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a b s t r a c t

The classical Öpik theory provides an estimate of the collision probability between two bodies on bound,
heliocentric or planetocentric orbits under restrictive assumptions of: (i) constant eccentricity and incli-
nation, and (ii) uniform circulation of the longitude of node and argument of pericenter. These assump-
tions are violated whenever either of the orbits has a large inclination with respect to the local Laplace
plane or large eccentricity, and their motion is perturbed by an exterior (tidal) gravitational field of a pla-
net or the Sun. In this situation, known as the Lidov–Kozai regime, the eccentricity and inclination values
exhibit large and correlated oscillations. At the same time, the longitude of node and the argument of
pericenter may have strongly nonlinear time evolution, with the latter being even bound to a small inter-
val of values. Here we develop a new Öpik-type collision probability theory which is valid even for highly
inclined and/or eccentric orbits of the projectile. We assume that the orbit of the target is circular and in
the local Laplace plane. Such a generalized setting is necessary, as an example, to correctly estimate the
terrestrial impact fluxes of sporadic micrometeoroids on high-inclination orbits (notably those from the
toroidal source and the associated helion and anti-helion arcs).

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in planetary science require to determine the
collision probability of two bodies residing on the Keplerian orbits
with the same focal point. Here we consider the important case in
which the collision probability needs to be evaluated in a statistical
sense for a large population of bodies. In this case, it is often useful
if the probability is averaged over the secular orbital timescale.

The standard theory, used and extended by many researchers,
was developed by Öpik (1951) (see also Öpik, 1976; Wetherill,
1967; Greenberg, 1982). In his original formulation, Öpik assumed
that the target on a circular orbit is bombarded by a population of
bodies on orbits with fixed eccentricity and inclination values.

Öpik’s theory was generalized to the case of an eccentric orbit of
the target by Wetherill (1967) and Greenberg (1982). A different
generalized method was developed by Kessler and Cour-Palais
(1978) (see also Kessler, 1981). This more geometrical approach
based on the evaluation of the probability density distribution
has found a number of applications in planetary science (e.g., Steel
and Baggaley, 1985; Steel and Elford, 1986; Sykes, 1990).

In these standard collisional theories, the orbital eccentricity e
and inclination i is assumed to be constant during the secular evo-
lution cycle. This is appropriate for small e and i values, where e

and i are roughly time-invariant. However, some problems in plan-
etary science require a method that is valid for high eccentricities
and/or high inclinations, where the effects of the Lidov–Kozai res-
onance can be important (e.g., Lidov, 1961, 1962; Kozai, 1962;
Morbidelli, 2002).

For example, the dust particles released from long-period
comets can be an important component of the zodiacal cloud. If
so, it would be important to calculate their impact rates on the
Earth (and relate the results to meteor observations), Earth-bound
detectors and spacecrafts. Other applications can be found in stud-
ies of planetary impact rates in the early Solar System when small
bodies were stochastically driven to high-e and -i orbits. In these
examples, the secular evolution of orbits clearly violates the
assumption of the standard Öpik theory, because e and i are
affected by the Lidov–Kozai cycles.

Here we generalize the Öpik theory to account for the
Lidov–Kozai cycles of high-i and -e orbits. After mathematical pre-
liminaries in Section 2, we generalize the collisional probability
theory in Section 3. In Section 3.3, we test the generalized theory
by comparing it with direct N-body integrations of orbits. Conclu-
sions are given in Section 4.

2. Mathematical preliminaries

We start by introducing mathematical concepts and notation
that will be used throughout the paper. Assume a particle on an
elliptic heliocentric orbit described using an osculating set of
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Keplerian elements: semimajor axis a, eccentricity e, inclination i,
longitude of node X, argument of pericenter x and true anomaly
f. The angles i, X and x are defined with respect to a chosen inertial
frame (X,Y,Z).1 The orbit intersects the (X,Y) reference plane in
ascending and descending nodes, where f = f0 � �x and
f = f0 � p �x, respectively. Denote a0 the heliocentric distance at
either of the two intersections. Introduce a local reference basis
(er,e/,ez) of three orthonormal vectors with the origin at the ascend-
ing or descending node, such that er is directed in the radial direc-
tion, e/ in the longitude direction and ez along the Z axis.2

The heliocentric position vector r describing the elliptic orbit of
the particle reads

rðf Þ ¼ rðf Þ½a cosðxþ f Þ þ b sinðxþ f Þ�; ð1Þ

with r(f) = ag2/(1 + ecos f), g2 = 1 � e2, and unit vectors aT = (cosX, -
sinX,0) and bT = (�cos isinX, cos icosX, sin i). At the ascending
node we have a = er and b = cos ie/ + sin iez, while at the descending
node a = �er and b = �cos ie/ + sin iez. Expanding r(f) near the origin
in the local (er,e/,ez) system (i.e., near the respective nodal intersec-
tion with the (X,Y) reference plane), we obtain r(f) = a0er + dr with

dr ¼ a0A1 df þ a0

2
A2 df 2 þOðdf 3Þ; ð2Þ

where df is infinitesimal increment of the true anomaly with re-
spect to the intersection value f0. Eq. (2) locally describes particle’s
elliptic orbit, with df being an affine parameter having values suit-
ably close to zero. The first term is the crudest rectilinear approxi-
mation, while the second term describes the local curvature of the
elliptic orbit. The first- and second-order vectorial coefficients read
(upper sign for the ascending node intersection and lower sign for
the descending node intersection)

A1 ¼ �
e sinx

P
er þ ðcos ie/ � sin iezÞ; ð3Þ

A2 ¼ �2 1� 3
2P
þ g2

P2

� �
er � 2

e sin x
P
ð� cos ie/ þ sin iezÞ; ð4Þ

where P = ag2/a0 and g2 = 1 � e2.
Consider now an observer moving on a circular heliocentric

orbit with radius a0 in the (X,Y) reference plane. Eq. (2) may be also
used to describe its orbit near the respective nodal intersection
with the eccentric orbit, with Acirc

1 ¼ e/ (henceforth also the apex
direction), Acirc

2 ¼ �er and df = dfcirc, a differential in the observer’s
longitude. Denote Vcirc the orbital velocity of the observer (given by
the third Kepler law) and V the relative velocity of the particle with
respect to the observer. It is convenient to introduce a scaled value
v of the relative velocity, namely v = V/Vcirc, and parametrize the
complete relative vector vT = (vr,v/,vz) = v(cosbsin‘,cosbcos‘, sinb)
v/,vz) = v(cosbsin‘,cosbcos‘, sinb) with a longitude ‘ and a lati-
tude b of the radiant seen by the observer (henceforth, ‘ is mea-
sured from the apex direction and increases toward local radial
direction in our notation). We also note that our choice makes v
point toward the radiant from which the observer sees the particle
impact.

The velocity components (vr,v/,vz) may be easily obtained from
the linear term in (2), namely by using

v ¼ e/ �
1

Vcirc

dr
dt

� �
f¼f0

¼ e/ � A1

ffiffiffi
P
p

: ð5Þ

We thus obtain

e cos x ¼ �ðP � 1Þ; ð6Þ
e sinx ¼ �

ffiffiffi
P
p

v r ; ð7Þffiffiffi
P
p

cos i ¼ 1� v/; ð8Þffiffiffi
P
p

sin i ¼ �vz; ð9Þ

where the upper sign holds for the ascending node intersection and
the lower sign for the descending node intersection. Here the first
formula (6) is simply the geometric condition of intersection at
heliocentric distance a0 (as stated above), and the next three formu-
las (7)–(9) specify the radiant location and impact velocity (in units
of Vcirc). Obviously, our (vr,v/,vz) are closely related, in fact identical,
to the standard velocity components (Ux,Uy,Uz) introduced in the
Öpik theory (see, e.g., Öpik, 1951, 1976).

Finally, it will be useful to rewrite beforehand Eq. (6) using the
non-singular variables k = ecosx and h = esinx and parameter
a = a0/a. In the (k,h) plane the nodal intersection condition (6) reads

k� a
2

� �2
þ h2 ¼ 1� aþ a2

4
; ð10Þ

which is simply an equation of a circle displaced by ±a/2 on the k-
axis for the ascending, resp. descending, node and radius equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� aþ a2=4
p

.

3. Öpik collision probability approach

In the Öpik approach, the collision probability of a particle with
a target is composed of two independent parts: (i) probability P1

that during the secular cycle of the particle orbital elements its
heliocentric node is close to the target’s circular orbit (such that
their distance can be small enough), and (ii) probability P2 that
the target is close to the nodal intersection of the particle orbit.
A product of these statistically independent partial probabilities
provides the total probability of impact per revolution of the parti-
cle: P = P1P2. Dividing this value by the orbital period of the particle
then yields total probability per unit of time (this is because we as-
sume an equilibrium distribution of particles along the impacting
orbit). Obviously, in this way the resulting collision probability is
a long-term averaged value or, equivalently, a population averaged
value for a large population of particles in steady-state.

Because we keep the assumption of the circular motion of the
target and the rectilinear representation of the particle motion
near the nodal configurations (first term in Eq. (2)), analysis of P2

is the same as in Öpik (1951). In particular, assuming the target
with radius R on a circular heliocentric orbit with radius acirc, we
have

P2ða; e; iÞ ¼
R

4acirc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� Tða; e; iÞ
2� Fða; e; iÞ

s
; ð11Þ

with

Tða; e; iÞ ¼ acirc

a
þ 2

ffiffiffiffiffiffiffiffiffi
a

acirc

r
g cos i; ð12Þ

Fða; e; iÞ ¼ acirc

a
þ a

acirc
g2 cos2 i: ð13Þ

However, to compute P1, Öpik’s assumed constant values of e and i
and uniform circulation of x. This is an acceptable approximation
for low inclination and low eccentricity orbits, but it fails when
either of or both these elements are large. Our goal is to extend
determination of P1 for orbits with arbitrary inclination and eccen-
tricity values.

1 We assume i – 0, otherwise a non-singular set of orbital elements would be
needed. In order to keep a close similarity in notation to the works of Öpik (1951) and
Wetherill (1967) we only consider the non-planar case.

2 Note that the er and e/ vectors at the descending node are opposite to their values
in the descending node, and vice versa, in our definition.
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3.1. Lidov–Kozai driven secular evolution of the particle orbit

We adopt a secular model for particle dynamics, namely assum-
ing its orbit is not resonant with any of the perturbing massive
bodies in the Solar system. For simplicity assume planets move
on circular and coplanar orbits. Within this model, the first-order
perturbations of particle dynamics are obtained by independent
averaging of the perturbing function from an arbitrary number of
planets over their mean longitude in orbit and that of the particle
(e.g., Morbidelli, 2002). Such an approximation immediately pro-
vides two integrals of motion, notably (i) the semimajor axis a of
the particle, and (ii) projection of the orbital angular momentum
on the symmetry axis of the planetary system (i.e., normal to the
Laplace plane). The latter may be most conveniently expressed
using a constant c = gcos i, which implies that any variation in
eccentricity e (or g) is correlated with the corresponding variation
of the inclination i. In other words, inclination may be considered
as a dependent parameter on the eccentricity. The axial symmetry
of the secular (averaged) problem also implies that the longitude of
node X of the particle orbit is a dummy parameter in the perturb-
ing function P, which – apart from constants – depends only on
two orbital parameters: eccentricity e and argument of pericenter
x (or their canonical analogs within a Hamiltonian theory; see,
e.g., Morbidelli, 2002). Finally, since averaging over planets’ motion
about the Sun eliminates time dependence of the perturbing func-
tion, its value itself is also an integral of motion: Pðe;x;

a; cÞ ¼ constant. This again shows, that any secular variation in x
is reflected in a correlated way in the respective variations of e.

In the most general situation of multiple planets with particle
orbit crossing all or some of them, the averaged perturbing func-
tion Pðe;x; a; cÞ may be obtained only using numerical quadrature
(e.g., Bailey et al., 1992; Thomas and Morbidelli, 1996; Gronchi and
Milani, 1998, 1999; Morbidelli, 2002). It should be noted that the
problem has, aside to numerical evaluation, also subtle conceptual
(mathematical) difficulties related to averaging of perturbing func-
tion with singular points (cf., Gronchi and Milani, 1998). Our ap-
proach developed below might be applied to this case as well,
but it would require to evaluate most of the necessary functions
numerically. In order to better understand the situation we prefer
to restrict to a simpler case, in which more computations could be
developed analytically and thus more directly compared with the
traditional Öpik’s theory. In particular, we assume only one per-
turbing planet (Jupiter) and a particle orbit entirely inside its orbit.
The Earth as a target is assumed massless, which is a fairly good
approximation overall. In this case, Pðe;x; a; cÞ may be obtained
in terms of multipole series (e.g., Kozai, 1962), of which we shall
retain only the leading quadrupole part. Unless perihelion of the
particle orbit is close to Jupiter, this is again a fairly satisfactory
assumption, at least for sake of our illustration.3 Using these
approximations, a number of constant terms may be factorized from
expression of Pðe;x; a; cÞ, resulting then in an integral of motion in
the form (e.g., Kozai, 1962; Kinoshita and Nakai, 2007)

Hðk;h;cÞ¼ 1
g2 ½ð2þ3e2Þð3c2�g2Þþ15ðg2�c2Þðk2�h2Þ�¼C: ð14Þ

Here, we introduce the non-singular variables k and h from Eq. (10).
Topology of the C-conserved isolines in the (k,h) plane for various
values of c and C has been extensively studied (e.g., Kozai, 1962;
Morbidelli, 2002) and we do not need to discuss it in detail. Suffice
it to say that in the limit of jcj large enough the level curves of con-
stant C are ovals about the origin of the (k,h) plane that become
near circular for jcj? 1. In this limit, both eccentricity and inclina-

tion of the particle orbit are small and nearly conserved, matching
thus the assumptions of the original Öpik collisional theory. We also
note that for a given c value, the eccentricity can take values up to a
maximum

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

(more rigorous specification of the interval of e
and i value for given c and C integrals can be found, for instance,
in Kinoshita and Nakai, 2007, Eqs. (31) and (32). At the critical value
c2 = 3/5, topology of the level curves of the C integral changes,
adapting to bifurcation of two new stationary solutions at the h axis
(i.e., with cosx = 0): (i) for C > 2(3c2 � 1) they still circulate about
the origin, but may take excursions to a very large eccentricity value
on the h axis, and (ii) for C < 2(3c2 � 1) they circulate about the sta-
tionary points on the h axis. Examples are later seen in Figs. 3 and 4.

3.2. Crossing configurations with a target of a finite size

The exact configurations of orbital intersection with a target on
a circular heliocentric orbit with radius acirc are determined as
roots kw and hw of Eq. (10), or equivalently Eqs. (6) and (14) with
a = acirc/a. All of them can be computed analytically, leading to a
problem of roots of a cubic equation for kw. Because of the inver-
sion symmetry hw M �hw, there is always an even number of roots
with generic number of 4 or 8 (2 and 6 are singular cases).4 As a
result, there can be twice as many impact configurations for orbits
with high inclination than in the low inclination regime (only 4).
This has been known for a long time, in particular from studies of
high-inclination meteoroid streams (e.g., Babadzhanov and Obrubov,
1992). Examples are shown in the left panels of Figs. 3 and 4.

Now, the P1 probability in the Öpik approach stems from the
fact that the target has a small but finite radius R (R� acirc).5 This
means that also orbits with k and h values in a small neighborhood
of (kw,hw) could pass closer than distance R from the center of the
target and should be considered intersecting. The limiting configura-
tions with klim and hlim values are those for which the particle orbit
is grazing at distance R from the target’s orbit.

In order to formulate such a condition, we use local description
of the particle’s elliptic orbits from Section 2, Eq. (2). Consider par-
ticle’s orbit with nodal intersection of the (X,Y) plane at a heliocen-
tric distance a0 close to acirc.6 Define the (er,e/,ez) reference frame
with the origin at target’s orbit at a longitude identical to particle’s
intersection point with the (X,Y) plane – see Fig. 1 for illustration.
Retaining just the linear representation in (2), the particle’s position
vector in our reference frame is given by

DrðkÞ ¼ a0A1kþ ða0 � acircÞer þOðk2Þ; ð15Þ

where we denoted k = df; recall the values near k = 0 describe the
particle orbit near the nodal line. The vector A1 is given in Eq. (3)
with P = ag2/a0. In the same way, we may locally represent target’s
orbit in the same reference frame with

Dr0ðk0Þ ¼ acirce/k0 þ Oðk02Þ; ð16Þ

where we again retained just the linear term (the target’s orbit is
thus / axis in our system). The square of the target-particle distance
is simply d2(k,k0) = [Dr(k) � Dr0(k0)] � [Dr(k) � Dr0(k0)], and we seek
a minimum orbital distance d2

min as a minimization problem in the

3 In any case, adding higher-multipole terms in the secular perturbing function is
just a matter of more algebraic labor, but does not represent any conceptual obstacle
to our approach.

4 Apart from the mentioned symmetry, stemming from the fact that Eqs. (10) and
(14) contain only h2, there is also kw M �kw symmetry for impact configurations in
the ascending and descending nodes of the particle orbit.

5 In fact, the geometric radius R of the target should be augmented by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðVesc=VÞ2

q
, where Vesc is the escape velocity from the target and V is the impact

speed of the particle at a large distance from the target. This recalibration takes into
account focusing effect of the target’s gravitational field.

6 Note, we need now to distinguish particle nodal distance a0 from the target’s
heliocentric distance acirc. This has to be kept in mind when consulting formulas from
Section 2.
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two-parametric (k,k0) space.7,8 In the linear representations of Dr(k)
and Dr0(k0) the task is simple enough and yields

dmin ¼ ða0 � acircÞ
P sin iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 sin2 iþ e2 sin2 x
p ; ð17Þ

with a0 = ag2/(1 ± ecosx) for the ascending and descending node
intersections. Scaling dmin by a and making it equal to q = R/a, we
obtain for the target-grazing orbits

Kðk;h; cÞ � ½g2 � að1� kÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � c2

ðg2 � c2Þð1� kÞ2 þ h2g2

s
¼ q: ð18Þ

Here, we used the secular representation of the orbital elements
evolution, eliminating in particular inclination i using c = gcos i
integral. The klim and hlim values are obtained by simultaneous solu-
tion of Eqs. (14) and (18). Unfortunately, this system of equations
does not have simple analytical solutions. However, given that
q� 1, we may seek small displacements dk and dh such that
klim = kw + dk and hlim = hw + dh. Linearizing our problem in dk and
dh we obtain

dk ¼ �q
ð@H=@hÞ

H

DH

; dh ¼ q
ð@H=@kÞ

H

DH

; ð19Þ

where

DH ¼ ð@K=@hÞ
H
ð@H=@kÞ

H
� ð@K=@kÞ

H
ð@H=@hÞ

H
: ð20Þ

The symbol w here means that all derivatives have to be evaluated
using the (kw,hw) values corresponding to the exact intersection
condition. After a brief algebra we find

ð@H=@kÞ
H
¼ 2kH

g2
H

2 7� 3c2 � 12k2
H
þ 3h2

H

� �
þ C

h i
; ð21Þ

ð@H=@hÞ
H
¼ 2hH

g2
H

2 12c2 � 8þ 3k2
H
þ 18h2

H

� �
þ C

h i
; ð22Þ

ð@K=@kÞ
H
¼ �2 kH �

a
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

H
� c2

g2
H
� c2ð Þð1� kHÞ2 þ h2

H
g2

H

s
; ð23Þ

ð@K=@hÞ
H
¼ �2hH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

H
� c2

g2
H
� c2ð Þð1� kHÞ2 þ h2

H
g2

H

s
: ð24Þ

It turns out that the novel property of our approach are mainly the
ð@H=@kÞ

H
and ð@H=@hÞ

H
derivatives, because the condition (18) and

its partial derivatives remain formally the same as in the classical
Öpik theory (see Appendix A, Eqs. (A7) and (A8)). Note that in the
linear approximation, the (dk,dh) solution is accompanied with a
symmetric (�dk,�dh) solution. Obviously, such displacements are
along the tangent to the level line of the H ¼ C integral at the
(kw,hw) point.

A second novel aspect of our approach, and a generalization of
the classical Öpik theory, is that for each possible intersection
configuration (kw,hw) we determine time interval (Dt)w it takes
the particle orbit to evolve from (kw � dk,hw � dh) to (kw +
dk,hw + dh), i.e. across the interval of values it may impact onto
the target. The partial P1 probability from this intersection config-
uration is then (Dt)w/TKozai, where TKozai is the period of whole
secular evolution along the level curve of the C integral; TKozai

may be evaluated using a complete elliptic integral of the first
kind as shown by Kinoshita and Nakai (2007). We then define
the Öpik-type collision probability of impact per revolution of
the particle

P ¼
X Dt

TKozai

� �
H

P2ða; eH; iHÞ; ð25Þ

which generalizes (A13) recalled in Appendix A. The summation in
(25) is performed over all intersection configurations for both
ascending and descending nodes. Note that, unlike in the Öpik ap-
proach, the orbital eccentricity ew and inclination iw is now different
for different crossing configurations and we need to multiply the
partial P1 probability with the appropriate and individual P2 proba-
bility that the target is near the intersection location. Because the
semimajor axis value of the particle is constant, the intrinsic colli-
sion probability per unit of time is simply

p ¼ P=Torb ¼ ð1=2pÞð
ffiffiffiffiffiffiffiffi
GM
p

=a3=2ÞP; ð26Þ

where Torb is the orbital period of the particle and M is the solar
mass.

Finally, we return to the issue how to determine (Dt)w. The
flow along the C integral isoline is given by the differential
equations (e.g., Kozai, 1962; Morbidelli, 2002; Kinoshita and Nakai,
2007)

Fig. 1. Geometrical quantities used to represent particle and target motion near the intersection configuration. The reference frame (er,e/,ez) has the origin at the target’s
orbit: er in the radial direction from the Sun and e/ in the apex direction of the target’s heliocentric motion (assumed circular with radius acirc). The particle’s orbit has a node
at heliocentric distance a0 – acirc and its position Dr in the local frame (er,e/,ez) is given by Eq. (15). We seek minimum distance dmin of the particle from target’s orbit.

7 In our linear approximation things are simpler, and one may drop k0 by just
evaluating Dr(k) distance from the / axis. However, the two-parametric formulation
might be important to keep in mind when higher-order approximations for Dr(k)
and/or Dr0(k0) would be used.

8 Note that d2(k,k0) is quadratic in k. Its description using the linear approximation
(15) might look incomplete, because the corresponding quadratic term (see, e.g., Eq.
(2)) would also contribute to the quadratic term in d2. However, a closer analysis
reveals that this addition does not change our results. A more general Öpik collision
theory, for instance suitable to describe impacts very close to the pericenter or
apocenter of the particle orbit (see Appendix A), would require a complete analysis
with r(k) and r 0(k0) represented by higher-order terms beyond the linear approxi-
mation used here (and in most previous works).
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dk
dt
¼ �3

2
cgh 1þ 5

2
c2ð1� k2Þ � g4

g4

" #
; ð27Þ

dh
dt
¼ 3

2
cgk 1þ 5

2
c2h2

g4

" #
; ð28Þ

where c = n (m/M) (a/aJup)3/2 with n mean motion of the particle, m
mass of the Jupiter and aJup semimajor axis of its orbit; note we
assume that the single perturber of the particle orbit is Jupiter.
Given the linear solution of dk and dh above with typical values of
the order q(�1), we found satisfactory to use a linear discretization
of the differential Eqs. (27) and (28), namely representing dk ? dk,
dh ? dh, dt ? (Dt)w/2 evaluating their right hand sides at (kw,hw)
values. Either of Eqs. (27) and (28) provide the same results, up to
terms of the second order in q.

This approach only fails when the displacements dk and dh are
large, a singular situation when DH is very near 0; this always
occurs when hw = 0, but there might be also other cases in general.
In the Öpik formalism limit this singularity happens when the par-
ticle’s perihelion or aphelion are equal to radius acirc of the target’s
orbit (see also Appendix A). For that reason, we abandon the simple
approach above in this case and we solve Eqs. (14) and (18) numer-
ically when DH 6 0:05 in Eq. (20). This provides an accurate deter-
mination of all possible intersection configurations. We then
determine the corresponding (Dt)w value using a numerical inte-
gration of the secular system (27) and (28) in between the grazing
configurations.

3.3. Comparison with the standard Öpik’s theory

Here we test the generalized collision probability theory and
compare the results with those of the standard Öpik theory (see
Appendix A for a comparison of the analytical aspects of the two
methods). In our first test case, we calculate the Earth-impact rates
for a population of particles that is perturbed by Jupiter (circular
orbit, aJup = 5.2 AU). The Earth is assumed to have a circular orbit
with acirc = 1 AU).

This is a simplified system. In reality there are more perturbing
planets, including the Earth itself, whose orbits are also evolving
due to their mutual interactions. This latter effect is especially
important, because it produces secular resonances in the planet-
crossing region (e.g., Michel and Thomas, 1996; Michel and
Froeschlé, 1997) and variations of c and C. We will consider this
more complicated case later in this section.

We conducted numerical tests to compare the collision proba-
bility p from (26), which should be accurate for the high-inclina-
tion and/or high-eccentricity orbits, with the predictions of the
Öpik theory, which should be only approximate in these cases.

As the secular evolution follows the Hðk;h; cÞ ¼ C isoline in the
(k,h) plane there are typically four or eight intersections with the
target orbit. In order to compare p with the collision probability
obtained by the Öpik’s method, we determine pOpik(a,e, i) from
Eq. (A14) at each point of the line defined by Hðk;h; cÞ ¼ C,9 and
compute an average value peff as

peff ¼
1

TKozai

Z TKozai

0
dt pOpikða; e; iÞ: ð29Þ

Here, TKozai is the period of the Lidov–Kozai cycle. Note that evalu-
ation of (29) needs some care when either pericenter q or apocenter

Q of the particle orbit becomes equal to the radius acirc of the tar-
get’s orbit. This is because

pOpik /
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðacirc � qÞðQ � acircÞ
p ; ð30Þ

and in both cases Öpik’s collision probability has a singularity (see,
however, discussion in Appendix A). Nevertheless, as seen from
(30), this singularity is integrable and classical numerical tools
can be used to accurately evaluate peff (see, e.g., Press et al., 2007).

3.3.1. Testing the theory: a simple setup
We first test things in the low-e and low-i limit, where the stan-

dard Öpik works well. The initial orbital elements of particles were
set to be a = 1.01 AU, e = 0.02, i = 3� and x = 0�. In this case, the Ko-
zai constant c ’ 0.9984 is very close to unity. We thus expect the
eccentricity and inclination should be approximately conserved
and the secular angles x and X should uniformly precess. Indeed,
Fig. 2 shows that the Hðk;h; cÞ ¼ C isoline in the (k,h) plane devi-
ates negligibly from a small circle about the origin. As expected,
p ’ peff in this case. The 0.1%-difference between p and peff is of
the order of variations of pOpik within one secular cycle of the orbi-
tal evolution. This difference is partially due to slight variations in e
and nonlinearity of time dependence of x, but may also express a
small internal inaccuracy by which we can evaluate both p and peff.

We now move to testing the methods in the Lidov–Kozai re-
gime. We set a = 1.4 AU, e = 0.2, i = 65�, corresponding to
c ’ 0:414 <

ffiffiffiffiffiffiffi
0:6
p

. Figs. 3 and 4 show the results for x = 0� and
x = 60�, respectively. The left panels show nature of the particle
orbital evolution using the Hðk;h; cÞ ¼ C isoline in the (k,h) plane
and the two circles characterize nodal impact configurations with
the Earth orbit (with acirc = 1 AU; see Eq. (10)); symbols at intersec-
tions of the respective curves highlight the exact impact geome-
tries that could occur for this orbit during its secular evolution.
There are eight of them in Fig. 3 and four of them in Fig. 4. The right
panels show formally computed Öpik collision probability values
pOpik as a function of time during a timespan of one secular cycle
TKozai of the particle evolution. The discontinuities, when pOpik for-
mally diverge, correspond to configurations of pericentric impact
to the target.10 The solid gray lines are p and peff values; note, that
in both cases peff is about twice larger than p, indicating that using
the standard Öpik theory one would overestimate the collision prob-
ability value for these orbits. The middle panels show radiant posi-
tions of the impacting particles: the symbols are real radiants
corresponding to the true intersection geometries indicated on the
left panels, while the gray line are collections of ‘‘fake radiants’’.
The latter were obtained by applying assumptions of the Öpik the-
ory, namely constant values of eccentricity and inclinations to the
orbit of particle at different phase of its Lidov–Kozai-driven evolu-
tion. Obviously such an approach is incorrect, but it has been used
in some previous works (e.g., Nesvorný et al., 2011). Note that the
angular distance d of the fake radiants from apex direction is given
by cos d ¼ ðv � e/Þ=v ¼ ð1�

ffiffiffi
P
p

cos iÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� Tða; e; iÞ

p
, see Eqs. (7)–(9).

As a result, d depends only on the semimajor axis a and the Kozai
constant c of the particle orbit, both conserved during the particle
secular evolution, and thus the fake radiants project on arcs of con-
stant angular distance from the apex direction.11 When a particle or-

9 Obviously, application of the Öpik approach is not well justified for orbits with
low c value associated with significant e and i evolution; nevertheless, it has been
used even in these cases in previous works (e.g., Galligan and Baggaley, 2005;
Campbell-Brown, 2008; Nesvorný et al., 2011) and part of our work is to see a misfit
represented by this inconsistency.

10 Note, for instance, that the initial values of the orbital elements have a pericenter
q > acirc and no impact configuration is possible; it only takes a while during the
secular evolution of the particle orbit before the eccentricity increases enough to
make q = acirc.

11 This fact has actually been known and used in the meteoritics; see, e.g., Valsecchi
et al. (1999), where the secularly invariant value of d (h in the notation of this paper)
plays a crucial role in defining the similarity function for meteoroid streams.
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bit circulates about a stable point on the h axis, such as seen on
Fig. 4, the argument of pericenter is forced to oscillate about 90�
or 270� values, and the radiants asymmetrically populate only one
quadrant in the longitude vs. latitude plane. The size of symbols
denoting the correct radiants is scaled by the partial collision prob-
ability – (Dt/TKozai)wP2(a,ew, iw), see Eq. (25) – for this particular im-
pact configuration. Note that the higher-latitude radiants have
systematically larger collision probability (e.g., in Fig. 3 three times)
than the lower-latitude radiants. This is because the particle orbit
spends more time at the large-inclination, and low-eccentricity,
state and thus (Dt)w is larger for the high-inclination radiants.

In the two cases discussed above peff > p, indicating that the true
collision probability was smaller than the value given by the Öpik
theory. We now consider the same parameters as those used in
Fig. 3, but let the semimajor axis a change to see how peff/p varies

in general (Fig. 5). We find that peff/p > 1, except if the impacts oc-
cur near the pericenter or apocenter, where peff/p < 1.

Note the unusual extension of the impact probability line in
Fig. 5 just below Q = acirc. Such a configuration is always an end-
state of a sequence of impact possibilities in the Öpik approach,
when eccentricity of the particle orbits is assumed constant.
Fig. 6 helps to understand the situation. Shrinking the particle orbit
semimajor axis makes a = acirc/a increase and the Earth-impact cir-
cles from Eq. (10) move toward larger k values and shrink their ra-
dius in the (k,h) plane. This would have lead to a ‘‘nominal’’
sequence of impact geometries 30 to 10 with no possibility of im-
pact for the smallest a value considered in this figure; in the same
time the impact geometry 10 would be exactly the end-member
case with Q = acirc. When the secular evolution of the particle orbit
is described by the more involved solid line Hðk;h; cÞ ¼ C, impact
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Fig. 2. Secular evolution and intrinsic impact probability for a particle orbit with initial semimajor axis a = 1.01 AU, eccentricity e = 0.02, inclination i = 3� and argument of
pericenter x = 0�. Left: H ¼ C isoline in the (k,h) plane of variables (black solid curve) and nodal intersection conditions with acirc = 1 AU for ascending and descending nodes
(segments of gray circles; see Eq. (10)). Symbols are the four possible impact geometries. Right: Collision probability value pOpik(a,e, i) formally computed using the Öpik
formalism for time-dependent values of e and i as given by the secular evolution of the orbit; the abscissa is time in ky during one secular cycle TKozai, and the ordinate is the
intrinsic collision probability per AU2 and yr. The horizontal lines are: (i) peff defined in Eq. (29), and (ii) the true collision probability p defined in Eq. (25).
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Fig. 3. Secular evolution and impact geometries for a particle orbit with initial semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65� and argument of pericenter
x = 0�. Left:H ¼ C isoline in the (k,h) plane of variables (solid curve) and nodal intersection conditions with acirc = 1 AU for ascending and descending nodes (gray circles; see
Eq. (10)). Symbols are the eight possible impact geometries. Middle: Radiant position of the eight impacting configurations as seen by the observer on a circular heliocentric
orbit with radius acirc = 1 AU; size of the symbol is scaled by the partial collision probability for this particular impact geometry. The gray arcs are collections of ‘‘fake radiants’’
constructed for orbits with constant eccentricities and inclinations, whose values are achieved during the secular evolution of the particle orbit. The abscissa is longitude
measured from the apex direction, the ordinate is latitude (both in degrees). Right: Collision probability value pOpik(a,e, i) formally computed using the Öpik formalism for
time-dependent values of e and i as given by the secular evolution of the orbit; the abscissa is time in ky during one secular cycle TKozai, and the ordinate is the intrinsic
collision probability per AU2 and yr. The horizontal lines are: (i) peff defined in Eq. (29), and (ii) the true collision probability p defined in Eq. (25).

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1  0

 0.5

 1

 1.5

 2

 2.5

 0  20  40

Time (ky)

C
ol

lis
io

n 
pr

ob
ab

ili
ty

peff

p
-90

-60

-30

 0

 30

 60

 90

-90 -60 -30  0  30  60  90

Fig. 4. The same as in Fig. 3 but for an orbit with initial semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65� and argument of pericenter x = 60�.
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geometries are possible even after the apocenter geometry 1 has
been reached. For smaller a values the impact eccentricity may
again increase up to the true end-member of the impact sequence
at 2.

3.3.2. Testing the theory: a more realistic setup
We now compare the theory with the statistics of terrestrial im-

pacts as recorded by a numerical integrator. We consider two sets
of 500 massless particles having initially a = 1.4 AU, e = 0.2 and
i = 65�. The argument of pericenter x = 0� in the first set and
x = 60� in the second set. Nodal and orbit longitudes were taken
randomly between 0� and 360�.

We first considered an idealized planetary system consisting of
the Sun, Earth and Jupiter (both planets on circular orbits as be-
fore). The Earth was given zero mass and its radius was multiplied
by a factor of 10 to accelerate the impact rate in the numerical inte-
gration (REarth = 4.26 	 10�4 AU).

We numerically propagated the orbits of all bodies with the
SWIFT_RMVS3 integrator,12 using a 2-day time step, and recorded
the direct impacts of particles on the Earth. Fig. 7 shows the fraction
of particles surviving in our simulation as a function of time. For
comparison, we also show the expected decay of the population
assuming it can be modelled using a Poissonian processes with cer-
tain characteristic timescale s, thus nPois(t) = exp(�t/s). The decay-
curve labeled 1 has s = s1 ’ 9.4 Myr (upper panel) and

s = s1 ’ 13.3 Myr (bottom panel), while the decay-curves labeled 2
have s = s2 ’ 7.7 Myr (both upper and bottom panels).

We find that numerically recorded impact rate on the Earth
very nicely matches the decay curves with s = s1. This is because
s1 = 1/(p R2), where p ’ 0.586 AU�2 y�1 (upper panel) and
p ’ 0.413 AU�2 y�1 (bottom panel) were determined using our
generalized collisional probability theory (see Figs. 3 and 4). The
probability p therefore gives a simple and very good approximation
for the real collisional decay. For comparison, the Öpik collision
probability is peff ’ 0.715 AU�2 y�1 (upper panel) and
peff ’ 0.716 AU�2 y�1 (bottom panel), and s2 = 1/(peff R2) decay in
Fig. 7. Henceforth, we verified that the standard Opik theory would
suggest a stronger decay than the actual one.

We also determined the direction of impacts in the numerical
integrations described above. We found that the simulated parti-
cles indeed hit the Earth from the two discrete radiant locations
shown in Figs. 3 and 4. The impacts from the higher-latitude radi-
ants are approximately three times more numerous than those
from the lower-latitude radiants. This is in a very good agreement
with expected number of impacts in these radiants from our new
theory.

We now consider a more realistic model of the Solar System
where we take into account the gravitational perturbations be-
tween all planets. To prevent particles from impacting the terres-
trial planets other than Earth, we set the physical radii of
Mercury, Venus and Mars to zero. The Earth’s radius is increased
by a factor of 10. We consider the same two particle populations
as before. The system was numerically integrated with
SWIFT_RMVS3.
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Fig. 5. The ratio peff/p shown as a function of the semimajor axis a for orbits with
fixed initial eccentricity e = 0.2, inclination i = 65� and argument of pericenter
x = 0�. The target’s heliocentric distance is acirc = 1 AU. The discontinuities occur for
initial orbits with pericenter q or apocenter Q equal to acirc. Only for orbits close to
these geometries p becomes larger than peff, otherwise the use of Öpik formulation
overestimates the collision probability with the target. The unusual feature below
the formal Q = acirc limit is explained using Fig. 6 (see discussion in the text).
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Fig. 6. Conditions for impacts near the apocenter of the particle orbit in the
(k,h) = e(cosx, sinx) plane of variables. The gray curves are the descending node
impact circles from Eq. (10) for three slightly different values of a = acirc/a (smaller
circle for a larger a, thus smaller a, value). The solid black curve is a part of the
Hðk;h; cÞ ¼ C isoline for certain values of c and C integrals of motion, describing
secular evolution of a potentially impacting particle. The black symbols are impact
geometries for various values of eccentricity of the particle. The impact case labeled
1 = 10 with h = 0, corresponding to apocenter condition Q = acirc, would have been in
the Öpik theory an end-member of the possible family of impacts (30 ? 10) along the
family of constant eccentricity orbits shown by the dashed circle. For the true orbit
an continuation of the impacts is possible up to the limiting case of grazing impact
2.

Fig. 7. Fraction of particle population remaining the numerical simulation shown
by symbols vs. time t (in Myr). 500 particles were initially put on orbits with
semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65� and argument of
pericenter x = 0� (upper panel) and x = 60� (bottom panel); longitude of node and
longitude in orbit were set randomly. Their orbital evolution was numerically
propagated and direct impacts onto the Earth recorded in a reduced model where
only Jupiter was considered on a circular heliocentric orbit (the Earth had zero mass
a radius R 10 times larger that the true value). The gray curves simulate results from
a Poissonian process with a characteristic timescale s, thus exp(�t/s): (i) the curve 1
has s ’ 9.4 Myr (upper panel) and s ’ 13.3 Myr (bottom panel), corresponding to 1/
(pR2), and (ii) the curve 2 has s ’ 7.7 Myr (both panels), corresponding to 1/(peffR

2).

12 http://www.boulder.swri.edu/
hal/swift.html.
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Now, Jupiter is not the sole perturber of particle orbits, and the
planetary orbits undergo secular variations due to mutual pertur-
bations. In addition, close approaches of particles to the terrestrial
produce a random walk in their orbits and affect the secular evolu-
tion. The evolving system is therefore more complex than the sim-
ple Lidov–Kozai model that we used in our generalized theory.

Fig. 8 shows how the fraction of the initial population remain-
ing in the simulation decreases with time for the two simulations.
Focusing first on the former case, we note that the particle popula-
tion decay follows on average the expected Poissonian curve 1
(corresponding to the characteristic collision timescale s = 1/(p
R2) ’ 9.4 Myr). However, initially the particles are being elimi-
nated slightly faster while only at later epochs the rate of their
elimination becomes slightly slower than shown by the idealized
curve 1. We believe this is partly because of the particle-orbit scat-
tering by the terrestrial planets, such that some particles are scat-
tered onto orbits with smaller semimajor axis value and have
effectively larger collision probability with the Earth, while the
remaining population of particles is biased toward somewhat lar-
ger semimajor axis values with smaller collision probability with
the Earth.

The situation is somewhat different in the bottom panel of
Fig. 8, where the particle orbits had initially x = 60�. This is the
case, when the argument of pericenter x would circulate about a
stationary point on the h axis, making x oscillate in a limited range
of values, in the idealized Lidov–Kozai model (see the left panel on
Fig. 4). However, this particular behavior of the orbits is quickly
removed by both semimajor axis change due to scattering on
terrestrial planets and a complex set of secular perturbations. As
a result, the particle orbits more often spend their secular evolu-
tion in the mode similar to that seen in Fig. 3, with x circulating
about origin in the (k,h) plane. The collision probability with the
Earth then effectively increases and the decay rate approaches that
from the above panel (shown by the dashed gray curve).

Finally, we propagated the first set of particles (initial value
x = 0�) in the case where all terrestrial planets were taken as po-
tential targets. To speed up the comparison, we increased the plan-
etary radii by a factor of 10.

We used our collision probability theory to calculate pi for each
planet (i = 1 � � � 4, where 1 stands for Mercury, etc.), Denoting Ri the
enhanced radii of the terrestrial planets, the total collisional prob-
ability per year is Ptot ¼

P
ipiR

2
i . The particle population is thus

expected to decay with a characteristic timescale s ’ 1/
Ptot ’ 3.9 Myr. At each instant, the number of impacts on each of
the terrestrial planets is weighted using their partial impact prob-
abilities, i.e., / piR

2
i =Ptot for the ith planet. These predictions are

confronted with results from the numerical experiment in Fig. 9,
where the symbols show the recorded planetary impacts for each
of the planet and the dashed gray exponential decay curves are
the above described theoretical predictions. While generally show-
ing a good match, the solid gray decay curves slightly better ex-
press the population decrease and those have s ’ 3.2 Myr.

The small difference between the theory and numerical exper-
iment probably stems from the approximations in our collisional
probability approach, where complex planetary perturbations
and close encounters of particles to planets are neglected. Obvi-
ously, the whole particle population now decays faster than seen
in Fig. 8 because more targets are available to destroy them. As ex-
pected all planet impacts are fitted by roughly the same decay rate,
basically that of the whole population, and their partitioning is
roughly that expected from the theory.

Mercury received a large number of impacts, more than it could
be expected just based on its relatively small cross-section. This is
because the partial impact probability, p1R2

1, is increased by a large
value of p1 (nearly three times larger than that of the Earth). This
can be explained by realizing that the Mercury impacts always

occur near the pericenter of the particle orbits. Such impacts are
characterized by large impact probability.

4. Conclusions

We developed a new collision probability theory for the high
inclination and high eccentricity orbits for which the Lidov–Kozai
cycles are important. The results of this theory agree with those
of the standard Öpik theory in the limit of small-eccentricity and
small-inclination orbits. For high eccentricities and high inclina-
tions, where the standard Öpik theory falls short in correctly pre-
dicting the rates and radiants of the impacts, the generalized
theory produces satisfactory results when compared to numerical
experiments.

The theory developed in this paper can be generalized further,
for example, by relaxing the assumption of the circular orbit of
the target (Wetherill, 1967; Greenberg, 1982). Such a formulation
may be required, for example, to properly calculate the planetary
impact rates of during the early evolution of the Solar system
(see, e.g., Bottke et al., 2005).

Another possibility would be to relax the linear approximation
(15) and (16) for the local description of motion in the nodal refer-
ence system (er,e/,ez), for instance by using the quadratic or high-
er-order approximations. This may be of some interest for
improving the collision probability estimate in cases when the

Fig. 8. Fraction of particle population remaining the numerical simulation shown
by symbols vs. time t (in Myr). 500 particles were initially put on orbits with
semimajor axis a = 1.4 AU, eccentricity e = 0.2, inclination i = 65� and argument of
pericenter x = 0� (upper panel) and x = 60� (bottom panel); longitude of node and
longitude in orbit were set randomly. Their orbital evolution was numerically
propagated and direct impacts onto the Earth recorded in a model where
perturbations from all planets were taken into account; impacts on Mercury,
Venus and Mars were prevented by taking their radii zero and the Earth radius R
was 10 times larger that the true value. The gray curves simulate results from a
Poissonian process with a characteristic timescale s, thus exp(�t/s): (i) the curve 1
has s ’ 9.4 Myr (upper panel) and s ’ 13.3 Myr (bottom panel), corresponding to 1/
(pR2), and (ii) the curve 2 has s ’ 7.7 Myr (both panels), corresponding to 1/(peff R2).
The dashed gray line in the bottom panel reproduces the solid line 1 from the top
panel.
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curvature of orbits becomes important (e.g., for impacts near peri-
center or apocenter of the particle orbit).
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Appendix A. Öpik’s approximation

In what follows, we show that the general approach from Sec-
tion 3.2 reproduces Öpik’s results for appropriate assumption
about the secular evolution of the particle orbit. In particular, the
uniform circulation of the orbit in the (k,h) plane on a circle of con-
stant eccentricity e is generated with

HOpikðk;hÞ ¼ k2 þ h2 ¼ C ðA1Þ

that follows from (14) in the limit of small e value. When inclination
i is also small, conservation of c = gcos i implies i = constant, and no-
dal circulation decouples from pericenter evolution. The condition
(18) of particle grazing the target at a distance equal to its radius
R is given by

KOpikðk;h; iÞ ¼ ½g2 � að1� kÞ� sin iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ð1� kÞ2 sin2 i

q ¼ q; ðA2Þ

where we recall q = R/a and a is the semimajor axis of particle orbit
(recall a = acirc/a with acirc heliocentric distance of the target).

First, let us again seek roots of (A1) and (A2) as small displace-
ments dk and dh from exact intersection solution kw and hw given

by (upper sign for the ascending node, lower sign for the descend-
ing node impacts)

1� kH ¼
g2

a
; ðA3Þ

and

h2
H
¼ g2

a2 ða� 1þ eÞð1þ e� aÞ: ðA4Þ

Obviously, these are just geometrical conditions of intersections of
two circles in the (k,h) plane, namely e = constant and (10). The
dk and dh are obtained from (19), where now

ð@HOpik=@kÞ
H
¼ 2kH; ðA5Þ

ð@HOpik=@hÞ
H
¼ 2hH; ðA6Þ

ð@KOpik=@kÞ
H
¼ � 2ðkH � a=2Þ sin iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
H
þ ð1� kHÞ2 sin2 i

q ; ðA7Þ

ð@KOpik=@hÞ
H
¼ � 2hH sin iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
H
þ ð1� kHÞ2 sin2 i

q ; ðA8Þ

and thus

DH ¼ �
2ahH sin iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
H
þ ð1� kHÞ2 sin2 i

q : ðA9Þ

One easily verifies, that (dk,dh) are small displacements along
tangent to the circle C = e2= constant. This is because the associated
change in e is de = (kwdk + hwdh)/e = 0. In the same way, the associ-
ated change in argument of pericenter x is dx = (kwdh � hwdk)/e2,
or

dx ¼ q
a sin i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1� kHÞ2

h2
H

sin2 i

vuut : ðA10Þ

Inserting kw and hw from (A3) and (A4) above, we have

dx ¼ R
acirc sin i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Fða; e; iÞ
2� Fða; e;0Þ

s
; ðA11Þ

with F-function defined in Eq. (13). The total advancement Dx of
the argument of pericenter between the two extreme, target-
grazing configurations is Dx = 2dx. Because there are four equiva-
lent intersection configurations at the ascending and descending
nodes, we have

P1;Opik ¼
2Dx
p
¼ 4

p
R

acirc sin i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� Fða; e; iÞ
2� Fða; e;0Þ

s
: ðA12Þ

Combining with P2 from Eq. (11), this finally provides collision
probability per revolution

POpik ¼ P1;OpikP2 ¼
1
p

R2

a2
circ sin i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� Tða; e; iÞ
2� Fða; e;0Þ

s
; ðA13Þ

which is identical to results given by Öpik (1951) and Wetherill
(1967), when restricted to circular orbit of the target (field body).
The intrinsic collision probability per unity of time is again

pOpik ¼ POpik=Torb ¼ ð1=2pÞð
ffiffiffiffiffiffiffiffi
GM
p

=a3=2ÞPOpik; ðA14Þ

where Torb is the orbital period of the particle (compare with
Eq. (26)).

While obtaining identical result as previous authors in the limit
of assumptions matching the classical Öpik theory, we finally com-
ment on one of its well-known and often repeated aspects. In par-
ticular, the denominator term in the square-root factor in Eq.
(A11), and consequently also (A12) and (A13), reads

Fig. 9. Fraction of particles impacting the terrestrial planets in the most complete
simulation, where all planets were considered as potential targets (their radii were
increased by a factor 10 to speed up the simulation). The total number of impacts is
indicated by labels. The dashed gray decay curves were obtained by an appropriate
partitioning of the total decay of the particle population from our model, and the
solid gray decay curves were the best match of the data (see the text).
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2� Fða; e;0Þ ¼ ðacirc � qÞðQ � acircÞ
aacirc

; ðA15Þ

where we denoted q = a(1 � e) and Q = a(1 + e), i.e., pericenter and
apocenter distance of the particle orbit. This produces a singularity
of the Öpik collision probability when pericenter or apocenter dis-
tances of the particle orbit become equal to the target’s heliocentric
distance. It seems to have passed unnoticed so far that this apparent
singularity may be removed within the Öpik approach by a more
thorough analysis of the impact geometries near the pericenter or
apocenter configurations. In particular, it stems only from the
linearization of small displacements about the exact impact geome-
try at (kw,hw). However, the system of Eqs. (A1) and (A2) is simple
enough to admit exact analytic solution. In particular, the roots in k
satisfy a simple quadratic equation Ak2 + 2Bk + C = 0, with coeffi-
cients (upper sign for the ascending node, lower sign for the
descending node)

A ¼ a2 sin2 iþ q2 cos2 i; ðA16Þ
B ¼ �½aða� g2Þ � q2� sin2 i; ðA17Þ
C ¼ ða� g2Þ2 sin2 i� q2ðe2 þ sin2 iÞ: ðA18Þ

There are obviously two solutions k�1 and k�2

k�1 ¼
�½aða� g2Þ � q2� sin2 iþ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða; e; iÞ

p
a2 sin2 iþ q2 cos2 i

; ðA19Þ

k�2 ¼
�½aða� g2Þ � q2� sin2 i� q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dða; e; iÞ

p
a2 sin2 iþ q2 cos2 i

; ðA20Þ

with

Dða; e; iÞ ¼ ag2Fða; e; iÞ sin2 iþ q2ð1� g2 cos2 iÞ; ðA21Þ

and F(a,e, i) from Eq. (13). To each of k�1 and k�2 we have correspond-

ing h�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � k�2

1

q
and h�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � k�2

2

q
on the positive side of the h-

axis and symmetric values on the negative side of the h-axis. We
then simply determine the range Dx± of the argument of pericenter
value around ascending and descending node intersection that still
admit impact on the target with

cos Dx� ¼ k�1 k�2 þ h�1 h�2
e2 : ðA22Þ

These values may be then used to compute the partial probabilities
P1,Opik = (Dx+ + Dx�)/p. Nevertheless, even in this approach a care
must be paid to configurations when impacts occur near pericenter
or apocenter of the particle orbit. This is because in these cases one
of the values kþ1 or k�2 may become larger than e, which would pre-
vent to compute the associated h value. The reason for this effect is
that the intervals Dx for the impact configurations with positive
and negative h value are no more discontinuous and join together.

An example is seen in Fig. 10, where we show

dmin

R

� �2

¼ ½g
2 � að1þ kÞ�2 sin2 i

h2 þ ð1þ kÞ2 sin2 i
; ðA23Þ

as a function of h near values where h 
 0 (i.e., pericentric impacts
in the ascending node). For sake of definiteness we took e = 0.2,
i = 25�, acirc = 1 AU and R equal to the Earth radius and plotted the
left hand side for three different a values of the particle orbit such
that the corresponding q value gets very close to acirc. Recall that,
for a given particle orbit, dmin gives a minimum orbit distance from
the target as a function of (k,h), such that dmin 6 R characterize im-
pact configurations. In general, intervals of h values, which are
straightforwardly mapped onto intervals of x values, for which
(dmin/R) 6 1 are disconnected on the positive and negative sides of
the axis (light gray curves). But as one approaches the exact peri-
centric configuration, both intervals join together (black curve). In

that case, P1,Opik must be computed only from the common interval
of x values that overlap both impact configurations. Obviously, this
way there is no exact singularity even for the pericentric impact.

Note, however, that q 
 5 	 10�5 in our example, and Dx for
near pericentric impacts is several orders of magnitude larger than
q (though not infinite). This means that the target-grazing config-
urations occur very far from the ascending node position of the ex-
act particle impact at a heliocentric distance acirc. In this situation,
the linear approximations for the particle and target orbits from
Eqs. (15) and (16) are not justified and higher-order terms account-
ing for curvature of the local orbit would be necessary. As a result,
our comment about nonexistent singularity in POpik is rather a curi-
osity than of real importance.
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