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A B S T R A C T

Catalina Sky Survey (CSS) is a major survey of Near-Earth Objects (NEOs). In a recent work, we used CSS
observations from 2005–2012 to develop a new population model of NEOs (NEOMOD). CSS’s G96 telescope
was upgraded in 2016 and detected over 10,000 unique NEOs since then. Here we characterize the NEO
detection efficiency of G96 and use G96’s NEO detections from 2013–2022 to update NEOMOD. This resolves
previous model inconsistencies related to the population of large NEOs. We estimate there are 936 ± 29 NEOs
with absolute magnitude 𝐻 < 17.75 (diameter 𝐷 > 1 km for the reference albedo 𝑝V = 0.14) and semimajor axis
𝑎 < 4.2 au. The slope of the NEO size distribution for 𝐻 = 25–28 is found to be relatively shallow (cumulative
index ≃ 2.6) and the number of 𝐻 < 28 NEOs (𝐷 > 9 m for 𝑝V = 0.14) is determined to be (1.20 ± 0.04) × 107,
about 3 times lower than in Harris & Chodas (2021). Small NEOs have a different orbital distribution and higher
impact probabilities than large NEOs. We estimate 0.034 ± 0.002 impacts of 𝐻 < 28 NEOs on the Earth per year,
which is near the low end of the impact flux range inferred from atmospheric bolide observations. Relative
to a model where all NEOs are delivered directly from the main belt, the population of small NEOs detected
by G96 shows an excess of low-eccentricity orbits with 𝑎 ≃ 1–1.6 au that appears to increase with 𝐻 (≃ 30%
excess for 𝐻 = 28). We suggest that the population of very small NEOs is boosted by tidal disruption of large
NEOs during close encounters to the terrestrial planets. When the effect of tidal disruption is (approximately)
accounted for in the model, we estimate 0.06 ± 0.01 impacts of 𝐻 < 28 NEOs on the Earth per year, which
is more in line with the bolide data. The impact probability of a 𝐻 < 22 (𝐷 > 140 m for 𝑝V = 0.14) object on
the Earth in this millennium is estimated to be ≃ 4.5%.
1. Introduction

NEOMOD is an orbital and absolute magnitude model of NEOs
(Nesvorný et al., 2023, hereafter Paper I). To develop NEOMOD, we
closely followed the methodology from previous studies (Bottke et al.,
2002; Granvik et al., 2018), and improved it when possible. First, mas-
sive numerical integrations were performed for asteroid orbits escaping
from eleven main belt sources. Comets were included as the twelfth
source. The integrations were used to compute the probability density

∗ Corresponding author.
E-mail address: davidn@boulder.swri.edu (D. Nesvorný).

1 https://github.com/AsteroidSurveySimulator/objectsInField.
2 https://www.boulder.swri.edu/˜davidn/NEOMOD_Simulator and GitHub.

functions (PDFs) that define the orbital distribution of NEOs (perihelion
distance 𝑞 < 1.3 au, 𝑎 < 4.2 au) from each source. Second, we developed
a new method to accurately calculate biases of NEO surveys and applied
it to the Catalina Sky Survey (CSS; Christensen et al., 2012) in an
extended magnitude range (15 < 𝐻 < 28). The publicly available
objectsInField1 code (oIF) from the Asteroid Survey Simulator
(AstSim) package (Naidu et al., 2017) was used to determine the
geometric bias of CSS. Third, we used the MultiNest code, a Bayesian
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Fig. 1. NEOs detected by CSS1 (2013–2016; upper panels) and CSS2 (2016–2022; lower panels). The plots on the left show the ecliptic coordinates of detected objects. The plots
on the right show their absolute magnitude distributions.
inference tool designed to efficiently search for best-fitting solutions
in high-dimensional parameter space (Feroz and Hobson, 2008; Feroz
et al., 2009), to optimize the biased model fit to CSS detections. The
final model was made available to the scientific community via a
NEOMOD Simulator2 — an easy to operate code that can be used to
generate user-defined NEO samples from the model.

The original model, hereafter NEOMOD v1.0 or NEOMOD1 for
short, was calibrated on the Mt. Lemmon (IAU code G96) and Catalina
(703) telescope observations during the 8-year long period from 2005
to 2012. This was done for two reasons: (1) the photometric sensitivity
of G96 and 703 from 2005–2012 was thoroughly characterized in
Jedicke et al. (2016), and (2) Granvik et al. (2018) used the same
dataset to calibrate their NEO model. We improved the methodology
and applied it to the same dataset, without the need for an extensive
work on characterizing the photometric bias. The differences between
NEOMOD1 and Granvik et al. (2018) therefore entirely reflected the
changes in methodology (and not observational constraints). The im-
provements included: (i) cubic splines to represent the magnitude
distribution of NEOs, (ii) rigorous model selection with MultiNest,
(iii) a physical model for disruption of NEOs at low perihelion distances
(Granvik et al., 2016), (iv) an accurate estimate of the impact fluxes
on the terrestrial planets, and (v) a flexible setup that can be readily
adapted to any current or future NEO survey.3

We found that the sampling of main-belt sources by NEOs is size-
dependent with the 𝜈6 and 3:1 resonances contributing ≃30% of NEOs
with 𝐻 = 15, and ≃80% of NEOs with 𝐻 = 25. This trend most
likely arises from how the small and large main-belt asteroids reach
the source regions (Paper I). The size-dependent sampling suggests
that small terrestrial impactors preferentially arrive from the 𝜈6 source,
whereas the large impactors can commonly come from the middle/
outer belt (Nesvorný et al., 2021). The NEOMOD1-inferred contribution
of the 3:1 source to large NEOs (𝐻 ≲ 18) implies that main-belt aster-
oids should drift toward the 3:1 resonance at the maximum Yarkovsky
drift rates (≃2 × 10−4 au Myr−1 for a ≃1-km diameter body at 2.5 au).
In Paper I, we therefore suggested that the main-belt asteroids on the

3 NEOMOD calibration on the ATLAS (Heinze et al., 2021) and WISE
(Mainzer et al., 2019) observations is under development.
2

sunward side of the 3:1 resonance (𝑎 < 2.5 au) have obliquities 𝜃 ≃ 0◦;
the ones with 𝑎 > 2.5 au should have 𝜃 ≃ 180◦ (in the immediate
neighborhood of the resonance). These predictions were confirmed
from lightcurve observations (Ďurech and Hanuš, 2023). We verified
the size-dependent disruption of NEOs at small perihelion distances
(Granvik et al., 2016), and found a similar dependence of the disruption
distance on the absolute magnitude.

Here we extend NEOMOD to incorporate new data from the G96
telescope (hereafter NEOMOD v2.0 or NEOMOD2 for short). The cam-
era of G96 was upgraded to a wider field of view (FoV; 2.23◦×2.23◦) in
May 2016 and the G96 telescope detected 11,934 unique NEOs between
May 31, 2016 and June 29, 2022 (Fig. 1). This can be compared to
only 2987 unique NEO detections of G96 for 2005–2012 (1.1◦ × 1.1◦
FoVs). For completeness, we also include 3057 unique NEO detections
of G96 between January 2, 2013 and May 16, 2016. The two new
observational datasets are referred to as the ‘‘new CSS’’, whereas the
previous dataset used in Paper I is the ‘‘old CSS’’. We do not attempt
to combine the old and new CSS datasets in this work, because here
we develop a new method for characterizing the photometric bias of
new CSS (Section 2), and we do not want to mix the old and new
approaches. The detection statistics of new CSS is large enough for
the new CSS to stand on its own. The 703 telescope did not detect
a comparatively large number of unique NEOs since 2013 and is not
included here.

This article is structured as follows. In Section 2, we describe how
the photometric bias was characterized for the new CSS. Section 3
briefly reviews the methodology that was borrowed from Paper I,
including the definition of NEO sources, 𝑁-body integrations, choices
of model parameters, and model optimization with MultiNest. The
final model, NEOMOD2, synthesizes our current knowledge of the
orbital and absolute magnitude distribution of NEOs (Section 4). We
demonstrate that the population of very small NEOs detected by G96
shows an excess for low-eccentricity orbits with 𝑎 ≃ 1–1.6 au and
suggest that the excess can be explained if large NEOs tidally disrupt
during close encounters to the terrestrial planets (Section 5). Planetary
impacts are discussed in Section 6.

2. Characterizing the observational bias of new CSS

The G96 telescope has a carefully recorded pointing history,
amounting to over 240,000 frames for the 2013–2022 period. Here
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Fig. 2. Global photometric sensitivities of CSS1 (top panel) and CSS2 (bottom panel).
The red triangles show the binned detection probability, 𝜖(𝑉 ′) = 𝑁det (𝑉 ′)∕𝑁all(𝑉 ′)
(Eq. (2)), as a function of the apparent visual magnitude offset 𝑉 ′ (Section 2.1). The
green triangles show the probability of non-detection, 1 − 𝜖(𝑉 ′). The red and green
lines show the best fits to the binned data using the functional dependence given in
Eq. (2). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

we use new detections and incidental redetections of NEOs by CSS.
We count each individual NEO only once (i.e., as detected) and do not
consider multiple (incidental or not) detections of the same object. With
this setup, we mainly care about the detection probability of an object
by CSS, and not about the number of images in which that same object
was detected (cf. Granvik et al. (2018)). The detection probability (or
bias for short) of a moving object is defined as the probability that
the CSS detection pipeline picks up an object in at least three images
with the same pointing direction taken by CSS in short succession
on a single night (image set or frame). The three (or more) tracklets
must be correctly linked to count as true detection. The detection
probability can be split into three parts: (i) the geometric probability of
the object to be located in the image set, (ii) the photometric efficiency
of detecting the NEO’s tracklet, and (iii) the trailing loss. To account for
(i), we use the publicly available objectsInField4 code (oIF) from
the Asteroid Survey Simulator (AstSim) package (Naidu et al., 2017).
See the GitHub documentation of oIF for a detailed description of the
code and Paper I for the implementation used here for NEO modeling.

As for (ii), our starting point is a 3.5 GByte tarball of nearly 10 years
of data from the G96 telescope. To make this tarball, each G96 field
was calibrated against Gaia-DR2 stars (Gaia Collaboration et al., 2018)
and the moving object identification was done against the most recent
MPCORB catalog (as of October 2022). For each frame, a list is provided

4 https://github.com/AsteroidSurveySimulator/objectsInField.
3

Fig. 3. Examples of nightly photometric detection probabilities for CSS1 (April 1, 2013;
top panel) and CSS2 (May 31, 2022; bottom panel). See the caption of Fig. 2 for the
description of symbols and lines. The error bars were estimated adopting the Poisson
statistics.

of both the objects that were identified in the G96 image, and those
that were expected to be in the field of view but were not detected.
The data start on January 2, 2013 and end on June 29, 2022. There
is one file per set of images with the same pointing direction taken by
G96 in a short succession on the same night. The header of each file
reports: the (1) exposure (typically 30 s, occasionally 45 s), (2) number
of images in the frame (3 to 5, typically 4), (3) MJD when each image
was taken, (4) right ascension and declination of the image center,
(5) image orientation relative to north (always <1 deg), and (6) 50%
magnitude value (𝑉50). The 50% magnitude value is a variation on a
zero-point magnitude calculation. We collected all Gaia-DR2 stars that
can be identified and scaled them against the matching point source
SNR values converted to 𝛥mag. The 50% value is the magnitude where
the Gaia-DR2 stars cross an SNR that has been calibrated to give us
roughly a 50% main belt asteroid detection rate as determined from a
test set used at the time. It is a good reference to understand the quality
of observing conditions for each frame.

Each file lists all known main-belt and near-Earth asteroids – ob-
tained from the MPC catalog from October 2022 – that would appear
in G96’s frame that night, and specifies whether they were detected by
the CSS pipeline. The following information is given for each object:
the (1) proper motion (𝑤), (2) visual and absolute magnitudes (𝑉 and
𝐻), and (3) semimajor axis (𝑎), eccentricity (𝑒), and inclination (𝑖).
The 𝑉 magnitude was computed from the observing geometry and 𝐻
magnitude reported in the MPC catalog. We discarded nights where
fewer than 250 asteroids were available (detected or not) in all frames
taken on the same night of observations (18,509 files in total), because
such a small number of objects did not allow us to accurately derive the

https://github.com/AsteroidSurveySimulator/objectsInField
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detection efficiency for that night (Section 2.1). We also excluded 27
files with fewer than three images per frame (three images are required
for detection). This left us with 223,865 files in total (one file for each
exposure), 61,585 for nights before May 16, 2016 (hereafter CSS1) and
162,280 after May 31, 2016 (hereafter CSS2).

The unique NEO detections were extracted from all files. If the
same object was detected more than once, we only considered the first
instance. NEOs detected on discarded nights were neglected. We also
excluded NEO detections with 𝑤 > 10 deg/day because we were not
able to determine the trailing loss for these excessively large apparent
motions (Section 2.2). This left us with 2619 unique NEOs for CSS1 and
11,471 unique NEOs for CSS2 (objects detected by both CSS1 and CSS2
are listed twice, once in each dataset; Fig. 1). The two datasets report
the semimajor axis, eccentricity, inclination, and absolute magnitude
of the NEOs (at the time of detection). Note that the 𝐻 magnitudes of
all objects were obtained from the 2022 MPC catalog (downloaded on
October 19, 2022); this defines the absolute magnitude system used in
this is work.5 Given the previously identified offset of MPC magnitudes
(Pravec et al., 2012), the 2022 MPC system may still include systematic
errors. In addition, as the absolute magnitudes of individual objects are
updated with each new release of the MPC catalog, one has to be careful
when comparing the NEOMOD2 results with new MPC releases.

2.1. Photometric probability of detection

We adopt the following method to characterize the photometric
probability of detection. For each asteroid reported in each file, we
first compute the visual magnitude offset 𝑉 ′ = 𝑉 − 𝑉3rd, where 𝑉3rd is
the third faintest 50% magnitude value listed in the frame file header
(𝑉50).6 The reason for the 3rd faintest is that it takes at least three hits
for a detection. The 3rd faintest field therefore has the main impact
on the efficiency. All asteroids appearing in the same frame, detected
or not, are binned as a function of 𝑉 ′, defining 𝑁all(𝑉 ′). We also bin
the number of asteroids detected by the G96 pipeline and denote it by
𝑁det (𝑉 ′). The photometric probability of detection in a 𝑉 ′ bin is simply
the ratio 𝜖(𝑉 ′) = 𝑁det (𝑉 ′)∕𝑁all(𝑉 ′). We use 30 bins between 𝑉 ′

min = −6
and 𝑉 ′

max = 1.5 (i.e., bin size 0.25 mag). This is where practically all
NEOs were detected by G96. We therefore do not need to characterize
the detection efficiency for 𝑉 ′ < 𝑉 ′

min and 𝑉 ′ > 𝑉 ′
max.7

In the next step, we need to find a suitable analytic expression that
provides a sufficiently good approximation for 𝜖(𝑉 ′). This is a matter of
compromise. On one hand, there is a preference for a simple and robust
approximation that will always provide a reasonable approximation of
binned 𝜖(𝑉 ′), even if the statistics on a given night is relatively poor. On
the other hand, the analytic function must be sufficiently accurate in
the whole range 𝑉 ′

min < 𝑉 ′ < 𝑉 ′
max, including the transition where 𝜖(𝑉 ′)

drops near the detection limit, such that no artifacts are introduced.
The original functional form that was adopted in Paper I from Jedicke
et al. (2016) was

𝜖(𝑉 ) =
𝜖0

1 + exp
(

𝑉 −𝑉lim
𝑉wid

) . (1)

5 The absolute magnitudes of the detected NEOs were given to two decimal
igits but the second decimal digit was often zero. This happened because
he legacy MPC catalogs, from which some data were imported, listed only
ne decimal digit. As this would create round-off problems with binning, we
andomly added −0.001 or +0.001 to the reported magnitudes. This resolves

the problem.
6 We use the usual Pogson’s relation to compute the visual magnitude of

each object. Nominally, we set the slope parameter 𝐺 = 0.15 (Bowell et al.,
1989) but also tested 𝐺 = 0.24 (Pravec et al., 2012). The results described in
Section 4 are practically independent of this choice.

7 There were some exceptions such as (433) Eros; objects detected with
𝑉 ′ > 𝑉 ′ or 𝑉 ′ < 𝑉 ′ were discarded.
4

min max
After extensive testing, we adopted

𝜖(𝑉 ′) = 𝜖0

1 −
(

𝑉 ′−𝑉 ′
0

𝑞V

)2

1 + exp
(

𝑉 ′−𝑉 ′
lim

𝑉wid

)𝛼 . (2)

We now use 𝑉 ′ = 𝑉 − 𝑉3rd instead of 𝑉 in Eq. (2). There are six
parameters: 𝜖0, 𝑉 ′

0 , 𝑞V, 𝑉 ′
lim, 𝑉wid and 𝛼. The 𝛼 parameter improves the

analytic fit for 𝑉 ′ → 𝑉 ′
max, where 𝜖(𝑉 ′) rapidly drops toward zero. The

‘squeezed’ exponential with 𝛼 > 1 for 𝑉 ′ > 𝑉 ′
lim matches this fall off

better than a normal exponential. This behavior cannot be mimicked
by adopting a smaller value of 𝑉wid because this would damage the
fit for 𝑉 ′ < 𝑉 ′

lim (we fix 𝛼 = 1 for 𝑉 ′ < 𝑉 ′
lim). The quadratic term in

the numerator of Eq. (2) was taken from Tricarico (2016). It improves
the behavior of the analytic fit for 𝑉 ′

0 < 𝑉 ′ < 𝑉 ′
lim, where 𝜖(𝑉 ′)

has a bending profile that differs from an exact exponential. When
the statistics on a given night is relatively small (i.e., low 𝑁all), the
bins near 𝑉 ′

min are sparsely filled, and this would adversely affect the
quadratic term, if the fit is given this much freedom. For 𝑉 ′ < 𝑉 ′

0 ,
here 𝑉 ′

min < 𝑉 ′
0 < 𝑉 ′

lim is a free parameter of the fit, we therefore
et 𝜖(𝑉 ′) = 𝜖0.

The optimization of six photometric parameters was performed with
he Simplex method (Press et al., 1992). We have the capability to
xecute the fit for one frame, for all CSS observations (Fig. 2), and
verything in between. We find that the number of asteroids in a single
rame is typically too small for a robust determination of 𝜖(𝑉 ′) in
ach frame. We therefore need to group frames together. Grouping
oo many frames together would not be optimal, however, because
he atmospheric conditions may significantly vary between different
ights, the observing strategy and parameters change over time, etc.
e thus choose to characterize 𝜖(𝑉 ′) on a nightly basis (see Fig. 3 for

n example).
All frames taken on a single night were collected, the offset 𝑉 ′ =
− 𝑉3rd was applied individually for each frame, but the binning and

implex fit were done only once for the whole night. We discarded
ights with 𝑁all < 250 because we did not have confidence in the
esults when the total asteroid sample on that night was small. The
ix photometric parameters were individually obtained for 602 nights
f CSS1 and 1110 nights of CSS2 (Fig. 4). Table 1 lists the global
hotometric parameters for CSS1 and CSS2 for reference. In general,
SS2 has brighter values of 𝑉 ′

lim than CSS1. This means that, for CSS2,
3rd is a better proxy for where the photometric detection efficiency
rops. The 𝑉3rd values of CSS2 are generally fainter, by a fraction
f magnitude, than those of CSS1. We stress that, even if the six
hotometric parameters 𝜖0, 𝑉 ′

0 , 𝑞V, 𝑉 ′
lim, 𝑉wid and 𝛼 have fixed values for

given night, 𝑉3rd is treated individually for each frame. We therefore
ave an approximate characterization of the photometric efficiency on
frame-to-frame basis.8

.2. Trailing loss

The trailing loss stands for a host of effects related to the difficulty
f detecting fast moving objects. If the apparent motion is high, the
bject’s image (a streak) is smeared over many CCD pixels, which
iminishes the maximum brightness and decreases S/N. Long trails
ay be missed by the survey’s pipeline (due to streaking), the object
ay not be detected in three images of the same frame (as required

or a detection), or the streaks in different images may not be linked

8 Note that the method described here accounts for the reduction of the
etection probability from the camera’s fill factor — the fraction of the FoV

where camera is actually sensitive (parts of the camera are not sensitive
because of gaps, masked pixels, etc.). The fill factor is implicitly accounted
for as the detection probability is inferred from detections and non-detections

of real objects appearing in each image.
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Fig. 4. Variation of six photometric parameters (Eq. (2)) derived on a nightly basis, for the whole duration of new CSS (January 2013 to June 2022). The G96 telescope was
upgraded in May 2016 (vertical dashed lines).
Table 1
Global photometric parameters of CSS1 and CSS2. See Section 2.1 and Eq. (2) for the
definition of these parameters: 𝜖0 defines the detection efficiency for bright apparent
magnitudes, 𝑉 ′

0 and 𝑞𝑉 are parameters of the quadratic term that improve the behavior
of the analytic fit for 𝑉 ′ < 𝑉 ′

lim, 𝑉 ′
lim is the apparent magnitude where the detection

efficiency drops, 𝑉wid defines how fast it drops, and 𝛼 improves the behavior of the
analytic fit for 𝑉 ′ > 𝑉 ′

lim. CSS2 has a lower value of global 𝑉 ′
lim than CSS1. This means

that, for CSS2, 𝑉3rd is a better proxy for where the photometric detection efficiency
drops. The large value of CSS1’s 𝑞𝑉 reduces the importance of the quadratic term; this
term is more important for CSS2. The values reported here were computed for the
apparent motion 0.12 < 𝑤 < 1 deg/day.

CSS1 CSS2

𝜖0 0.983 0.952
𝑉 ′
0 −6.0 −2.65

𝑞V 23.87 6.64
𝑉 ′
lim 0.475 0.170

𝑉wid 0.180 0.175
𝛼 1.140 1.151

together. The trailing loss is especially important for small NEOs, which
can only be detected when they become bright, and this typically
happens when they are moving very fast relative to Earth during a close
encounter.

It is not easy to accurately characterize the trailing loss from the
CSS data that are available to us. This is mainly because the number of
detected objects in CSS frames rapidly falls off for high rates of motion.
The statistics therefore becomes progressively worse as we consider
higher and higher rates of motion. Ideally, we would like to investigate
different effects (see above) separately, because some should vary with
cadence, while the trailing loss itself (smearing) depends on the angular
velocity. This is unfortunately not possible because there is simply not
enough data for high rates of motion. In addition, we would like to
characterize the trailing loss on a nightly basis, on a monthly basis,
or at least separating CSS1 and CSS2. This is also not possible because
there is not a sufficient number of detections in CSS1 for 𝑤 > 3 deg/day.

We therefore adopt the following (approximate) procedure. We first
clump all the CSS1 and CSS2 observations together and separate 𝑁all
and 𝑁 into 1 deg/day bins in the apparent motion, from 𝑤 = 0
5

det
to 𝑤 = 10 deg/day. There are only under 200 unique detections in
individual bins for 𝑤 > 10 deg/day, and that is clearly not good enough
for characterizing the trailing loss. The asteroids detected with 𝑤 > 10
deg/day were discarded from the detection probability computation
and from the list of detected NEOs. We only consider 𝑤 < 10 deg/day.
With the 𝑤 binning, the detection efficiency is now 𝜖(𝑉 ′, 𝑤). As before
(Section 2.1), we use the Simplex method and Eq. (2) to analytically pa-
rameterize 𝜖(𝑉 ′, 𝑤), and derive the six photometric parameters, which
are now global for the new CSS, but depend on 𝑤. The photometric
parameters were plotted as a function of 𝑤 to give us sense of how
they change and what analytic functions would capture that behavior.

An example for 𝑉 ′
lim(𝑤) is shown in Fig. 5. Even though the depen-

dence of 𝑉 ′
lim on 𝑤 is uneven, we find that 𝑉 ′

lim(𝑤) slightly increases to
𝑤 ≃ 3.5 deg/day and then drops for 𝑤 > 3.5 deg/day. This means that
the detection efficiency improves for the apparent motions approaching
𝑤 ≃ 3.5 deg/day, which corresponds to ≃3 pixels/exposure for CSS2.
Confusion of moving objects with faint stars probably decreases the
detection rates for very slow apparent motions.9 As we go faster than
3 pixels/exposure there is a double penalty of losses from trailing and
the increased angular distance between the first and last point (which
makes it more difficult to uniquely link the observations to a moving
object). That could explain why 𝑉 ′

lim(𝑤) slopes downward for 𝑤 > 3.5
deg/day.

We analytically approximate 𝑉 ′
lim(𝑤) as

𝑉 ′
lim(𝑤) = 𝑉 ′

lim(0) + 𝐴𝑤 (3)

for 𝑤 < 𝑤1 and

𝑉 ′
lim(𝑤) = 𝑉 ′

lim(0) + 𝐴𝑤1 + 2.5 log10[1 + 𝐶(𝑤 −𝑤1)] (4)

9 We looked into this in more detail and found that the CSS2 detection
probability drops for 𝑤 < 0.12 deg/day. This happens because an object moving
this slow appears in only a few pixels of the image set, and this greatly
diminishes its detection probability. We therefore used 𝑤 > 0.12 deg/day
for the computation of 𝜖(𝑉 ′) in Section 2.1. According to our tests, however,
including 𝑤 < 0.12 deg/day would not have a significant impact on the overall
results described in Section 4.
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Fig. 5. The dependence of the transition magnitude 𝑉 ′
lim on the asteroid’s apparent

motion 𝑤. The red line and dots show 𝑉 ′
lim(𝑤) obtained from the Simplex fit to all new

CSS observations. The black line is the analytic fit with the functional form described
in the main text (Eqs. (3) and (4)).

for 𝑤1 < 𝑤 < 10 deg/day, and find 𝐴 = 0.052, 𝐶 = 0.192, 𝑤1 = 3.6
deg/day. To respect the photometric conditions of each night, we set
𝑉 ′
lim(0) to be equal to 𝑉 ′

lim derived for that night (top-left panel of Fig. 4).
The functional form of trailing loss in Eq. (4) was obtained from the

following reasoning. Let 𝜙 be the characteristic angular dimension of
the point spread function (PSF). Let the angular rate of motion of the
object be 𝑤 during an exposure time 𝑡. Assume that trailing effects only
become important after an object has moved through an angle 𝜃 = 𝑤1𝑡
where 𝑤1 is identified as the minimum rate of motion at which trailing
loss becomes apparent. Let the flux within the PSF from a stationary
source be 𝑓𝑠 = 1. If the same source is moving at a rate 𝑤 for a time 𝑡
across the image plane, its flux will be spread along a trail of angular
length 𝓁 = 𝜙 + 𝑤𝑡. Then the flux within a PSF area along the trail is
roughly

𝑓𝑡 =
𝜙 + (𝑤 −𝑤1)𝑡

𝜙
= 1 + 𝑡

𝜙
(𝑤 −𝑤1). (5)

Thus, the change in apparent magnitude in a PSF-like region due to
trailing is given by

𝛥𝑉 = 2.5 log10

[

1 + 𝑡
𝜙
(𝑤 −𝑤1)

]

. (6)

A good rule-of-thumb is that 𝑤1 is the rate at which an object moves
a full PSF during the exposure time. The G96 PSF is roughly 3′′ and
𝑡 = 30 s, so we expect 𝑤1 ∼ 2.4 deg/day and 𝑡

𝜙 ∼ 0.42 day/deg, in
rough agreement with the fitted values (see above).

In an actual survey system there are many different, often compet-
ing, factors at play in the detection efficiency including, but not limited
to, the ability of the system’s software to detect sources in an image as
a function of the source’s shape and an object’s rate of motion. Distant
objects, or even nearby objects at their stationary points, may move too
slowly to be detected as moving between successive images. Sources
that trail just a little might be easier to detect than sources that trail
a little less. These effects are difficult to calculate from theory so we
generalize the trailing loss function in Eq. (4) and fit for the parameters
𝐴, 𝐶 and 𝑤1.

A similar analysis was performed for other photometric parameters
as well. We found that 𝑉wid(𝑤) can be adequately approximated by
𝑉wid(0) for 𝑤 < 𝑤2 with 𝑤2 ≃ 7 deg/day. For 𝑤 > 𝑤2, the transition
from high to low detection probabilities near 𝑉 ′

lim(𝑤) becomes a step-
like function; we thus have 𝑉wid = 0 for 𝑤 > 7 deg/day. The last issue
arises as there were no objects detected for 𝑉 ′ exceeding a certain limit,
𝑉 ′
cut , where 𝑉 ′

cut = 1.5 mag for 𝑤 ≃ 0 (our usual cutoff) and 𝑉 ′
cut = 0

when 𝑤 approaches 10 deg/day. In the final algorithm for the trailing
loss, we implemented this cutoff by setting 𝜖(𝑉 ′) = 0 for 𝑉 ′ > 𝑉 ′ .
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cut
2.3. Detection probability as a function of 𝑎, 𝑒, 𝑖 and 𝐻

The detection probability of new CSS, (𝑎, 𝑒, 𝑖,𝐻), needs to be
computed as a function of 𝑎, 𝑒, 𝑖 and 𝐻 . As we described in Paper
I, the model distribution of NEO orbits is binned (we use the same
binning as in Paper I). We therefore need to compute (𝑎, 𝑒, 𝑖,𝐻) in
each bin. For each bin, we generated a large number (𝑁obj = 10,000;
the required number was determined by convergence tests) of test
objects with a uniformly random distribution of 𝑎, 𝑒 and 𝑖 within the bin
boundaries. The mean anomaly, argument of perihelion, and longitude
of ascending node were randomly chosen between 0 and 360◦. The oIF
code (Naidu et al., 2017) was then used to determine the geometric
detection probability in each frame. For each 𝐻 bin, we assigned the
corresponding absolute magnitude to 10,000 test NEOs and propagated
the information to compute the detection efficiency 𝜖𝑗,𝑘(𝑉 ,𝑤), individ-
ually for every bin 𝑗 and frame 𝑘 (Eq. (2) and Section 2.2). See Sect.
4.5 in Paper I for more details.

The detection probability (𝑎, 𝑒, 𝑖,𝐻) is defined as the mean detec-
tion probability of an object with (𝑎, 𝑒, 𝑖,𝐻) over the whole duration of
each survey. We compute the mean detection probability as

 = 1
𝑁obj

𝑁obj
∑

𝑗=1

{

1 −
𝑁f rame
∏

𝑘=1
[1 − 𝜖𝑗,𝑘]

}

, (7)

where 𝑁f rame is the number of frames, and the product of 1 − 𝜖𝑗,𝑘 over
frames stands for the probability of non-detection of the object 𝑗 in the
survey. We compute  separately for CSS1 and CSS2.

Figs. 6 and 7 illustrate the CSS bias. The detection probability of
CSS2 is ≳ 0.7 for large, 𝐻 ≃ 15 NEOs, except for those on orbits with 𝑎 <
0.8 au. Fainter NEOs are detected with lower probability. Interestingly,
 shows dips and bumps as a function of NEO’s semimajor axis (Fig. 7).
The dips, where the detection probability is lower, correspond to the
orbital periods that are integer multiplies of 1 year. This is where the
synodic motion of NEOs allow them to hide and often not appear in the
survey’s frames. This effect has been reported before (Tricarico, 2017
and Paper I).

3. NEO model parameters and optimization

The source populations and integration method used to generate the
orbital distribution of NEOs from each source were described in Paper I.
We have 12 sources in total: eight individual resonances (𝜈6, 3:1, 5:2,
7:3, 8:3, 9:4, 11:5 and 2:1), weak resonances in the inner belt, two
high-inclination sources (Hungarias and Phocaeas), and comets. The
integration output was used to define the binned orbital distribution of
NEOs from each source 𝑗, d𝑝𝑗 (𝑎, 𝑒, 𝑖) = 𝑝𝑗 (𝑎, 𝑒, 𝑖) d𝑎 d𝑒 d𝑖, and normalized
it to one NEO,

∫𝑎,𝑒,𝑖
𝑝𝑗 (𝑎, 𝑒, 𝑖) d𝑎 d𝑒 d𝑖 = 1 , (8)

effectively representing the binned orbital PDF (probability density
function). We used the orbital range 𝑎 < 4.2 au, 𝑞 < 1.3 au, 𝑒 < 1 and
𝑖 < 90◦, hereafter the NEO model domain. This is where practically all
NEOs detected by new CSS reside.10 As the binning is done only in 𝑎,
𝑒, and 𝑖, the model ignores any possible correlations with the orbital
angles (nodal, perihelion and mean longitudes). There are 42 bins in 𝑎,
20 bins in 𝑒 and 22 bins in 𝑖, and 52 bins in 𝐻 for 14 < 𝐻 < 28.

We use MultiNest to perform the model selection, parame-
ter estimation and error analysis (Feroz and Hobson, 2008; Feroz
et al., 2009).11 MultiNest is a multi-modal nested sampling rou-
tine (Skilling, 2004) designed to compute the Bayesian evidence in a

10 Exceptions are: (343158) Marsyas with a retrograde orbit and 𝑎 = 2.527
au, (3552) Don Quixote, 2019 PR2, 2019 QR6 and three other (weakly active)
comets on Jupiter-crossing orbits with 𝑎 > 4.2 au.

11 https://github.com/farhanferoz/MultiNest.

https://github.com/farhanferoz/MultiNest
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Fig. 6. The CSS2 detection probability (Eq. (7)) as a function of orbital elements for four different absolute magnitude values. From top-left to bottom-right, we plot (𝑎, 𝑒, 𝑖,𝐻)
for 𝐻 corresponding to objects with 𝐷 = 3 km, 1 km, 300 m and 50 m (for the reference albedo 𝑝V = 0.14). The detection probability was averaged over all inclinations bins. The
vertical strips, with  going up and down as a function of NEO’s semimajor axis, are a consequence of the synodic effect (see discussion in Paper I). The red lines show borders
of the orbital domain where orbits can have close encounters with Earth and Venus.
complex parameter space in an efficient manner. The log-likelihood in
MultiNest is defined as

 = ln𝑃 = −
∑

𝑗
𝜆𝑗 +

∑

𝑗
𝑛𝑗 ln 𝜆𝑗 , (9)

where 𝑛𝑗 is the number of objects detected by CSS in the bin 𝑗, 𝜆𝑗 is the
number of objects in the bin 𝑗 expected from the biased model, and the
sum is executed over all bins in 𝑎, 𝑒, 𝑖 and 𝐻 . This definition is identical
to that used in Paper I. For two or more surveys,  is simply the sum of
individual survey’s log-likelihoods. As we treat CSS1 and CSS2 as two
independent surveys, we have  = CSS1 + CSS2.

There are three sets of priors: (1) coefficients 𝛼𝑗 that determine the
strength of different sources, (2) parameters related to the absolute
magnitude distribution, and (3) priors that define the disruption model
(Granvik et al., 2016).

As for (1), the intrinsic orbital distribution of model NEOs is
obtained by combining 𝑛s sources: 𝑝(𝑎, 𝑒, 𝑖) =

∑𝑛s
𝑗=1 𝛼𝑗 𝑝𝑗 (𝑎, 𝑒, 𝑖) with

∑𝑛s
𝑗=1 𝛼𝑗 = 1. The coefficients 𝛼𝑗 represent the relative contribution of

each source to the NEO population (i.e., the fraction of NEOs from
the source 𝑗). As the contribution of different sources to NEOs may
be size dependent (Paper I), we set 𝛼𝑗 coefficients to be functions of
the absolute magnitude. For simplicity, we adopt a linear relationship,
𝛼𝑗 = 𝛼(0)𝑗 + 𝛼(1)𝑗 (𝐻 − 𝐻𝛼), where 𝐻𝛼 is some reference magnitude, and
𝛼(0)𝑗 and 𝛼(1)𝑗 are new model parameters. In practice, we set 𝛼𝑗 (𝐻min)
and 𝛼𝑗 (𝐻max) for some minimum and maximum absolute magnitudes
(e.g., 𝐻min = 15 and 𝐻max = 28), and linearly interpolate between them.
This automatically assures that ∑𝑗 𝛼𝑗 (𝐻) = 1 for any 𝐻min ≤ 𝐻 ≤ 𝐻max.

As for (2), the differential and cumulative absolute magnitude dis-
tributions are denoted by d𝑛(𝐻) = 𝑛(𝐻)d𝐻 and 𝑁(𝐻), respectively.
The differential magnitude distribution produced by source 𝑗 is set to
be d𝑛𝑗 (𝐻) = 𝛼𝑗 (𝐻)𝑛(𝐻)d𝐻 . The magnitude distributions of different
sources are similar, but change with 𝛼𝑗 (𝐻), which are assumed to
linearly vary with 𝐻 (see above). When the contribution of different
sources is combined, we find that ∑

𝛼 (𝐻)𝑛(𝐻)d𝐻 = 𝑛(𝐻)d𝐻 , which
7

𝑗

means that 𝑛(𝐻) stands for the absolute magnitude distribution of the
whole NEO population.

We use cubic splines to represent log10 𝑁(𝐻) (Paper I). The mag-
nitude interval of interest, 15 < 𝐻 < 28, is divided into six segments.
There are six parameters defining the average slope in each segment,
𝛾𝑗 , and one parameter that provides the overall calibration. We use
𝑁ref = 𝑁(𝐻ref ) with 𝐻ref = 17.75 (diameter 𝐷 = 1 km for the reference
albedo 𝑝V = 0.14). The normalization constant and slope parameters
are used to compute log10 𝑁(𝐻) at the boundaries between segments;
cubic splines are constructed from that (Press et al., 1992). The splines
assure that 𝑁(𝐻) smoothly varies with 𝐻 . The known sample of NEOs
with 𝐻 < 15 is thought to be (nearly) complete, and there were ≃50
such objects in the MPC catalog from October 2022. We therefore
fix 𝑁(15) = 50 and compute the 𝛾1 slope such that this additional
constraint is satisfied.

As for (3), following Granvik et al. (2016), we eliminate test bodies
when they reach the critical distance 𝑞∗ (𝑞∗ is the perihelion distance
below which NEOs completely disintegrate in catastrophic breakups).
Here we assume that the 𝑞∗ dependence on 𝐻 is (roughly) linear,
and parameterize it by 𝑞∗ = 𝑞∗0 + 𝛿𝑞∗(𝐻 − 𝐻𝑞), where 𝐻𝑞 = 20.
We use uniform priors for the two parameters, 𝑞∗0 and 𝛿𝑞∗. To con-
struct the orbital distribution for any 𝑞∗ < 0.4 au, we first produce
the binned distributions (from each source) for 𝑞∗ = 0, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35 and 0.4 au. The fitting routine then linearly
interpolates between these distributions to any intermediate value of
𝑞∗(𝐻). The resulting orbital distribution, 𝑝𝑞∗ , which now also depends
on the absolute magnitude, 𝑝𝑞∗ = 𝑝𝑞∗ (𝑎, 𝑒, 𝑖,𝐻), is normalized to 1
(∫ 𝑝𝑞∗ (𝑎, 𝑒, 𝑖,𝐻) d𝑎 d𝑒 d𝑖 = 1 for any 𝐻).

In summary, our biased NEO model is

b(𝑎, 𝑒, 𝑖,𝐻) = 𝑛(𝐻)(𝑎, 𝑒, 𝑖,𝐻)
𝑛𝑠
∑

𝑗=1
𝛼𝑗 (𝐻) 𝑝𝑞∗ ,𝑗 (𝑎, 𝑒, 𝑖,𝐻) , (10)

where 𝛼𝑗 are the magnitude-dependent weights of different sources
(∑ 𝛼 (𝐻) = 1), 𝑛 is the number of sources, 𝑝 (𝑎, 𝑒, 𝑖,𝐻) is the PDF of
𝑗 𝑗 𝑠 𝑞∗ ,𝑗
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Fig. 7. The CSS2 detection probability (Eq. (7)) as a function of orbital elements for four different absolute magnitude values. From top to bottom, we plot (𝑎, 𝑒, 𝑖,𝐻) for 𝐻
corresponding to objects with 𝐷 = 3 km, 1 km, 300 m and 50 m (for the reference albedo 𝑝V = 0.14). The plots in the left column show  for the fixed orbital inclination (𝑖 = 10◦)
and several eccentricity values. The plots on the right show  for 𝑒 = 0.6 and several inclination values. The detection probability was computed for orbits with 𝑞 < 1.3 au.
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Fig. 8. The orbital distribution of NEOs from our intrinsic (debiased) best-fit model
. We used the NEOMOD Simulator (Section 4) and generated 1.1 × 106 NEOs with
15 < 𝐻 < 28. The distribution was marginalized over absolute magnitude and binned
using 100 bins in each orbital element (0.4 < 𝑎 < 3.5 au, 𝑒 < 1 and 𝑖 < 60◦). Warmer
colors correspond to orbits where NEOs are more likely to spend time. The red lines
show borders of the orbital domain where orbits can have close encounters with Earth
and Venus. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the orbital distribution of NEOs from the source 𝑗, including the size-
dependent disruption at the perihelion distance 𝑞∗(𝐻) (this is the only
𝐻-dependence in the 𝑝 functions), 𝑛(𝐻) is the differential absolute-
magnitude distribution of the NEO population (the log-cumulative
distribution is given by splines), and (𝑎, 𝑒, 𝑖,𝐻) is the CSS detection
probability (Eq. (7)). For each MultiNest trial, Eq. (10) is constructed
by the methods described above. This defines the expected number of
events 𝜆𝑗 = b(𝑎, 𝑒, 𝑖,𝐻) in every bin of the model domain, and allows
MultiNest to evaluate the log-likelihood from Eq. (9).

The intrinsic (debiased) NEO model is simply

(𝑎, 𝑒, 𝑖,𝐻) = 𝑛(𝐻)
𝑛𝑠
∑

𝑗=1
𝛼𝑗 (𝐻) 𝑝𝑞∗ ,𝑗 (𝑎, 𝑒, 𝑖,𝐻) . (11)

By integrating Eq. (11) over the orbital domain, given that ∫ 𝑝𝑞∗ ,𝑗 (𝑎, 𝑒,
𝑖,𝐻) d𝑎 d𝑒 d𝑖 = 1 and ∑

𝑗 𝛼𝑗 (𝐻) = 1, we verify that 𝑛(𝐻) stands for the
(differential) magnitude distribution of the whole NEO population.

4. NEOMOD v2.0

Our base NEO model accounts for 𝑛s = 12 sources (Paper I). Each
source has a magnitude-dependent contribution (Section 3) and the
source weights 𝛼 (15) (for 𝐻 = 15) and 𝛼 (28) (for 𝐻 = 28) therefore
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𝑗 𝑗
represent 2(𝑛s − 1) model parameters (the last source’s contribution is
computed from ∑𝑛s

𝑗=1 𝛼𝑗 = 1). There are six parameters related to the
magnitude distribution, 𝑁ref and 𝛾𝑗 , 2 ≤ 𝑗 ≤ 6 (15 ≤ 𝐻 ≤ 28).12 The
𝛾1 parameter is fixed such that 𝑁(15) = 50. In addition, the 𝑞∗0 and
𝛿𝑞∗ parameters define the disruption model. This adds to 30 model
parameters in total. We used uniform priors for all parameters (see
Paper I for the multivariate uniform distribution of 𝛼𝑗 (15) and 𝛼𝑗 (28)).
The CSS fits were executed with the MultiNest code (Section 3). The
orbital distribution of NEOs from the best-fit (i.e., highest-likelihood)
intrinsic model  is shown in Fig. 8. The NEOMOD Simulator (see
Paper I) was updated and is available for download.13

MultiNest provides the posterior distribution of model parame-
ters. The results are generally consistent with those of Paper I, but there
are also several interesting differences (Table 2). As before, we only
have upper bounds on the contribution of 7:3, 9:4 and JFC sources. The
models without these sources, however, are disfavored at 𝛥 ln > 9.2
(Bayes factor). We thus prefer to keep these sources in the base model.
The 𝜈6 source now has a lower contribution for 𝐻 = 15 (0.06 ± 0.03 vs.
0.12±0.06 in Paper I) and a higher contribution for 𝐻 = 28 (0.60±0.02
vs. 0.42 ± 0.04 in Paper I). The opposite happens for the 3:1 resonance,
which now has a 0.28 ± 0.03 contribution for 𝐻 = 15 (previously 0.22 ±
0.04) and 0.31 ± 0.02 contribution for 𝐻 = 28 (previously 0.34 ± 0.03).
The contribution of Hungarias for 𝐻 = 28 has an upper limit (0.029;
previously 0.06±0.03). These differences are most likely related to how
the observations of 703 and G96 telescopes were combined in Paper I
(see Section 8 in Paper I and the footnote below). The uncertainties of
all parameters are lower than in NEOMOD1, typically by almost a factor
of 2. The absolute magnitude and disruption parameters are similar to
those reported in Paper I. We find 𝑁(17.75) = 936 ± 29 (Table 3).14

The biased best-fit model b is compared to CSS NEO detections in
Fig. 9. The distributions in Fig. 9 are broadly similar. There seems to be
a slight excess of CSS NEO detections with 𝑞 ∼ 1 au and 1 < 𝑎 < 1.6 au.
The 1D PDFs in Figs. 10 and 11 show the comparison in more detail.
For relatively bright NEOs (15 < 𝐻 < 25; Fig. 10), b is statistically
indistinguishable from CSS detections. The Kolmogorov–Smirnov (K–S)
test (Press et al., 1992), applied to the four 1D distributions in Fig. 10,
shows that the null hypothesis (the distributions are drawn from the
same underlying distribution) cannot be rejected (K–S probability 𝑝 >
0.05). The troughs in the semimajor axis distribution at 𝑎 ≃ 1.6 and 2.1
au are produced by the lower detection efficiency of CSS for orbital
periods near 2 and 3 years (synodic effect; Fig. 7). The tiny excess of
NEOs detected by CSS with 𝑖 = 20–30◦ (red line in Fig. 10c) can be
related to the contribution of high-inclination sources (Hungarias or
Phocaeas).

For faint NEOs (25 < 𝐻 < 28; Fig. 11), b is indistinguishable
from CSS detections in 𝑖 and 𝐻 , but there is a major discrepancy in 𝑎
and 𝑒, where the CSS detections show a large excess for 1 < 𝑎 < 1.6

12 We tested different sectioning of the magnitude range and found that
having six intervals 𝐻 = 15–16.5, 16.5–17.5, 17.5–20.0, 20.0–24.0, 24.0–25.0,
and 25.0–28.0 works slightly better than having equal spacing.

13 https://www.boulder.swri.edu/˜davidn/NEOMOD_Simulator and GitHub.
14 In Paper I, we experimented with two approaches to combining the data

from the 703 and G96 telescopes. In the first one, inspired by Granvik et al.
(2018), the detection biases of the two telescopes were combined into a joint
survey (see Paper I for details). Strictly speaking, this is not ideal because
the detection bias of the G96 survey only applies to NEO detections in the
G96 survey (and not 703), and vice versa. We verified in Paper I that the
joint-survey approach gives 𝑁(17.75) < 1000 (Granvik et al., 2018 estimated
𝑁(17.75) = 962+52−56) even if both 703 and G96 – when considered separately –
give 𝑁(17.75) > 1000 (for old CSS and the bias from Jedicke et al. (2016)). In
the second and more accurate method, 703 and G96 were treated separately
in MultiNest and were combined at the log-likelihood level. This, however,
produced 𝑁(17.75) = 1010 ± 19 in Paper I. Here we find that these model
inconsistencies most likely reflected a slight inaccuracy of the observational
bias reported for old CSS in Jedicke et al. (2016).

https://www.boulder.swri.edu/\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 3 \egroup \spacefactor \accent@spacefactor davidn/NEOMOD_Simulator
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Fig. 9. The orbital distribution of NEOs from our biased best-fit model b (left panels) and the CSS NEO detections (right panels). The model distribution for 15 < 𝐻 < 28 was
marginalized over absolute magnitude and binned with the standard resolution. It is shown here in the (𝑎, 𝑒) and (𝑎, 𝑖) projections. Warmer colors correspond to orbits where NEOs
are more likely to be found. The red lines show borders of the orbital domain where orbits can have close encounters with Earth and Venus. The black line corresponds to 𝑞 = 1.3
au. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
au and 𝑒 < 0.4. The 1D K–S tests applied to the 𝑎 and 𝑒 distributions
indicate that the null hypothesis can be rejected (𝑝 < 10−5). The same
problem was already discussed in Paper I, where we verified that the
excess cannot be explained by a rapid drift of 𝐷 < 100 m asteroids
across the 𝜈6 resonance. The excess also cannot be related to disruption
of NEOs at low perihelion distances (Granvik et al., 2016, and Paper I),
because (i) NEOs with 1 < 𝑎 < 1.6 au and 𝑒 < 0.4 do not reach very low
perihelion distances, and (ii) we need to add objects to our model, and
not remove them, to explain the excess of detections. This problem is
most likely related to tidal disruption of large NEOs during planetary
encounters (Granvik and Walsh, 2017, 2022, 2023); a relatively large
fraction (≃20–30%) of small NEOs with 25 < 𝐻 < 28, 1 < 𝑎 < 1.6 au
and 𝑒 < 0.4 can be fragments of tidally disrupted NEOs. We discuss this
issue in Section 5.

The intrinsic (debiased) absolute magnitude distribution from our
base model  is shown in Fig. 12. It is nearly identical to that
reported in Harris and Chodas (2021, hereafter HC21) for 𝐻 < 25.
There is a large difference between  and HC21 for 𝐻 > 25, where
the NEOMOD2 distribution has a well defined slope index 𝛾 ≃ 0.51
(equivalent to a power index ≃2.6 of the cumulative size distribution).
Here the distribution given in HC21 is significantly steeper (𝛾 ≃ 0.62
for 24 < 𝐻 < 27 or even 𝛾 ≃ 0.75 for 𝐻 > 26). The same discrepancy
was already noted in NEOMOD1 — here we confirm it from a detailed
analysis of new CSS. The slope of our size distribution for 𝐻 > 25 is
consistent with the slope expected for a population that reached the
collisional equilibrium (Dohnanyi, 1969). The steeper slope in HC21
(cumulative size index ≃3.75 for 𝐻 > 26) would require some additional
explanation.

For reference, HC21 obtained 2.44 × 107 NEOs with 𝐻 < 27.75
whereas we only have 0.912×107 NEOs with 𝐻 < 27.75 - a multiplicative
factor of ≃2.7 difference (Table 3). It is possible that we overestimated
the CSS detection efficiency by a factor of ∼2–3 for 𝐻 ≃ 28. If so, this
would bring our magnitude distribution up by the same factor. We do
10
not believe, however, that this is the case. For example, NEOMOD1 –
where the detection efficiency was obtained for old CSS (2005–2012)
from Jedicke et al. (2016) – produced practically the same result as we
find here from the new analysis of new CSS (2013–2022). It would be
strange if two observational datasets and two (independent) analyses of
the detection efficiency produce the same error. It is also possible that
the magnitude distribution reported in HC21, who based their estimate
on NEO redetections and extrapolated it to 𝐻 > 25, is too steep for
𝐻 > 25.15

The redetection method is limited to a magnitude range where
the numbers of new detections and redetections are statistically large
(17 ≲ 𝐻 ≲ 24; Harris and D’Abramo, 2015). To extrapolate the
results to fainter magnitudes, HC21 assumed that a survey detects an
increasingly smaller fraction of the NEO population and estimated –
from the statistics of close encounters of faint NEOs to the Earth –
that this fraction was proportional to 10−0.8𝐻 . The proportionality was
further adjusted to 10−1.0𝐻 for 𝐻 > 26 to better fit bolide observations
(Brown et al., 2002, 2013). But HC21 implicitly assumed, by anchoring
the results to the redetection approach at 𝐻 ≃ 24, that the orbital
distributions of small and large NEOs are the same. We already showed
in Paper I that they are not the same (also see Granvik et al. (2016,
2018)). Moreover, as we discuss in Section 5, tidal disruption of large
NEOs produce small NEOs with orbits that have high probabilities
of Earth encounters. It may therefore be somewhat problematic to

15 Here we compare our results with the case from Harris and Chodas (2021)
where NEOs with 𝐻 > 24 were given the slope 1.0(𝑉lim − 𝐻). This is the
theoretically expected slope and the one that better connects to the bolide
data (if a fixed impact probability is adopted, but see Section 6). Harris and
Chodas (2021) pointed out that the slope 0.8(𝑉lim−𝐻) better matches the slope
obtained from their redetection method near 𝐻 = 24. This shallower slope for
𝐻 > 24 would be in better agreement with our results.
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Fig. 10. The probability density functions (PDFs) of 𝑎, 𝑒, 𝑖, and 𝐻 from our biased base model (black lines) and the CSS2 NEO detections (red lines), both for bright NEOs with
15 < 𝐻 < 25. The shaded areas are 1𝜎 (bold gray), 2𝜎 (medium) and 3𝜎 (light gray) envelopes. We used the best-fit solution (i.e. the one with the maximum likelihood) from the
base model and generated 30,000 random samples with 8365 NEOs each (the sample size identical to the number of CSS2’s NEOs with 15 < 𝐻 < 25). The samples were biased
and binned with the standard binning. We identified envelopes containing 68.3% (1𝜎), 95.5% (2𝜎) and 99.7% (3𝜎) of samples and plotted them here. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
infer the general characteristics of the faint NEO population from the
encounter statistics alone.

We confirm the need for the size-dependent disruption of NEOs at
small perihelion distances, as originally pointed out in Granvik et al.
(2016) and Paper I. Clearly, any model where the disruption is not
taken into account produces a strong excess of low-𝑞 (or high-𝑒) orbits.
The 𝑞∗(𝐻) dependence found here, 𝑞∗ = 0.135 + 0.032 (𝐻 − 20) with 𝑞∗

n au, is somewhat steeper – implying disruption at larger perihelion
istances for 𝐻 > 20 – than the one inferred in Granvik et al. (2016).
ased on this we suggest that small NEOs disrupt at slightly larger
erihelion distances than found in Granvik et al. (2016).

. A case for tidal disruption

We find that the largest excess of CSS NEO detections happens
or 1 < 𝑎 < 1.6 au, 𝑞 ≃ 1 au and 𝑖 ≲ 10◦ (Fig. 13). In Paper I
e tested whether small main-belt asteroids (𝐷 < 100 m) can drift

by the Yarkovsky effect over the 𝜈6 resonance to directly reach the
NEO orbits with 1 < 𝑎 < 1.6 au and 𝑒 < 0.4, and found the orbital
distribution of NEOs constructed from the simulation with fast drifts
was nearly identical to that obtained for the 𝜈6 resonance with the
standard approach. This shows that even very small asteroids cannot
11
pass the 𝜈6 resonance and the excess of faint NEO detections for 25 <
𝐻 < 28 must be related to something else.

Tidal disruption of NEOs is the main suspect (as originally proposed
by Granvik and Walsh (2017, 2022, 2023)). The orbits with 1 <
𝑎 < 1.6 au, 𝑞 ≃ 1 au and 𝑖 ≲ 10◦ have: (i) large probabilities of
having close encounters with the Earth (e.g., Fig. 5 in Morbidelli and
Gladman (1998)), and (ii) low encounter speeds (𝑣∞ ≲ 5 km/s; Fig.
6 in Morbidelli and Gladman (1998)). This is the situation in which
tidal disruptions are most likely to happen. For example, Richardson
et al. (1998) showed that rubble pile bodies catastrophically disrupt
(‘Shoemaker-Levy-9’ type of disruption) for 𝑣∞ ≲ 5 km/s and encounter
distances 𝑑 ≲ 2 𝑅Earth, where 𝑅Earth = 6371 km is the Earth radius. We
therefore propose that the excess of small NEOs identified here (25 < 𝐻 <
28 or 9 < 𝐷 < 36 m for the reference albedo 𝑝V = 0.14) is caused by tidal
disruption of 𝐷 ≳ 50 m NEOs.

A realistic modeling of tidal disruption would require monitoring
close planetary encounters of NEOs from each source. Unfortunately,
we have not recorded any encounters in the 𝑁-body simulations de-
scribed in Paper I, and we thus cannot conduct a detailed investigation
of tidal disruption here. Instead, we performed the following test.
NEOMOD works well for 𝐻 < 25 (Fig. 10). We used the base NEOMOD
model for 𝐻 < 25 and multiplied the intrinsic NEO population in each
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Fig. 11. The probability density functions (PDFs) of 𝑎, 𝑒, 𝑖, and 𝐻 from our biased base model (black lines) and the CSS2 NEO detections (red lines), both for faint NEOs with
5 < 𝐻 < 28. The shaded areas are 1𝜎 (bold gray), 2𝜎 (medium) and 3𝜎 (light gray) envelopes. We used the best-fit solution (i.e. the one with the maximum likelihood) from the
ase model and generated 30,000 random samples with 3003 NEOs each (the sample size identical to the number of CSS2’s NEOs with 25 < 𝐻 < 28). The samples were biased

and binned with the standard binning. We identified envelopes containing 68.3% (1𝜎), 95.5% (2𝜎) and 99.7% (3𝜎) of samples and plotted them here. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
orbital bin by the probability that a body in the bin would have a
close encounter with the Earth.16 The probability was computed by
the Öpik formalism (Bottke et al., 1994). The resulting orbital distri-
bution, which approximates how fragments of tidally disrupted NEOs
would populate orbital space, was normalized to one and supplied to
MultiNest as an additional source. Note that this method ignores the
orbital evolution of fragments in NEO space. It also assumes that the
production of small fragments from tidal disruption is a steady-state
process; this would not be quite right if the contribution of only a few
random disruption events is important.

We found that including tidal disruption as an additional source
oes not change the results for bright NEOs (𝐻 < 25). This is expected
ecause the model without tidal disruption was able to match the or-
ital and absolute magnitude distribution of bright NEOs (Fig. 10), and
he disruption of a few large asteroids is not expected to significantly
hange the distribution for 𝐻 < 25. For faint NEOs, however, the best
it requires a significant contribution from tidal disruption. Specifically,
or 𝐻 = 28, MultiNest estimates the tidal disruption weight 𝛼td =

16 We also built models where the close encounters with Venus and Mars
ere included, in addition to Earth encounters. The results of these models are
ery similar to those discussed here for Earth encounters (the Venus-crossing
EO population is relatively small and Mars has a relatively low mass). Here
e focus on Earth encounters because the excess of small NEOs happens along
12

he 𝑞 ≃ 1 au line.
0.3±0.05. The biased best-fit model with tidal disruption is compared to
CSS NEO detections in Fig. 14. This plot can be contrasted with Fig. 11
where tidal disruption was ignored. We see that the fit has substantially
improved. The excess for 1 < 𝑎 < 1.6 au and 𝑒 < 0.4 has nearly
disappeared — both the semimajor axis and eccentricity distribution
show the overall shapes that match observations much better than
in Fig. 11.17 This suggests that we are on the right track to resolve
this problem (Granvik and Walsh, 2017, 2022, 2023). The absolute
magnitude distributions of NEOs with and without tidal disruption are
practically the same. For example, 𝛾6 = 0.53±0.01 with tidal disruption
and 𝛾6 = 0.509 ± 0.005 in the base model without tidal disruption. This
means that the magnitude distribution difference for 25 < 𝐻 < 28
between HC21 and this work is not resolved when the effects of tidal
disruption are (approximately) taken into account. A more realistic
modeling of tidal disruption is left for future work.

Accurate modeling of tidal disruption will need to account for the
interior structure of NEOs. There is evidence that the interior structure
changes for NEOs with 𝐷 ≃ 100 m (roughly 𝐻 ≃ 23). For 𝐷 >
100 m, asteroids do not have – with some exceptions – spins faster

17 The semimajor axis distribution in Fig. 14a can formally be rejected
(based on a K–S test), because the biased model distribution is too strongly
peaked near 1 au, whereas the CSS detections peak near 1.3 au. Some of our
test idealizations can be responsible for this. For example, we adopted a steady
state and ignored the orbital evolution of fragments.
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Table 2
The median and uncertainties of our base model parameters. The uncertainties reported
here were obtained from the posterior distribution produced by MultiNest. They
do not account for uncertainties of the CSS detection efficiency. For parameters, for
which the posterior distribution peaks near zero, the last column reports the upper
limit (68.3% of posteriors fall between zero and that limit).

Label Parameter Median −𝜎 +𝜎 Limit

𝛼’s for 𝐻 = 15

(1) 𝜈6 0.060 0.003 0.003 –
(2) 3:1 0.277 0.028 0.028 –
(3) 5:2 0.073 0.018 0.019 –
(4) 7:3 0.007 0.005 0.007 0.010
(5) 8:3 0.103 0.013 0.013 –
(6) 9:4 0.008 0.005 0.011 0.012
(7) 11:5 0.076 0.014 0.015 –
(8) 2:1 0.039 0.005 0.006 –
(9) Inner weak 0.183 0.026 0.025 –
(10) Hungarias 0.063 0.013 0.012 –
(11) Phocaeas 0.094 0.010 0.010 –
– JFCs 0.012 0.006 0.007 0.016

𝛼’s for 𝐻 = 28

(12) 𝜈6 0.595 0.024 0.022 –
(13) 3:1 0.313 0.020 0.020 –
(14) 5:2 0.019 0.009 0.010 –
(15) 7:3 0.003 0.002 0.004 0.005
(16) 8:3 0.004 0.003 0.006 0.006
(17) 9:4 0.003 0.002 0.004 0.005
(18) 11:5 0.004 0.003 0.006 0.006
(19) 2:1 0.001 0.001 0.002 0.002
(20) Inner weak 0.008 0.006 0.013 0.014
(21) Hungarias 0.020 0.014 0.020 0.029
(22) Phocaeas 0.003 0.002 0.004 0.004
– JFCs 0.014 0.007 0.008 0.018

𝐻 distribution

(23) 𝑁ref 926 29 29 –
(24) 𝛾2 0.393 0.013 0.014 –
(25) 𝛾3 0.363 0.006 0.006 –
(26) 𝛾4 0.313 0.003 0.003 –
(27) 𝛾5 0.522 0.006 0.006 –
(28) 𝛾6 0.506 0.005 0.005 –

Disruption parameters

(29) 𝑞∗0 0.132 0.003 0.002 –
(30) 𝛿𝑞∗ 0.031 0.001 0.001 –

than ∼10 rotations/day (spin period ∼2.5 h). This ‘‘spin barrier’’ most
likely indicates that 𝐷 > 100 m asteroids do not have large tensile
strength, and are hold together by gravity (Pravec and Harris, 2000).
For 𝐷 < 100 m, however, the spins can be as fast as ∼1000 rotations per
day, indicating that these smaller bodies must often have substantial
strength and that their internal structure is probably akin to that of
consolidated rock (monolith). This has important implications for tidal
disruption. Specifically, the weak NEOs with 𝐷 > 100 m could be
relatively easily disrupted during close planetary encounters, whereas
the stronger NEOs with 𝐷 < 100 m should survive more often. This
could help to explain some of the trends discussed above.

6. Planetary impacts

All planetary impacts were recorded by the 𝑁-body integrator
(Paper I). The record accounts for impacts of bodies with 𝑞 < 1.3 au
(NEOs) and 𝑞 > 1.3 au (e.g., Mars-crossers). We thus have complete
information to determine the impact flux on all terrestrial planets,
including Mars. We followed 105 test bodies from each source and have
good statistics to determine the impact flux of NEOs even from distant
main belt sources (e.g., 9:4, 2:1). To combine impacts from different
sources, we compute the total impact flux, 𝐹imp, from

𝐹imp = 𝑛(𝐻)
𝑛
∑

𝛼𝑗 (𝐻)
𝑝imp,𝑗 (𝑞∗(𝐻))
𝜏 (𝑞∗(𝐻))

, (12)
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𝑗=1 𝑗
Fig. 12. The intrinsic (debiased) absolute magnitude distribution of NEOs from our
base model (black line is the median) is compared to the magnitude distribution from
Harris and Chodas (2021) (red line). The gray area is the 3𝜎 envelope obtained from the
posterior distribution computed by MultiNest. It contains – by definition – 99.7% of
our base model posteriors. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

where 𝑛(𝐻) is the best-fit absolute magnitude distribution of NEOs,
𝛼𝑗 (𝐻) are the magnitude-dependent source weights (Table 2), 𝑝imp,𝑗 is
the probability of planetary impact for each body inserted in the source
𝑗, and 𝜏𝑗 is the mean lifetime of NEOs evolving from the source 𝑗.
Parameters 𝑝imp,𝑗 and 𝜏𝑗 depend on 𝑞∗ and are therefore also a function
of 𝐻 (via the linear relationship between 𝑞∗ and 𝐻 , as defined by the
best-fit model). We reported them for a reference value 𝑞∗ = 0.1 au in
Table 5 in Paper I.

Fig. 15 shows 𝐹imp(𝐻), converted to a cumulative distribution, for
the terrestrial planets. For comparison, we also plot the impact flux on
the Earth from HC21 who estimated it by multiplying their absolute
magnitude distribution 𝑛(𝐻) (illustrated in Fig. 12) by a constant
(i.e., magnitude independent) impact probability 𝑃i = 1.5 × 10−3

Myr−1 (Stuart, 2001; Harris and D’Abramo, 2015). We confirmed in
Paper I that this is a correct assumption for large NEOs (𝐻 ≲ 20), and
only for large NEOs (see below). Consistently with Paper I, here we find
that the average interval between impacts of 𝐻 < 17.75 NEOs (𝐷 > 1
km for 𝑝V = 0.14) is 650 kyr. Applying the same fixed impact prob-
ability to small NEOs, HC21 found that the average interval between
impacts of 𝐻 < 28 NEOs (roughly 𝐷 > 10 m for 𝑝V = 0.14) is ≃19 yr. In
Paper I, we already explained that the impact probability changes with
absolute magnitude; this happens because the 𝜈6 resonance – known
for its high impact probability (Table 5 in Paper I) – is an important
source of small NEOs. In the case without tidal disruption, here we find
𝑃i = 2.9 × 10−3 Myr−1 for 𝐻 = 28 (nearly two times the nominal) and
the average interval between impacts ≃29 yr (HC21 population is ≃3
times higher for 𝐻 < 28 but the impact probability is ≃2 times lower).
With tidal disruption, the average interval between impacts of 𝐻 < 28
NEOs is ≃17 yr.
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Table 3
The absolute magnitude distribution and completeness of the NEO population. The columns are: the lower limit of a magnitude bin (𝐻1), upper limit of a magnitude bin (𝐻2),
NEOMOD estimate of the number of NEOs between 𝐻1 and 𝐻2 (d𝑁), NEOMOD estimate of the number of NEOs with 𝐻 < 𝐻2 (𝑁(𝐻2)), Harris and Chodas (2021) estimate of
𝑁(𝐻2) (𝑁HC(𝐻2)), NEOMOD estimate of 𝑁(𝐻2) minus 1𝜎 (𝑁min(𝐻2)), NEOMOD estimate of 𝑁(𝐻2) plus 1𝜎 (𝑁max(𝐻2)), number of NEOs with 𝐻 < 𝐻2 in the MPC catalog from
October 2022 (𝑁MPC(𝐻2)), completeness defined as 𝑁MPC(𝐻2)∕𝑁(𝐻2), and 1𝜎 completeness range (<1% uncertainties not listed).
𝐻1 𝐻2 d𝑁 𝑁(𝐻2) 𝑁HC(𝐻2) 𝑁min(𝐻2) 𝑁max(𝐻2) 𝑁MPC(𝐻2) Compl. Range

15.25 15.75 61.2 130 136 124 137 123 95% (90–99)
15.75 16.25 104 234 235 219 250 210 90% (84–96)
16.25 16.75 156 390 398 365 416 361 93% (87–99)
16.75 17.25 218 608 621 579 639 562 92% (88–97)
17.25 17.75 328 936 940 898 977 854 91% (87–95)
17.75 18.25 513 0.145E4 0.147E4 0.140E4 0.151E4 1 325 91% (88–95)
18.25 18.75 790 0.224E4 0.221E4 0.217E4 0.232E4 2 022 90% (87–93)
18.75 19.25 0.117E4 0.341E4 0.323E4 0.331E4 0.350E4 2 897 85% (83–88)
19.25 19.75 0.164E4 0.505E4 0.463E4 0.492E4 0.517E4 4 021 80% (78–82)
19.75 20.25 0.216E4 0.721E4 0.642E4 0.703E4 0.737E4 5 281 73% (72–75)
20.25 20.75 0.272E4 0.992E4 0.873E4 0.970E4 0.101E5 6 636 67% (66–68)
20.75 21.25 0.350E4 0.134E5 0.118E5 0.131E5 0.137E5 8 076 60% (59–60)
21.25 21.75 0.471E4 0.181E5 0.159E5 0.178E5 0.185E5 9 480 52% (51–53)
21.75 22.25 0.673E4 0.249E5 0.217E5 0.244E5 0.254E5 10 865 44% (43–45)
22.25 22.75 0.104E5 0.353E5 0.314E5 0.345E5 0.360E5 12 309 35% (34–36)
22.75 23.25 0.173E5 0.525E5 0.476E5 0.514E5 0.536E5 13 862 26% –
23.25 23.75 0.311E5 0.836E5 0.826E5 0.818E5 0.853E5 15 673 19% –
23.75 24.25 0.608E5 0.144E6 0.153E6 0.142E6 0.147E6 17 622 12% –
24.25 24.75 0.121E6 0.266E6 0.313E6 0.260E6 0.272E6 19 709 7.4% –
24.75 25.25 0.229E6 0.494E6 0.641E6 0.482E6 0.506E6 21 724 4.4% –
25.25 25.75 0.411E6 0.905E6 0.130E7 0.882E6 0.928E6 23 636 2.6% –
25.75 26.25 0.728E6 0.163E7 0.241E7 0.159E7 0.168E7 25 337 1.6% –
26.25 26.75 0.129E7 0.292E7 0.481E7 0.284E7 0.300E7 26 728 0.9% –
26.75 27.25 0.225E7 0.517E7 0.108E8 0.500E7 0.534E7 27 849 0.5% –
27.25 27.75 0.395E7 0.912E7 0.244E8 0.875E7 0.949E7 28 653 0.3% –
An interesting difference between HC21 and this work is identified
or intermediate-size NEOs (20 < 𝐻 < 26; Fig. 15). For example, HC21
stimated that the mean time between impacts of 𝐻 < 22 NEOs (𝐷 >
140 m for the reference albedo 𝑝V = 0.14) is ≃37,000 yr, whereas we
find ≃21,400 yr. This is contributed by two factors: (1) our population
of 𝐻 < 22 NEOs is slightly larger that the one reported in HC21
(Fig. 12), and (2) our impact probability for 𝐻 < 22 NEOs is slightly
higher (𝑃i = 2.4×10−3 Myr−1 for 𝐻 = 22; due to the larger contribution
of the 𝜈6 resonance to small NEOs). Using our estimate and assuming
the Poisson statistics, the probability of one impact of a 𝐻 < 22 NEO
on the Earth in the next 1000 yr is found to be ≃4.5%.

7. Discussion

7.1. Terrestrial impacts of small NEOs

Brown et al. (2002) analyzed satellite records of bolide detonations
in the Earth’s atmosphere to estimate the impact flux of ∼1–10 m
bodies. For 𝐷 ≃ 10 m, roughly equivalent to 𝐻 = 28 for our reference
albedo 𝑝V = 0.14, the average interval between impacts was found ≃10
yr (with a factor of ≃2 uncertainty). The infrasound data from Silber
et al. (2009), as reported by Brown et al. (2013), indicate a somewhat
shorter interval but the error bars of these estimates overlap with the
bolide data. As for fireball events recorded on the CNEOS website,18

at least three impactors over the past 20 yr, including the Chelyabinsk
meteorite (Brown et al., 2013), had estimated pre-atmospheric-entry
diameters 𝐷 > 10 m. Together, these estimates suggest that the average
interval between 𝐷 > 10 m impacts is ≃10 yr, or perhaps even
somewhat shorter.

These results motivated HC21 to use a slightly steeper extrapolation
of the NEO magnitude distribution to 𝐻 ∼ 28 such that their impact
flux estimate is more in line with impact observations. Here we showed
that the magnitude distribution is in fact relatively shallow (𝛾 ≃ 0.51
for 15 < 𝐻 < 28) but the impact probability on the Earth increases

18 https://cneos.jpl.nasa.gov/fireballs/.
14
for smaller NEOs (due to preferential sampling of the 𝜈6 resonance
and tidal disruption). The mean interval between impacts of 𝐻 < 28
NEOs is estimated here to be ≃17 yr (Fig. 15). This is a factor of ≳ 1.7
longer than the estimates based on bolides, infrasound and CNEOS.
We speculate that the effects of tidal disruption may be even more
important for terrestrial impacts than our simple test in Section 5 would
indicate. A detailed investigation of tidal disruption is left for future
work.

7.2. Lunar/martian craters

Our work could explain the difference between the size distributions
of lunar and Martian craters (Daubar et al., 2022). The recently formed,
small Martian craters have relatively shallow size distribution (≃2.2
cumulative index from Daubar et al. (2022)). For small lunar craters,
Neukum et al. (2001) reported ≃3.4 cumulative index for crater diam-
eters ≃0.1–2 km, which would correspond to ≃3–100 m impactors (the
distribution is probably even steeper for smaller impactors; (Speyerer
et al., 2020)). The size distribution of small lunar craters is thus
significantly steeper than the size distribution of small Martian craters.
Previous work sought to explain this difference by meteoroid ablation
and fragmentation in Martian atmosphere (Popova et al., 2003), but
the atmospheric effect should be irrelevant for 𝐷 > 10 m impactors.
Secondary impacts, which can contribute to the size distribution of
small craters, should have similar effects for the Moon and Mars. As
an important caveat, we note that the craters reported in Daubar et al.
(2022) are very small, roughly corresponding to 𝐷 < 10 m impactors.

Here we find the cumulative index ≃3.1 for small lunar impactors
and ≃2.5 for small Martian impactors (25 < 𝐻 < 28 or 9 < 𝐷 < 36 m for
𝑝V = 0.14). The lunar distribution is steeper for two reasons: (1) Small
NEOs preferentially evolve from the 𝜈6 resonance; this favors lunar
impacts because small objects spend shorter time on Mars-crossing
orbits than the large ones (their impact window is short). (2) Tidal
disruption produces excess of small NEOs (25 < 𝐻 < 28) for 1 < 𝑎 < 1.6
au, 𝑞 ≃ 1 au and 𝑖 ≲ 10◦ (Section 5), and these fragments are more
likely to hit the Moon (or Earth) than Mars. Tidal disruption during

close encounters to Mars should happen as well but it is hard to find

https://cneos.jpl.nasa.gov/fireballs/
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Fig. 13. The excess of 25 < 𝐻 < 28 NEOs detected by new CSS relative to our base
model for 25 < 𝐻 < 28 (Section 4). We binned NEOs detected by CSS2 with the
standard binning (Paper I), subtracted the number of NEOs predicted in each bin by
our biased best fit model, b, and normalized it by b. The red color shows that the
largest excess, roughly 20%–30%, happens for 1 < 𝑎 < 1.6 au, 𝑞 ≃ 1 au and 𝑖 ≲ 10◦. The
red lines show borders of the orbital domain where orbits can have close encounters
with Earth and Venus. The black line corresponds to 𝑞 = 1.3 au. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

any evidence for that in the CSS data (this may suggest that no large
tidal disruption events happened during Mars encounters recently).19

For 𝐻 ∼ 28, the Mars-to-Moon impact ratio, normalized to the
unit surface area, is found to be 𝑅b = 0.8 in the model without tidal
disruption and 𝑅b = 0.5 in the model with tidal disruption. The trend
of decreasing 𝑅b for smaller impactors is consistent with the results
reported in Paper I, where we found 𝑅b = 1.2 for 𝐻 ∼ 25. For reference,
Hartmann (2005) and Marchi (2021) adopted 𝑅b = 2.6 for all asteroid
impactor sizes when they used the lunar chronology for Mars. With our
new 𝑅b estimates, which imply lower impact flux on Mars, the young
terrains on Mars dated from 9 < 𝐷 < 36 m impacts should be ∼2–5
times older than thought before.

7.3. PM excess of meteorite falls

Tidal disruption could also help to explain the PM excess of mete-
orite falls (Paper I). The PM/AM ratio measures the relative frequency

19 Alternatively, small NEOs produced by tidal encounters to Mars do
become bright enough, given their relatively distant orbits, to be detected by
a terrestrial observer.
15
of meteorite falls before (6–12 h) and after (12–18 h) noon. It is usually
reported as the number of afternoon falls (12–18 h) over the number
of day-time falls (6–18 h), to express the observed excess of afternoon
falls, here denoted as  . Ordinary chondrites (OCs), for example, have
 = 0.63 ± 0.02 (Wisdom, 2017), but in Paper I we obtained  =
0.47 ± 0.02 and 0.50 ± 0.05 for the 𝜈6 and 3:1 resonances, respectively
(also see Morbidelli and Gladman (1998)). This difference could be
resolved because the excess small NEOs detected by CSS, which we
attribute to tidal disruption here, happens for 1 < 𝑎 < 1.6 au, 𝑞 ≃ 1
au and 𝑖 ≲ 10◦, and impacts from these orbits are expected to have
 > 0.6 (Fig. 6 in Morbidelli and Gladman (1998)). We leave a detailed
investigation of this issue for future work.

7.4. Orbits and CRE ages of meteorites

Our work suggests that tidal disruption should be progressively
more important for small terrestrial impactors and if so, we would
expect that many meteorites should have orbits with 1 < 𝑎 < 1.6 au
and 𝑞 ≃ 1 au. But this does not seem to be the case: the meteorite falls
and bolides detected by US Government sensors show a broad orbital
range with 𝑞 = 𝑎(1−𝑒) < 1 au and 𝑄 = 𝑎(1+𝑒) > 1 au (Brown et al., 2013,
2016; Granvik and Brown, 2018). It could be that some additional
dependencies make a difference. For example, the bolide detections
should scale with the kinetic energy of the impactor. This means that
disrupted objects, which have relatively low impact speeds and thus
lower impact energies, should have a reduced presence the detected
bolide flux. When we fold this dependence into the orbital distribution
of small impactors, we find that the orbital distribution of bolides from
the model is actually consistent with bolide observations.20

It needs to be emphasized that the pre-atmospheric-entry diameters
of meteorites are characteristically ∼0.1 m, which is a factor of ∼100
in size below where we constrained NEOMOD2 from the telescopic
observations of NEOs (𝐷 ≳ 10 m). The impactor sizes reported from
US Government sensors are typically ∼1 m (Brown et al., 2016). So,
there could also be something problematic with extrapolating our
expectations from 𝐷 ≳ 10 m to 𝐷 ≲ 1 m.

In addition, if many small NEOs were produced in relatively recent
tidal disruption events of larger NEOs, we would expect that many
meteorites would have short Cosmic Ray Exposure (CRE) ages. But
the CRE distribution of ordinary chondrites does not seem to require
any recent tidal disruption events (Vokrouhlický and Farinella, 2000;
except, perhaps, for the CRE peak of H chondrites at 7–8 Myr). It may
be the case that tidal disruption affects carbonaceous (C-type) NEOs
to a larger degree, because they are weaker and have lower density
than ordinary chondrites. Noble gas analysis has indicated that the CRE
ages of most CM and CI chondrites are 0.1–1 Myr, significantly younger
than ages of other carbonaceous and ordinary chondrites (1–100 Myr;
Eugster et al., 2006). Krietsch et al. (2021) found that the main CRE
age cluster of CMs is at ≃0.2 Myr and observed further minor peaks at
1, 4.5–6, and 8 Myr.

7.5. Observational completeness

The last two columns in Table 3 show the NEOMOD2 prediction
for the observational completeness of NEOs. To use the same mag-
nitude system from which NEOMOD2 was derived, completeness is
reported relative to the MPC catalog from October 2022 (this defines
the absolute magnitude system used in this is work). The more recent
MPC catalogs are (slightly) more complete as they include new NEO
discoveries since October 2022. Unfortunately, we cannot rigorously
use these catalogs because the absolute magnitudes reported for many
NEOs and MBAs, for which we derived the CSS detection efficiencies,

20 The statistics is not ideal because (Brown et al., 2016) only reported ∼50
bolide orbits; additional detection biases can also be an issue.
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Fig. 14. The probability density functions (PDFs) of 𝑎, 𝑒, 𝑖, and 𝐻 from our biased based model with tidal disruption (black lines) and the CSS2 NEO detections (red lines),
oth for faint NEOs with 25 < 𝐻 < 28. The shaded areas are 1𝜎 (bold gray), 2𝜎 (medium) and 3𝜎 (light gray) envelopes. We used the best-fit solution (i.e. the one with the
aximum likelihood) from the model with tidal disruption and generated 30,000 random samples with 3003 NEOs each (the sample size identical to the number of CSS2’s NEOs
ith 25 < 𝐻 < 28). The samples were biased and binned with the standard binning. We identified envelopes containing 68.3% (1𝜎), 95.5% (2𝜎) and 99.7% (3𝜎) of samples and
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have changed: the 𝐻 magnitudes became on average fainter by a
fraction of mag (Pravec et al., 2012). The shifting magnitudes mean
that the actual number of NEOs brighter than 𝐻 (or larger than 𝐷)
s lower (𝑁(𝐻2) values in Table 3 should be lower) than what we
ave inferred from the MPC catalog released in October 2022.21 This
ssue, in itself, should not affect the completeness of the population
eported in Table 3 (assuming that NEOs and main belt asteroids are
imilarly affected). To rigorously test this, the magnitude system of
EOMOD would have to be updated to the new magnitudes, and this
ould essentially require to repeat many steps described in Sections 2
nd 3. We leave this for future updates. To approximately align the
stimated NEO population in this work with new MPC magnitudes,
ne can compare the number of known NEOs in Table 3 (𝑁MPC(𝐻2))
ith the number of known NEOs with 𝐻 < 𝐻2 in any new catalog,

defining the ratio 𝑓 = 𝑁MPC,new(𝐻2)∕𝑁MPC(𝐻2), and apply it as a
multiplication factor to the NEOMOD estimate in Table 3 (𝑁(𝐻2)),

21 For example, Harris and Chodas (2021) had 898 known NEOs with 𝐻 <
7.75 (MPC catalog from August 8, 2020), we have 854 known NEOs with

< 17.75 (MPC catalog from October 19, 2022), and Harris and Chodas
2023) have 805 known NEOs with 𝐻 < 17.75 (MPC catalog from March 13,
023). As no individual asteroids were dropped from the MPC catalog, this
eans that nearly one hundred NEOs with estimated 𝐻 < 17.75 in 2020 now
16

ave 𝐻 > 17.75. This is a dramatic shift.
btaining 𝑁(𝐻2)new = 𝑓 ×𝑁(𝐻2). For example, if 𝑓 = 805∕854 = 0.943
or 𝐻 < 17.75 (Table 3 and MPC catalog from March 2023; Harris and
hodas, 2023), then 𝑁new(17.75) ≃ 0.943 × 936 = 882.

The results reported in Table 3 indicate that the population of
mall NEOs is largely incomplete (Fig. 16). For example, we find that
he completeness for 𝐻 < 22.75 (𝐷 > 100 m for 𝑝V = 0.14) is
26%. This compares reasonably well with HC21 who found a ≃34%
ompleteness for 𝐻 < 22.75 (Harris and Chodas, 2023 estimated a
40% completeness for 𝐻 < 22.75). Our results start to diverge from
C21 and Harris and Chodas (2023) for smaller NEOs. For the faintest
agnitudes considered in our work, we find a ≃0.3% completeness for
< 27.75, whereas HC21 and Harris and Chodas (2023) reported only
≃0.09% completeness for 𝐻 < 27.75. These differences are ultimately
riven by the shallower absolute magnitude distribution that we obtain
ere for 𝐻 > 25 (Fig. 12 and Section 4).

Interestingly, the NEOMOD2 results suggest that even the popula-
ion of bright NEOs could be significantly incomplete. For example,
he estimated completeness for 𝐻 < 17.75 is 91 ± 4% (note that this is
he completeness of the MPC catalog released in October 2022; the 𝐻
agnitudes updates in the new catalogs complicate things). This would

mply that 44–123 𝐻 < 17.75 NEOs have yet to be discovered. The
ormal uncertainty of our estimate is relatively large. For comparison,
C21 and Harris and Chodas (2023) used the redetection method to
stimate the completeness of 𝐻 < 17.75 NEOs at ≃96%, which is
just about one sigma above our estimate. The redetection method may
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Fig. 15. The impact flux on the terrestrial planets for our base model with tidal
disruption. The black, green, blue and red lines show the impact flux for Mercury,
Venus, Earth and Mars from Eq. (12). With a 30% contribution of tidal disruptions
at 𝐻 = 28, the mean time between impacts of 𝐷 > 10 m NEOs is ≃17 years (was
≃30 years in the base model without tidal disruption; thin blue line), which is more
consistent with bolide and infrasound observations (Brown et al., 2002, 2013; black
dot). The thin black line is the NEO magnitude distribution from Harris and Chodas
(2021) scaled with the fixed impact probability (1.5 × 10−3 Myr−1; see the main text).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

provide a more accurate completeness estimate for these bright NEOs
for which the redetection statistics is good. Related to that, it would be
worthwhile to quantify various uncertainties of the redetection method
and their impact on the completeness estimate. Seven 𝐻 < 17.75 NEOs
were discovered in the past two years (2022–2023): 2022 KL8, 2023
HQ2, 2022 AP7, 2023 PS2, 2022 QK204, 2023 GZ1, and 2022 RX3.
Many of these have large inclinations (five have 𝑖 > 30◦) and/or large
semimajor axes (five have 𝑎 > 2.8 au). At this rate, it could take over a
decade to find 99% of all 𝐻 < 17.75 NEOs (𝑎 < 4.2 au).

To understand where the bright NEOs may be hiding, we generated
a large sample of bright NEOs from the NEOMOD Simulator and ran
them through the CSS detection pipeline. We used the G96 observations
from 2005–2022 and 703 observations from 2005–2012. This cumula-
tively corresponds to 28 years of NEO observations from the northern
hemisphere. We found that ≃4% of bright NEOs do not appear in any
frame taken by CSS and would thus avoid detection. Most of these
objects have 𝑎 ≲ 1.2 au and avoid detection due to the synodic effect,
or have the argument of perihelion 𝜔 ∼ 90◦ — and therefore appear
in the southern hemisphere near opposition. Two ATLAS NEO-survey
telescopes with large FoVs just started operations from the southern
hemisphere (Chile and Southern Africa). By simulating their detection
capabilities (Deienno et al., 2023), we find that both of these telescopes
should be very effective in detecting bright NEOs that escape detections
from the northern hemisphere. Indeed, W68 (Chile) has recently a
discovery of 2022 RX3, a potentially hazardous NEO with 𝐻 = 17.7.
17
Fig. 16. The estimated completeness of the NEO population from our base model
(thick black line; the two thin lines show 1 sigma uncertainty; Table 3) is compared
to the completeness estimated in Harris and Chodas (2023) (red line). For 𝐻 < 19, the
completeness given in Harris and Chodas (2023) is consistent with 1 sigma envelope
of our results. The redetection method may provide a more accurate completeness
estimate for these bright NEOs. Our model indicates slightly lower completeness than
Harris and Chodas (2023) for 19 < 𝐻 < 24, and slightly higher completeness than
Harris and Chodas (2023) for 𝐻 > 24. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

7.6. Collisional evolution of small NEOs

We used the Öpik formalism (Bottke et al., 1994) to estimate the
collisional probabilities and velocities among NEOs, and between NEOs
and main belt asteroids (MBAs). The intrinsic probability for collisions
among NEOs is relatively high, 𝑃i ≃ 6.5 × 10−18 km−2 yr−1, but the
population of NEOs is much smaller than MBAs; collisions among
NEOs can therefore be neglected. The probabilities and velocities for
collisions between NEOs and MBAs are 𝑃i ≃ 2.6 × 10−18 km−2 yr−1

and 𝑉i ≃ 11.6 km/s. The impact speeds are therefore ≃2 times higher
than in the case of collisions among MBAs. Taking this into account
we estimate that the collisional lifetime of NEOs should be ∼3 times
shorter, on average, than the collisional lifetime of MBAs. For MBAs,
Bottke et al. (2005) reported that the average collisional lifetime is
∼30 Myr for 𝐷 ≃ 10 m. This allows us to estimate that the collisional
lifetime of 𝐷 ≃ 10 m NEOs is ∼10 Myr, only slightly longer than the
dynamical lifetime of NEOs produced from the 𝜈6 resonance (Table 5 in
Paper I; other resonances give much shorter dynamical lifetimes). This
means that it may be justified, but barely so, to neglect the collisional
evolution of NEOs for 𝐷 > 10 m. Conversely, for 𝐷 < 10 m, the
collisional lifetime of NEOs would have to be taken into account. For
reference, here we estimate that the average collisional lifetime of
𝐷 ≃ 1 m NEO is ∼5 Myr.

7.7. Distribution of NEO obliquities

La Spina et al. (2004) reported a ∼2:1 preference for retrograde
rotation among large NEOs (𝐷 ≳ 1 km). They interpreted this result
in the context of the NEO model from Bottke et al. (2002). In the
Bottke et al. model, the 𝜈 resonance contributes to ≃37% of NEOs.
6
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To reach 𝜈6, a main belt asteroid must have a retrograde rotation
nd drift inward; this implies that the 𝜈6 resonance should produce

predominantly retrograde NEOs. Other important sources of NEOs,
including the 3:1 resonance and weak resonances in the inner belt,
can be reached from both sides, and this implies that they should be
producing and roughly equal share of prograde and retrograde NEOs.
La Spina et al. (2004) therefore found from this argument that the ratio
of retrograde to prograde NEOs should be (37 + 63∕2): 63∕2 or ∼2:1, in
good agreement with observations.

NEOMOD2 indicates a much smaller contribution of 𝜈6 resonance
to large NEOs: 𝛼𝜈6 = 0.06 ± 0.03 for 𝐻 ≃ 15. If this is correct,
the contribution of the 𝜈6 resonance to large retrograde NEOs would
e minimal. We therefore suggest that the preference for retrograde
otation of large NEOs is probably related to something else. There are
t least two possibilities:

(1) We find that the number of 𝐻 < 18 MBAs on the sunward side of
the 3:1 resonance is significantly lower (by ∼50%) than on the opposite
side. This asymmetry, which favors generation of retrograde NEOs from
3:1, is contributed by asteroid families (Nesvorný et al., 2015).

(2) Ďurech and Hanuš (2023) obtained the distribution of 𝐷 > 1
km MBAs from a Gaia-DR3 data analysis (Gaia Collaboration et al.,
2023). They showed that retrograde MBAs often have the obliquity 𝜃 ≃
180◦, most likely because they reached the terminal state of the YORP
evolution (Vokrouhlický et al., 2015). The prograde MBAs, however,
show a broader distribution of obliquities (roughly 0 < 𝜃 ≲ 60◦).
This presumably happens because prograde rotators can be captured
in spin–orbit resonances that can prevent them from reaching 𝜃 ≃ 0
(Vokrouhlický et al., 2003). All this means that the retrograde MBAs
should have, on average, faster Yarkovsky drift rates (the Yarkovsky
drift rate scales with cos 𝜃; Vokrouhlický et al. (2015)) than prograde
MBAs; they more likely reach resonances and evolve onto NEO orbits.22

Asymmetric feeding of the 3:1 and other strong resonances could
provide a possible explanation for the preference for retrograde rotation
among large NEOs (La Spina et al., 2004). Farnocchia et al. (2013)
analyzed obliquities of small, sub-km NEOs and found that 81 ± 8%
have retrograde rotation (i.e., roughly a 4:1 preference for retrograde
rotation). The increasing share of retrograde rotators among smaller
NEO is likely related the fact that the 𝜈6 resonance contribution to the
NEO population increases for small bodies. For example, for 𝐷 ≃ 0.1
km (𝐻 ≃ 22.75 for 𝑝v = 0.14), the 𝜈6 contribution is ≃40%, which is
already similar to the 𝜈6 contribution adopted in La Spina et al. (2004).
This presumably could, when combined with obliquity distribution
differences discussed above, explain the 4:1 preference for retrograde
rotation among small NEOs (Farnocchia et al., 2013).

8. Summary

The main results of this work are summarized as follows.

(1) We updated the previous NEO model. NEOMOD v2.0 is based on
numerical integrations of bodies from 12 sources (11 main-belt
sources and comets). A flexible method to accurately calculate
biases of NEO surveys was applied to the Catalina Sky Sur-
vey (CSS) observations from 2013 to 2022, when CSS detected
≃14,000 unique NEOs (this can be compared to only ≃4500
unique NEOs detected by CSS from 2005 to 2012 (Paper I,
Granvik et al., 2018). The MultiNest code (Feroz and Hobson,
2008; Feroz et al., 2009) was used to optimize the model fit to
CSS detections.

22 It needs to be demonstrated whether the asymmetric feeding of resonances
y faster drifting retrograde MBAs can remain in a steady state. Without a
istant source, the retrograde MBAs on the outer side of the 3:1 resonance
𝑎 > 2.5 au) would end up evolving into the resonance. Their number density
n a narrow strip near the 3:1 resonance would decrease, and this would affect
he feeding rate. In reality, however, the number density of MBAs on the outer
ide of the 3:1 resonance is larger than on the sunward side (see item (1)
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bove).
(2) The best-fit orbital and absolute magnitude NEO model is avail-
able via the NEOMOD Simulator,23 a code that can be used to
generate user-defined NEO samples from the model. Researchers
interested in the probability that a specific NEO evolved from
a particular source can obtain this information from the ASCII
table that is available along with the Simulator.

(3) We confirm that the sampling of main-belt sources by NEOs
is size-dependent with the 𝜈6 and 3:1 resonances contributing
∼30% of NEOs with 𝐻 ∼ 15, and ∼90% of NEOs with 𝐻 ∼
28. This trend most likely arises from how the small and large
main-belt asteroids reach the source regions. We confirm the
size-dependent disruption of NEOs reported in Granvik et al.
(2016) and Paper I. As a consequence of the size-dependent
sampling and disruption, small and large NEOs have different
orbital distributions.

(4) We found a shallower absolute magnitude distribution for 25 <
𝐻 < 28 and smaller number of NEOs with 𝐻 < 28 than
Harris and Chodas (2021). This may point to some problem
with the detection efficiency of CSS. Alternatively, some of the
assumptions in Harris and Chodas (2021) may not be quite right.
When tidal disruption is ignored, the average time between
terrestrial impacts of 𝐷 > 10 m bolides is found here to be 29
yr — ≃1.5 and ≃3 times longer than the nominal estimates from
Harris and Chodas (2021) and Brown et al. (2002, 2013). See
item (6) below for the results with tidal disruption.

(5) We estimate 936 ± 29 NEOs with 𝐻 < 17.75 (𝐷 > 1 km for
𝑝V = 0.14) and 𝑎 < 4.2 au. With 854 known 𝐻 < 17.75 NEOs
(as of October 2022), the NEO population with 𝐻 < 17.75 is
87%–95% complete (1𝜎 interval). Many of the yet-to-be-detected
bright NEOs should have large orbital inclinations and/or large
semimajor axes. The hemispheric bias will be reduced as two AT-
LAS telescopes continue to operate from the south hemisphere.
The known NEO population with 𝐻 < 22 (𝐷 > 140 m for
𝑝V = 0.14) is only 47%–49% complete.

(6) The excess of CSS NEO detections for 1 < 𝑎 < 1.6 au, 𝑞≃1 au,
𝑖 ≲ 10◦ and 25 < 𝐻 < 28 (Figs. 11 and 13) is attributed to
tidal disruption of larger NEOs during close encounters with the
Earth. The orbital fit significantly improves in a model where
tidal disruption is (approximately) accounted for. With tidal
disruption, the average time between terrestrial impacts of 𝐷 >
10 m bolides is found to be ≃17 yr. Tidal disruption could also
help to explain the PM excess of meteorite falls and differences
in lunar and Martian crater size distributions.

(7) For 𝐻 ∼ 28, the Mars-to-Moon impact ratio, normalized to the
unit surface area, is found to be 𝑅b = 0.8 in the model without
tidal disruption and 𝑅b = 0.5 in the model with tidal disrup-
tion. Previous works used 𝑅b = 2.6 for all asteroid impactor
sizes (Hartmann, 2005; Marchi, 2021) to apply the lunar crater
chronology to Mars; this may be incorrect, especially for small
impactors. The trend of decreasing 𝑅b for smaller impactors is
consistent with the results reported in Paper I, where we found
𝑅b = 1.2 for 𝐻 ∼ 25.

(8) We suggest that the distribution of obliquities of large NEOs,
which shows a ∼2:1 preference for retrograde rotation (La Spina
et al., 2004), may be related to (on average) faster Yarkovsky
drift rates of retrograde main belt asteroids (given that their
obliquities are more tightly clumped near 180◦, Ďurech and
Hanuš (2023); Sect. 7.7), and/or to the asymmetric distribution
of main belt asteroids around source resonances (e.g., 3:1; Sec-
tion 7.7). The larger share of retrograde rotators among smaller
NEOs (Farnocchia et al., 2013) is likely related the fact that
the 𝜈6 resonance contribution increases for small NEOs (the 𝜈6
resonance can only be reached by sunward-drifting bodies with
𝜃 > 90◦).

23 https://www.boulder.swri.edu/˜davidn/NEOMOD_Simulator and GitHub.

https://www.boulder.swri.edu/\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \endgroup \relax \let \ignorespaces \relax \accent 3 \egroup \spacefactor \accent@spacefactor davidn/NEOMOD_Simulator
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(9) The impact probability of a 𝐻 < 22 (𝐷 > 140 m for 𝑝V = 0.14)
object on the Earth in this millennium is estimated to be ≃4.5%.
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