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ABSTRACT

Context. Pioneering works on the effect of solar irradiation on the rotation of small objects in interplanetary space raised the possibility
that the radiation pressure from solar photon absorption could modify the objects’ spin states. Later numerical studies found that the
torque from radiation pressure, when averaged over spin and orbital periods, vanished for all studied asteroid shape models.
Aims. We demonstrate that the average torque from radiation pressure vanishes for any surface shape deformation.
Methods. We have calculated the torque analytically. The main assumption of our calculation is that the object rotates around its
principal axis of inertia.
Results. We show that the average torque vanishes for any surface shape deformation because the individual radiation-pressure
contributions from configurations separated by π in orbital longitude cancel each other out.
Conclusions. Unlike the thermal radiation and reflection of solar photons from surface, which can produce important effects over
planetary timescales, the radiation pressure cannot change asteroid rotation.
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1. Introduction

The surface of an irregularly-shaped small object in the inter-
planetary space is irradiated by sunlight. The torque produced
by absorbed photons is

τ = − F
h2c

∫
S

dS (r × n0)(n · n0), (1)

where the integral is taken over the illuminated part of the sur-
face. Here, c is the speed of light, F = 1378 W m−2 the solar flux
at distance 1 AU from the Sun, and h the heliocentric distance
of the object in AU. Vectors n and n0 are unit vectors pointing
from surface element dS in normal and toward-the-Sun direc-
tions, respectively. Vector r connects the center of mass of the
object to dS .

In addition to (1), two other torque components arise from
the interaction of the surface with solar radiation. These are pro-
duced by (i) reflected solar photons and (ii) thermal photons de-
parting from the surface heated by sunlight. The total torque,
called the YORP torque (after researchers Yarkovsky, O’Keefe,
Radzievskii, and Paddack; Rubincam 2000), can be obtained by
adding torque components together. The YORP effect has impor-
tant applications in asteroid spin dynamics (e.g., Vokrouhlický
et al. 2003, 2007; Bottke et al. 2006).

We limit the analysis in this paper to the Keplerian orbital
motion of a small body around the Sun and its rotation around
the principal axis of inertia. The latter assumption is justified
for km-sized and larger asteroids because any excess in the rota-
tional energy can be efficiently dissipated in their interior (e.g.,
Sharma et al. 2005).

To study secular spin dynamics, it is convenient to average τ
over the spin and orbit periods of the small object (Rubincam
2000). The mean torque, τ̄, is defined as

τ̄ =
1

(2π)2

∫ 2π

0

∫ 2π

0
τ dφ0 dλ, (2)

where φ0 is the spin phase angle (see Sect. 2) and λ the mean
longitude of the small body presumed here to be orbiting around
the Sun on a fixed orbit.

Early studies of the YORP effect discussed the possibility
whether (2) can produce changes in the spin state of a small ob-
ject. Modern numerical works have found that (2) vanished in
every studied case, including asteroids with known shape models
and artificial objects (Rubincam 2000; Vokrouhlický & Čapek
2002). Here we calculate τ̄ analytically. Our results imply that
τ̄ = 0 for any shape deformation. Accordingly, the radiation
pressure does not secularly affect principal axis rotation.

This note is organized as follows. In Sect. 2, we introduce
useful reference frames. In Sect. 3, we show that the instanta-
neous torque from the radiation pressure only depends on the
object’s silhouette as seen from the Sun. Finally, in Sect. 4, we
demonstrate that the torque vanishes when it is averaged over the
orbital period.

2. Reference frames

We use several reference frames all with the origin at the cen-
ter of mass of the small object (Nesvorný & Vokrouhlický
2007). Figure 1 illustrates these frame systems. The body frame,
Ox′′y′′z′′, has the z′′ axis fixed along the object’s spin axis (as-
sumed here to coincide with the principal inertia axis) and the
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Fig. 1. The illustration of various reference frames used in this study.
Oxyz, Ox′y′z′, and Ox′′y′′z′′ denote the solar, rotating orbital, and body
frames, respectively. See Sect. 2 for the definition of these reference
systems. The body frame has been obtained from the rotating orbital
frame via three rotations indicated here (Eq. (3)).

x′′ axis along its shortest axis of inertia. The rotating orbital
frame, Ox′y′z′, has the z′ axis pointing toward the normal of
the orbital plane and the x′ axis pointing toward the Sun. The
transformation of a vector from the rotating orbital frame to the
body frame is given by

V′′ = R3(α3)R1(α2)R3(α1)V′ (3)

with Euler angles α1 = − f , α2 = ε and α3 = φ0, where φ0 = ωt
denotes the phase angle of the body’s rotation with respect to
the inertial frame, ω is the angular frequency of rotation, ε the
obliquity, and f the true orbital longitude of the Sun. Symbols R1
and R3 in Eq. (3) are the usual rotation matrices that represent
the rotation of the reference system around the (generic) x and
z axes, respectively.

Our third reference system is the frame with the z axis point-
ing toward the Sun and the x axis pointing toward the normal of
the orbital frame. We call this reference system the solar frame.
This frame rotates in an inertial system with the angular speed
given by the orbital motion of the small body around the Sun.
The transformation of any vector V from the solar frame to the
rotating orbital frame is

V′ = R3(α3)R1(α2)R3(α1)V (4)

with Euler angles α1 = α2 = α3 = π/2. The colatitude and
longitude in the solar frame is denoted by θ and φ.

3. Instantaneous torque in the solar frame

We calculate Eq. (1) in the solar frame where n0 = (0, 0, 1)T

with index T denoting the transposed vector. Because ndS =
Ndθdφ = N(dΩ/sin θ), Eq. (1) can be written as

τ = −α
∫
Ω

dΩ
sin θ

(r × n0)(N · n0), (5)

where α = F/(h2c), dΩ = sin θdθdφ, n = N/|N|, N = tθ × tφ,
and where tθ = ∂r/∂θ and tφ = ∂r/∂φ are tangential vectors. The
integration over solid angle Ω goes over the illuminated part of
the surface. Assuming r = r(φ, θ), which is appropriate for all
shapes except the ones for which radial ray (θ, φ) can intersect

the surface in more than one point, it can be easily shown that
tθ = rθur + ruθ and tφ = rφur + r sin θuφ, where rθ = ∂r/∂θ
and rφ = ∂r/∂φ. The vectors ur, uθ, and uφ used above were
defined as

ur =

⎛⎜⎜⎜⎜⎜⎜⎝
sin θ cosφ
sin θ sin φ

cos θ

⎞⎟⎟⎟⎟⎟⎟⎠ , uθ =

⎛⎜⎜⎜⎜⎜⎜⎝
cos θ cosφ
cos θ sin φ
− sin θ

⎞⎟⎟⎟⎟⎟⎟⎠ , uφ =

⎛⎜⎜⎜⎜⎜⎜⎝
− sinφ
cosφ

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)

They form an orthonormal triad (i.e., ur = uθ × uφ, etc.). Using
these vectors the expression for N reads as

N = r
[
r sin θ ur − rθ sin θ uθ − rφ uφ

]
; (7)

therefore,

N · n0 = Nz = r sin θ

(
r cos θ +

∂r
∂θ

sin θ

)
, (8)

where Nz is the z-component of N in the solar frame. We also
have in the solar frame that

r × n0 = −r sin θ uφ. (9)

Now, substituting the above expressions into (5), we find that

τ = α

∫
Ω

dΩ
sin θ

uφr2 sin2 θ

(
r cos θ +

∂r
∂θ

sin θ

)

=
α

3

∫
Ω

dΩ
sin θ

uφ
∂

∂θ
(r3 sin3 θ)

=
α

3

∫ 2π

0
dφ uφ

∫
dθ
∂

∂θ
(r3 sin3 θ). (10)

The above integral over θ needs to be taken over the illuminated
part of the surface. The illuminated part of the surface of an ide-
ally spherical object is its whole hemisphere facing the Sun. In
such an idealized case, the integral over θ would go from 0 to
π/2. For a general surface deformation for which shadowing of
surface elements can occur, the integral over θ can be written as∫

dθ
∂

∂θ
(r3 sin3 θ) =

∑
j

[
r3 sin3 θ

]θ2, j
θ1, j
, (11)

where θ1, j(φ), and θ2, j(φ) denote the latitude limits of illuminated
segments stretching along the body’s meridian (with constant φ).
Given the illumination geometry in the solar frame, we note that
r(θ2, j, φ) sin θ2, j = r(θ1, j+1, φ) sin θ1, j+1 for all j. Therefore, al-
though in general discontinuous in θ, Eq. (11) is continuous in
r sin θ =

√
x2 + y2, where x and y are the Cartesian coordinates

in the solar frame. Equation (10) can be reduced to

τ = −α
3

∫ 2π

0
dφ ρ(φ)3uφ, (12)

where ρ(φ) = r(θmax, φ) sin θmax with θmax = θmax(φ) denoting
the value of θ at the terminator.

The meaning of (12) is clear: the instantaneous torque from
the radiation pressure only depends on the silhouette that the
irregular object presents to the Sun (Rubincam 2000). It is
straightforward to show that the same result also holds for a more
general case of surface deformation where radial ray (θ, φ) is al-
lowed to intersect the surface at more than one point.

Until now we have assumed that the object is illuminated
with n(+)

0 = n0 = (0, 0, 1)T in the solar frame. If, instead,
the object is illuminated from the opposite direction, i.e. with
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n(−)
0 = −n0 = (0, 0,−1)T, the silhouette of the object and there-

fore also the magnitude of the torque would be the same. It is
easy to show, moreover, that the instantaneous torque vector pro-
duced with n(−)

0 goes in the opposite direction to the one obtained
with n(+)

0 ; i.e., τ(n(−)
0 ) = −τ(n(+)

0 ). This last statement stems from

the following. With n(−)
0 , Eq. (10) remains the same except for

the integration domain that now spans over the opposite hemi-
sphere of the object than before; the integration path in θ must
be changed accordingly. We obtain

τ(n(−)
0 ) =

α

3

∫ 2π

0
dφ ρ(φ)3uφ, (13)

as claimed above.

4. Vanishing mean torque

To determine average torque (2), we need to transform the torque
vector from the solar frame to the body frame and average it over
λ and φ0. We note that the integration over λ can be simplified
by introducing true longitude f as the new integration variable:

∫
dλ τ =

1√
1 − e2

∫
d f

(
h
a

)2

τ. (14)

The dependence on h then conveniently cancels out from (14)
because τ ∝ h−2 according to (1). We therefore find that the
stronger torques produced by sunlight at the perihelion are com-
pensated for by the shorter time interval that an asteroid spends
near perihelion.

In the body frame, the object presents different silhouettes
to the Sun depending on the Sun’s location. With the help of
transformation rules (3) and (4), we can transform the vector n0
from the solar frame, where n0 = (0, 0, 1)T, to the body frame,
where

n0 =

⎛⎜⎜⎜⎜⎜⎜⎝
cosφ0 cos f + sin φ0 sin f cos ε
− sinφ0 cos f + cosφ0 sin f cos ε

− sin f sin ε

⎞⎟⎟⎟⎟⎟⎟⎠ . (15)

In the course of its spin and orbital motion, the object shows
different sides of its figure to the Sun. Yet, it is clear that its
silhouettes as seen from the Sun are the same for n0 and −n0.

This reversal of the Sun’s direction in the body frame is achieved
when f is substituted by f +π in (15). According to the results in
the previous section, the instantaneous torque vectors for ( f , φ0)
and ( f + π, φ0) then cancel when added together. Therefore, the
integral over λ in (2) vanishes. We conclude that

τ̄ = 0. (16)

5. Conclusions

Our result implies that the average torque from the radiation
pressure vanishes for any surface shape deformation. This rep-
resents an important generalization from the previous analytical
results (e.g., Breiter et al. 2007) and shows that the radiation
pressure effects cannot change asteroid rotation.

According to (12), the radiation pressure can only apply a
tiny and variable instantaneous torque to the rotating body. The
physical importance of this effect is negligible in the present
studies of asteroidal dynamics. Still, in principle, the varying ra-
diation pressure torques could cause small periodical changes
in an asteroid’s spin state. It is even possible, in the absence of
efficient dissipation of the excess spin energy, that these vari-
able torques could produce slight deviations of the spin vector
from the principal axis. Our assumption of principal axis rota-
tion must be relaxed to make theoretical investigations into such
matters possible.
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