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S. Breiter1‹ and D. Vokrouhlický2
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ABSTRACT
A system of equations is derived for the secular motion of a hierarchic triple stellar system.
Mean anomalies of the inner binary system and of the outer star orbit are eliminated up to order
9 in the ratio of their Delaunay momenta. Thanks to the use of vectorial elements (angular
momenta and Laplace vectors) the equations are non-singular, compact, and independent on
the choice of the reference frame axes directions. In the limit of circular outer orbit, the secular
Hamiltonian agrees with the forgotten solution by Brown. Being more complete, yet simpler,
the present model differs from that of Krymolowski & Mazeh, except for the circular outer
orbit limit. A simple extension of the secular equations of motion describing tidal friction is
also provided.
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1 IN T RO D U C T I O N

About 8 per cent of solar-type stars are triples in the only long-
term stable hierarchy of a close (inner) binary accompanied by
a third component (e.g. Eggleton & Tokovinin 2008; Tokovinin
2008, 2014). Understanding their origin, as well as understanding
the origin of higher multiplicity systems, may be an important clue
to the problem of stellar birth in general. A solid determination of
triple systems’ parameters, such as stellar masses and parameters of
their orbital configuration, is a necessary prerequisite to that goal.
Astronomical observations allow us to fit these data, depending on
variety of available observational techniques. Needless to say that a
very helpful circumstance occurs when the inner system’s stars, or
even all components, are eclipsing each other.

Universality of gravitational interaction between all components
in a triple system implies that representation of their motion by a
pair of two-body problems – motion of the stars in the inner binary
and motion of the third component about the centre-of-mass of the
inner binary – is necessarily just a zero-order approximation. In
reality, all components move on complicated orbits whose details
are revealed, for instance, by numerical integration. In perturbation
approach, these intricacies are described by variation of osculating
orbital elements of the above-mentioned two-body components in
the system’s architecture. So far, the temporal evolution in the over-
all architecture of the triple-star system has not been widely used
to constrain its parameters, but this may change in the near future.
This provides a motivation for both accurate and efficient theories
that would allow us to describe the system’s evolution in time.

Observations prompted analysis of the mutual stellar interac-
tions in triple systems already in the early 20th century, though the
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attention has been primarily paid to the orbital changes in the close
binary system only. Thus Brown (1936a,b,c, 1937), using his bold
expertise from the theory of lunar motion, developed an interesting
approach which allowed us to determine both secular and periodic
perturbations in the close binary orbit due to the presence of a third
component in the system. Focus on the binary orbit persisted till
1960s (see e.g. Kopal 1959 and references therein), when Harring-
ton (1968, 1969) undertook a more general approach, determining
perturbations in both the inner and outer orbits. This work was
followed by Söderhjelm (1975, 1982, 1984), who rephrased Har-
rington’s results in a more practical form, as far as comparison
with observations is concerned. Both Harrington and Söderhjelm
included quadrupole and octupole interaction between the two or-
bits within the first-order perturbation theory. Focusing on secular
terms only, Krymolowski & Mazeh (1999) attempted to push theory
to higher order, namely to include the non-linear quadrupole effect
(effectively, a part of it). While typically negligible for loosely
bound systems, such contribution may become important for com-
pact cases, where the ratio of the orbital period of the outer orbit to
that of the inner orbit is close to the stability limit of ∼5. If moreover
both orbital periods are short in such cases, the whole architecture
of the triple system, as given by orientation of the orbital planes and
directions to their pericentres, may evolve quite fast, on a time-scale
of decades only. Recent discoveries of numerous such systems by
Kepler satellite (e.g. Slawson et al. 2011; Rappaport et al. 2013)
motivates to pursue the effort in higher order analytic theories.

In this paper, we aim to develop such a high-order secular theory
of a triple stellar system. Our principal goal is to provide a tool that
would assist interpretation of observations for compact triple sys-
tems. That said, the accuracy in description of these systems’ secular
evolution on decades to centuries long time-scale is the principal
criterion of success. This is because, as also has been pointed out
above, for the most interesting systems the denomination ‘secular’
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here may not necessarily mean centuries-long time-scale, but rather
decades-long time-scale (see also Section 6). Identifying a relevant
small parameter, we use standard technique of elimination of fast
variables (mean longitude in orbit for both inner and outer orbits
in the triple system) to construct a secular system. We push our
effort an order higher than previously found in the literature. In
particular, we compute the secular interaction of the two orbits up
to a complete non-linear quadrupole term, both novelty and ma-
jor difficulty in this paper. Another quality of our approach is due
to a systematic use of non-singular vectorial elements describing
the two orbits (Section 2). This removes problems with descrip-
tion of small eccentricities and/or inclinations. Moreover, the use
of vector formalism liberates expressions from a particular choice
of reference frame, whereas earlier works were firmly attached to
the invariable plane. To our knowledge, all previous applications
of vectorial elements stopped at the linear perturbations, helping
the variables to gain high esteem for simplicity and elegance. The
present paper indicates some practical problems with achieving the
simplicity at higher orders of perturbations (Section 3.2).

Using the Lie–Hori transformation method as a basic tool, we
have implemented a couple of less common devices (partitioned
Poisson brackets, purely periodic generator, double normalization
with a single generator) that are worth recalling for their efficiency
(Section 3, Appendix A).

While no formal constraint on the upper values of the orbital ec-
centricities is imposed, the assumption of long-term stability of the
triple system presents an implicit limit. This is because the secular
approach readily implies constant values of the orbital semimajor
axes for both orbits. This may be violated if short-range interaction
during sufficiently close encounters between the outer star and one
in the inner binary occurs. This situation would, however, inevitably
result in a instability of the system. Our basic model assumes the
participating stars are ‘mass monopoles’, i.e. their mutual gravita-
tional effects are expressed by a mass-point interaction according to
Newton’s law. In Section 7, we briefly outline a possibility to include
also more complicated interactions in our approach, such as higher-
mass multiples of the stars in the inner binary or their tidal effects,
but a more involved analysis is beyond the scope of this paper.

2 PRO BLEM SETUP

Denote stellar masses of the inner binary system m0 and m1, and
the mass of the third component m2. The total mass of the inner
system is M1 = m0 + m1 and the total mass of the triple system
M2 = m0 + m1 + m2. Introduce also reduced masses of the inner
system m′

1 = m0m1/M1 and for the third component motion about
the centre-of-mass of the binary system m′

2 = m2M1/M2. Further
notation also profits from introducing X0 = m0/M1 and X1 = m1/M1,
the respective mass contributions of both components of the binary
system to it total mass. Note that the equal-mass case has X0 =
X1 = 1

2 .
Introduce canonical Jacobi variables to describe configuration

of the triple system: (i) r1 is the relative position vector of the
components in the binary system, and (ii) r2 is the relative position
vector of the third star with respect to the centre-of-mass of the
binary system. Assuming the whole triple-star system is isolated, the
total centre-of-mass performs an ignorable linear motion. Dynamics
of r1 and r2 is derived from a Hamiltonian, which in the point-mass
approximation reads

H (r1, p1; r2, p2

) = H1

(
r1, p1

) + H2

(
r2, p2

) + U (r1, r2) ,

(1)

where pj = m′
j ṙj is the momentum associated with rj coordinate

(overdot means time derivative). The Hamiltonian (1) is split in
the two-body Hamiltonians of the respective motion of the binary
system H1 and that of the third component H2 (k is Gaussian
constant)

H1

(
r1, p1

) = p2
1

2m′
1

− k2 m′
1M1

r1
, (2)

H2

(
r2, p2

) = p2
1

2m′
2

− k2 m′
2M2

r2
, (3)

and the interaction part

U (r1, r2) = −k2 m2M1

r2

∑
n≥2

χn

(
r1

r2

)n

Pn (cos S) (4)

with cos S = r1 · r2/(r1r2), Pn standing for the Legendre polyno-
mial of degree n, and

χn = X0X1

[
Xn−1

0 − (−X1)n−1
]
. (5)

We assume a long-term stable system for which necessarily
r1/r2 < 1 at all time, making thus the multipole series in (4) well
behaved and convergent. A number of studies discuss this question
in more depth; a reader may consult e.g. Mardling & Aarseth (2001)
or Tokovinin (2014).

As a rule of thumb, (i) odd-degree multipoles are negligible for
equal-mass (or near-equal-mass) binary systems for which X0 �
X1 � 1

2 , and (ii) higher-degree multipoles are quickly negligible
for less compact systems, where r1/r2 is very small.

Instead of the Cartesian coordinates rj and momenta pj , canon-
ical Delaunay variables can be used. In order to define them in the
Jacobian framework, we first set

Hj = −k4
(
m′

j

)3
M2

j

2L2
j

= −k2 m′
jMj

2aj

. (6)

Thus, we define the momentum Lj in terms of both (rj , pj ) through
(2,3), and an osculating semi-axis aj. Linking the latter with orbital
periods for U = 0, is done by the Kepler’s law n2

j a
3
j = k2Mj , where

the mean motion nj = 2π/Pj is related with a period Pj of the
Cartesian Jacobi variables in the motion around m0 for j = 1, and
around the centre of mass of m0 and m1 for j = 2. Of course, then

Lj = m′
j

√
k2Mjaj = m′

j nj a
2
j , (7)

so that the evolution of mean anomaly obeys

�̇j = ∂H
∂Lj

= nj + ∂U
∂Lj

.

Two angular momentum vectors

Gj = rj × pj , (8)

serve to define the remaining Delaunay momenta and their relation
to osculating eccentricities ej and inclinations Ij

Gj =‖ Gj ‖= Lj

√
1 − e2

j , Hj = Gj · ẑ = Gj cos Ij . (9)

Formally it is best to use the unit vector ẑ = Ĝ along the con-
stant total angular momentum G = G1 + G2, and benefit from the
elimination of the nodes (e.g. Whittaker 1904). But observational
conditions may enforce ẑ along the line of sight. Moreover, the con-
servation of G may be violated if additional forces are included. For
those reasons, we leave the direction of ẑ unspecified in this paper.
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Hierarchic triple stellar system 1693

The conjugate angles hj are the longitudes of the ascending nodes
in the chosen inertial frame, whereas the arguments of pericentres
gj need two Laplace-Runge-Lenz vectors

Aj = Lj

(
pj × Gj

k2
(
m′

j

)2
Mj

− rj

rj

)
, (10)

such that

‖ Aj ‖= Ljej , Aj · Gj = 0, A2
j + G2

j = L2
j . (11)

The idea of using equations for the evolution of angular momentum
and Laplace vectors instead of the usual equations for gj, hj, Gj,
Hj dates back to Milankovitch (1939). The canonical set is then
replaced by

Ġj = −Gj × ∂H
∂Gj

− Aj × ∂H
∂Aj

,

Ȧj = −Aj × ∂H
∂Gj

− Gj × ∂H
∂Aj

− ∂H
∂�j

Lj

A2
j

Aj ,

L̇j = −∂H
∂�j

,

�̇j = ∂H
∂Lj

, (12)

where j = 1, 2. The increased number of equations is expected to
be paid back by non-singularity and hopefully a simple algebraic
structure.

Actually, Milankovich and most of his followers preferred to use
dimensionless vectorial elements

K j = Gj

Lj

, ej = Aj

Lj

, (13)

with ‖ K j ‖= ηj =
√

1 − e2
j , and ‖ ej ‖= ej . They are particu-

larly advantageous in a normalized system with a Hamiltonian func-
tion H′ independent on both mean anomalies. Since momenta Lj

and semimajor axes aj are then constant, the equations of motion
for the vectors are

K̇ j = − 1

Lj

(
ej × ∂H′

∂ej

+ K j × ∂H′

∂K j

)
, (14)

ėj = − 1

Lj

(
K j × ∂H′

∂ej

+ ej × ∂H′

∂K j

)
. (15)

A similar set was used, for example, by Farago & Laskar (2010).

3 PE RT U R BAT I O N T H E O RY W I T H
V E C TO R I A L E L E M E N T S

Non-integrability of three-body problem enforces the application of
perturbation theory. Unlike in the planetary case, the stellar problem
cannot be handled using a variables-independent small parameter
like the mass ratio. Following Krymolowski & Mazeh (1999), we
order terms according to the powers of the ratio

ε = L1

L2
= m′

1

m2

√
M2 a1

M1 a2
. (16)

Leaving aside the question of masses, for moderate eccentricities
this ratio is comparable with

√
r1/r2, but one has to be aware, that

even for a fixed and sufficiently small ε, the denominator r2 may
become small when e2 increases (with an obvious limit given by sta-
bility of the system; e.g. Tokovinin 2004). Working with momenta

depending ε has also a considerable practical drawback: operations
of differentiation with respect to Lj, inevitable in perturbation meth-
ods, affect the ordering of terms that should be grouped according
to the powers of the small parameter. Our remedy to this problem
is the application of a partitioned Poisson bracket in a recursive
Hori-type algorithm modified by Breiter & Métris (2002).

3.1 Normalization

Let us express the Hamiltonian H as a sum

H =
∑
k≥0

H0,k, (17)

where the ratio H0,k/H0,0 = O(εk). Inspecting the orders of mag-
nitude with respect to ε in H, we find

H0,0 = H1(r1, p1),

H0,2 = H2(r2, p2), (18)

H0,2n+2 = −k2 m2M1

r2
χn

(
r1

r2

)n

Pn (cos S) = Un, n ≥ 2, (19)

and all the remaining terms H0,4 = H0,2n+1 = 0, for n ≥ 0.
Not interested in the short periodic perturbations, we aim at

constructing a canonical transformation such that a transformed
Hamiltonian is independent on mean anomalies �1 and �2. More
precisely, we seek a canonical transformation from the original
variables x ∈ R

12 to the mean variables x∗ ∈ R
12 such that the

transformed Hamiltonian

K(x∗) = H(x(x∗)) =
∑
k≥0

Kk,

is independent on �∗
1 and �∗

2, i.e. the Poisson brackets

{K0,K} = {K2,K} = 0, (20)

and K0, K2 are first integrals in new variables. In our case, it means
that L∗

1 and L∗
2 (hence the mean semi-axes a∗

1 and a∗
2 ) will be new

constants of motion.
The transformation between the mean and the original variables

can be defined by the Hori type Lie generatorS( y), where – depend-
ing on the context – y may stand for either x or x∗. The generator
is also a sum of terms with subsequent powers of ε

S =
∑
k>0

Sk, Sk = O(εk). (21)

The transformation is performed by the exponentiation of the Lie
derivative

DS = D1
S = { ,S} , Dk+1

S = DSDk
S , (22)

and for any function F

F (x(x∗)) = exp (DS ) F (x∗) = F ∗(x∗). (23)

A recursive algorithm to create a new Hamiltonian and the gen-
erator was designed for the Hori method by Mersman (1970) as
a more convenient analogue of the Lie Triangle algorithm of De-
prit (1969). The Hori–Mersman (H–M) algorithm creates an upper
triangular array starting with a top row containing H0,k(x∗) up to
k = N, and then recursively constructs subsequent diagonals. The
sum of the diagonal n provides the n-th term of a new Hamiltonian.
Thus

Kn(x∗) =
n∑

k=0

Hk,n−k(x∗), (24)
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where

Hn,k(x∗) = 1

n

k∑
m=0

{Hn−1,k−m(x∗),Sm+1(x∗)
}

, (25)

is a term of order O(εn + k). Choosing at will the new Hamiltonians
Kn, we simultaneously create subsequent terms of the generator S.

Two modifications of the standard H–M algorithm are needed
in the present case. First, we cannot use directly equation (25),
because the resulting Hn,k would be a sum of two parts having
different orders of magnitude. The Poisson bracket is a sum of two
principal parts

{F, G} = {F, G}1 + {F, G}2 , (26)

{F, G}j = ∂F

∂rj

· ∂G

∂ pj

− ∂F

∂ pj

· ∂G

∂rj

. (27)

Recall that by virtue of the invariance with respect to canonical
transformations, the partial derivatives in the Poisson bracket can
be taken with respect to any canonical set: original or mean, Carte-
sian or Delaunay, and so on. If F = O(εk1 ) and G = O(εk2 ), the
differentiation decreases powers of Lj, so instead of obtaining an
O(εk1+k2 ) terms, we have

{F, G}1 = L−1
1 O(εk1+k2 ), and

{F, G}2 = L−1
2 O(εk1+k2 ) = L−1

1 O(εk1+k2+1). (28)

It means that in the H–M algorithm, we can push the action of {,}2

to the next diagonal with respect to {,}1. A similar approach was
presented by Breiter & Métris (2002), leading to a modified rule
(25)

Hn,k(x∗) = 1

n

k∑
m=0

{Hn−1,k−m(x∗),Sm+1(x∗)
}

1

+ 1

n

k∑
m=1

{Hn−1,k−m(x∗),Sm(x∗)
}

2
. (29)

The second modification helps to remove both mean anomalies in
one transformation in spite of the fact, thatH1 andH2 have different
orders of magnitude. Each term of the generator is decomposed into

Sk = S1
k + S2

k , (30)

where S2
k includes all terms of Sk independent of �1, i.e. such that

{S2
k ,H1} = 0. Note that S1

k must depend on �1, but it may depend
on �2 as well. Using partial and complete averaging operators

〈F (x)〉j = 1

2π

∫ 2π

0
F d�j , 〈F (x)〉 = 〈〈F (x)〉1〉2 , (31)

we will define S so that

〈Sk〉1 = S2
k , and 〈Sk〉 = 〈S1

k

〉 = 〈S2
k

〉 = 0. (32)

These conditions, requiring that the generator itself is a purely
periodic function of mean anomalies, is stronger than the usual
requirement of a boundedS. We impose it for two reasons. First, the
zero-average generator inhibits the occurrence of a long periodic or
constant offset between the mean variables x∗ and the mean values
of the osculating variables x (e.g. Metris & Exertier 1995; Ferraz-
Mello 1999). Secondly, it allows us to reject the mean values of
some Poisson brackets in higher orders of transformation.

A more detailed account of the normalization up to order 10 is
given in Appendix A. Here, we provide only the general form of

the transformed Hamiltonian up to order 9.

K0(x∗) = H1(L∗
1),

K2(x∗) = H2(L∗
2),

K6(x∗) = 〈U2(x∗)
〉
,

K8(x∗) = 〈U3(x∗)
〉
,

K9(x∗) = 1

2

〈{〈U2〉1 ,S2
3

}
1

〉
2
, (33)

where

S2
3 (x∗) = S̄2

3 (x∗) − 〈S̄2
3 (x∗)

〉
, (34)

is a zero-average generator with

S̄2
3 (x∗) = 1

n∗
2

∫ (〈U2(x∗)
〉

1
− 〈U2(x∗)

〉)
d�∗

2, (35)

and all remaining Kn = 0.

Achieving the elimination of both mean anomalies in a single
transformation distinguishes the present solution from earlier works
on three-body problem involving two steps: first, creating a tempo-
rary Hamiltonian independent on �1, and then transforming it to
remove �2. Of course, the final result should be the same, but we
find are approach more convenient. Its underlying idea can be traced
back to Morrison (1966), who considered a non-linear oscillator
with two angles, using the von Zeipel method.

3.2 Practical aspects

3.2.1 Averaging the potential

In order to perform the averaging required in the construction of
secular Hamiltonian K, we have to express Uk in terms of mean,
eccentric or true anomalies. In the first step towards this goal, we
use the addition theorem to express Pn(cos S) in (19) as a function
of complex spherical harmonics

Pn (cos S) = Pn (r̂1 · r̂2) = 4π

2n + 1

n∑
k=−n

Ynk (r̂1| E) Y �
nk (r̂2| E) ,

(36)

where r̂j is a unit vector along rj given in a reference frame E . The
star � marks a complex conjugate.

Averaging with respect to the mean anomaly of an inner or outer
orbit (�1 and �2, respectively) is most conveniently performed in
an associated orbital reference frame Ej defined by a right-handed,
orthogonal triad (ej , K j × ej , K j ). The two frames can be linked by
3-1-3 Euler angles ( − ω1, J, ω2), where J is the mutual inclination
angle, ω1 and ω2 are the angles from the common node of two
intersecting orbital planes given by K 1 × K 2. Note that this is the
ascending node for one orbit, and descending for the other, so only
one of ωj matches the usual argument of pericentre definition, while
the second differs from it by π . The three angles and eccentricities
ej are sufficient to define the scalar products of vectorial elements

K 1 · K 2 = η1η2 cos J , (37)

e1 · K 2 = −e1η2 sin J sin ω1, (38)

e2 · K 1 = e2η1 sin J sin ω2, (39)

e1 · e2 = e1e2

[
cos2 J

2
cos (ω1 − ω2) + sin2 J

2
cos (ω1 + ω2)

]
,

(40)
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Hierarchic triple stellar system 1695

where

ηj =
√

1 − e2
j . (41)

Since E1 is preferred for r̂1 and E2 for r̂2 as the arguments of
spherical harmonics in (36), we set E ≡ E1 as a common frame, and
then transform the second function according to the rotation rule
for spherical functions

Y �
nk (r2| E1) =

n∑
k′=−n

ik−k′
dn

k,k′ (J ) exp
[
i
(
kω1 − k′ω2

)]
Y �

nk′ (r2| E2),

(42)

involving the Wigner d-function (or matrix) dn
k,k′ (J ) (e.g. Bieden-

harn & Louck 1981). Observing that in the frame Ej a vector r̂j

points to the equator and its longitude equals to the true anomaly fj,
we easily drop the symbols of spherical functions obtaining

Pn (cos S) =
∑
k,k′

′
Cnkk′dn

k,k′ (J ) exp
[
i
(
kω1 − k′ω2

)]
× exp

[
i
(
kf1 − k′f2

)]
, (43)

with numerical coefficients

Cnkk′ =
√

(n − |k|)! (n + |k|)! (n − |k′|)! (n + |k′|)!
22n
(

n−|k|
2

)
!
(

n+|k|
2

)
!
(

n−|k′ |
2

)
!
(

n+|k′ |
2

)
!

. (44)

The ‘prime’ attached to the summation symbol in (43) denotes that
both n − |k| and n − |k′| are to be even and non-negative, which is
a consequence of Legendre associated functions with argument set
to zero.

After the substitution of (43) into (19), we are ready to perform
the main task. Averaging Un is neatly executed by means of Hansen
coefficients

1

2π

∫ (
r1

a1

)n

exp (ikf1) d�1 = Xn,k
0 (e1) , (45)

and

1

2π

∫ (
a2

r2

)n+1

exp
(
ik′f2

)
d�2 = X

−(n+1),k′
0 (e2) . (46)

It is worth recalling that X
−(n+1),n
0 = 0. Thus, we obtain

〈Un〉 = −k2 m2M1

a2
χn

(
a1

a2

)n

2
∑

k,k′≥0

′ Cnkk′ Xn,k
0 (e1) X

−(n+1),k′
0 (e2)

(1 + δk0) (1 + δk′0)

× [
dn

k,k′ (J ) cos
(
kω1 − k′ω2

)
+ dn

−k,k′ (J ) cos
(
kω1 + k′ω2

)]
, (47)

where δk0 and δk′0 are Kronecker symbols. This formula must be
further manipulated to replace trigonometric functions of angles J,
ω1 and ω2 by vectorial elements thanks to identities (37–40). This
is a tedious and tricky part, requiring a ‘manual’ final touch even if
executed by computer algebra.

3.2.2 Non-linear part

When it comes to K9, more effort is needed due to the Poisson
bracket present in its definition. First, we have to find 〈U2〉1. Partial
averaging with respect to the orbital motion of the inner subsystem
provides

〈U2〉1 = C2

6η2
2

(
a2

r2

)2
⎡
⎣F0 +

3∑
q=1

q
(
F ′

q cos qf2 − Fq sin qf2

)⎤⎦ ,

(48)

with

C2 = 3

8
k2 m2M1

a2
X0X1

(
a1

a2

)2

, (49)

F0 = 2
(
1 − 6e2

1 + 3

)
, (50)

and

F1 = −6e2� , F ′
1 = −e2

(
1 − 6e2

1 − 3
 + 3�
)
,

F2 = −6 �, F ′
2 = − 3

(
1 − 6e2

1 + 
 + �
)
,

F3 = −2e2�, F ′
3 = −e2

(
1 − 6e2

1 + 
 + �
)
.

(51)

These coefficients depend on a fundamental set of functions 
, �

and � given by


 = 1

η2
2

[
5 (e1 · K 2)2 − (K 1 · K 2)2

]
, (52)

� = 2

e2
2

[
5 (e1 · e2)2 − (K 1 · e2)2

]
, (53)

� = 1

e2
2η2

[5 (e1 · e2) e1 − (K 1 · e2) K 1] · (e2 × K 2) . (54)

Subtracting the complete average

〈U2〉 = C2

6η3
2

F0, (55)

and performing the integration (35), we obtain

S̄2
3 (x) = C2

6n2η
3
2

⎡
⎣F0 (f2 − �2) +

3∑
q=1

(
Fq cos qf2 + F ′

q sin qf2

)⎤⎦ ,

(56)

similar to S∗
1 of Harrington (1969). The average of this generator is

not zero. One easily checks that

〈S̄2
3

〉 = 〈S̄2
3

〉
2

= C2

6n2η
3
2

3∑
q=1

Fq 〈cos qf2〉2 = − C2

6n2η
3
2

3∑
q=1

FqWq,

(57)

where, according to Kozai (1962)

Wq = − (−e2)q
1 + qη2

(1 + η2)q
. (58)

Specifically, we need

W1 = e2, W2 = −e2
2

1 + 2η2

(1 + η2)2 = 2η2
2

1 + η2
− 1,

W3 = e3
2

1 + 3η2

(1 + η2)3 = e2

[
1 − 4η2

2

(1 + η2)2

]
. (59)

The required Poisson bracket average〈{〈U2〉1 ,S2
3

}
1

〉
2

= 〈{〈U2〉1 , S̄2
3

}
1

〉
2
− 〈{〈U2〉1 ,

〈S̄2
3

〉}
1

〉
2
,

(60)

is evaluated by substituting (48) for 〈U2〉1, (56) for S̄2
3 , and

(57) for
〈S̄2

3

〉
. Benefiting from linearity and skew symmetry of

Poisson brackets and rejecting average values of odd functions,
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we obtain

〈{〈U2〉1 , S̄2
3

}
1

〉
2

= C2
2

36 n2 η5
2

3∑
q=1

[
q

〈(
a2

r2

)2
〉

2

{
F ′

q , Fq

}
1

+ q

〈(
a2

r2

)2

(f2 − �2) sin qf2

〉
2

{
F0, Fq

}
1

]
. (61)

Similarly

〈{〈U2〉1 ,
〈S̄2

3

〉}
1

〉
2

= − C2
2

36 n2 η5
2

3∑
q=1

〈(
a2

r2

)2
〉

2

Wq

{
F0, Fq

}
1
.

(62)

Then, thanks to〈(
a2

r2

)2
〉

2

= 1

η2
,

〈(
a2

r2

)2

(f2 − �2) sin qf2

〉
2

= Wq

qη2
,

(63)

we find K9 as a half of the difference of (61) and (62)

K9 = C2
2

72 n2 η6
2

3∑
q=1

(
q
{
F ′

q , Fq

}
1
+ 2Wq

{
F0, Fq

}
1

)
. (64)

Actually, for a pair of functions independent on �1 and expressed
in terms of e1 and K 1, like F0, Fq and F ′

q , we can use a reduced
Poisson bracket: if f′ and g′ are two functions with the above prop-
erties and each occurrence of η1 is replaced by

√
1 − e2

1 for the
differentiation, then{

f ′(e1, e1, K 1), g′(e1, e1, K 1)
}

1
= 1

L1

(
f ′; g′) , (65)

where(
f ′; g′) = 1

e1
(e1 × K 1) · [(∂e1g

′)∇e1f
′ − (∂e1f

′)∇e1g
′]

+ K 1 · [∇e1f
′ × ∇e1g

′ + ∇K 1f
′ × ∇K 1g

′]
+ e1 · [∇K 1f

′ × ∇e1g
′ + ∇e1f

′ × ∇K 1g
′] . (66)

Thus, we obtain

K9 = C2
2

6L1n2η
6
2

[
η2

2

5 + η2

1 + η2

(

 − 2e2

1; �
)

+ (
5 − 2η2

2

) (
� − 4e2

1; �
) ]

. (67)

The bracket (66) acts like a bilinear differential operator, so three
partial results are sufficient to find the Hamiltonian: (e2

1; �), (
; �),
and (�; �). Thanks to the use of vectorial formalism, the brackets
can be cast into a compact form. Let

Qpq = vp · wq , (68)

stand for the scalar products of two vectors belonging to an orthog-
onal, orbit orienting set:

v1 = e1, v2 = K 1 × e1, v3 = K 1, (69)

w1 = e2, w2 = K 2 × e2, w3 = K 2. (70)

Using this notation, we obtain a fairly economic form

(e2
1; �) = 10

e2
2η2

[Q11 (Q13Q31 − Q11Q33) − Q12Q21] , (71)

(
; �) = 2

e2
2η

3
2

{
20Q13

(
η2

2Q11Q31 − Q12Q32

)
+ Q33

[
5Q2

12 − Q2
32 − η2

2

(
5Q2

11 − Q2
31

)]}
, (72)

(�; �) = 4

e2
2η2

[
10Q11Q13Q31 − Q33

(
25Q2

11 + Q2
31

)]
. (73)

3.2.3 Removal of apparent singularity

Equations (71)–(73) involve a troubling factor e−2
2 . It might look

like an apparent contradiction to non-singularity of the vectorial
elements. One may argue that introducing normalized functions

Q̂pq = Qpq

‖ vp ‖ ‖ wq ‖ , (74)

solves the problem, because it is possible to extract e2
2 from each

product or square present in the equations. But then we are left with
e.g. Q̂11 = ê1 · ê2 defined in terms of a meaningless unit vector ê2,
because the zero vector cannot be normalized.

There is, however, a number of possible transformation rules
stemming from the fact that Q̂pq can be seen as direction cosines of
two frames, hence – as the elements of an orthogonal matrix from
SO(3, R). Accordingly:

(i) the squared terms of each row or column sum up to 1,
(ii) scalar products of two different rows or columns are null, and
(iii) a cross-product of two rows or columns, taken in correct

order, generates a third one.

From technical point of view, the freedom offered by 18 identities
is both a blessing and a curse of vectorial elements, because obtain-
ing the simplest (but necessarily non-singular) form of a non-trivial
expression is a tricky exercise in the algebra of multivariate poly-
nomials. Nevertheless, working rather by trial and error, we found
a non-singular combinations of the brackets (71–73) leading to the
Hamiltonian K9 shown in the next section.

4 SE C U L A R H A M I LTO N I A N

In this section, we present the final form of the secular Hamiltonian.
For brevity we omit the asterisks, but all symbols except physical
constants refer to the mean variables. Introducing the non-Keplerian
perturbing function R, we have

K = −k2 m′
1M1

2a1
− k2 m′

2M2

2a2
+ R, (75)

where, up to ε9,

R = K6 + K8 + K9. (76)

The formal ordering of specific terms can be recovered from equa-
tions (33). Their expressions in terms of mean Laplace and angular
momentum vectors are the following. The quadrupole potential term
is

K6 = 〈U2〉 = −C2

η5
2

[
η2

2

(
2e2

1 − 1

3

)
+ (K 1 · K 2)2 − 5 (e1 · K 2)2

]

= C2

η5
2

[
1

3
η2

2

(
1 − 6e2

1

) + 5Q2
13 − Q2

33

]
, (77)
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where the C2 coefficient defined by (49) includes the factor a2
1/a

3
2 ,

proportional to a−1
1 (L1/L2)6. The octupole term is

K8 = 〈U3〉 = −C3

η7
2

[
η2

2

(
1 − 8e2

1

)
(e1 · e2) − 5 (e1 · e2) (K 1 · K 2)2

+ 35 (e1 · e2) (e1 · K 2)2 − 10 (e1 · K 2) (e2 · K 1) (K 1 · K 2)

]

= C3

η7
2

[
η2

2

(
8e2

1 − 1
)
Q11 + 5Q11Q

2
33 − 35Q11Q

2
13

+ 10Q13Q31Q33

]
, (78)

where

C3 = 15

64

k2m2M1

a2
X0X1 (X0 − X1)

(
a1

a2

)3

= C2
5

8
(X0 − X1)

a1

a2
. (79)

Both quadrupole and octupole first-order potentials were already
derived in the literature. Notably, K6 has been given in our form by
Farago & Laskar (2010) andK8 by Liu, Muñoz & Lai (2015). In both
cases, the authors use Milankovich variables. Additionally, both K6

and K8 were also given in singular variables (e.g. Harrington 1969;
Söderhjelm 1975, 1984; Krymolowski & Mazeh 1999; Lee & Peale
2003; Khodykin, Zakharov & Andersen 2004), though the octupole
part often in some limiting case (such as small eccentricities e1 and
e2 and/or coplanar orbits).

Finally, the first part of non-linear, self-coupled quadrupole con-
tribution, appears at the order ε9 and reads

K9 = C ′
2 (5 + η2)

(1 + η2)2 η7
2

{
20

(
1 + 3η2

3 + η2

5 + η2

)
[e1 · (e2 × K 2)]

× [e2 · (e1 × K 1)] − (K 1 · K 2)

[
(1 + η2)

((
1 + 24e2

1

)
η2

2

− (K 1 · K 2)2 − 15 (e1 · K 2)2
) + 2

(
1 + 3η2

3 + η2

5 + η2

)

× (
(K 1 · e2)2 + 15 (e1 · e2)2

)]}
,

= C ′
2B1

{
20B2Q12Q21 − Q33

[(
1 + 24e2

1

)
η2

2 − Q2
33 − 15Q2

13

+2B2

(
Q2

31 + 15Q2
11

)]}
, (80)

where

B1 = 5 + η2

η7
2 (1 + η2)

, B2 = 5 + 10η2 + 3η2
2

(1 + η2) (5 + η2)
, (81)

and

C ′
2 = 1

3

C2
2

L1n2
= C2

1

8

m2

M1

n1

n2

(
a1

a2

)3

= C2
1

8

m2

M2

n2

n1
. (82)

This term is novel in the literature. Since the aim of Krymolowski
& Mazeh (1999) was to derive a potential equivalent to our K9, we
comment on their result in the next section.

5 R E F E R E N C E TO E A R L I E R WO R K S

5.1 Krymolowski & Mazeh (1999)

Confronting the results shown in Section 4 with the Hamiltonian
of Krymolowski & Mazeh (1999) one should bear in mind that
the latter was obtained using the Poincaré-von Zeipel perturbation
method, whereas this work is based upon the Lie–Hori technique.
But, as shown by Yuasa (1971), the secular Hamiltonians generated
by the two methods should be equal; only the generating functions
are linked with more sophisticated equivalence relations. Few ele-
mentary manipulations may prove that K6 from equation (77) and
K8 from equation (78), if expressed in terms of orbital elements, are
exactly equal to the quadrupole and octupole terms of the Hamil-
tonian function given by Krymolowski & Mazeh (1999). Thus, an
interesting part of the comparison is related to the non-linear or
‘indirect’ term K9.

There are two reasons to expect some differences between Kry-
molowski & Mazeh (1999) and the present work. First, the purely
periodic generator S2

3 is different from the one used in all earlier
works and the influence of this choice should manifest in non-linear
terms starting from K9. But, more importantly, our solutions use a
different level of approximation. Equation (A7) in the appendix of
Krymolowski & Mazeh (1999) is to some extent comparable with
our (A19) with all partial derivatives from Poisson brackets written
in full length. For unexplained reasons, the authors picked up from
their (A7) only two terms out of the five involving their generator
S∗

2 . Since this work uses a complete Poisson bracket, apart from the
separation (26), we expected the K9 to be a more complicated ex-
pression than KKM – the part of the Hamiltonian factored by C2, ind

from Krymolowski & Mazeh (1999). To our surprise, it is quite the
contrary, and not just by the use of the compact Qpq notation in (80).

If we reduce K9 and KKM to the same, unique form of a trigono-
metric polynomial in arguments of pericentres g1 for the inner and
g2 for the outer orbit (not to be confused with ωi from Section 3.2.1),
we find that

K9 = C ′
2 [b0 + b1 cos 2g1 + b2 cos 2g2 + b3 cos 2(g1 + g2)

+ b4 cos 2(g1 − g2)] , (83)

whereas

KKM = C ′
2

[
b′

0 + b′
1 cos 2g1 + b′

2 cos 2g2 + b′
3 cos 2(g1 + g2)

+ b′
4 cos 2(g1 − g2) + b′

5 cos (4g1 + 2g2)

+ b′
6 cos (4g1 − 2g2)

]
, (84)

where bk and b′
k are some functions of eccentricities and of mutual

inclination of orbits.
The two Hamiltonians coincide only when the outer orbit is cir-

cular (e2 = 0). Otherwise, for any values of the elements, only
two amplitudes are equal: b0 = b′

0, and b1 = b′
1. The equivalence

at e2 = 0 is actually related with the vanishing of all bk and b′
k for

k > 1. We have not undertaken a laborious task of reconstructing
the terms rejected by Krymolowski & Mazeh. However, assuming
that K9 is complete and accurate at the order ε9, we can use the
dependence of K9 − KKM on the factor e2

2 as an explanation why
the authors did achieve some improvement when including KKM in
their numerical tests.
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5.2 Brown (1936)

It has been overlooked so far that actually the first paper that pro-
vides the principal non-linear quadrupole part in K9 was published
by Brown (1936c). Indeed, his formula 1

2 (Rf , S)c in page 121 coin-
cides with our K9 when e2 = 0. Interestingly, according to Brown,
this additional term helped him to reconcile a small discrepancy
between his lunar theory and observations to-date as far as secular
drift of the lunar perigee was concerned. In the next section, we
show this is indeed the proper role of the K9 term in our numerical
experiment.

6 C O M PA R I S O N W I T H N U M E R I C A L
I N T E G R AT I O N

Here, we briefly confront orbital evolution as provided by the sec-
ular three-body Hamiltonian at different levels of approximation
with results of detailed numerical integration. In fact, both result
from a numerical integration: the secular theory from integration
of equations (14) and (15), with an appropriate representation of
the Hamiltonian function H′, and the direct model from integra-
tion of the Hamilton’s equations in Jacobi variables (r1, r2; p1, p2)
(see also Söderhjelm 1982 or Harrington 1991). As usual, the ad-
vantage of the secular theory stems from a possibility to choose
a much longer timestep at the exchange of impossibility to study
orbital variations with frequencies comparable to orbital mean mo-
tion values n1 and n2. Typically, the CPU gain of the secular-theory
integration is factor of hundred or more. This can allow us to anal-
yse orbital evolution of the system on a much longer time-scale, or
study more efficiently its dependence on parameters such as stellar
masses or initial orbital data. For reasons we explain below, we
choose a synthetic, model case for the comparison between the or-
bital evolution given by the secular theory and complete numerical
integration. However, the parameters are very similar to several real
systems of interest, such as V907 Sco, HD 109648 or ξ Tau (e.g.
Lacy, Helt & Vaz 1999; Jha et al. 2000; Nemravová et al. 2013).

In order to pursue comparison with the work of Krymolowski
& Mazeh (1999), we chose one of their four examples, namely the
‘mild inclination’ case in their Section 3.2. Specifically, we consid-
ered stellar masses m0 = 1 M�, m1 = 3.7 M�, m2 = 2.07 M�,
and unperturbed orbital periods P1 = 5.33 d and P2 = 149.24 d.
These values satisfy qS = m0/m1 = 0.27, qL = m2/M1 = 0.44 and
P2/P1 = 28 imposed by Krymolowski & Mazeh (1999), and imply
orbital semimajor axes a1 � 0.1 au and a2 � 1.04 au. For refer-
ence, we mention the value ε � 0.14 of the parameter in equation
(16), relevant to ordering of the Hamiltonian contributions. We also
assumed initial eccentricity values e1 = 0.08 and e2 = 0.27. The
reference system, we would call Laplacian in accord with tradition
in planetary dynamics, has been chosen such that the total orbital
angular momentum G is directed along the ẑ axis. Associated axial
symmetry allowed us to choose the ascending node directions of the
inner and outer orbits to be 0◦ and 180◦, respectively. In accord with
Krymolowski & Mazeh (1999), we took the following values of the
argument of pericentre: g1 = 0◦ for the inner orbit and g2 = 270◦

for the outer orbit. The mutual angle of the orbital planes J = 20◦

implies, together with the assumed ε and orbital eccentricities, its
partitioning into inclination values i1 and i2 of the inner and outer
orbits with respect to the Laplacian plane (J = i1 + i2). We obtain
i1 � 17.5◦ and i2 � 2.5◦. Finally, the detailed numerical integra-
tion requires to assume initial position in orbit: for simplicity we
take both orbits in their respective pericentre, hence �1 = 0◦ and
�2 = 0◦. This choice sets the phase of short-period perturbations and,

in principle, affects the needed initial conditions of the numerical
integration of the secular system. They can be found either analyt-
ically, evaluating short-period terms using the generating function
S � S2

3 (equations 21, 56 and 57), or estimated numerically. At this
moment, we opt for the easier numerical evaluation. For instance,
instead of osculating values of the semimajor axis a1 and a2 from
the initial data of the detailed numerical integration of the two or-
bits, we numerically determine their long-term mean values ā1 and
ā2. These are considered for integration of the secular system. Sim-
ilarly, the initial values of other orbital elements are numerically
estimated from the initial few orbits of the detailed integration.

Finally, we have a possibility to choose representation of the inter-
action potentialU (r1, r2) from equation (1). The point-mass model,
withU (r1, r2) = −k2 m0m1/r1 − k2 m0m2/r02 − k2 m1m2/r12, r02

and r12 distances between the respective stars, would seem the sim-
plest choice, resulting in equations given by Söderhjelm (1982) or
Harrington (1991). Another option is to use the series representation
of U (r1, r2) from equation (4). We implemented both, but present
here results from the second case. This is because this option gives
us more possibilities to test our secular theory. For instance, arbitrar-
ily restricting the series representation by the octupole term n = 3,
we could have checked that our secular implementation with the
corresponding term K8 gives the same orbital evolution (preventing
thus any mistypings in the code).

Figs 1 (inner orbit) and 2 (outer orbit) show our results which are
to be compared with those in fig. 2 of Krymolowski & Mazeh (1999),
who focused on the temporal evolution of the inner eccentricity e1

only. The timespan of 500 yr shown here roughly corresponds to the
4 × 104 revolutions from Krymolowski & Mazeh (1999) figure, but
provides a clearer impression about the time-scale of the effects we
describe in terms of orbital evolution of real astronomical systems.
Left-hand panels in both figures show a situation, where the secular-
theory run contained only potential termsK6 andK8, thus first-order
averaged interaction expressed to the octupole level. Right-hand
panels shows results, where the secular theory was complete to
the order 9 in ε, i.e. contained also the non-linear quadrupole term
K9. In order to keep the closest correspondence of the results, we
included quadrupole and octupole interaction terms in the detailed
numerical integration in both cases. When higher multipoles, or
the point-mass potential representation, were included we observed
only small change of the results, not relevant to the discussion in
this paper.

Fig. 1 indicates that the principal effect of the non-linear term K9

is in evolution of the dimensionless Laplace vector e1 of the inner
orbit; this has been also reported by Krymolowski & Mazeh (1999),
though these authors do not discuss other orbital elements and time
evolution of the outer orbit. In particular, the main improvement
is in correction of the secular drift of the inner orbit longitude of
pericentre � 1 = h1 + g1. Krymolowski & Mazeh (1999) show
that long-term periodic effects in e1 come as a combination of
terms with � 1 − � 2 and 2(� 1 − � 2) frequencies. Since � 2 is
not much affected by higher-order terms, other than K6, on the
given time-scale (Fig. 2), the improvement in � 1 is reflected in
phase-alignment in e1 oscillations when results of the numerical
integration are compared to those of the secular theory. We observed
that the phase shift over the 500 yr time improves from � 1.5 when
only the K6 and K8 potentials are taken into account (Fig. 1, left) to
� 0.25 when the K9 term is included (Fig. 1, right). This formally
represent an improvement of � 0.25/1.5 � 0.17, which is indeed
of the order ε. This is readily expected when a further term in
the development of the potential is accounted for. We expect that
further improvements will be achieved by implementation of the
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Hierarchic triple stellar system 1699

Figure 1. Comparison between the numerical integration in Jacobi variables (grey symbols) and in mean variables (black symbols). Orbital elements of the
inner binary system are plotted as functions of time: from top to bottom, the panels we show inclination with respect to the invariable plane, longitude of
node, longitude of pericentre and eccentricity. Left: the secular theory contains only K6 and K8 terms; right: the secular theory contains K9 in addition. Initial
conditions and parameters in the text.

Figure 2. The same as in Fig. 1, for orbital elements of the outer orbit.
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1700 S. Breiter and D. Vokrouhlický

K10 potential in the secular theory, making then the agreement
between the detailed numerical evolution of the triple system with
those from the secular theory already very satisfactory on a given
time-scale of a few centuries.

We note that the effect of higher order potentials in nodal longi-
tude is minor, as expected from the above mentioned observation
of Brown (1936c). Secular drift in the nodes h1, or equivalently h2,
are very well expressed by

ḣ1

n1
� 3

4η3
2

m2

M2

(
n2

n1

)2

cos J
√

1 + γ 2 + 2γ cos J , (85)

where γ = ε/η2 (e.g. Söderhjelm 1975). This formula is readily
obtained from a simplified secular theory containing just the first-
order quadrupole term K6. For low enough mutual inclination J of
the inner and outer orbits, the equations admit solution e1 = 0 which
is stable (e.g. Farago & Laskar 2010). In this approximation both
e2 and J are constant, and orbital nodes drift in Laplacian frame
with frequency (85). For parameters of the system considered here,
one obtains nodal circulation period of � 41 yr, in good accord
with Figs 1 and 2. Similarly, the evolution of the outer orbit is well
represented by the first-order complete secular theory, including the
pericentre longitude � 2. Its drift rate is given by

�̇2

n2
� 3

8η4
2

X0X1

(
a1

a2

)2

(
3 cos2 J − 1 − γ sin J sin 2J

1 + γ cos J +
√

1 + γ 2 + 2γ cos J

)
, (86)

also provided by the simplified theory with e1 = 0 set (e.g.
Söderhjelm 1975). We observe a small improvement in tiny os-
cillations of the outer orbit eccentricity e2, again related to its de-
pendence on the � 1 − � 2 argument (and its multiples). Note,
however, that their amplitude is quite small, comparable to that of
the short-period terms. This obviously results from the fact that e2

is conserved in K6-complete secular theory (e.g. Farago & Laskar
2010).

7 TIDAL FRICTION FOR C LOSE BINA RY
SYSTEMS

Long-term stable triple systems have typically (i) the inner binary
with an orbital period of 1–10 d, and (ii) the third component re-
volving about its centre-of-mass with an orbital period of a month
or more. The short orbital period of the inner system implies that,
for solar-mass components, the separation a1 is only an order of
magnitude (or even less) larger than radii of the constituting stars.
In this situation, the point-mass model developed above is necessar-
ily only an approximation of their true motion. A vast complexity of
dynamical effects related to finite size of the components and pos-
sibly a mass-transfer in the binary needs to be taken into account.
Moreover, a framework describing only the translational motion of
their centre-of-mass has to be complemented by description of their
rotational motion in general.

At this moment, our goal is not to provide a complete theory
that would cover all such phenomena. We intent to complement our
previous formulation by the minimum necessary effects to prevent
unphysical solutions. Perhaps the most important feature is an un-
avoidable excitation of the eccentricity e1 of the inner binary by
the third component when m0 �= m1 (see, e.g. Section 6). Even if
m0 = m1, the zero e1 solution is not stable whenever the mutual in-
clination J of the inner and outer orbits exceeds certain critical limit

(about 40◦). This is the well-known Kozai-Lidov phenomenon. In
this case too, e1 is excited to have large excursions until the system,
on a long term, either adjusts to a subcritical J value or shrinks
enough the semimajor axis a1 of the inner binary so that their tidal
interaction helps maintaining e1 small (systems which fail to do so
would disrupt, e.g. Fabrycky & Tremaine 2007). In any case, tides
effectively work against any state with large e1 in long-term stable
systems.

The simplest way to complement our point-mass model with
the tidal friction is to directly implement the eccentricity damping
for the inner binary. This can be achieved by introducing a fictive
acceleration

f tid = − 2

τ

r · v

r2
r (87)

in the motion of the inner binary. Here, r and v are relative po-
sition and velocity of the second component with respect to the
first component and τ is a characteristic friction time-scale. With
(87) inserted in the Gauss equations of the perturbation theory, one
readily obtains

dK 1

dt
= 2

τ

e2
1

1 + η1
K 1 , (88)

de1

dt
= − 2

τ

η2
1

1 + η1
e1 , (89)

and

da1

dt
= − 4

τ

a1e
2
1

1 + η1
. (90)

For small e1 orbits, τ � −e1/(de1/dt) and thus τ is directly the
circularization time-scale. The value of τ may be estimated from
the first principles within the dynamical model of tidal friction (e.g.
Goodman & Dickson 1998; Ivanov, Papaloizou & Chernov 2013,
and references therein). Our simple setting provides a characteris-
tic time-scale for semimajor axis decay −a1/(da1/dt) � τ/(2e2

1),
which is significantly longer than the circularization time-scale.
Such a disparity between the circularization and orbit-decay time-
scales is indeed found for synchronously rotating stars in the binary
(e.g. Ivanov et al. 2013; see also Zahn 1977, Hut 1981 and Remus,
Mathis & Zahn 2012 for the same result within the equilibrium tide
approach). The expected values of τ range from 0.1 Myr to 10 Gyr
for Sun-like stars and orbital periods from 1 to 5 d. More massive
components may have significantly smaller τ values by virtue of
mass-dependence in τ (e.g. Goodman & Dickson 1998; Ivanov et al.
2013, though a different stellar structure may also contribute to an
uncertainty in τ determination).

A more detailed approach is to implement results for equilibrium
tide model from Eggleton, Kiseleva & Hut (1998) and Eggleton &
Kiseleva-Eggleton (2001); see also Fabrycky & Tremaine (2007).
Conveniently, their final form of the equations of motion for the
inner binary is given in vectorial elements close to our choice. The
exception is their use of angular momentum G1 per unit of reduced
mass instead of our K 1. We would thus use

dK 1

dt
= 1

n1a
2
1

(
dG1

dt
− 1

2
n1a1

da1

dt
K 1

)
, (91)

which relates their rate of change. This choice of fundamental vari-
ables also implies that, contrary to the formulation in Eggleton et al.
(1998), we need to complement our set of equations describing sec-
ular evolution of the system by the rate of change of the semimajor
axis a1 due to the tidal friction. This is readily provided by equations
(27) in Eggleton & Kiseleva-Eggleton (2001).
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8 C O N C L U S I O N S

We have developed and tested non-linearly averaged equations of
motion for a hierarchic triple stellar system, complete up to the order
9 of the ratio of Delaunay momenta L1/L2 in the Jacobi framework.
The model can be also supplemented by the terms accounting for
tidal friction. The crucial feature of the presented equations is the
application of vectorial elements that gained much popularity in re-
cent decade. The results support the common opinion about the ad-
vantages of this approach from the point of view of non-singularity
and compact form. However, the way to achieve the latter becomes
more and more twisted and painful with each order of perturba-
tions due to multitude of possible algebraic transformations. We
also pay a comment on the choice of a small parameter ε from (16)
and the related justification of ordering of the consecutive terms in
the multipole development of the interaction potential (19), namely
Un ∝ ε2n+2. Denoting qS = m1/m0, the mass ratio in the close bi-
nary system, and qL = m2/M1, the mass ratio in the outer system,
we have

ε = qS

(1 + qS)2

√
1 + qL

qL

√
a1

a2
. (92)

Eliminating explicit presence of stellar masses in ε, the latter is now
given in terms of mass ratios which are constrained by the obser-
vations. Tokovinin (2008) provides a nice overview of qS and qL

parameters derived for triple systems. For short period inner sys-
tems (periods <10 d, say), qS basically spans the whole interval 0
to 1, with perhaps two groups near ∼0.25 and ∼0.8 values (though
their statistical significance is not high). Median value of qS could
be taken ∼0.5. The qL have also some scatter with a typical values
<0.8 and a median ∼0.4. The typical values of the q-dependent fac-
tor on the right-hand side of (92) then span the interval 0.4 to 0.75,
justifying our ordering rules. Combined with the stability limit of
the triple system, namely period ratio of P2/P1 ∼ 5 between outer
and inner orbits, ε is safely smaller then unity with a typical value
of ∼0.1. However, care must be paid to possible exceptions. For
instance, a somewhat extreme triple system λ Tau (e.g. Fekel &
Tomkin 1982) has a low-mass companion star to a very massive
inner binary. In this case, one would formally have ε � 1.08, ex-
pressing an unusual dominance of the inner system in the orbital
angular momentum budget of the system. In such cases, the ordering
of the Poisson brackets in equation (28) is not justified; the second
term – in this paper pushed to K10 level– would be of the same order
as the first term and our treatment of K9 thus incomplete.

The above example, and persisting small discrepancy between
results of the secular theory complete to K9 level and numerical
integration (Section 6) motivates to push analysis given in this paper
to the level K10 along the lines shown in the Appendix . We believe
this is still tractable, though prospects of going to higher orders
are dim. Moreover, it turns out that the really difficult cases like λ

Tauri system would anyway be best analysed by direct numerical
integration (as also previously advocated by Harrington 1991).
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Nemravová J. A. et al., 2013, Cent. Eur. Astrophys. Bull., 37, 207
Rappaport S., Deck K., Levine A., Borkovits T., Carter J., El Mellah I.,

Sanchis-Ojeda R., Kalomeni B., 2013, ApJ, 768, 33
Remus F., Mathis S., Zahn J.-P., 2012, A&A, 544, A132
Slawson R. W. et al., 2011, AJ, 142, 160
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A P P E N D I X A : T R A N S F O R M AT I O N

The application of algorithm outlined in Section 3.1 involves at
each order n two phases. First, the recourse to (24), (29) and (30)
establishes the determining equation relating Kn, S1

n , and S2
n−3.

Then an appropriate choice of the three functions is made. After the
trivial substitution K0 = H1(L∗

1), the next orders are as follows.
Order 1. With H0,0 = H1, and H0,1 = 0, equation

K1 = H1,0 + H0,1 = {H1,S1
1 + S2

1 }1 + 0, (A1)

is easily satisfied by S1
1 = K1 = 0. The part S2

1 remains undeter-
mined, because {H1,S2

1 }1 = 0.
Order 2. Rejecting all terms with S1

1 = 0 (set in order 1) and
{H1,S2

1 }1 = {H1,S2
2 }1 = 0 (by definition) we are left with

K2 = {H1,S1
2 }1 + {H1,S2

1 }2 + H2. (A2)
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Once again, S2
1 is undetermined, because {H1, F }2 = 0 identically

for any function F. We choose K2 = H2(L∗
2) and S1

2 = 0.
Order 3. With S1

1 = S1
2 = H0,3 = 0, we have K3 = {H1,S1

3 }1,
with an obvious choice K3 = S1

3 = 0. S2
3 remains undetermined, as

well as S2
1 and S2

2 .
Order 4. Finally, we can start defining S2

k terms as well. From

K4 = {H1,S1
4 }1 + {H2, S

2
1 }2, (A3)

we choose K4 = S1
4 = S2

1 = 0.
Order 5. Similarly to order 4, from

K5 = {H1,S1
5 }1 + {H2, S

2
2 }2, (A4)

we choose K5 = S1
5 = S2

2 = 0.
Order 6. The first non-trivial selection happens in this order of

transformation. In the determining equation

K6 = {H1,S1
6 }1 + {H2, S

2
3 }2 + U2, (A5)

we set

K6 = 〈U2〉 , (A6)

S1
6 = S̄1

6 − A1
6, (A7)

S2
3 = S̄2

3 − A2
3, (A8)

where S̄1
6 and S̄2

3 are the usual generators

S̄1
6 = 1

n∗
1

∫
(U2 − 〈U2〉1) d�∗

1, (A9)

S̄2
3 = 1

n∗
2

∫
(〈U2〉1 − 〈U2〉) d�∗

2, (A10)

whereas arbitrary functions A1
6 and A2

3 are chosen as

A1
6 = 〈S̄1

6

〉
1
, A2

3 = 〈S̄2
3

〉
2
, (A11)

in order to obtain the zero-average generators. With this choice, S1
6

is a purely periodic function of �∗
1 (and a periodic function of �∗

2),
whileS2

3 is a purely periodic function of �∗
2 (independent on �∗

1), and
K6 is a secular Hamiltonian term, independent on both anomalies.

Order 7. In the last trivial order, the equation

K7 = {H1,S1
7 }1 + {H2, S

2
4 }2 (A12)

is satisfied by K7 = S1
7 = S2

5 = 0.
Order 8. The case is quite similar to order 6. Equation

K8 = {H1,S1
8 }1 + {H2, S

2
5 }2 + U3, (A13)

admits the choice

K8 = 〈U3〉 , (A14)

S1
8 = S̄1

8 − 〈S̄1
8

〉
1
, (A15)

S2
5 = S̄2

5 − 〈S̄2
5

〉
2
, (A16)

S̄1
8 = 1

n∗
1

∫
(U3 − 〈U3〉1) d�∗

1, (A17)

S̄2
5 = 1

n∗
2

∫
(〈U3〉1 − 〈U3〉) d�∗

2, (A18)

leading to purely periodic generators and a secular Hamiltonian.

Order 9. Rejecting some obviously null brackets, we find

K9 = 1

2

{{H1,S1
6 }1 + {H2,S2

3 }2,S2
3

}
1
+ {H1,S1

9 }1 + {U2,S2
3 }1

+{H2,S1
6 }2 + {H2,S2

6 }2. (A19)

Recalling (A5), we can substitute {H1,S1
6 }1 + {H2,S2

3 }2 = K6 −
U2, so

K9 =
[

1

2

{K6 + U2,S2
3

}
1
+ {H2,S1

6 }2

]
+ {H1,S1

9 }1 + {H2,S2
6 }2,

(A20)

where the terms in square brackets involve only functions known
from previous orders. Let us choose

K9 =
〈

1

2

{K6 + U2,S2
3

}
1
+ {H2,S1

6 }2

〉
. (A21)

But〈{H2,S1
6 }2

〉 = 0,
〈{K6,S2

3

}
1

〉
1

= {K6,S2
3

}
1
, (A22)

and, benefiting from the zero-average definition (A8),〈{K6,S2
3

}
1

〉
2

= 0, (A23)

so the new Hamiltonian is simply

K9 = 1

2

〈{U2,S2
3

}
1

〉 = 1

2

〈{〈U2〉1 ,S2
3

}
1

〉
2
, (A24)

owing its rightmost form to the independence of S2
3 on �∗

1.
The generators are defined as

S1
9 = S̄1

9 − 〈S̄1
9

〉
1
, (A25)

S2
6 = S̄2

6 − 〈S̄2
6

〉
2
, (A26)

where

S̄1
9 = 1

n∗
1

∫ (
1

2

[{U2,S2
3

}
1
− 〈{U2,S2

3

}
1

〉
1

]
− n∗

2

∂S1
6

∂�∗
2

)
d�∗

1,

(A27)

S̄2
6 = 1

2n∗
2

∫ ({K6,S2
3

}
1
+ 〈{U2,S2

3

}
1

〉
1
− 〈{U2,S2

3

}
1

〉)
d�∗

2.

(A28)

Order 10. Although we do not proceed thus far in this paper, we
give for the record (and possible future use)

K10 = 1

2

{{H1,S1
6 }1 + {H2,S2

3 }2,S2
3

}
2
+{H1,S1

10}1 + {H2,S2
7 }2

+ {U2,S2
3 }2 + U4. (A29)

Using (A5) and putting known terms into square brackets we reduce
the equation to

K10 =
[

1

2

{K6 + U2,S2
3

}
2
+ U4

]
+ {H1,S1

10}1 + {H2,S2
7 }2.

(A30)

The secular Hamiltonian is chosen to be

K10 =
〈

1

2

{U2,S2
3

}
2
+ U4

〉
= 1

2

〈{〈U2〉1 ,S2
3

}
2

〉
2
+ 〈U4〉 ,

(A31)
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And then, zero-average generators are

S1
10 = S̄1

10 − 〈S̄1
10

〉
1
, S2

7 = S̄2
7 − 〈S̄2

7

〉
2
, (A32)

where

S̄1
10 = 1

n∗
1

∫ (
1

2

{U2,S2
3

}
2
+ U4 −

〈
1

2

{U2,S2
3

}
2
+ U4

〉
1

)
d�∗

1,

(A33)

S̄2
7 = 1

n∗
2

∫ (
1

2

[{K6,S2
3

}
2
+ 〈{U2,S2

3

}
2

〉
1
− 〈{U2,S2

3

}
2

〉]

+ 〈U4〉1 − 〈U4〉) d�∗
2. (A34)

A P P E N D I X B : H A M I LTO N I A N G R A D I E N T S

Instead of the final equations of motion (14,15), we provide the
gradients of subsequent Hamiltonians which are the main building
blocks of the right hand sides. Taking gradients of scalar products
Qpq is straightforward, only Q2q or Qp2 may require an additional
recourse to vector identities. Thus, for example,

∂Q1q

∂e1
= wq ,

∂Q2q

∂e1
= wq × K 1,

∂Q3q

∂e1
= 0, (B1)

and so on, with a special case of Q22, when,

∂Q22

∂e1
= (K 2 × e2) × K 1 = Q33e2 − Q31 K 2, (B2)

and similarly for remaining vectors. Any explicit occurrence of e1

and η2 should be understood as
√

e1 · e1, and
√

K 2 · K 2, respec-
tively.

Differentiating equation (77) we find

∂K6

∂e1
= −2 C2

η5
2

[
2η2

2 e1 − 5Q13 K 2

]
, (B3)

∂K6

∂K 1
= −2 C2

η5
2

Q33 K 2, (B4)

∂K6

∂e2
= 0, (B5)

∂K6

∂K 2
= C2

η5
2

{10Q13e1 − 2Q33 K 1

− [(
1 − 6e2

1

) + 5η−2
2

(
5Q2

13 − Q2
33

)]
K 2

}
. (B6)

Expressions resulting from the octupole (78) are more compli-
cated:

∂K8

∂e1
= C3

η7
2

{
16η2

2Q11e1 + 10 [Q31Q33 − 7Q11Q13] K 2

− [(
1 − 8e2

1

)
η2

2 + 35Q2
13 − 5Q2

33

]
e2

}
, (B7)

∂K8

∂K 1
= 10 C3

η7
2

[(Q13Q31 + Q11Q33) K 2 + Q13Q33e2] , (B8)

∂K8

∂e2
= C3

η7
2

{
10Q13Q33 K 1 − [(1 − 8e2

1

)
η2

2+35Q2
13−5Q2

33

]
e1

}
,

(B9)

∂K8

∂K 2
= 5 C3

η7
2

{2 [Q13Q31 + Q11Q33] K 1

+ 2 [Q31Q33 − 7Q11Q13] e1

+ [(
1 − 8e2

1

)
Q11 + 7η−2

2

(
Q11

(
7Q2

13 − Q2
33

)
−2Q13Q31Q33)] K 2} . (B10)

The rule of the gradient with respect to K 2 being most complicated
refers also to expressions resulting from (80):

∂K9

∂e1
= −2C ′

2B1 {10B2 [Q12 (K 1 × e2) − Q21 (K 2 × e2)

+3Q11Q33e2] + 24η2
2Q33e1 − 15Q13Q33 K 2

}
, (B11)

∂K9

∂K 1
= C ′

2B1 {4B2 [5Q12 (e1 × e2) − Q31Q33e2] + [15Q2
13

+3Q2
33 − 2B2

(
15Q2

11 + Q2
31

) − (1 + 24e2
1

)
η2

2

]
K 2

}
,

(B12)

∂K9

∂e2
= 4C ′

2B1B2 {5 Q12 (K 1 × e1) + 5 Q21 (e1 × K 2)

−Q33 (15 Q11e1 + Q31 K 1)} , (B13)

∂K9

∂K 2
= ∂K9

∂η2

K 2

η2
+ C ′

2B1 {30Q13Q33e1 − 20B2Q21(e1 × e2)

+ [15Q2
13 + 3Q2

33 − 2B2

(
15Q2

11 + Q2
31

)
−(1 + 24e2

1)η2
2

]
K 1

}
, (B14)

∂K9

∂η2
= C ′

2B1

η2

{
2B4

[
Q33

(
15Q2

11 + Q2
31

) − 10Q12Q21

]
+Q33

[(
1 + 24e2

1

)
η2

2B3 − (2 + B3)
(
15Q2

13 + Q2
33

)]}
,

(B15)

where B1, B2 are defined by (81), and

B3 = 25 + 34η2 + 5η2
2

(1 + η2) (5 + η2)
, B4 = 35 + 105η2 + 95η2

2 + 21η3
2

(1 + η2)2 (5 + η2)
.

(B16)
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