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2Astronomical Institute, Academy of Sciences, Bočnı́ II, 14131 Praha, Czech Republic
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ABSTRACT
We investigate the orbital evolution of a system of N mutually interacting stars on initially
circular orbits around the dominating central mass. We include the perturbative influence of
a distant axisymmetric source and an extended spherical potential. In particular, we focus
on the case when the secular evolution of orbital eccentricities is suppressed by the spherical
perturbation. By means of standard perturbation methods, we derive semi-analytic formulae for
the evolution of normal vectors of the individual orbits. We find its two qualitatively different
modes. Either the orbits interact strongly and, under such circumstances, become dynamically
coupled, precessing synchronously in the potential of the axisymmetric perturbation, or, if their
mutual interaction is weaker, the orbits precess independently, interchanging periodically their
angular momentum, which leads to oscillations of inclinations. We argue that these processes
may have been fundamental to the evolution of the disc of young stars orbiting the supermassive
black hole in the centre of the Milky Way.

Key words: methods: analytical – celestial mechanics – stars: kinematics and dynamics –
Galaxy: nucleus.

1 IN T RO D U C T I O N

The problem of dynamics in the perturbed Keplerian potential has
been studied extensively throughout the history of celestial mechan-
ics. Due to the high attainable accuracy of the observational data,
its primary field of application has always been the Solar system,
which naturally influenced the selection of included perturbations.
Among the widely considered are, due to their resemblance to the
averaged motion of planets, axisymmetric gravitational potentials.

The above problem has, however, also been investigated for sys-
tems with larger length-scales, such as dense star clusters. In that
case, the source of the Keplerian potential is often represented by
a supermassive black hole (SMBH) which is widely assumed to
reside in the centres of such clusters. Axisymmetric perturbation
is then due to either a secondary massive black hole (e.g. Ivanov,
Polnarev & Saha 2005) or a gaseous disc or torus (e.g. Karas &
Šubr 2007). It turns out that in these systems, the secular evolution
of individual stellar orbits is, besides the axisymmetric perturba-
tion, also affected by a possible additional spherical potential. Such
a potential may be generated by a stellar cusp or it can repre-
sent a post-Newtonian correction to the gravity of the central black
hole.

In this paper, we extend the analyses of previous authors by
means of standard tools of celestial mechanics. Our main aim is

�E-mail: haas@sirrah.troja.mff.cuni.cz

to incorporate the mutual interaction of stars on nearly circular
orbits around the dominating central mass whose potential is per-
turbed by a distant axisymmetric source and an extended spherical
potential. We apply our results to the observed system of young
stars (Genzel et al. 2003; Ghez et al. 2005; Paumard et al. 2006;
Bartko et al. 2009, 2010) orbiting the SMBH of mass M• ≈ 4 ×
106 M� (Ghez et al. 2003; Eisenhauer et al. 2005; Gillessen et al.
2009a,b; Yelda et al. 2011) in the centre of the Milky Way. As
an axisymmetric perturbation to its gravity we consider a massive
molecular torus [the so-called circumnuclear disc (CND)] which is
located at a radius of RCND ≈ 1.8 pc from the centre (Christopher
et al. 2005). Finally, we consider the gravity of a roughly spherical
cusp of late-type stars (Genzel et al. 2003; Schödel et al. 2007; Do
et al. 2009) which is believed to be present in this region as well.
Within this context, we broaden the analysis of our previous paper
(Haas, Šubr & Kroupa 2011) where we have studied the dynami-
cal evolution of this kind of system purely by means of numerical
N-body calculations. In particular, we now develop a simple semi-
analytic model which naturally explains the key features of our prior
results.

This paper is organized as follows. In Section 2, we first dis-
cuss the influence of the spherical perturbative potential on the
stellar orbits (Section 2.1). This allows us to separate the evolu-
tion of eccentricity from the rest of the problem and, subsequently,
to formulate equations for the evolution of inclinations and nodal
longitudes (Section 2.2). In Section 3, we present an example of
the orbital evolution of a stellar disc motivated by the configuration
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that is observed in the Galactic Centre. We conclude our results in
Section 4.

2 TH E O RY

To set the stage, we first develop a secular theory of orbital evolution
for two (later in the section generalized to multiple) stars orbiting a
massive centre, the SMBH, taking into account their mutual gravita-
tional interaction and perturbations from the spherical stellar cusp,
and the axisymmetric CND. The CND is considered stationary and
its model is further simplified and taken to be equivalent to a ring
at a certain distance from the centre. It should, however, be pointed
out that the generalization to a more realistic structure, such as a
thin or thick disc, is straightforward in our setting but we believe
at this stage it would just involve algebraic complexity without
bringing any new quality to the model. In the same way, the stellar
cusp is reduced to an equilibrium spherical model without involv-
ing generalizations beyond that level. For instance, an axisymmetric
component of the stellar cusp may be effectively accounted for by
the CND effects in the first approximation.

We are going to use standard tools of classical celestial me-
chanics, based on the first-order secular solution using pertur-
bation methods (see e.g. Morbidelli 2002; Bertotti, Farinella &
Vokrouhlický 2003, for a general discussion). In particular, the stel-
lar orbits are described using a conventional set of Kepler’s elements
which are assumed to change according to the Lagrange equations.
Since we are interested in a long-term dynamical evolution of the
stellar orbits, we replace the perturbing potential (or the potential
energy) with its average value over one revolution of the stars about
the centre, which is the proper sense of addressing our approach
as secular. In doing so, we assume there is no orbital mean motion
resonance between the two (or multiple) stars. As an implication
of our approach, the orbital semimajor axes of the stellar orbits are
constant and the information about the position of the stars in orbit
is irrelevant. The secular system thus consists of the description of
how the remaining four orbital elements (eccentricity, inclination,
longitude of node and argument of pericentre) evolve in time. This
is still a very complicated problem in principle, and we shall adopt a
simplifying assumption that will allow us to treat the eccentricities
and pericentres separately (Section 2.1) and leave us finally with
the problem of the dynamical evolution of inclinations and nodes
(Section 2.2). Note that this is where our approach diverges from
typical applications in planetary systems, in which this separation
is often impossible.

2.1 Confinement of eccentricity

In this section, we discuss our assumptions about eccentricity and
pericentre evolution. Here, we drop the mutual interaction of stars
from our consideration. We assume that the initial stellar orbits
have small eccentricity and describe under which conditions we
may assume they stay small to the point where we could neglect
them. Note that this is not an obvious conclusion because axially
symmetric systems (such as a perturbing massive ring) have been
extensively studied in planetary applications, and it has been shown
that non-conservation of the total orbital angular momentum may
lead to large, correlated variations of eccentricity and inclination
even if the initial eccentricity is arbitrarily small. This is often called
the Kozai secular resonance as a tribute to the pioneering work of
Kozai (1962) (see also Lidov 1962). In what follows we describe
conditions under which this process is inhibited in our model.

2.1.1 Stellar cusp potential

We start with our assumption about the potential energy of a star
of mass m in the spherical cusp of the late-type stars surrounding
the centre. Considering a general power-law radial density profile
of the cusp, ρ(r) ∝ r−α , we have the potential energy

Rc = −GmMc

βRCND

(
r

RCND

)β

, (1)

where β = 2 − α, the cusp mass within a scale distance RCND is
denoted as Mc and G stands for the gravitational constant. According
to the averaging technique, we shall integrate the potential energy
(1) over one revolution about the centre with respect to the mean
anomaly l,

Rc ≡ 1

2π

π∫
−π

dl Rc , (2)

which yields

Rc = − 1

2π

GmMc

βRCND

(
a

RCND

)β
π∫

−π

dl
( r

a

)β

, (3)

where a and e are the semimajor axis and eccentricity of the stellar
orbit, r = a(1 − e cos u) and u − e sin u = l. After easy algebra, we
obtain

Rc = −GmMc

βRCND

(
a

RCND

)β

J (e, β) , (4)

where

J (e, β) ≡ 1

π

π∫
0

du (1 − e cos u)1+β = 1 +
∑
n≥1

ane
2n, (5)

with the coefficients obtained by recurrence

an+1

an

=
[

1 − 3 + β

2(n + 1)

] [
1 − 2 + β

2(n + 1)

]
(6)

and an initial value a1 = β(1 + β)/4. For the purpose of our study,
we further set β = 1/4, which corresponds to the equilibrium model
worked out by Bahcall & Wolf (1976).

2.1.2 Circumnuclear disc/ring potential

In the case of perturbation of orbits well below the radius of the
CND, we limit ourselves to accounting for the quadrupole-tide
formulation (e.g. Kozai 1962; Morbidelli 2002). Octupole or higher-
multipole corrections are possible (e.g. in fact Kozai himself gives
explicit terms up to degree 4; see also Yokoyama et al. 2003) but
they do not change the conclusions as long as the parameter a/RCND

is small enough. This is the regime that interests us the most.
Given the axial symmetry of the mass distribution of the per-

turbing ring, the resulting averaged interaction potential energy of
a particle in the tidal field of the CND (see Kozai 1962)

RCND = −GmMCND

16RCND

(
a

RCND

)2 [(
2 + 3e2

) (
3 cos2 I − 1

)

+15e2 sin2 I cos 2ω

]
(7)

does not depend on the longitude of node � but on other orbital ele-
ments of the stellar orbit – eccentricity e, inclination I and argument
of pericentre ω.
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Figure 1. Isolines of the conserved potential function R = C from equa-
tion (9) for two different values of the mass ratio μ = Mc/MCND: 0.01 in
the top panel and 0.1 in the bottom panel. The Kozai integral value is c =
cos (70◦), corresponding to a 70◦ inclination circular orbit. The orbit has
been given semimajor axis a = 0.06 RCND for the sake of definiteness. The
origin e = 0 is a stationary point of the problem but in the first case it is
unstable, while in the second case it becomes stable. The thick isoline in the
top panel is a separatrix between two different regimes of eccentricity and
pericentre evolution.

As a direct consequence, c ≡ √
1 − e2 cos I is the first (‘Kozai’)

integral of motion, which conveniently allows us to eliminate the
inclination dependence in RCND, depending then on the eccentricity
and argument of pericentre only. Since RCND is a conserved quan-
tity in the secular (orbit-averaged) problem, the isolines RCND = C

provide insights into the fundamental features of the dynamical evo-
lution of both e and ω. This approach has been used by Kozai to dis-
cover two modes of topology of these isolines: (i) when c >

√
3/5

the RCND = C isolines are simple ovals about the origin which
is the only fixed point of the problem, but (ii) for c ≤ √

3/5 they
become more complicated with a separatrix curve emerging from
the origin and two new fixed points exist at non-zero eccentricity
and pericentre argument values 90◦ and 270◦. The latter case occurs
whenever the initial inclination is larger than ≈39.◦2, sometimes
called the Kozai limit. The important take-away message is that the
circular orbit is no more a stable solution for high-inclination or-
bits in the model of exterior ring/disc perturbation. Initially circular
orbits would be driven over a Kozai time-scale

TK ≡ M•
MCND

R3
CND

a
√

GM•a
(8)

Figure 2. Individual lines show a critical inclination (ordinate) at which
Kozai resonance onsets for a given value of mass ratio μ = Mc/MCND

(abscissa) for different values of orbital semimajor axis a ranging from
0.03 RCND (left) to 0.3 RCND (right) with a step of 0.03 RCND. When μ = 0,
the critical angle is ≈39.◦2 (‘the Kozai limit’) independent of a.

to a very high eccentricity state. Unavoidable stellar scattering pro-
cesses would in a short time destabilize an initially coherent stream
of objects near the centre.

2.1.3 Combined perturbation

We now consider the combined effect of the stellar cusp and the
CND potentials on the long-term orbital evolution of the stellar
orbit. The total, orbit-averaged potential

R = Rc + RCND (9)

still obeys axial symmetry, being independent of the nodal longi-
tude. The picture, however, may be modified with respect to the case
of a solely ring-like perturbation. Considering the cusp of the late-
type stars whose potential is approximated with (4), we find that the
two types of topologies of the R = C isolines persist (see Fig. 1)
but the onset of the circular-orbit instability depends now on two
parameters, namely c and μ ≡ Mc/MCND. A non-zero mass of the
stellar cusp stabilizes small eccentricity evolution, and the critical
angle is pushed to larger values. For large enough μ, the stability of
the circular orbit is guaranteed for the arbitrary value of c and hence
orbits of an arbitrary inclination with respect to the CND symmetry
plane. This is because the effects of the stellar cusp potential make
the argument of pericentre circulate fast enough (significantly faster
than the Kozai time-scale), thus preventing secular increase of the
eccentricity. An initially near-circular orbit maintains a very small
value of e showing only small-amplitude oscillations. Fig. 2 shows
critical inclination values, for which the circular orbit becomes nec-
essarily unstable as a function of μ and a/RCND parameters (note that
the latter factorizes out from the analysis when μ = 0). Importantly,
there is a correlation between μ and a/RCND below which circular
orbits of arbitrary inclination are stable; for instance, data in Fig. 2
indicate that for μ = 0.1 any circular orbit with a � 0.12 RCND is
stable.

In conclusion, we observe that having enough mass in the late-
type stellar cusp may produce strong enough perturbation to main-
tain the small eccentricity of an initially near-circular orbit. Having
said that, we find it reasonable to make an important simplification
within our analytic approach to the system of two (multiple) stars.
Namely, we will further consider the stellar orbits to be circular
during the whole evolution of the system. This prevents (together
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with the assumption of well-separated orbits with constant semi-
major axes) close encounters of the stars. In this case only, and
under the assumption that there are no orbital resonances among
the individual stars, the mutual interaction of the stars may be rea-
sonably considered as a perturbation to the dominating potential
of the SMBH. As we demonstrate in the following sections, this
simple treatment provides useful insights into the evolution of the
young-stream orbits even if they are generally non-circular.

2.2 Orbital evolution of circular orbits

Having discussed our assumptions about semimajor axes, eccen-
tricity and pericentre of the stellar orbits, we may now turn to the
description of the evolution of the two remaining orbital elements
– inclination and nodal longitude. We start with a model of two
interacting stars and later generalize it to the case of an arbitrary
number of stars. Contrary to the previous section, we now take into
account also the mutual gravitational effects of the two stars. On the
other hand, note that the orbit-averaged potential energy (4) of the
late-type stellar cusp depends on the semimajor axis and eccentric-
ity only, and thus does not influence the evolution of inclination and
node. For that reason it is dropped from our analysis in this section.

The interaction potential energy Ri(r, r ′) for two point sources
of masses m and m′ at relative positions r and r ′ with respect to the
centre reads1

Ri(r, r ′) = −Gmm′

r

∑
�≥2

α�P� (cos S) , (10)

where P�(x) are the Legendre polynomials, cos S ≡ r · r ′/rr ′ and
α ≡ r′/r. The series on the right-hand side of equation (10) converge
for r′ < r. Since we are going to apply (10) to the simplified case
of two circular orbits, we may replace distances r and r′ with the
corresponding values of semimajor axes a and a′, such that α =
a′/a now (note that the orbit whose parameters are denoted with a
prime is thus assumed interior). The averaging of the interaction
energy over the uniform orbital motion of the stars about the centre,
implying periodic variation of S, is readily performed by using
the addition theorem for spherical harmonics. This allows us to
decouple unit direction vectors in the argument of the Legendre
polynomial P� and easily obtain the required average of Ri over the
orbital periods of the two stars. After simple algebra we obtain

Ri = −Gmm′

a
	

(
α, n · n′) , (11)

where n = [sin I sin �, − sin I cos �, cos I ]T and n′ =
[sin I ′ sin �′, − sin I ′ cos �′, cos I ′]T are unit vectors normal to the
mean orbital planes of the two stars, and

	 (ζ, x) =
∑
�≥2

[P� (0)]2 ζ �P� (x) . (12)

As expected, the potential energy is only a function of (i) the orbital
semimajor axes through the dependence on a and α, and (ii) the
relative configuration of the two orbits in space given by the scalar
product n · n′. Note also that the series in (12) contain only even
multipoles � (P�(0) = 0 for � odd) and that they converge when ζ <

1. However, special care is needed when ζ is very close to unity,
thus the two stellar orbits are close to each other, when hundreds
to thousands of terms are needed to achieve sufficient accuracy.

1 Note that equation (10) provides the interaction energy as it appears in the
equation of relative motion of stars with respect to the centre. Henceforth,
the perturbation series start with a quadrupole term (� = 2).

Still, we found that it is very easy to set up an efficient computer
algorithm, using recurrent relations between the Legendre polyno-
mials, which is able to evaluate (12) and its derivatives. In practice,
we select the required accuracy and the computer code truncates
the series by estimating the remaining terms. In fact, since our ap-
proach neglects small eccentricity oscillations of the orbits we are
anyway not allowed to set ζ = α = a′/a arbitrarily close to unity.
Theoretically, we should require

α < 1 −
(

m + m′

3M•

)1/3

, (13)

by not letting the stars approach closer than the Hill radius of their
mutual interaction. In the numerical examples we present below,
this sets an upper limit α < 0.98.

The formulation given above immediately provides the potential
energy of the star–CND interaction. In this case the stellar orbits
are always interior to the CND with the symmetry axis suitably
chosen as the unit vector ez in the direction of the z-axis of our
reference system. Unlike in Section 2.1.2, we restrict now to the
case of circular orbit of the star but at low computer-time expense
we may include all multipole terms until the specified accuracy is
achieved. As a result the orbit-averaged interaction energy with the
exterior stellar orbit is given by

RCND = −GmMCND

RCND
	 (a/RCND, cos I ) , (14)

and similarly for the interior stellar orbit:

R′
CND = −Gm′MCND

RCND
	

(
a′/RCND, cos I ′) . (15)

The total orbit-averaged potential energy perturbing motion of the
two stars is then given by the superposition of the three terms:

R = Ri + RCND + R′
CND . (16)

Recalling that semimajor axis values are constant, eccentricity set
to zero and thus argument of pericentre undefined, we are left to
study the dynamics of inclination I and I′ and longitude of node �

and �′ values. The Lagrange equations provide (see e.g. Bertotti
et al. 2003)

d cos I

dt
= − 1

mna2

∂R
∂�

,
d�

dt
= 1

mna2

∂R
∂ cos I

, (17)

d cos I ′

dt
= − 1

m′n′a′2
∂R
∂�′ ,

d�′

dt
= 1

m′n′a′2
∂R

∂ cos I ′ , (18)

where n and n′ denote mean motion frequencies of the two stars.
Note the particularly simple, quasi-Hamiltonian form of equations
(17) and (18). They can also be rewritten in a more compact way
using the normal vectors n and n′ to the respective orbit, namely

dn
dt

= n × ∂

∂n

(
R

mna2

)
, (19)

dn′

dt
= n′ × ∂

∂n′

(
R

m′n′a′2

)
. (20)

Inserting here R from (16), we finally obtain

dn
dt

= ωI

(
n × n′) + ωCND (n × ez) , (21)

dn′

dt
= ω′

I

(
n′ × n

) + ω′
CND

(
n′ × ez

)
, (22)
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where

ωI = −n

(
m′

M•

)
	x

(
α, n · n′) , (23)

ω′
I = −n′α

(
m

M•

)
	x

(
α, n · n′) , (24)

ωCND = −n

(
MCND

M•

)
	x (a/RCND, nz) , (25)

ω′
CND = −n′

(
MCND

M•

)
	x

(
a′/RCND, n′

z

)
. (26)

Note the frequencies in (23) to (26) depend on both n and n′ through
their presence in the argument of

	x(ζ, x) ≡ d

dx
	(ζ, x) , (27)

which breaks the apparent simplicity of the system of equations
(21) and (22).

The coupled set of equations (21) and (22) acquires simple so-
lutions in two limiting cases. First, when m = m′ = 0 (i.e. mutual
interaction of stars is neglected) the two equations decouple and de-
scribe simple precession of n and n′ about the ez axis of the inertial
frame with frequencies −ωCNDcos I and −ω′

CNDcos I′. The minus
sign of these frequencies indicates that the orbits precess in a retro-
grade sense when inclinations are less than 90◦ and vice versa. Both
inclinations I and I′ are constant. In the second limit, when MCND =
0 (i.e. the circumnuclear torus is removed) equations (21) and (22)
obey a general integral of total angular momentum conservation

m n + m′α1/2 n′ = K . (28)

Both vectors n and n′ then precess about K with the same frequency

ωp = ωI

m′α1/2

m + m′α1/2 (n · n′)√
m2 + m′2α + 2mm′α1/2 (n · n′)

, (29)

keeping the same mutual configuration. In particular, initially copla-
nar orbits (i.e. n and n′ parallel) would not evolve, which is in
agreement with intuition.

Unfortunately, we were not able to find an analytical solution to
the (21) and (22) system except for these two situations described
above. Obviously, it can be always solved using numerical methods
as we shall discuss in Section 2.2.2.

2.2.1 Integrals of motion

In general, equations (21) and (22) have only two first integrals.
Our assumptions about the circumnuclear torus mass distribution
still provide a symmetry vector ez. Thus, while the total angular
momentum K is no longer conserved, its projection on to ez is still
an integral of motion

m cos I + m′α1/2 cos I ′ = C1 = Kz . (30)

Because m, m′ and α are constant, equation (30) provides a direct
constraint on how the two inclinations I and I′ evolve. In particular,
one can be expressed as a function of the other.

The quasi-Hamiltonian form of equations (17) and (18) readily
results in a second integral of motion

R (
cos I , cos I ′, n · n′) = C2. (31)

The list of arguments in R, as explicitly provided above, reminds
us that it actually depends on (i) the inclination values I and I′,

Figure 3. Isolines of the R = C2 integral in the I or I′ versus �� space.
For the sake of example, we use orbits of two equal-mass stars (m′ = m) with
semimajor axes a′ = 0.04 RCND and a = 0.05 RCND. The mass of the CND
is set to MCND = 0.3 M•. The individual lines correspond to different values
of stellar mass: m = 5 × 10−7 M• (curves 1), m = 2 × 10−6 M• (curves
2), m = 5 × 10−6 M• (curves 3) and m = 9 × 10−6 M• (curves 4). Both
orbits have been given 70◦ inclination at �� = 0◦ (i.e. initially coplanar
and inclined orbits). Solid lines show inclination I′ of the inner orbit; the
‘mirror-imaged’ dashed lines describe inclination I of the outer orbit.

and (ii) the difference �� = � − �′ of the nodal longitudes of
the two interacting orbits. Using (30), the conservation of R thus
provides a constraint between the evolution of I and �� (say).
While not giving a solution of the problem, the constraint due to
the combination of the first integrals (30) and (31) can still provide
useful insights.

Fig. 3 illustrates how the first integrals help in understanding
several features of the orbital evolution for two interacting stars
at distances a′ = 0.04 RCND and a = 0.05 RCND. For the sake of
simplicity we also assume their mass is equal, hence m′ = m, and
the CND has been given mass MCND = 0.3 M•. Data in this figure
show constrained evolution of orbital inclinations I′ (solid lines)
and I (dashed lines) as a function of nodal difference ��. The two
orbits were assumed to be initially coplanar (�� = 0◦) with an
inclination of I′ = I = 70◦. A set of curves correspond to different
values of stellar masses, from small (1) to larger values (4), which
basically means increasing strength of their mutual gravitational
interaction.

First, the conservation of the ez-projected orbital angular mo-
mentum, as given by equation (30), requires that increase in I′ is
compensated by decrease of I. This results in a near-mirror-imaged
evolution of the two inclinations. Using the first equation of (17),
one finds

dI

dt
= n

sin I

m′

M•
sin

(
� − �′) 	x

(
α, n · n′) , (32)

which straightforwardly implies that the outer stellar orbit is initially
torqued to decrease its inclination while the inner orbit increases
its inclination. This is because initially n · n′ ≈ 1, and 	x(α, 1)
is positive, and, at the same time, the precession of the nodes is
dominated by interaction with the CND which makes the outwards
orbit node drift faster (and hence � − �′ is negative).

Secondly, Fig. 3 indicates that there is an important change in
the topology of the isolines R = C2 as the stellar masses overpass
some critical value (about 8.5 × 10−6 M• in our example). For low-
mass stars their mutual gravitational interaction is weak, letting
the effects of the CND dominate (curve 1). The orbits regularly
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Figure 4. The evolution of the system of two stars in the compound potential of the central SMBH, spherical stellar cusp and axisymmetric CND. Solid lines
represent the solution of two-body equations (21) and (22), while the dashed lines show the result of the direct numerical integration of the equations of motion.
In each panel, upper and lower lines correspond to the inner and outer stars, respectively. Common parameters for both examples are the same as in Fig. 3; in
the upper panels, we set m = m′ = 9 × 10−6 M•, while in the lower ones m = m′ = 5 × 10−6 M•.

precess with different frequency, given their different distance from
the centre, and thus �� acquires all values between −180◦ and
180◦. The mutual stellar interaction produces only small inclination
oscillation. As the stellar masses increase (curves 2 and 3) the
inclination perturbation becomes larger. For super-critical values of
m (curve 4) the isolines of constant R become only small loops
about the origin. This means that �� is bound to oscillate in a
small interval near the origin and inclination perturbation becomes
strongly damped. Put in words, the gravitational coupling between
the stars became strong enough to tightly couple the two orbits
together. Note that they still collectively precess in space due to the
influence of the CND.

2.2.2 Numerical solutions

In order to solve equations (21) and (22) numerically, we adopt a
simple adaptive step-size 4.5th-order Runge–Kutta algorithm. Let
us mention that our implementation of this algorithm conserves the
value of both integrals of motion C1 and C2 with relative accuracy
better than 10−6.

Two sample solutions are shown in Fig. 4. The upper panels rep-
resent the evolution of two orbits with coupled precession which
corresponds to curve 4 in Fig. 3, while in the bottom panels we con-
sider the case of lower-mass stars, whose orbits precess indepen-
dently. This latter mode corresponds to curve 3 in Fig. 3. Besides
the solution of the equations for mean orbital elements, we also

show results of a full-fledged numerical integration of the particu-
lar configuration in the space of classical positions and momenta
(r, r ′; p, p′). Both solutions are nearly identical, which confirms
the validity of the secular perturbation theory used in this paper.

For the sake of further discussion we find it useful to comment
in a little more detail on the case of two nearly independently pre-
cessing orbits (bottom panels in Fig. 4). In this case, the precession
frequencies of the outer and inner star orbits are given by ωCND and
ω′

CND in equations (25) and (26). When truncated to the quadrupole
(� = 2) level, sufficient for the small value of a/RCND, one has for
the outer star orbit

d�

dt
� −3

4

cos I

TK
, (33)

where TK is given by (8). A similar formula holds for the inner
star orbit denoted with primed variables. As seen in Fig. 3, and
understood from the analysis of integrals of motion in Section 2.2.1,
the period of evolution of the system of the two orbits is given
implicitly by the difference of their precession rate: �(Tchar) −
�′(Tchar) = 2π. The secular rate of nodal precession in (33) is
not constant because the mutual gravitational interaction of the
stars makes their orbital inclinations oscillate. However, in the zero
approximation we may replace them with their initial values, I =
I′ = I0, which gives an order of magnitude estimate

Tchar � 8π

3 cos I0

[
1

TK
− 1

T ′
K

]−1

. (34)
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Figure 5. The evolution of the system of four stars in the compound potential of the central SMBH, spherical stellar cusp and axisymmetric CND. The stellar
orbits form two couples. In both of them, the orbits have similar semimajor axes in order to mimic the system shown in Fig. 4. In each panel, upper and lower
lines correspond to the inner and outer couple, respectively. The individual semimajor axes are for both examples set to a1 = 0.0373 RCND, a2 = 0.0408 RCND,
a3 = 0.0478 RCND, a4 = 0.0511 RCND. The other common parameters for both examples are the same as in Fig. 3; in the upper panels, we set m1 = m2 = m3 =
m4 = 4.5 × 10−6 M•, while in the lower ones m1 = m2 = m3 = m4 = 2.5 × 10−6 M•.

For the solution shown in the lower panels of Fig. 4, formula (34)
gives Tchar ≈ 460 Myr, in reasonable agreement with the observed
period of ≈140 Myr. When the orbital evolution is known (being
integrated numerically), more accurate estimate can be obtained
considering mean values of the inclinations

Tchar � 8π

3

[
cos I

TK
− cos I

′

T ′
K

]−1

. (35)

For the case of the solution of the lower panel of Fig. 4, with I ≈ 60◦

and I
′ ≈ 80◦, formula (35) gives Tchar ≈ 120 Myr.

2.2.3 Generalization for N interacting stars

The previous formulation straightforwardly generalizes to the case
of N stars orbiting the centre on circular orbits with semimajor axes
ak (k = 1, . . . , N). This is because the potential energies of all
pairwise interactions build the total

Ri = −1

2

∑
k 
=l

Gmkml

akl

	 (αkl, nk · nl) , (36)

where mk is the mass of the kth star, akl = min(ak, al), αkl =
min(ak, al)/max(ak, al) and nk is the normal vector to the orbital
plane of the kth star. Similarly, the interaction with the CND is

simply given by

RCND = −
∑

k

GmkMCND

ak

	 (ak/RCND, nk · ez) . (37)

The total potential energy of perturbing interactions is

R = Ri + RCND, (38)

and the equations of orbital evolution now read as

dnk

dt
= nk × ∂

∂nk

(
R

mknka
2
k

)
, (39)

for k = 1, . . . , N (nk is the frequency of the unperturbed mean
motion of the kth star about the centre). Their first integrals then
can be written as∑

k

mknka
2
k (nk · ez) = C1 = Kz (40)

and

R = C2 . (41)

Due to mutual interaction of multiple stars, solutions of equa-
tions (39) represent, in general, an intricate orbital evolution, whose
course is hardly predictable as it strongly depends upon the initial
setup. Our numerical experiments show, however, that it is still pos-
sible to identify several qualitative features which remain widely
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Figure 6. The evolution of the initially thin stellar disc of 100 stars in the compound potential of the central SMBH, spherical stellar cusp and axisymmetric CND.
The values of orbital semimajor axes ak in the disc range from 0.02 RCND to 0.2 RCND and their distribution obeys dN ∝ a−1da. The stellar masses are all equal
with m = 5 × 10−6 M• while the mass of the CND is set to MCND = 0.3 M•. The initial inclination I0 of all the orbits with respect to the CND equals 70◦.

valid. For instance, a group of orbits with small separations may
orbitally couple together and effectively act as a single orbit in
interaction with the rest of the stellar system.

This is demonstrated in Fig. 5 which shows two sample solu-
tions of equations (39) for a system of two such groups. For the
sake of clarity, each group consists only of two orbits. Individual
semimajor axes are, for both solutions, set to a1 = 0.0373 RCND,
a2 = 0.0408 RCND, a3 = 0.0478 RCND, a4 = 0.0511 RCND in order to
mimic the two-orbits models from Fig. 4. For the same reason, all
the individual masses are considered equal, m1 = m2 = m3 = m4,
and set to 2.5 × 10−6 M• in the lower panels, while for the upper
panels we assume 4.5 × 10−6 M•. The other parameters remain
identical to the case of the two-orbit models. As we can see (cf.
Figs 4 and 5), the dynamical impact of each coupled pair of orbits
upon the rest of the stellar system is equivalent to the effect of the
corresponding single orbit if both the total mass and semimajor axis
of the pair are appropriate. The individual orbits within each pair
then naturally oscillate about the single-orbit solution according to
their mutual interaction. This conclusion remains valid even in more
complicated systems as we shall show in the next section.

3 A PPLICATION TO THE YO UNG STELLAR
S Y S T E M I N T H E SG R A * R E G I O N

In order to illustrate the complexity of solutions of equations (39),
let us now analyse the evolution of a system which contains an
initially thin stellar disc with a distribution of semimajor axes of
the orbits dN ∝ a−1da. As we can see in Fig. 6, the oscillations of
the orbital inclinations no longer have the simple patterns which we
observed for the models discussed in the previous paragraphs. On
the other hand, we can still identify a well-defined group of orbits
which coherently change their orientation with respect to the CND.
These orbits thus form a rather thin disc during the whole monitored
period of time. It turns out that they represent the innermost parts of
the initial disc where the separations of the neighbouring orbits are
small enough for their mutual interaction to couple them together.

The configuration considered in Fig. 6 roughly matches the main
qualitative features of an astrophysical system which is observed in
the centre of the Milky Way. It contains a group of early-type stars
orbiting the SMBH on nearly Keplerian orbits. Observations suggest
that about one-half of them form a coherently rotating disc-like

structure with estimated surface density profile � ∝ R−2 (Paumard
et al. 2006; Lu et al. 2009; Bartko et al. 2009) which implies the
above considered distribution of semimajor axes. The rest of the
early-type stars then appear to be on randomly oriented orbits. Both
the origin and observed configuration of these stars represent rather
puzzling questions. Due to the strong tidal field of the SMBH, it is
impossible for a star to be formed in this region by any standard
star formation mechanism. On the other hand, as the observed stars
are assumed to be young, no usual transport mechanism is efficient
enough to bring them from farther regions, where their formation
would be less intricate, within their estimated lifetime. One of the
most promising scenarios of their origin thus considers formation
in situ, via fragmentation of a self-gravitating gaseous disc (Levin
& Beloborodov 2003). However, since this process naturally forms
stars in a single disc-like structure, it does not explain the origin
of the stars observed outside the disc. Hence, in order to justify
the in-disc scenario of the formation of the early-type stars in the
Galactic Centre, some mechanism that may have dragged some of
them out from the parent stellar disc plane is needed.

In our previous paper (Haas et al. 2011), we have discussed a
possibility that all the early-type stars had been born in a single disc
which has been, subsequently, partially disrupted by the gravity of
the CND. We have considered the same configuration of the sources
of the gravitational field as in the current paper and followed the
evolution of the disc by means of direct N-body integration. We
have observed coherent evolution of the inner dense part of the disc
which exhibited a tendency to increase its inclination with respect
to the CND. On the other hand, most of the orbits of the outer parts
of the initially coherently rotating disc precessed independently due
to the influence of the CND and, consequently, became detached
from the parent structure. This behaviour is in accordance with the
analysis presented in the current paper.

Furthermore, we can now calculate the order of magnitude char-
acteristic time-scale for the ‘canonical’ model of Haas et al. (2011)
whose system parameters read: M• = 4 × 106 M�, RCND = 1.8 pc,
MCND = 0.3M•, Mc = 0.03M• and I0 = 70◦. In order to determine
the rough time estimate, we use formula (34). As this formula has
been derived for a system of two stars, we replace the stellar disc
with two characteristic particles at certain radii a′, a in the sense of
Section 2.2.3. For this purpose, let us divide the stars in the disc into
two groups according to their initial distance from the centre and
define a′ and a as the radii of the orbits of the median stars in the
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inner and outer groups, i.e. a′ = 0.06 pc and a = 0.23 pc. Inserting
these values into formula (34), we obtain Tchar ≈ 37 Myr for the
‘canonical’ model. This value is in order of magnitude agreement
with the estimated age of the early-type stars, ≈6 Myr (Paumard
et al. 2006), since the core of the disc reaches its maximal inclina-
tion with respect to the CND already after a fraction of period Tchar

as can be seen in Figs 5 and 6.
Let us emphasize that the results reported in our previous paper

(Haas et al. 2011) have been acquired by means of a full-fledged
numerical integration of equations of motion. As a consequence,
both the eccentricities and semimajor axes of the individual stel-
lar orbits in the disc have been naturally undergoing a significant
evolution due to the two-body relaxation of the disc. Moreover,
our prior numerical computations have also confirmed that results
similar to those obtained for the ‘canonical’ model are valid for
a wide set of models with different system parameters, including
the case with zero mass, Mc, of the spherical cusp of the late-type
stars. In the latter case, the orbital eccentricities and inclinations
within the stellar disc are subject to high-amplitude Kozai oscilla-
tions. In conclusion, it appears that the inner part of the disc may
evolve coherently for a certain period of time even when we cannot
assume either zero or small eccentricity of the stellar orbits. We
therefore suggest that also some of the key qualitative predictions
of the semi-analytic theory developed in the current paper under the
simplifying assumption of circular orbits may be carefully applied
to more general, non-circular systems.

Finally, let us mention that, in addition to the core of the disc,
less significant groups of orbits with coherent secular evolution
may exist even in the outer parts of the disc if their separations are
small enough. Our semi-analytic approach thus admits the possible
existence of secondary disc-like structures in the observed young
stellar system which has indeed been discussed by several authors
(Genzel et al. 2003; Paumard et al. 2006; Bartko et al. 2009).

4 C O N C L U S I O N S

We have investigated the secular orbital evolution of a system of
N mutually interacting stars on nearly circular orbits around the
dominating central mass, considering the perturbative gravitational
influence of a distant axisymmetric source and an extended spherical
potential. Given that the spherical potential is strong enough, we
have shown that the secular evolution of initially circular orbits
reduces to the evolution of inclinations and nodal longitudes. The
spherical potential itself can then be factorized out from the resulting
momentum equations. Since we have not been able, in a general
case, to solve the derived equations analytically, we have set up
an integrator for their efficient numerical solution. The acquired
results have then been, in order to confirm their validity, compared
with the corresponding full-fledged numerical integrations in the
space of classical positions and momenta, showing a remarkable
agreement.

Some fundamental features of the possible solutions of the new
equations can be understood by an analysis of the integrals of mo-
tion. In the case of the simplest possible system of two stars inter-
acting in the considered perturbed potential, we have identified two
qualitatively different modes of its secular evolution. If the interac-
tion of the stars is weak (yet still non-zero), the secular evolution
of their orbits is dominated by an independent nodal precession.
The difference of the individual precession rates then determines
the period of oscillations of the orbital inclinations. On the other
hand, when the gravitational interaction of the stars is sufficiently
strong (depending on their mass and the radii of their orbits), the

secular evolution of the orbits becomes dynamically coupled and,
consequently, they precess coherently around the symmetry axis of
the gravitational potential. Oscillations of the orbital inclinations
are, in this case, considerably damped.

We have further confirmed, by means of the numerical integration
of the derived momentum equations, that the coupling of strongly
interacting orbits is a generic process that may occur even in more
complex N-body systems. In particular, a subset of stars with strong
mutual interaction evolves coherently and, as a result, its dynamical
impact upon the rest of the N-body system is similar to the effect
of a single particle of suitable mass and orbital radius.

As an example, we have investigated the evolution of a disc-like
structure that roughly models the young stellar system which is ob-
served in the Galactic Centre. It has turned out that the semi-analytic
work presented in this paper provides a physical background for
understanding of the processes discovered by means of the full N-
body integration in Haas et al. (2011). Namely, the coupling of the
strongly interacting stars from the inner parts of the disc leads to
their coherent orbital evolution, which allows us to observe a disc-
like structure even after several million years of dynamical evolution
in the tidal field of the CND. The orientation of this surviving disc
then inevitably changes towards higher inclination with respect to
the CND, which is in accordance with the observations. On the
other hand, stellar orbits from the outer parts of the disc evolve
individually, being gradually stripped out from the parent thin disc
structure. Hence, it appears possible for the puzzle of the origin of
the young stars in the Galactic Centre to be solved by the hypothesis
of their formation via the fragmentation of a single gaseous disc,
as already suggested by Šubr, Schovancová & Kroupa (2009) and
Haas et al. (2011).

Note that besides the physical explanation of the processes ob-
served in our previous work, the current approach would be, due to
its low numerical demands, useful for extensive scanning of the pa-
rameter space in order to confront our model with the observations
more thoroughly. This is going to be the subject of our future work
when more accurate observational data will be available.

Finally, let us mention that our semi-analytic model has been de-
veloped under several simplifying assumptions. Most importantly,
the torus CND has been considered stationary and the cusp of the
late-type stars spherically symmetric. If any of these assumptions
were violated, the results might be more or less affected. For exam-
ple, a possible anisotropy of the cusp of the late-type stars due to
chance alignment of some of its stars would break its spherical sym-
metry. In that case, the resulting gravitational torques might have a
considerable impact on the dynamical evolution of the stellar disc as
shown by Kocsis & Tremaine (2011). However, since the current ob-
servational data do not show evidence for such violations, we may
consider our model physically plausible. Moreover, the currently
available data do suggest a roughly perpendicular mutual orienta-
tion of the CND and the stellar disc, which is in accordance with
the predictions of both our numerical and semi-analytic models. We
consider this as a supporting argument for our findings.
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