
rθ = 2 μHnk(r)

[
ψn(zk) − 1

] ∂

∂θ
Ynk(θ, φ), (61)

8 The Bessel equation provides us with an expression for the ξn(z)
function using the previously introduced variables ξn(z) = n(n + 1) −
z2 − 2ψn(z).
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Fig. 2. Thermal stress and temperature distribution in a meridional section of a centimeter-size CC meteoroid at 0.14 AU heliocentric distance.
The Sun (indicated by the arrow) is located above the north pole; as a result, the time-dependent component of both fields vanishes. Isolines show
given constant values of the τ1 (left panel) and τ3 (middle panel) principal components of the stress tensor, both in MPa, and the temperature in K
(right panel).

τP
rφ = 2 μHnk(r)

[
ψn(zk) − 1

] ık
sin θ

Ynk(θ, φ), (62)

τP
θφ = 2 μHnk(r)

ık
sin θ

(
∂

∂θ
− cos θ

sin θ

)
Ynk(θ, φ). (63)

Finally, we recall that the explicit temperature contribution in the
generalized Hook’s law is a pure volumic expansion

τT
rr = τ

T
θθ = τ

T
φφ = −α(3λ + 2μ)Cnk(θ0) jn(zk) Ynk(θ, φ). (64)

Equipped with these partial results, we may now compute the
coefficients Q1

nk and Q2
nk. The task is separate for the dipole terms

(n = 1) and the remaining multipoles (n ≥ 2). This is because
the surface components of the second spheroidal mode vanish,
i.e., τS2

rr = τ
S2
rθ = τ

S2
rφ ∝ (n − 1) = 0, for the dipole term.

In the first case, we find that the surface condition expressed
in terms of the rr, rθ, and rφ components of the stress tensor are
all linearly dependent. For this reason, they represent a single
condition that yields

Q1
1±1 =

2λ + 3μ
3λ + 2μ

H1±1

R

[
ξ1 (Z±1) + Z2

±1

]
. (65)

The Q2
1±1 coefficients are dummy and disappear from the final

expression for the dipole part of the thermal stresses because all
components of τ

(
uS2

1±1

)
are zero: (i) the rr, rθ, and rφ are readily

proportional to (n − 1) = 0; while (ii) the θθ, φφ, and θφ compo-
nents vanish because of the identities of the Y1±1(θ, φ) spherical
functions.

For the higher multipole terms, the rr and rθ surface condi-
tions are linearly independent and provide a constraint on the
Q1

nk and Q2
nk constants. After solving the corresponding set of

algebraic equations, we obtain

Q1
nk =

(n + 2) [(n + 3)λ + (n + 5)μ]
(2n2 + 4n + 3)λ + 2(n2 + n + 1)μ

Hnk(R)
Rn

× [
n − ψn (Zk)

]
, (66)

Q2
nk = −

n − 1
(2n2 + 4n + 3)λ + 2(n2 + n + 1)μ

Hnk(R)
Rn−2

×
{[(

n2 + 2n
)
λ +

(
n2 + 2n − 1

)
μ
] [
ξn (Zk) + Z2

k

]
×

[(
n3 − 4n − 3

)
λ +

(
n3 − 3n − 2

)
μ
]

× [
1 − ψn (Zk)

]}
. (67)

3.2. Examples of thermal stresses in small meteoroids

Before investigating the parameter dependencies of the condi-
tions for the onset of thermal fission of small meteoroids, we il-
lustrate the thermal-stress fields in meteoroids in several individ-
ual cases. Obviously, the previous analytical formulation is used
and evaluated using a numerical implementation in Fortran. We
choose a CC meteoroid of 1 cm diameter at a distance of 0.14 AU
from the Sun. Material constants are those from Sects. 2.5.1
and 2.5.2.

We first assume a polar direction to the Sun, i.e., θ0 = 0◦. In
this case, the time-dependent part of the stress field vanishes and
we are left with only the stationary and axisymmetric part. The
distribution of the maximum τ1 and minimum τ3 principal val-
ues of the stress tensor −τ (see Sect. 2.4) in a meridional section
is shown in Fig. 2. The extreme values of τ1 and τ3 are found on
the surface and at the equator (∼8 MPa and ∼−20 MPa, respec-
tively). Moreover, τ3 has a local extreme at the center of the body
(∼−7 MPa). The temperature distribution (right panel of Fig. 2)
ranges from 1140 K at the north pole to 580 K at the south pole.

We next consider the situation in which the Sun is above the
equator (θ0 = 90◦) and the meteoroid’s rotation frequency9 is
100 Hz. In this case, both stationary and time-dependent stress
fields exist, but the latter is confined to a thin surface layer of
an approximate width �d � 0.01 mm for this high rotation fre-
quency (recall that �d ∝ ω−1/2). The stationary component of
the stress field thus again dominates across the major part of the
meteoroid’s volume. Figure 3 shows the distribution of the maxi-
mum τ1 and minimum τ3 principal values of the stress tensor −τ
in a meridional section containing the solar-direction vector. The
eigenvalue τ1 has a maximum of ∼6 MPa near the surface at the
equator and a local maximum at the center of the body (∼4 MPa).
The eigenvalue τ3 has extreme values at poles (∼−6 MPa) and a
local maximum in the equatorial plane. The assumed very high
rotation frequency makes the temperature field nearly axisym-
metric with minimum values ∼660 K at the poles and maximum
values ∼770 K at the equator.

Perhaps the most interesting and complex case arises for
slowly rotating meteoroids. In our last example, we thus as-
sume the rotation frequency of 0.1 Hz only and that the Sun
is at a θ0 = 60◦ colatitude, both for a 1 cm CC meteoroid at
a 0.14 AU heliocentric distance. The chosen solar colatitude

9 In Sects. 3.2 and 3.3, we used rotation frequency f , cycles per second
or Hz, that is related to ω using the relation: ω = 2π f .
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Fig. 3. Thermal stress and temperature distribution in a meridional section of a centimeter-size CC meteoroid at 0.14 AU heliocentric distance.
The Sun (indicated by the arrow) is located above the equator) and the rotation frequency is assumed to be 100 Hz. Isolines show given constant
values of the τ1 (left panel) and τ3 (middle panel) principal components of the stress tensor, both in MPa, and the temperature in K (right panel).

minimizes the role of the stationary component of the stress
field (see Sect. 3.1.1), while the slow rotation now allows the
time-dependent component of the stress field to penetrate more
deeply into the body. Figure 4 shows that the surface of the inso-
lated hemisphere is loaded by compression (the maximum value
of τ1 ∼ 36 MPa is close to the subsolar point) and the surface
of the shadowed hemisphere is loaded by tension (extreme value
of τ3 is almost −30 MPa). The major variations in the tempera-
ture and the stress field penetrate approximately to the depth of
1 mm. The maximum temperature ∼900 K occurs near the sub-
solar point, only a minor longitudinal shift being caused by the
finite value of the thermal conductivity (bottom and right panel
of Fig. 4), while the minimum temperature is on the south pole
(∼600 K). The amplitude of temperature variations at the subso-
lar latitude during one rotation cycle is ∼140 K.

3.3. Destruction of small meteoroids

Except for the material properties of the meteoroid, which we
keep fixed and the same as in Sect. 2.5, there are four major
parameters in our model that determine the thermal stress mag-
nitude and therefore also the possibility of thermal fission: the
heliocentric distance a (translating into the reference tempara-
ture T� value), the size of the body D (or its radius R), the rota-
tion frequency f (or ω), and the instant solar colatitude θ0. We
assume that cracks and fissures start to form and propagate from
a point in the body where the Griffith failure criterion (Sect. 2.4)
is satisfied. This process very likely has its onset near the sur-
face of the body and may have a complex influence on how the
thermal fission process propagates further into the body. This is
because the fractured surface layer may start to thermally shield
the interior of the body by being of lower thermal conductivity.
This dynamical model of fission is, however, beyond the scope
of this paper and we plan to face some of its aspects in a forth-
coming publication. In this work, we take a simpler standpoint
and assume that if the material failure conditions take place at the
center of the body, the conditions for fracturing are also fulfilled
in the majority of its volume and a catastrophic thermal burst
occurs. In the following sections, we thus compute the principal
stress-tensor components τ1 and τ3 at the center of meteoroid for
the two extreme composition cases of OCs and CCs. Most often,
it is the τ3 value (thermal tension) that overrides the Griffith-
criterion line (Fig. 1).

Nevertheless, we are left with the four-dimensional depen-
dence on a, D, f , and θ0 parameters. To illustrate the effects in

a simple way, we fixed two of these parameters and changed the
other two in the next few sections.

3.3.1. Dependence on the heliocentric distance and size

We first analyze the onset of the thermal fission in the plane of
heliocentric distance versus size parameters. We choose two val-
ues of the solar colatitude, θ0 = 0◦ and θ0 = 90◦. While in the
first case the results do not depend on the rotation frequency, in
the second case we have to assume some specific value of f .
Instead of using one particular value of f , we consider instead a
parametric dependence f (D) such as

f � 3 D−1, (68)

where D is in meters and f in Hertz. This relation of inverse-
proportionality matches very roughly suggested rotation periods
of centimeter- to decimeter-size meteoroids reported in Beech &
Brown (2000) and extends to Ceplecha’s (1996) determination
of the 3.3 s rotation period of the Lost City fireball. We con-
sider sizes of between 1 mm to 10 m, again recalling that our
formulation, which disregards seasonal thermal effects, prevents
us from considering objects larger than a few metres in size.
Heliocentric distances range from 0.05 AU to 1 AU in our exam-
ple. Figure 5 shows the values τ3 that we obtained at the center
of the CC- and OC-type meteoroids. Overall, τ3 increases with
the increasing size of the body and with decreasing heliocentric
distance (note that the material strength also decreases with de-
creasing heliocentric distance because of its temperature depen-
dence). The principal take-away message here is that, especially
for weak material such as CCs, a size limit exists at a given he-
liocentric distance (≤0.3 AU, say) above which the meteoroids
get promptly fissioned (see further discussion in Sect. 4).

A more detailed comparison indicates that the θ0 = 0◦ case
(upper panels in Fig. 5) caused more significant thermal stresses
than to the θ0 = 90◦ case (bottom panels in Fig. 5). This is be-
cause at non-zero θ0 values the surface layer absorbs some of
the thermal gradients and prevents the building of a large global
gradient across the whole body.

3.3.2. Dependence on the solar colatitude and size

We next consider the dependence of the thermal-stress field on
the solar colatitude θ0, and thesize D of the meteoroid, fixing the
heliocentric distance to be 0.14 AU (perihelion distance of the
Geminid stream) and assuming the f (D) relation from Eq. (68).
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Fig. 4. Thermal stress and temperature distribution for a slowly rotating centimeter-size CC meteoroid at 0.14 AU heliocentric distance. The Sun
(the direction of which is indicated by the arrow in the left panels) is located at the θ0 = 60◦ colatitude with respect the spin axis (oriented upwards)
and the rotation frequency is assumed to be 0.1 Hz. Left panels show a meridional section of the body (containing the solar direction), right panels
show an Aitoff projection of the surface. Isolines show given constant values of the τ1 (top panels) and τ3 (middle panels) principal components
of the stress tensor, both in MPa, and the temperature in K (bottom panels).

Sizes are in the millimeter to meter range as above and θ0 al-
lows us to span the interval of 0◦ to 90◦ values. Because we con-
sider thermal stresses at the center of the body that are generally
unreached by the time-dependent component of the stress field,
which is confined to the surface layer for our f (D) values, there
is a symmetry between θ0 and 180◦ − θ0 results.

Figure 6 shows the results. From the analytic analysis in
Sect. 3.1.1, we can infer that the stress field basically vanishes
for θ0 � 55◦. More importantly, there is a general trend toward
more relaxed stress field when going from the configuration with
the Sun above the rotation pole (θ0 = 0◦) to the configuration
with the Sun above the equator. As mentioned above, larger θ0
values imply that some of the thermal gradients are absorbed by

the surface (dynamic) layer with less damage occurring in the
bulk of the body.

3.3.3. Dependence on the rotation frequency and size

Finally, the dependence of the thermal stresses at the center of
the meteoroid on the rotation frequency f and the size D can
be seen in Fig. 7 (we now relax the strict f (D) relation from
Eq. (68), which is shown by the solid line). For illustration, we
assumed the solar colatitude θ0 = 90◦ and the heliocentric dis-
tance a = 0.14 AU.

We note a general pattern for a range of different sizes and
the two material classes (CCs and OCs): τ3 is almost constant
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Fig. 5. The principal component −τ3 of the stress tensor at the center of a meteoroid as a function its size and the heliocentric distance. The isobars
are labeled according to their values in MPa. The upper plots for the solar colatitude θ0 = 0◦ and bottom ones for θ0 = 90◦. The left panels for
the CC material parameters, the right panels for the OC material parameters. The rotation frequency f is inversely proportional to the size D as in
Eq. (68). The shaded zone indicates where the critical line of the Griffith criterion has been overrun and the thermal fission occurs.

Fig. 6. The principal component −τ3 of the stress tensor at the center of a meteoroid as a function its size and the solar colatitude θ0. The isobars are
labeled by values in MPa. The left panel for the CC material parameters, the right panel for the OC material parameters. The rotation frequency f
is inversely proportional to the size D as in Eq. (68) and the heliocentric distance is 0.14 AU. The shaded zone indicates where the critical line of
the Griffith criterion has been overrun and the thermal fission occurs.

with decreasing f until a transition to a higher, but also constant
value, occurs for f lower than some critical value. One can read-
ily explain this behavior by recalling that at high frequencies,
the time-dependent part of the stress field is confined to a tiny
surface layer and the frequency-independent stationary part of

the field determines the stress field at the center. When the fre-
quency decreases below a critical value for which �d ∼ R, thus
when the diurnal thermal wave reaches the center of the body, it
is basically the time-dependent component of the stress field that
dominates the effect. Its peak value during one cycle is roughly
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Fig. 7. The principal component −τ3 of the stress tensor in the center of a meteoroid as a function its size and the rotation frequency f . The isobars
are labeled by values in MPa. The left panel for the CC material parameters, the right panel for the OC material parameters. The heliocentric
distance is 0.14 AU and the chosen value of the solar colatitude θ0 = 90◦ maximizes the thermal stresses (Fig. 6). The solid line shows the f (D)
relation from Eq. (68). The dashed line indicates the situation in which the radius of the body is five times the penetration depth of the diurnal
thermal wave (Eq. (69)). The shaded zone indicates where the critical line of the Griffith criterion has been overrun and the thermal fission occurs.

independent of the already low rotation frequency. The transition
between the two regimes is thus expressed by

f � 50
π

K
ρc

D−2 (69)

shown by the dashed line in Fig. 7. This situation corresponds
to when the radius of the meteoroid is equal to five times the
penetration depth of the diurnal thermal wave, indicating that the
time-dependent stress field reaches somewhat below �d. We note
the empirical (observed) f (D) relation from Eq. (68) is moved
toward the range of smaller stresses for the given size. In other
words, the observed meteoroids tend to rotate more rapidly and
prevent potentially large thermal stresses in their volume by not
allowing the diurnal thermal wave to penetrate sufficiently inside
the body.

4. Conclusions and further work

We have used a simple analytical model to evaluate thermal
stresses in small meteoroids near the Sun. The most notable ap-
proximations are (i) a spherical shape with a homogeneous dis-
tribution of physical parameters in the body; and (ii) regular ro-
tation about the spin axis fixed in space. We also did not include
seasonal thermal effects in our model, thus the meteoroid’s rev-
olution about the Sun. As a result, only bodies smaller than few
metres are eligible for our theory. It should be, however, noted
that the absence of the seasonal effects is the least difficult ex-
tension of our theory. To zeroth order, it would suffice to modify
the zonal (k = 0) insolation terms in Eq. (4) to ensure time-
variability with the mean motion frequency, and express them
along the lines given in Eqs. (8) and (9) of Vokrouhlický (1999).
Conceptually more interesting efforts should perhaps be directed
towards removing the (i) and (ii) simplifications above. We plan
to do so in a forthcoming paper.

Given the lack of these modeled generalizing features, such
as the potential effects of insulating (granular) layer on the sur-
face of the meteoroid, we also hesitate to directly compare our
results with the observed facts. We nevertheless provide some
initial discussion below, while more quantitative analyses are
postponed to a future paper.

The major results obtained above are twofold. First, mete-
oroids at small heliocentric distances may develop large enough
thermal stresses to induce fission above some size limit. For in-
stance, our results for a conservative case of CC material with
θ0 = 90◦ shown in Fig. 5c would imply that ∼10 cm size mete-
orids would thermally fission below ∼0.25 AU heliocentric dis-
tances. Second, observed meteoroids tend to occupy a safe suite
in the rotation frequency versus size space by maintaining rela-
tively rapid rotation. However, if some processes, such radiation
torques known as the Yarkovsky-O’Keefe-Radzievskii-Paddack
(YORP) effect (e.g., Čapek & Vokrouhlický 2004), were able
to decelerate their rotation they would become more vulnera-
ble to the thermal fission. This is because the diurnal thermal
wave would penetrate more deeply into the body and carry along
steeper thermal gradients affecting thus most of its volume. In
the same time, rapid rotation of the meteoroids keeps the diur-
nal thermal wave with its associated large thermal gradients very
near the surface possibly resulting in a fractured layer of lower
thermal conductivity. This insulating shell may in term protect
the bulk of the meteoroid from large thermal stresses and thus
play a self-regulating role. The question then is from which size
the meteoroids are able to build and retain this protective layer.
We also recall that while we have assumed some reasonable val-
ues for the thermal and strength parameters, an uncertainity of a
factor of a few is quite possible. For instance, if the CC’s critical
tensile strength σt was twice as large as our assumed value, me-
teoroids of all sizes would survive approaches to ∼0.05 AU in the
example shown in Fig. 5c. What do we know about meteoroids
in the decimeter- to dekameter- size range from the observations
and how do they compare with our theoretical results? (We focus
in this respect, on the weak objects with cometary origins.)

Several CC meteorite falls have been well documented and
interpreted. Exceptional example of these events are the cases
of Tagish Lake (e.g., Brown et al. 2000) and Orgueil (e.g.,
Gounelle et al. 2006) meteorites. In both cases, the estimated
parent object sizes are close to dekameter values and both pre-
atmospheric orbits have perihelia of ∼0.87 AU. Rotation periods
of several seconds, as in the Lost City meteorite case (Ceplecha
1996), and θ0 not in the vicinity of 0◦ would protect these bodies
against thermal disruption even without assuming the insulating
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(granular) surface layer. We would need to assume it only for
perihelia below ∼0.3−0.4 AU in these cases.

In addition, a large amount of data about sporadic mete-
ors is available from the automated fireball networks. As an
example, we mention the results from the European networks
overviewed by Oberst et al. (1998). Focusing on the brightest
recorded bolides, we note several group-IIIb meteors of an esti-
mated meter-range pre-atmospheric size and low perihelia. For
instance, Visla bolide had a perihelion at ∼0.22 AU. Inspecting
results in Fig. 5, we conclude that this object should have had
a larger tensile strength than we assumed for the CCs meteorite
class and/or was protected from thermal bursting at the perihe-
lion of its pre-atmospheric orbit by an existing insulating layer
on the surface. Certainly more analysis is needed to exploit the
wealth of the network data of sporadic meteors, but we postpone
this to the future paper after complementing the current work
with the effects of aninsulating surface layer and/or the seasonal-
thermal wave damping into the volume of the meteoroid.

In the future, a large amount of information could poten-
tially come from observations of meteoroids in streams and doc-
umented cometary fragmentations. The regular observation of
stream meteoroids, as they enter and disintegrate in the atmo-
sphere, typically provides evidence of particles smaller than be-
tween centimeters and decimeters. Searches for larger compo-
nents in these streams were reviewed by Beech & Nikolova
(2001). For instance, Perseid and Leonid streams, both associ-
ated with long-period comets, may show observational evidence
of meter- to dekameter- sized fragments. With their perihelia at
∼1 AU, we can still ensure that they withstand thermal stresses,
especially if the surface is covered with a thin, insulating layer.

Some other meteoroid streams have smaller perihelion dis-
tances, such as δ-Aquarids∼0.07 AU, Geminids 0.14 AU, and/or
Monocerotids ∼0.19 AU. We are not aware of information about
the largest-observed meteoroids in these streams, but they would
be the prime targets in investigating the possible depletion by
larger meteoroids in the millimeter- to decimeter- size range (es-
pecially the fragile and slowly rotating ones).

Evaluation of the subsurface thermal stress field for frag-
ments of disrupted comets in the Kreutz family with very low
perihelia might be another interesting extension of our work.
For that project, we would need to include modeling of the sea-
sonal effects along a very eccentric orbit. Semi-numerical meth-
ods may be necessary to determine the amplitude of the differ-
ent, and numerous, Fourier terms of the incident solar flux, but
once these are established, results from this paper may be used
to evaluate the thermal stress field.
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Appendix A: Solution of the Duhamel-Neumann
equation

We outline the main steps needed to solve the Duhamel-
Neumann equation in Eq. (18) for our work. The temperature
field, which produces the thermal stresses, is assumed to have a
linearized form T = Tav +ΔT where ΔT is given by Eq. (9). The
uniqueness of the solution arises from (i) the regularity in the
whole volume; and (ii) matching the free boundary conditions
(given by Eq. (19)) at the surface r = R.

There are different ways in which we can decompose the
displacement vector u into spherical-harmonics-type expansion
(see, e.g., Thorne 1980, for an insightful review). Here we use
a decomposition into spheroidal and toroidal components tradi-
tionally used in geophysical analyses (e.g., Kaula 1968; Bullen
1975). With this approach, related to what Thorne (1980) calls
pure-spin vector harmonics, we have

u =
∞∑

n=0

n∑
k=−n

(
uS

nk + uT
nk

)
exp(ıkωt), (A.1)

with

uS
nk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Unk(r)

Vnk(r) ∂
∂θ

Vnk(r) 1
sin θ

∂
∂φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ynk(θ, φ) , (A.2)

uT
nk = Wnk(r)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

− 1
sin θ

∂
∂φ

∂
∂θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ynk(θ, φ) . (A.3)

The first component in Eq. (A.1), uS
nk, is actually two separate

spheroidal terms, that we call S1 and S2 in Sect. 3.1.2, char-
acterized with radial-profile amplitudes Unk(r) and Vnk(r). The
second component in Eq. (A.1), uT

nk, is the toroidal component.

The spheroidal character of our source (temperature) term
the Duhamel-Neumann equation implies two simplifications.
First, the toroidal part of the displacement vector becomes
negligible and we have Wnk = 0. Second, we can restrict the
summation over degrees n in Eq. (A.1) to the dipole and higher-
order terms only, ignoring the monopole n = 0. This is because
the monopole part would correspond to purely radial temper-
ature field, such as has been considered, for instance, in the
previous works on our topic (e.g., Kuehrt 1984; Shestakova &
Tambovtseva 1997; Tambovtseva & Shestakova 1999). Our tem-
perature representation T = Tav + ΔT does not contain a non-
trivial, purely radial profile10 and the only viable free monopole
term must have U00 = W00 = 0 to match the boundary con-
ditions. Finally, we note that we also anticipated the Fourier-
development structure in Eq. (A.1) as it follows from the source
(ΔT development).

10 Note this does not mean there is not an overall gradient between
generally hotter surface and cooler core of the body, but given the ra-
diation source (Sun) has a specific direction with respect the body, this
surface-core gradient must always be accompanied with the appropriate
latitudinal and/or longitudinal temperature gradients.

Substituting the spheroidal-vector representation of u into
the Duhamel-Neumann Eq. (18) we obtain the following sys-
tem of equations for the radial profile of the amplitude functions
Unk(r) and Vnk(r) (n ≥ 1):

(λ + 2 μ) r2 d2

dr2
Unk(r) + 2(λ + 2 μ) r

d
dr

Unk(r)

−n(n + 1)(λ + μ) r
d
dr

Vnk(r) + n(n + 1)(λ + 3 μ) Vnk(r)

−
[
2(λ + 2μ) + μ n(n + 1) − k2ω2r2ρ

]
Unk(r)

= α (3λ + 2μ) r2 d
dr

Tnk(r), (A.4)

and

μ r2 d2

dr2
Vnk(r) + 2μ r

d
dr

Vnk(r) + (λ + μ) r
d
dr

Unk(r)

−
[
n(n + 1)(λ + 2μ) − k2ω2r2ρ

]
Vnk(r)

+2(λ + 2μ) Unk(r) = α (3λ + 2μ) r Tnk(r). (A.5)

Here we found it useful to separate the r- and t-dependences
of the tnk(r, t) amplitudes of the ΔT development in Eq. (9)
and introduce pure radial parts Tnk(r) such that tnk(r, t) =
Tnk(r) exp(ıkωt). These represent source terms in Eqs. (A.4)
and (A.5).

While the solution of Unk(r) and Vnk(r) is coupled by means
of Eqs. (A.4) and (A.5), the fundamental implication of the
Duhamel-Neumann equation linearity is that amplitude terms of
different degrees and orders in the spherical harmonics develop-
ment as well as the different Fourier modes are not mixed and
can be solved separately.

Once we obtain Unk(r) and Vnk(r), we can readily com-
pute components of the corresponding stress tensor τU arising
from the displacement vector field by using the Hook’s law in
Eq. (16). Given its linearity, we thus again have

τU = τ(u) =
∞∑

n=1

n∑
k=−n

τnk exp(ıkωt), (A.6)

where τnk = τ(unk). Projecting components of the stress ten-
sor onto the orthonormal basis (er, eθ, eφ) from Eq. (33), as out-
lined in Sect. 3.1, we obtain (for simplicity we dropped here the
degree- and order-indexes n and k)

τrr =
1
r

[
(λ + 2μ) r

dUnk

dr
+ 2λUnk − λn(n + 1)Vnk

]
Ynk,

(A.7)

τrθ =
μ

r

[
Unk + r

dVnk

dr
− Vnk

]
∂

∂θ
Ynk, (A.8)

τrφ =
μ

r

[
Unk + r

dVnk

dr
− Vnk

]
ık

sin θ
Ynk , (A.9)

τθθ =
1
r

[
2(λ + μ)Unk − λn(n + 1)Vnk

+ λ r
dUnk

dr

]
Ynk + 2μ

Vnk

r
∂

∂θ
Ynk, (A.10)

τφφ =
1
r

[
2(λ + μ)Unk − n(n + 1)(λ + 2μ)Vnk

+ λ r
dUnk

dr

]
Ynk − 2μ

Vnk

r
∂2

∂θ2
Ynk, (A.11)

τθφ = 2μ
Vnk

r
ık

sin θ

(
∂

∂θ
− cos θ

sin θ

)
Ynk. (A.12)
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The partial derivatives of the spherical functions Ynk are com-
puted using

∂

∂θ
Ynk =

1
2

[ √
(n − k)(n + k + 1) e−ıφ Ynk+1

− √
(n + k)(n − k + 1) eıφ Ynk−1

]
, (A.13)

∂2

∂θ2
Ynk =

[
k2

sin2 θ
− n(n + 1)

]
Ynk − cos θ

sin θ
∂

∂θ
Ynk. (A.14)

Equations (A.7) to (A.12) yield components of the stress ten-
sor that explicitly depend on the displacement vector u. The part
τT = −α(3λ + 2μ)ΔT 1, which explicitly depends on the tem-
perature (see the generalized Hook’s law in Eq. (16), should be
added separately to the total stress-tensor field. Because of the
explicit analytical solution for ΔT , this is achieved at no compu-
tational expense.

Because of the linearity of the Duhamel-Neumann equation,
a general solution is expressed in terms of a linear superposition
of (i) a solution of the homogeneous system; and (ii) a particular
solution of the inhomogeneous system. The next two sections
discuss the two cases separately.

A.1. Solution of the homogeneous Duhamel-Neumann
equation

Equations (A.4) and (A.5) with zero right-hand sides represent
the homogeneous Duhamel-Neumann equation broken into parts
corresponding to the individual spheroidal modes. Its solution
is quite complicated, but may be significantly simplified in our
case. This is because for the range of material parameters, sizes
and rotation frequencies that apply for meteoroids we always
have11 ω2r2ρ � μ ∼ λ + 2μ. With these we may neglect the
troublesome term k2ω2r2ρ in Eqs. (A.4) and (A.5). A major im-
plication of this is then that the system of solutions of the homo-
geneous Duhamel-Neumann equation become degenerate in the
k (order) index of the spherical-harmonics representation.

Adopting the aforementioned approximation, the homoge-
neous system of Eqs. (A.4) and (A.5) now has a form of Euler
equations. As such, it has a fundamental system of power-law
solutions Ui

nk = Qi rmi and Vi
nk = rmi with i = 1, . . . , 4, real-

valued exponents mi and amplitudes Qi. After a straightforward
algebra, we obtain

U1
nk(r) = (n + 1)

n λ + (n − 2) μ
(n + 3) λ + (n + 5) μ

rn+1, (A.15)

V1
nk(r) = rn+1, (A.16)

U2
nk(r) = n rn−1, V2

nk(r) = rn−1, (A.17)

U3
nk(r) = −(n + 1) r−n+2, V3

nk(r) = r−n+2, (A.18)

U4
nk(r) = n

(n + 1) λ + (n + 3) μ
(n − 2) λ + (n − 4) μ

r−n, (A.19)

V4
nk(r) = r−n. (A.20)

The last two modes, 3 and 4, diverge at the center r = 0
and therefore must be excluded. We are thus left with the
first two modes, 1 and 2, that produce the spheroidal modes

11 Rearranging the terms, we can express this condition by saying that
the S- and P-wave velocities vS =

√
μ/ρ and vP =

√
(λ + 2μ)/ρ for

signal (seismic) propagation in the material are always much larger than
the linear circumferential speed at equator ωR. Indeed, vS and vP are of
the order of kilometers per second, ωR being of the order of meters per
second.

uS1 = uS(U1,V1) and uS2 = uS(U2,V2) in Sect. 3.1.2 and
whose associated stress field was given in Eqs. (44)–(49) and
Eqs. (50)–(55). Obviously, they have also been used to obtain
the stationary part of the stress field discussed in Sect. 3.1.1.
We note that the second spheroidal mode represents a pure shear
with no volumic changes (compression or expansion) because
∇ · uS2 = 0.

A.2. Particular solution of the Duhamel-Neumann equation

We next find a particular solution of the inhomogeneous
Duhamel-Neumann equation with the thermal source Tnk(r) � 0.
We divide this task into a discussion of the stationary case
(k = 0) and time-dependent case (k � 0). In both cases, we
again use the approximation of neglecting the ∝ (kωrρ)2 terms
in Eqs. (A.4) and (A.5).

A.2.1. Time-independent part

The stationary temperature field is given by ΔT =∑∞
n=1 Cn0(θ0) rn Yn0(θ, φ) (Eqs. (9) and (10)) and thus Tn0(r) =

Cn0(θ0) rn. We again search the fundamental system of solutions
in a power-law form UP

n0 = QU rmU and VP
n0 = QVrmV with some

real-valued exponents (mU,mV) and amplitudes (QU,QV). After
a brief algebraic derivation, we obtain

UP
n0 =

n + 2
2(2n + 3)

α(3λ + 2μ)
λ + 2μ

Cn0(θ0) rn+1, (A.21)

VP
n0 =

1
2(2n + 3)

α(3λ + 2μ)
λ + 2μ

Cn0(θ0) rn+1. (A.22)

We note that this mode has the same radial profile as the uS1

spheroidal model found above.

A.2.2. Time-dependent part

The time-dependent temperature field is given by ΔT =∑∞
n=1

∑n
k=−n Cnk(θ0) jn(zk) Ynk(θ, φ) exp(ıkωt) with k � 0

(Eqs. (9) and (11)) and thus Tnk = Cnk(θ0) jn(zk). We assume
that the particular solution has a form uP = ∇Φ. Substituting this
ansätz to the Duhamel-Neumann equation Eq. (18), we obtain

(λ + 2μ)(∇ · ∇)Φ − ρ ∂
2

∂t2
Φ = α(3λ + 2μ)ΔT, (A.23)

where we have suitably assumed that the arbitrary constant on
the right-hand side canceled the monopole (constant) tempera-
ture part. This is an inhomogeneous wave equation on a sphere
that, however, takes a simple form because of the spherical-
harmonic and Fourier structure of the source term ΔT on the
right-hand side. Assuming thus a separation

Φ =

∞∑
n=1

n∑
k=−n

ΓnkΣnk(r)Ynk(θ, φ) exp(ıkωt), (A.24)

we obtain

Σnk(r) = jn(zk), (A.25)

and

Γnk =
α

ρ

3λ + 2μ
k2ω2 + ık(vP/�d)2

Cnk(θ0) , (A.26)

where vP =
√

(λ + 2μ)/ρ is the elastic P-wave velocity as above.
Adopting again the approximation vP 
 ωR ≥ ω�d, we may ne-
glect the first term in the denominator of Eq. (A.26). Translating
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this solution into the amplitude-functions of the spheroidal-field
representation (A.2), we finally obtain

UP
nk = −α

3λ + 2μ
λ + 2μ

Cnk(θ0)
�d√−ık

d jn(zk)
dz

, (A.27)

VP
nk = −α

3λ + 2μ
λ + 2μ

Cnk(θ0)
�d√−ık

jn(zk)
zk

. (A.28)

The corresponding stress tensor is expressed by Eqs. (58)–(63).

A.3. Complete expression of the thermal stress tensor

The complete solution of the Duhamel-Neumann equation is a
linear combination of the free-spheroidal modes uS1 and uS2

from Sect. A.1 and the particular mode uP = u(UP,VP) from
Sect. A.2. In the individual spherical harmonics modes, we have
unk = Q1

nkuS1
nk + Q2

nkuS2
nk + uP

nk, where Q1
nk and Q2

nk are some coef-
ficients. We have to choose them to satisfy the surface boundary
condition (19), namely τ · er = 0 at r = R. Here the total stress
tensor is given by

τ = τ(u) + τT, (A.29)

or again in the spherical harmonics modes

τnk = τ(unk) + τT
nk. (A.30)

The truly active and independent conditions are τrr = 0 and
τrθ = 0, from which the two constants Q1

nk and Q2
nk follow. One

easily checks that the third condition, τrφ = 0, is always linearly
dependent on τrθ = 0 (Eqs. (A.8) and (A.9)) and thus we do not
need to consider it.

We were able to carry out all necessary algedraic manipula-
tions and obtain a close form of the resulting formulae for the
case of the stationary (zonal, k = 0) part of the stress field.
These are given in Eqs. (36)–(39) (Sect. 3.1.1). In the case of
the time-dependent part of the stress field, the algebra is more
involved and we could not reach as simple and compact results
as for the time-independent part. We thus confine ourselves to
provide formulae for the stress-tensor components of the indi-
vidual components and those for the integration constants Q1

nk
and Q2

nk (Sect. 3.1.2).
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