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Abstract

We investigate the relevance of the Yarkovsky effect for the origin of kilometer and multikilometer near-Earth asteroids (NEAs). The
Yarkovsky effect causes a slow migration in semimajor axis of main belt asteroids, some of which are therefore captured into powerful
resonances and transported to the NEA space. With an innovative simulation scheme, we determine that in the current steady-state situation
100–160 bodies withH � 18 (roughly larger than 1 km) enter the 3/1 resonance per million years and 40–60 enter the�6 resonance. The
ranges are due to uncertainties on relevant simulation parameters such as the time scales for collisional disruption and reorientation, their
size dependence, and the strength of the Yarkovsky and YORP effects. These flux rates to the resonances are consistent with those
independently derived by Bottke et al. (2002, Icarus 156, 399–433) with considerations based only on the NEA orbital distribution and
dynamical lifetime. Our results have been obtained assuming that the main belt contains 1,300,000 asteroids withH � 18 and linearly scale
with this number. Assuming that the cumulative magnitude distribution of main belt asteroids isN(� H) � 10��H with �� � 0.25 in the 15.5
� H � 18 range (consistent with the results of the SDSS survey), we obtain that the bodies captured into the resonances should have a
similar magnitude distribution, but with exponent coefficient� � 0.33–0.40. The lowest value is obtained taking into account the YORP
effect, while higher values correspond to a weakened YORP or to YORP-less cases. These values of� are all compatible with the debiased
magnitude distributions of the NEAs according to Rabinowitz et al. (2000, Nature 403, 165–166), Bottke et al. (2000b, Science 288,
2190–2194), and Stuart (2001, Science 294, 1691–1693). Hence the Yarkovsky and YORP effects allow us to understand why the
magnitude distribution of NEAs is only moderately steeper than that of the main belt population. The steepest main belt distribution that
would still be compatible with the NEA distribution has exponent coefficient�� � 0.3.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The Solar System small bodies with perihelion distances
q � 1.3 AU and aphelion distancesQ � 0.983 AU are
usually called near-Earth asteroids (NEAs). Although orig-
inally believed to be dormant cometary nuclei, the prevail-
ing opinion starting from the early 1980s (Wetherill, 1979,
Wisdom, 1983) is that these bodies are in fact former main
belt asteroids, which escaped from the main belt by resonant
effects, achieving planet-crossing orbits (see Morbidelli et
al. (2002a) for a review). Several resonances have been
identified that are able to pump the eccentricity of asteroids

up to planet-crossing values. It is suitable to classify them
into “powerful resonances” and “diffusive resonances”
(Morbidelli, 2002; Nesvorny´ et al., 2003). The former can
be effectively distinguished from the latter by the existence
of associated gaps in the main belt asteroid distribution. The
most notable powerful resonances are the�6 secular reso-
nance, at the inner edge of the asteroid belt, and the 3/1
mean-motion resonance with Jupiter at 2.5 AU (but also the
5/2 and 2/1 resonances at 2.8 and 3.2 AU). The diffusive
resonances are so numerous that they cannot be effectively
enumerated and they can slowly drive a significant number
of asteroids toward the Mars-crossing zone (Migliorini et
al., 1998; Morbidelli and Nesvorny´, 1999).

If the resonances were not continuously resupplied by
new asteroids, they would become completely depleted of
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bodies and NEA production would stop. In this case, in
several tens of millions of years the NEAs would disappear.
But this has never happened during the history of the Solar
System, as witnessed by the terrestrial and lunar crater
records (Grieve and Shoemaker, 1994, Neukum and Ivanov,
1994), which show that the NEA population has been
roughly constant over the last 3.5 Gyr. The classical sce-
nario developed by Wetherill (1979, 1985, 1987, 1988; see
also Greenberg and Nolan, 1989; Farinella et al., 1993 and
Rabinowitz, 1997) is that the collisional activity in the main
belt, which breaks large asteroids, continuously injects a
considerable number of new bodies into the resonances. In
this manner, the NEA population is kept in steady state.

In the 1990s, the availability of fast computers and new
integration algorithms allowed the simulation of the long-
term dynamical evolution of a statistically significant num-
ber of real or synthetic NEAs (Farinella et al., 1994;
Migliorini et al., 1997; Gladman et al., 1997, 2000). It
became rapidly evident that the dynamical lifetime of NEAs
is only a few million years, more than an order of magnitude
shorter than previously computed by Monte Carlo simula-
tions that accounted only for the effect of close encounters
with the planets and not for resonant perturbations. This
new result implies that, to keep the NEA population in
steady state, the rates at which resonances are resupplied
with asteroids must be much higher than previously be-
lieved. More recently, Bottke et al. (2002) established the
relative contribution to the NEA population of the most
important resonant sources. Assuming that the NEA popu-
lation is in steady state, they estimated that about 220
asteroids brighter than absolute magnitude H � 18 (roughly
larger than 1 km in diameter) escape from the inner main
belt (a � 2.8 AU) every million years; of these, 100 � 50
should come through the 3/1 resonance, 55 � 18 through
the �6 resonance, and 65 � 15 through the network of
diffusive resonances in the 2.1- to 2.8-AU region. To date,
these are the best estimates of the resupply rate of the NEA
source resonances.

Zappalà et al. (2002) have searched for all main belt
asteroids which, upon collisions, could inject multikilome-
ter bodies into the NEA source resonances. They found a
relatively small number of candidates, which made them
conclude that collisions are unlikely to produce the required
number of NEAs larger than 1 km. Taking into account that
they considered optimistic ejection velocity fields, unsup-
ported by smooth particle hydrodynamics simulations (Love
and Ahrens, 1996; Benz and Asphaug, 1999; Michel et al.,
2001), this result puts in serious doubts the classical sce-
nario on the collisional origin of NEAs.

There are two additional indications that the NEAs
should not be fresh collisional fragments. The first comes
from their shallow magnitude distribution. Several works
(Rabinowitz et al., 2000; Bottke et al., 2000b; Stuart, 2001)
agree that the cumulative H distribution of the NEAs in the
14 � H � 22 range has the form

N� � H	�10�H, (1)

with � � 0.35 to 0.39. If the NEAs were fragments from
catastrophic breakups, they would presumably have a much
steeper magnitude distribution, as predicted by hydrocode
simulations (Michel et al., 2001) and observed in asteroid
families (� 
 0.5; Tanga et al., 1999; Campo Bagatin et al.,
2002). The second indication comes from the heavily cra-
tered surface of Eros, revealed by the NEAR spacecraft. The
large number of craters suggests that the physical age of
Eros (2 Gyr; Chapman et al., 2002) is much greater than its
probable dynamical lifetime as a NEA (few tens of millions
of years; Michel et al., 1996), which implies the asteroid
was not a fresh collisional fragment at the time of its
insertion into the resonance that transported it to the NEA
space.

From these considerations, in their review on the current
state of art, Morbidelli et al. (2002a) concluded that the
Yarkovsky effect might be ultimately responsible for the
delivery of a sufficiently large number of kilometer-sized
asteroids to the NEA source resonances. The Yarkovsky
effect is a weak recoil force due to the thermal reemission of
rotating asteroids, which causes kilometer-sized bodies to
slowly drift in semimajor axis (Farinella and Vokrouhlický,
1999; see Bottke et al., 2003, for a review). The drift rate is
estimated to be �10�4 AU Myr�1 for 1-km bodies and to
be roughly inversely proportional to the body’s size. The
same phenomenon has already been shown to work for the
delivery of meteorite precursor bodies to the same reso-
nances and explains the long cosmic ray exposure ages of
meteorites (Vokrouhlický and Farinella, 2000; Bottke et al.,
2000a).

The purpose of this paper is to verify the role of the
Yarkovsky effect for the origin of NEAs. Our goal is two-
fold: (i) to quantify the rates at which bodies with H � 18
are transported by the Yarkovsky effect into the 3/1 and �6

resonance and (ii) to quantify the cumulative magnitude
distribution of the bodies that enter these resonances. We do
this with a combination of numerical integration of the
Yarkovsky equations and Monte Carlo techniques, in which
the bodies drift in semimajor axis under the Yarkovsky
effect at constant eccentricity and inclination, statistically
undergoing spin axis reorientations and collisional disrup-
tions. The results are compared with the supply rates for the
3/1 and �6 resonances estimated by Bottke et al. (2002) and
with the observed cumulative magnitude distribution of the
NEA population. Notice that we do not investigate the rates
at which the bodies are supplied to the diffusive resonances,
because this would require full N-body simulations account-
ing for the gravitational perturbations exerted by the planets,
as in Bottke et al. (2001).

This work requires a quite complex and articulated mod-
eling effort. We start in Section 2 by constructing a simple
model of the orbital and absolute magnitude distribution of
main belt asteroids, based on current observations. In Sec-
tion 3 we discuss how we can define the boundaries of the
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resonances, through which the effective flux of asteroids can
be measured. Section 4 will be devoted to modeling the
Yarkovsky and the YORP effects. The latter is the analog of
the Yarkovsky effect but acts on the spin motion of the
asteroids (Rubincam, 2000, Vokrouhlický and Čapek,
2002). In Section 5 we will describe how we can simulate a
steady-state process, where asteroids are continuously pro-
duced and disrupted in the main belt with some character-
istic (size-dependent) collisional lifetime, while the Yark-
ovsky effect delivers to the resonances those bodies which
are formed closest to the resonance boundaries. In Section 6
we analyze the resulting fluxes of bodies into the 3/1 and �6

resonances and their cumulative magnitude distribution. We
also investigate how these results change with the values of
the parameters of the model. Conclusions and discussion
will close the work in Section 7.

2. A simple main belt asteroid distribution model

To estimate the flux of main belt asteroids into the NEA
source resonances we need to have a model of the orbital
and absolute magnitude distribution of the main belt popu-
lation. Fig. 1 shows the observed cumulative H distribution
of main belt asteroids (solid curve). Unfortunately, the
known population is severely incomplete for H 
 13–14, so
that beyond this threshold we need to make an educated
guess on what should be the real distribution.

An important contribution is provided by the results of
the recent SDSS survey which, from the detection of 13,000
asteroids over 500 deg2 of searched sky, concluded that the
cumulative magnitude distribution can be approximated by

a broken exponential law of type N(� H) � 10��H, with ��
� 0.6 for 12 � H � 15.5 and �� � 0.26 for 15.5 � H � 19
(Ivezić et al., 2001). This broken exponential law can be
approximated by an analytic function which asymptotically
approaches the two slopes, represented by the dash-dotted
curve in Fig. 1. By estimating which fraction of the main
belt population should have crossed the survey field, Ivezić
et al. concluded that there should be 530,000 asteroids with
H � 18 and 68,000 with H � 15.5. Notice however that
Jedicke and Metcalfe (1998), from the sample of the main
belt population detected by the Spacewatch survey, esti-
mated 120,000 bodies with H � 15.5, while the number
with H � 18 is not explicitely reported.

A problem with the estimate provided by the SDSS team
is that, as evident in Fig. 1, the number of predicted bodies
is smaller than the observed number, for H � 16. To explain
this apparent paradox, the SDSS team (Jurić et al., 2002)
argued for a systematic error in the absolute magnitudes
reported in the Astorb catalog (see ftp://ftp.lowell.edu/pub/
elgb/astorb.html) and, to a lesser extent, in the database of
the Minor Planet Center (see http://cfa-ftp.harvard.edu/pub/
MPCORB). In essence, Jurić et al. claimed that the asteroids
are reported in these catalogs with a value of H that is, on
average, 0.5 magnitudes brighter than the “ real” one. This
means that the solid curve in Fig. 1 should be shifted to the
right by 0.5 magnitudes, which would make it coincide
quite accurately with the SDSS estimated distribution. On
the other hand, we note in Fig. 1 that the disagreement
between the observed and SDSS distributions also concerns
fairly bright bodies with H � 12–13, while the discrepan-
cies in the cataloged magnitudes reported by Jurić et al.
concern essentially only the bodies with apparent magnitude
V 
 15; the latter, at opposition at 2 AU, corresponds to H

 13.5. Also, the disagreement between the SDSS and the
Jedicke and Metcalfe estimates is likely not explained by an
error in the reported absolute magnitudes, because Jedicke
and Metcalfe used exclusively Spacewatch data, whose
photometry is “notoriously good” (R. Jedicke, private com-
munication, 2002).

At the current state of the art, the situation is rather
confused. It might be possible that there is a problem in the
conversion factor that the SDSS team uses to convert the
number of asteroids detected by their survey into the num-
ber of total asteroids in the main belt. If this were the case,
the slopes of the magnitude distribution determined by the
SDSS should be basically trustworthy, but not the estimate
of the total number of main belt asteroids. Following this
conjecture, we have extrapolated the observed cumulative
distribution using SDSS-like slopes, namely, 0.61 for 13 �
H � 15.5 and 0.25 for 15.5 � H � 18. We remark that the
first slope fits very well the observed slope for H in the
12–14 range; the second slope has also been found by
Jedicke and Metcalfe (1998). Our extrapolated distribution,
shown in Fig. 1 by dashed lines, predicts 1,300,000 bodies
with H � 18. This number is in good agreement with the
number of bodies larger than 1 km predicted by Tedesco

Fig. 1. Cumulative magnitude distribution of main belt asteroids. The solid
curve is the observed distribution as given by the Astorb catalog. The
dash-dotted curve represents the population predicted by the SDSS survey
team (Ivezić et al., 2001). Notice the strong disagreement with the observed
distribution, discussed in the text. The dashed lines show our estimate of
the population, obtained by extrapolating the observed distribution using a
broken power law with slopes very similar to the asymptotic values
determined by SDSS.
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and Desert (2002) using the observations of the infrared
satellite ISO. In the following we will use this model as our
nominal population, for the computation of the asteroid flux
into resonance. The reader should keep in mind that if the
SDSS estimate of the total population eventually turns out
to be correct, the fluxes that we obtain should be divided by
2.5 (the ratio between the number of H � 18 objects in our
estimate and in the SDSS estimate).

In practice, we partition the belt into three zones: the
inner belt with a � 2.5 AU, the central belt with 2.5 � a �
2.82 AU, and the outer belt with 2.82 � a � 3.3 AU (which
is never considered in this work, since it cannot contribute
to the flux of objects into the 3/1 or �6 resonances). In each
zone, we extrapolate the observed H distribution using the
slopes reported in the previous paragraph. We conclude that
the inner belt and the central belt should host respectively
175,000 and 388,000 bodies with H � 18.

After having assumed an absolute magnitude distribution
of the main belt population in each zone, we complete the
catalog of the observed asteroids by generating synthetic
objects. A nontrivial problem is to decide which orbital
distribution should be given to the synthetic objects. The
asteroid belt population can be partitioned into several fam-
ily groups and a background subpopulation (Tedesco et al.,
2002). Until recently it was generally accepted that the
magnitude distribution of the former is steeper than that of
the latter (Zappalà and Cellino, 1996). If this were true,
most of the synthetic asteroids should be attributed to the
family groups. However, using the latest data and an inno-
vative approach, we have recently shown that the H distri-
bution of asteroid families bends very sharply beyond H �
13, and that for H 
 15 it is background-like or even
slightly shallower (Morbidelli et al., 2003). In this case the
relative partition of the synthetic asteroids among back-
ground and families subpopulations should be roughly sim-
ilar to the partition of the observed asteroids. This is the
attitude that we adopt in this paper.

A second problem concerns the orbital distribution of the
asteroids within each family. Cellino et al. (1999) showed
that the orbital distribution of family members depends on
H. The new data, however, show that this is true only for H
� 13 (Bottke et al., 2001; see also Fig. 2). Above this
threshold, the families typically spread over a region ex-
tending between the two nearest powerful resonances,
which sharply bound the family. Bottke et al. interpreted
this fact as a signature of the dispersion of asteroid families
due to the Yarkovsky force. In fact, the drift in semimajor
axis induced by the Yarkovsky effect is size dependent: the
smaller the bodies, the further they can drift in a given time
(the family age). This gives an H-dependent size of the
family, or a V-shape structure in a semimajor axis vs H
representation (Fig. 2). However, powerful resonances can-
not be crossed by bodies slowly drifting in semimajor axis,
so that the families cannot extend beyond the nearest gaps
on the left and on the right side. As a consequence, the
semimajor axis dispersion of the family members fainter

than some threshold (typically H � 13–14) is simply limited
by the resonance locations, and results independent of H.

These considerations on the orbital and magnitude dis-
tribution of asteroid families make us conclude that, in first
approximation, the orbital distribution of the still unob-
served asteroids with 13 � H � 18 should be statistically
equivalent to that of the observed bodies in the same mag-
nitude range. In doing this, we neglect that there are relative
biases favoring the discovery of low inclination and/or
small perihelion distance objects over the large inclination
and/or large perihelion distance ones. These biases are prob-
ably not overwhelming inside each of the three main belt
zones defined here, thanks to the limited range of a, q, and
i spanned by the bodies in each zone. This motivated us to
partition the belt into these three zones and to neglect the
existence of relative biases inside each zone.

In conclusion, to keep the model as simple as possible, in
each zone we randomly attribute to the synthetic asteroids
the values of proper semimajor axis, eccentricity, and incli-
nations of the observed asteroids with H 
 13. In doing this,
in our model we end up having several objects initially with
identical values of semimajor axis, eccentricity, and incli-
nation. This is not a problem, because having different sizes,
spin axis orientation, and spin rates, these bodies will drift
in semimajor axis at different speeds under the Yarkovsky
effect, and thus they will have different evolutions. Size,
spin axis orientation, and spin rate are key parameters in the
determination of the Yarkovsky force. The assumptions for
the latter two are explicitely discussed in Section 4. The
sizes are derived from the absolute magnitudes, by assum-
ing that the albedo of the bodies in the inner belt is 0.25 and
that the central belt is 0.22. These values correspond to the
mean albedos of the main belt asteroids in the vicinity of the

Fig. 2. The observed (a, H) distribution of the Eunomia family, defined
from the new catalog of �100,000 proper elements by Milani and
Knežević (see Knežević et al., 2003, for a review). The horizontal line at
H � 13 separates the lower region, where the width of the family depends
on H, from the upper region, where the semimajor axis distribution of the
family members is roughly independent of H. The same happens for all the
major families in the asteroid belt.
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�6 and 3/1 resonances, respectively (Morbidelli et al.,
2002b). We are aware that the bodies close to 2.8 AU
should have smaller albedos, on average, but this is irrele-
vant for our purposes because these asteroids are too far
from the 3/1 resonance to contribute to its influx.

Despite all these simplifications, we think that this sim-
ple main belt distribution model is enough for our purpose,
which is to obtain a first gross estimate of the Yarkovsky-
driven flux of multikilometer bodies into the NEA source
resonances.

3. The effective boundaries of the 3/1 and �6

resonances

To evaluate the flux of asteroids into the 3/1 and �6

resonances we need to define the boundaries of these reso-
nances and monitor which bodies cross them during the
simulation. To define these boundaries, we refer to the
catalog of the synthetic proper elements (42,868 bodies;
Knežević and Milani, 2000). The proper a, e, i distribution
of the bodies in this catalog shows well-defined gaps asso-
ciated with the 3/1 and �6 resonances (Fig. 3), whose bound-
aries can be approximated by the formulas

a � 2.508 �
e

29.615
for e � 0.15936, (2a)

a � 2.485 �
e

5.615
for e 	 0.15936 (2b)

for the right side of the 3/1 resonance;

a � 2.492 

e

108.85
for e � 0.1734, (3a)

a � 2.51 

e

8.85
for e 	 0.1734, (3b)

for the left side of the 3/1 resonance (independent of i), and

a � 2.12 � 6.003 �sin i	2.256 (4)

for the right side of the �6 resonance (independent of e). We
use the synthetic proper elements, rather than the analytic
proper elements, because the latter would show artificially
enlarged resonant gaps, since the analytic algorithm may not
converge for bodies in the vicinity of the resonances. Sim-
ilarly, we do not use the osculating orbital elements, be-
cause the latter would show artificially shrunk gaps, since
the asteroids may temporarily “ invade” the gap during the
short periodic oscillations of their semimajor axes.

A visual analysis of Fig. 3 suggests that the density of
asteroids sharply decays with increasing proximity to the
resonant boundaries. This is not an optical illusion. For
example, Fig. 4 (left panel) shows the number of asteroids
in the synthetic proper element catalog as a function of
distance from the right border of the 3/1 resonance. The
distance is measured as a� � a, where a� is the proper
semimajor axis of the asteroid, and a is given by (3) using
for e the proper eccentricity of the asteroid. As one can see,
the asteroid density sharply increases up to �0.015 AU
from the resonance boundary, and then is more or less
constant over the next 0.025 AU. The reason for this partial
depletion of the main belt population close to the 3/1 reso-
nance has been recently discussed by Guillens et al. (2002),
who showed with numerical integrations that the dynamics
in the vicinity of the resonance are weakly chaotic. Conse-
quently, asteroids within 0.01 to 0.02 AU from the reso-
nance borders tend to migrate in proper element space
(chaotic diffusion), falling into the resonance on a time scale
of �100 Myr. This phenomenon is illustrated in Fig. 4
(right panel), which shows the 100-Myr evolution in proper
element space of 45 bodies, initially chosen on a regular
grid. It is evident that chaotic diffusion can easily deplete
the neighborhood of the resonance up to �0.0075 AU from
the resonance border.

Guillens et al. argued that the diffusive neighborhood of
the resonance is not completely depleted of asteroids, be-
cause new bodies are continuously resupplied by Yarkovsky

Fig. 3. The distribution of the asteroids with respect to the numerically computed proper elements, in the vicinity of the 3/1 (left panel) and �6 (right panel)
resonances. The continuous curves show the boundaries defined in (2), (3), and (4). The dashed curves show the shifted boundaries used for the computation
of the effective asteroid fluxes.
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from the more distant regions of the belt. In this scenario the
asteroids drifting in semimajor axis by Yarkovsky enter the
diffusive region. Once there, chaotic diffusion becomes
improtant, delivering the asteroids to the resonance on a
time scale comparable or shorter than the one that would
have been necessary if the Yarkovsky effect had to push
them all the way to the resonance border (kilometer-sized
bodies take �100 Myr to cross the 0.015-AU-wide region,
on average). The sharply dropping density of asteroids ob-
served in the resonance vicinity is the result of this process.
As a further confirmation, Guillens et al. also pointed out
that the ratio between small and large asteroids in the
diffusive region is larger than it is further away from the
resonance, exactly what one should expect for a size-depen-
dent Yarkovsky effect and a size-independent chaotic dif-
fusion.

In this framework, if we want to correctly evaluate the
number of asteroids supplied by the Yarkovsky effect to the
resonance, we need to measure the flux of asteroids into the
diffusive region, and not that into the resonance itself. For
this reason, we shift the boundaries of the 3/1 resonance
0.015 AU away from the nominal resonance borders
(dashed lines in the left panel of Fig. 3). In doing this we
implicitely assume that all the bodies entering the diffusive
neighborhood will eventually fall into the resonance, ne-
glecting the possibility of their collisional disruption in the
diffusion zone. This should not be a severe simplification,
given that the typical collisional lifetimes for 1- and 10-km
bodies are of order 350 and 1200 Myr, respectively (see
formula (9) in Section 5).

For the �6 resonance, the numerical integrations by Mor-
bidelli and Gladman (1998) and Nesvorný et al. (2002)
indicate that chaotic diffusion is a relevant phenomenon in
the 0.05- to 0.10-AU neighborhood. An analysis similar to
that shown in the left panel of Fig. 4 shows that the density
of asteroids grows until 0.08–0.09 AU from the resonance.
To measure the flux of Yarkovsky-driven multikilometer

asteroids we therefore drift the �6 resonance boundary out-
ward by 0.09 AU, as indicated by the dashed curve in the
right panel of Fig. 3. In the following we will refer to these
shifted boundaries simply as “ resonant boundaries.” In Sec-
tion 6 we will discuss how the specific choice of the bound-
aries influences our final results.

4. Modeling the Yarkovsky and the YORP effects

The major orbital perturbation caused by the Yarkovsky
effect is a secular change of the semimajor axis (e.g., Bottke
et al., 2003). For asteroids with low surface thermal con-
ductivity (�10�3 W/m/K), a reasonable assumption for
kilometer size and larger bodies, likely covered with a
regolith layer (e.g., Müller and Lagerros, 1998), the diurnal
variant of the effect dominates. The latter can both secularly
decrease and increase the semimajor axis, depending on
their obliquity being larger or smaller than 90°. The semi-
major axis drift speed is computed with the formula

da

dt
� k�R, K, . . .	 cos �, (5)

where � is the obliquity of the body’s spin axis and k is
function of the radius R, thermal conductivity K of the
surface, and several other thermal parameters. The exact
analytic form of k may be found in Vokrouhlický (1998,
1999), while Fig. 5 shows its value in a graphic form for a
1-km-diameter body with 2.5 g/cm3 bulk density, as a func-
tion of K. The vertical dashed lines bound the range of
values for K that are consistent with IR observations (Müller
and Lagerros, 1998), and the vertical dotted line indicates
the nominal value of K that we will use in the simulations,
which gives, for an obliquity of 0° or 180°, a semimajor axis
drift rate of �2.7  10�4 AU/Myr. This drift rate scales
almost inversely with the characteristic size (k � 1/R) and

Fig. 4. (Left) The number of asteroids in the synthetic proper elements catalog, as a function of distance from the right border of the 3/1 resonance. Notice
the sharp increase of the asteroid density over the first 0.015 AU. (Right) The 100-Myr evolution in the resonant proper element space (see Morbidelli et
al., 1995, for a definition of resonant proper elements) of 45 bodies initially chosen on a regular grid in the proper (a,e) plane. Bodies that do not significantly
migrate during the integration appear as short vertical segments, while those that do migrate leave a tortuous trace. The slanted line denotes the boundary
of the 3/1 resonance, where several migrating bodies eventually enter. The crosses represent some members of the Maria family. The family stops where
chaotic diffusion becomes effective.
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becomes thus practically unimportant for objects larger than
�20 km in diameter.

The values of k shown in Fig. 5 have been computed for
spherical bodies. The corresponding values averaged over a
large sample of irregularly shaped test bodies using the
Gaussian random spheres method (Muinonen and Lagerros,
1998) and using a nonlinear theory of the heat diffusion are
estimated to be �25% smaller (Vokrouhlický and Čapek,
2003, to be submitted). Because 25% is approximately the
uncertainty of the drift rate due to the lack of precise
knowledge of the thermal conductivity, we neglect the non-
sphericity effects.

The Yarkovsky effect depends on a number of physical
and geometric parameters, and we must make a specific
choice of these parameters in our simulations. We noted
already that in the case of kilometer-scale asteroids a low
value of the surface conductivity is justified and we shall
use it throughout our simulations. We also mentioned the
obliquity dependence; except for simulations incorporating
the YORP effect described in the following, we assume
random orientation of the spin axes in space, implying a
uniform distribution in cos �; � is assumed time-independent
until a sufficiently energetic, but still nondisruptive colli-
sion, reorients the spin axis direction. Reorienting collisions
have been introduced by Farinella et al. (1998), who defined
them as collisions exchanging with the target an amount of
angular momentum equal, on average, to the target’s rota-
tional angular momentum. The charateristic time scale of
such events can be given as

�reor � B R, (6)

where R is the radius of the target; if the latter is given in
meters, the projectile population is assumed to follow the
Dohnanyi (1969) equilibrium distribution of sizes, and the
rotation frequency scales as 1/R, Farinella et al. argued that
B � 15 Myr and  � 0.5 (see also Farinella and Vokrou-
hlický, 1999). However, given the large uncertainties in

these quantities, we consider them as free parameters and
will explore the sentivity of the results on their values. After
a reorienting collision, the spin axis obliquity is randomly
reset, according to a uniform distribution in cos �.

The diurnal variant of the Yarkovsky effect depends also
on the rotation rate �, though only weakly (as ��; Vok-
rouhlický, 1998, 1999; Bottke et al., 2003). The observed
distribution of the rotation rates of small asteroids in the 1-
to 10-km range indicates only a very weak size dependence
(Pravec and Harris, 2000). We thus assume that asteroids in
our simulation have nearly size-independent rotation rates;
we assume values in the range 3 to 15 h, to prevent excess
due to very fast or slow rotators, with a broad Gaussian
distribution in � peaked at � 6 h. The true distribution of
small-asteroid � deviates from Gaussian (Pravec and Harris,
2000); nevertheless, given other uncertainties in our study,
and given the weak dependence of the Yarkovsky effect on
the rotation rate in the considered range, we stay with the
assumption of the Gaussian distribution. We nevertheless
verified the robustness of our conclusions by initially put-
ting a flat probability distribution of the rotation rates for the
asteroids, without noticing any difference from the “nomi-
nal results.”

Rubincam (2000), followed by Vokrouhlický and Čapek
(2002), argued that the thermal recoil force which is the
basis of the Yarkovsky orbital effect also results in a long-
term secular change of the asteroids rotation state, provided
the body is of irregular shape. Rubincam suggested calling
this effect YORP as an acronym to Yarkovsky–O’Keefe–
Radzievski–Paddack, the last three contributing to the de-
velopment of a related model for the radiation pressure in
the 1960s. YORP secularly modifies obliquity and rotation
rate, both relevant quantities for determining the strength of
the Yarkovsky perturbation of the semimajor axis. The
“ tricky” circumstance of the YORP effect is that it sensi-
tively depends on the shape; in fact it vanishes for both
spherical and spheroidal bodies. To evaluate the averge
importance of the YORP effect over a large sample of
bodies, Vokrouhlický and Čapek (2002) determined its
mean value over 500 synthetic bodies, generated using the
Gaussian spheres method introduced by Muinonen and La-
gerros (1998), which reasonably well reproduces the shapes
of kilometer scaled asteroids. This result, derived with a
simplified assumption of zero surface thermal condutivity,
has been recently generalized by Čapek and Vokrouhlický
(2003, to be submitted) for bodies with finite surface ther-
mal conductivity. In summary, the YORP effect can be
described as follows: Given arbitrary initial conditions the
obliquity is driven toward an asymptotic value of 0° or
180°; during this process the rotation rate is changed; by the
time the obliquity has reached a nearly asymptotic value, the
rotation rate has decelerated or accelerated (with decelera-
tion more likely, occurring in some 60% of the cases).
Obviously, this evolution assumes that only YORP is act-
ing; Rubincam (2000) conjectured that during the asymp-
totic state, the YORP evolution would be interrupted by

Fig. 5. The maximum drift rate k as a function of the thermal conductivity
K, for a 1-km-diameter body with 2.5 g/cm3 bulk density. The range of
expected values of K for main belt asteroids is bounded by the dashed
vertical lines, while the dotted line shows the nominal value assumed in our
simulations.
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rotational fission (in the case of accelerating rotation) or by
collisional reorientation (in the case of decelerating rota-
tion). In the latter case, the evolution restarts from the new
state and then follows a new evolution track (a scenario
termed “YORP cycle” by Rubincam (2000)).

To see the influence of the YORP evolution in our model
for the origin of NEAs, we implement these concepts in the
following form. The evolution of the obliquity � and the
rotation rate � is given by

d�

dt
� f��	, (7)

d�

dt
�

g��	

�
, (8)

where the functions f and g are the time averages of the
radiation torque, projected onto the direction of the spin axis
and a direction perpendicular to it (Rubincam, 2000, Vok-
rouhlický and Čapek, 2002). Obviously, they depend on the
particular shape of the body, but here we use their average
values over the large sample of bodies generated with the
Gaussian sphere method, computed by Vokrouhlický and
Čapek (2002); see Fig. 6. We note that these results still
assume zero surface thermal conductivity; also, no attempt
to include further effects, such as temporary captures in
secular spin–orbit resonances are made in this study.

Quantitatively, we are mainly concerned with two rele-
vant time scales. The first one is that of the evolution that
drives the obliquity toward its asymptotic state, which en-
ters in a direct way in the computation of the Yarkovsky
effect. The other time scale concerns the asymptotic spin-
down or spin-up of the rotation rate, which enters in a more
indirect way into the simulation. In the case of spin-down,
the spin momentum is decreased, so that the projectiles that
can reorient the body are smaller than in the YORP-less
case. This fact, given the size distribution of the asteroid
population, results in a reduction of the characteristic reori-
entation time scale. In the case of spin-up, rotational fission

eventualy occurs; in our model we assume that this is the
case whenever the rotation period decreases below 2 h.
Vokrouhlický and Čapek (2002) showed that these time
scales are comparable and amount to �10–50 Myr for a
kilometer-size asteroid at �2.5 AU. They also noted that
this value does not vary significantly in the asteroid belt,
since the smaller solar radiation flux in its outer part is
nearly compensated by systematically smaller bulk density
of asteroids (given taxonomic differentiation). Therefore,
the most important dependence of the YORP characteristic
time scale is on size, scaling with radius R as f, g � 1/R2.
This rapid regression makes the YORP effect unimportant
for bodies with R � 5 km.

5. Recipe for the simulation of a steady-state process

As anticipated in the introduction, our simulation is done
with a combination of numerical integration of the Yark-
ovsky equations and Monte Carlo techniques, as in Vok-
rouhlický and Farinella (2000). We neglect all planetary
perturbations and let the body drift in semimajor axis under
the Yarkovsky effect, at constant eccentricity and inclina-
tion.

If we took into account the sole Yarkovsky effect, be-
cause of the �1/D dependence of the drift rate, the size
distribution of the bodies transported into the resonance
would be steeper than the size distribution of main belt
bodies by a factor 1/D. This would give a H distribution of
type (1) with � � 0.2 � ��, with �� being the corresponding
coefficient in the exponent of the H distribution for the main
belt. Assuming �� � 0.25 for 15.5 � H � 18 as in Section
2, this would give � � 0.45. This is considerably larger than
the slope observed in the NEA population (0.35–0.39; Rabi-
nowitz et al., 2000; Bottke et al., 2000b, Stuart, 2001).
However, the reality is much more complex. The bodies
undergo collisional reorientations of their spin axes (which
reset their drift speeds) and are collisionally disrupted on
their way to the resonance. Because both phenomena occur
more frequently for small bodies than for large ones, it is
reasonable to expect that they reduce the difference between
�� and �. But a simulation incorporating collisional reori-
entations and disruptions would inevitably produce a flux
into the resonances that decays with time. (More precisely,
reorientations alone would give a flux decaying as 1/�t,
while collisional disruptions would give a flux decaying
exponentially in time.) Hence, to have a realistic estimate of
the current rate at which the resonances are resupplied, we
need to take into account that the asteroids are also colli-
sionally regenerated by the breakup of bigger bodies. This
regeneration rate on average should equilibrate the loss rates
due to collisional disruption and escapes into the NEA
space, maintaining the belt in an approximate steady state.
(Recall that the existence of a steady state is a usual as-
sumption, driven by the evidence that the NEA population

Fig. 6. The functions f and g of Eqs. (7) and (8) for the �60% of the bodies
that eventually decelerate their spin rate. For the other 40% that eventualy
accelerate, the function f is changed of sign. The ordinate units are 1/s/Myr,
for convenience.
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has been roughly constant over the last 3.5 Gyr (Grieve and
Shoemaker, 1994; Neukum and Ivanov, 1994).)

Ideally, we should develop a code that at the same time
simulates the Yarkovsky-driven drift of the asteroids in orbital
space, their spin-axis reorientations, and the collisional cascade
ongoing in the asteroid belt. Because our goal is to provide a
first evaluation of the role played by the Yarkovsky effect for
the origin of NEAs, we believe that this approach would be too
ambitious. Rather, we have preferred to adopt a simpler strat-
egy: We have designed a model that asymptotically evolves
toward a steady state which, for the point of view of total
number of asteroids, orbital, and absolute magnitude distribu-
tion, is equivalent to the main belt model generated in Section
2. Our recipe is as follows.

We start from the main belt model detailed in Section 2.
At each time step dt of the temporal evolution (usually equal
to 0.5 Myr) we perform the following operations:

(i) Assuming that for a body with radius R the average
time scale of collisional disruption is

�disr � A R� (9)

(the values of A and � depending on the simulation; see
Section 6), for each asteroid in the simulation we generate
a random number between 0 and 1; if the latter is smaller
than 1 � exp[�dt/�disr] we assume that a collisional dis-
ruption occurs. Considering that in a steady state for each
collisional disruption there should be a collisional regener-
ation, we reintroduce the body in the simulation, keeping
invariant its absolute magnitude H, and attributing new a, e,
i, randomly chosen from the set of values characterizing the
initial population (Section 2). The diameter is computed
using the characteristic albedo for the new semimajor axis
zone. A new obliquity � is randomly chosen from a uniform
distribution in cos �, and a new rotation rate � is chosen
from the distribution discussed in Section 4.

(ii) For the asteroids which have not been disrupted
during the time step, we compute the new semimajor axis
according to the drift rate given in (5). If a body crosses a
resonant boundary during the time step it is recorded as a
new resonant body and is eliminated from the simulation.
However, in a steady state the dynamical loss of bodies
must be compensated by the collisional generation of new
objects. The latter occurs on a fixed characteristic time scale
(see Eq. (9)), independent of the dynamical fate of the
bodies. In practice, we implement this situation by putting
the resonant bodies into a “ resonant buffer,” where they
wait until the algorithm described in (i) dictates their rein-
troduction in the system.

(iii) If the YORP effect is taken into account (which
occurs only in some of the simulations; see Section 6) we
compute for each body the new obliquity and rotation pe-
riod using (7) and (8). The new values are used for the
computation of the semimajor axis drift rates during the
next time step. If the orbital period has decreased below 2 h,
the body is assumed to undergo rotational fission. In this
case the body is reintroduced in the simulation with new

orbital elements and spin parameters, as for the bodies
undergoing collisional disruption (see point (i)).

(iv) Assuming a characteristic size-dependent reorienta-
tion time scale �reor (see Eq. (6)), for each asteroid we
generate a random number between 0 and 1; if the latter is
smaller than 1 � exp[�dt/�reor] we assume that a reorien-
tation occurs and we attribute to the asteroid a new obliquity
� and a new rotation rate �.

It is evident that with this algorithm the system is forced
to evolve toward a steady state, because each body that
leaves the system is reintroduced with parameters (initial
orbital elements, obliquity, and rotation rate) that are ran-
domly chosen according to the distributions that character-
ize the initial population. If there were no dynamical exit
routes (the resonance regions), the steady-state population
would be statistically equivalent to the starting population.
With the exit routes active, the steady-state population may
differ from the initial one in the vicinity of the resonant
boundaries. The width of the region where the difference
can be significant depends on the reorientation and disrup-
tion time scales. If the latter are large enough, it may be a
significant portion of the entire belt. In these cases, we redo
the simulation changing the H distribution of the initial
population (but preserving the orbital distribution), until the
final steady-state population has the same total number of
asteroids and H distribution of our main belt population
model (see Section 2). Because the simulations show simple
relations between the initial and the final distributions, the
desired result is usually attained in a couple of iterations. A
visual inspection of the steady-state orbital distribution also
shows a quite nice similarity with the orbital distribution of
our main belt model. In particular, all major asteroid fam-
ilies can be easily recognized.

The advantage of our toy model is that it is fast and effec-
tive. Moreover, we do not need to bother about the usual tricky
parameters of the collisional evolution codes, such as those
related to impact strength, ejection velocity fields, and size
distribution of fresh collisional debries, which are all poorly
constrained. The limitations are obvious, though. While a
proper simulation of the evolution of the belt may provide
statistical information on the evolution of the NEA generation
rate over the age of the Solar System (both for what concerns
a possible secular trend and random oscillations), our toy
model can just simulate the current steady-state situation. The
transition phases toward the steady state in our simulation
should not be interpreted as a representation of the past history
of the belt and of the NEA population. Only the final steady-
state situation is relevant for our purposes.

6. The flux of multikilometer asteroids into the 3/1 and
�6 resonance, and the NEA size distribution

We now come to analyze the results of our simulations
and discuss their dependence on the main free parameters of
the model.
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As a “nominal simulation” we consider the case with
disruption and reorientation time scales given by the rela-
tionships (9) and (6), with coefficients A � 16.8 Myr, � �
1/2, B � 15 Myr, and  � 1/2 and the radius R measured in
meters. These formulas have already been used in Farinella
and Vokrouhlický (1999). The YORP effect is not taken
into account. The solid and dashed curves in the left panel
of Fig. 7 show the flux of H � 18 bodies into respectively
the 3/1 and the �6 resonance as a function of time, in the
course of our 2-Gyr integration. After some transient phase
in the first part of the simulation, these fluxes oscillate
around a fairly constant value, which means that our simu-
lation has effectively converged toward a steady-state situ-
ation. The resulting fluxes are 135 bodies with H � 18 per
Myr in 3/1 and 50 in �6. These fluxes compare very well
with those deduced by Bottke et al. (2002) on the basis of
their NEA model: respectively to 100 � 50 and 55 � 18.
The cumulative magnitude distribution of the bodies that
entered the 3/1 or the �6 resonance during the last 0.5 Gyr
of simulation (after that the steady state has been reached) is
illustrated in the right panel of Fig. 7. The exponent coef-
ficient � of the exponential distribution (1) is 0.40, for 15.5
� H � 18. This value is steeper than the exponent coeffi-
cient of the NEA population according to Rabinowitz et al.
(2000) and Bottke et al (2000b) (� � 0.35), but well com-
parable to that estimated by Stuart (2001), i.e., � � 0.39.

We have done a series of 11 other simulations, changing
the A and B coefficients by the factors reported in Table 1.
The results for the fluxes and for the exponent of the H
distribution, computed over the last 0.5 Gyr of simulation,
are reported in Table 1. We remark that, while the exponent
of the magnitude distribution is essentially the same in all
cases, the fluxes significantly increase when the reorienta-
tion time scale is increased. The disruption time scale has a
more moderate importance. If the reorientation time scale is
short, then the highest fluxes are obtained with a compara-
tively short disruption time scale. If the reorientation time
scale is the nominal one or larger, then the largest fluxes are
obtained with the longest disruption lifetime. When the
reorientation time scale is short, the motion of the bodies
through the belt resambles a random walk. Consequently, as
Fig. 8 shows, the fluxes into the resonances decay as 1/�t,
before a steady-state situation is achieved. As said in the
previous section, our simulations do not have the ambition
to reproduce the evolution of the NEA flux over the age of
the Solar System; the decay phase should just be considered
as a transient phase of the simulation, and only the final
steady-state rates should be considered as relevant.

To investigate the sensitivity of the results to the shift
imposed in Section 3 to the resonant boundaries, we have
also performed a nominal simulation but assuming that the
3/1 boundaries are shifted only by 0.005 AU and the �6

Fig. 7. (Left) The flux of bodies with H � 18 into the 3/1 and �6 resonances in the course of the 2-Gyr simulation. A steady-state situation is rapidly reached.
The horizontal lines show the average steady-state fluxes of 135 and 50 bodies per million years, respectively. (Right) The cumulative H distribution of the
bodies that enter the 3/1 or the �6 resonance in the last 0.5 Gyr of simulation. The dashed line has slope � � 0.40 and fits the distribution in the 15.5 � H
� 18 range.

Table 1
Summary of results concerning simulations which assume �disr and �reor as in (9) and (6), but with coefficients A and B scaled with respect to the
“nominal values” (A � 16.8 Myr, B � 15 Myr) by the factors reported in the first column and the first line below

B3 0.1 0.3 1 3

2A F3/1 F�6 � F3/1 F�6 � F3/1 F�6 � F3/1 F�6 �

0.3 89 36 0.40 112 45 0.40 129 51 0.40 137 54 0.40
1 72 29 0.40 104 41 0.40 135 50 0.40 149 54 0.40
3 57 23 0.40 91 33 0.40 136 47 0.39 161 52 0.38

Note. For each simulation, the steady-state flux into the 3/1 resonance (F3/1) and �6 resonance (F�6) are reported in number of bodies with H � 18 per
million years. The exponent coefficient � of the H distribution (1) of the bodies captured into resonance over the last 0.5 Gyr of simulation is also given.
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boundary by 0.03 AU. The resulting fluxes into the reso-
nances are moderately reduced, giving 129 bodies in 3/1 and
36 in �6. This was expected because of the reduced popu-
lation in the resonant neighborhoods. No substantial change
in the H distribution of the resonant objects is observed.

In a series of seven other simulations we explore the
dependence of the results on , the exponent of R that
appears in the formula (6). The nominal value ( � 1/2) is
obtained (Farinella et al., 1998) assuming that the rotation
speed � is—on average—inversely proportional to R and
that the overall cumulative size distribution in the main belt
is N(
 R) � R�2.5 (Dohnanyi, 1969). According to modern
data (Pravec and Harris, 2000), the rotation speed seems to
be roughly independent on R, and it is not clear what the
overall size distribution is in the main belt, averaged over a
large size range. Hence we think that the value of  is
poorly constrained. Table 2 lists the values of  that we
have considered and the resulting exponent � of the mag-
nitude distribution of the bodies captured into one of the
considered resonances. The numerical coefficient B in (6)
has been chosen in all cases so that the reorientation time
scale for bodies with R � 500 m is the same as in our
nominal case. The assumed disruption time scale is also our
nominal one. Because of these choices, the resulting fluxes
in the 3/1 and �6 resonances are essentially identical to those
of the nominal simulation (see the left panel of Fig. 7).
Interestingly, Table 2 shows that the larger  is, the smaller
� is. This is because the small bodies undergo more frequent
reorientations compared to the larger ones, which preferen-
tially inhibits their transport toward the resonances. For  �
0.75 the resulting H distribution is compatible with the slope
of the NEA population according to Stuart (2001) but still
substantially steeper than the H distributions found by Rabi-
nowitz et al (2000) and Bottke et al. (2000b).

We have also done a similar exploration concerning �,
the exponent of R appearing in the formula for the disrup-
tion time scale �disr. But in this case we have not found any
significant variation on �.

We move now to consider how the situation changes if
the YORP effect is also taken into account. In this new
simulation we use the nominal disruption time scale and an
�-dependent reorientation time scale given by

Treor � 15 � 1

500

�

�0
� 5/6

R4/3 (10)

with �0 � 2�/(5h). This formula is due to Farinella et al.
(1998) and reduces to our nominal reorientation law (Eq. (6)
with B � 15 Myr and  � 1/2) if one assumes that � scales
as 1/R and is equal to 2�/ (5 h) for a R � 500 m body. The
f and g functions entering the YORP equations (7) and (8)
are those illustrated in Fig. 6. The results of this simulation
are illustrated in Fig. 9. As for the case of fast reorientations
without the YORP effect (Fig. 8), at the beginning of the
simulation the fluxes into the resonances drop as 1/�t, until
a steady state is reached. The steady-state fluxes are equal to
109 bodies with H � 18 per million years for the 3/1
resonance and 39 for the �6 resonance, very similar to those
determined by Bottke et al. (2002). The exponent coefficient
of the H distribution (1) of the bodies captured into reso-
nance during the last 0.5 Gyr of simulation is � � 0.335. Of
all the simulations analyzed in this paper, this is the one
giving the shallowest NEA magnitude distribution, with
exponent smaller than 0.35 (the value determined by Rabi-
nowitz et al. (2000) and Bottke et al. (2000b) from the
observed NEA population). The reason for this shallow
distribution is that, as explained in Section 4, the YORP

Fig. 8. The same as in Fig. 7, but for the case where the reorientation time scale has been decreased by a factor of 10.

Table 2
Summary of results concerning simulations which assume different values for the exponent  in (6)

 �0.5 �0.25 0 0.25 0.5 0.75 1 1.25 1.5
� 0.44 0.43 0.42 0.41 0.40 0.39 0.39 0.38 0.37

Note. The assumed disruption time scale is our nominal one. The second line reports the value of � in the resulting NEA magnitude distribution (1).
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effect accelerates or decelerates the spin rates, causing the
disruption or the reorientation of the bodies. This happens
on a time scale proportional to R2. Due to this fast progres-
sion of the YORP evolution time scale with R, the Yark-
ovsky drift of small bodies becomes inhibited relative to the
larger bodies. This directly results in a shallower magnitude
distribution of the resonant captured bodies. In summary,
the inclusion of the YORP effect goes in the same direction
of increasing the exponents � and  in the disruption and
reorientation formulas (9) and (6), which—as shown in
Table 2—reduces �.

Because large uncertainties still exist in the modeling of
the YORP effect, we have perfomed six additional simula-
tions, in which we decrease the f and g functions with
respect to those shown in Fig. 6 by the factors reported in
Table 3. The corresponding fluxes into 3/1 and �6 reso-
nances and the slope of the cumulative H distribution of the
resonant objects are reported in the same table. We stress
that, despite the mentioned uncertainties, a realistic range
for these factors should be 0.2–1, unless our current under-
standing of the YORP effect is largely mistaken. The

smaller reduction factors listed in Table 3 have been used
for understanding how the results approach those of the
“nominal” simulation of Fig. 7, which did not account for
YORP.

As one sees from Table 3, decreasing the magnitude of
the YORP effect increases the slope of the NEA distribu-
tion. In particular if the f and g functions are divided by a
factor 2, the agreement with the NEA slope of Rabinowitz
et al. and Bottke et al. is excellent. If they are divided by a
factor 50 or more, the resulting � is essentially the same as
in the “nominal” simulation. This was expected from the
aforementioned considerations, because decreasing the
YORP effect effectively increases the reorientation and dis-
ruption time scales of the smallest bodies, relative to the big
bodies.

The changes to the resonant fluxes are more intriguing.
As the YORP effect is decreased, the fluxes first increase
and then decrease. The initial increase of the fluxes is
correlated with the steepening of the magnitude distribution
and is the consequence of the larger mobility of the small
bodies determined by the longer reorientation and disrup-
tion time scales. We notice that if the f and g functions are
divided by a factor 5 to 50 the fluxes even exceed those of
Fig. 7. This is because the YORP effect breaks the uniform
distribution of obliquities, thus favoring the existence of fast
drifting bodies. If the YORP effect is further decreased, its
role eventually becomes negligible and the fluxes decrease
back to the nominal values of Fig. 7.

Finally, in the case of our “nominal” YORP simulation (c
� 1 in Table 3), we have tested the dependence of the
results on the semimajor axis drift rate (the function k in Eq.
(5)). The fluxes into the resonances scale almost linearly
with the drift rate, despite the nonobvious feedback intro-
duced by the steady-state model. Therefore, the 25% uncer-
tainty of the drift rate (due to our lack of knowledge of the
asteroidal thermal conductivity) linearly reflects onto all the
results reported herein.

Fig. 9. The same as in Fig. 7, but for the case where the YORP effect has been taken into account with the f and g functions illustrated in Fig. 6. The dashed
line in the right panel has slope � � 0.335.

Table 3
Summary of the results of the simulations that account for the YORP
effect

ca F3/1
b F�6

b �c

1 109 39 0.335
0.5 128 46 0.345
0.2 163 60 0.360
0.1 179 63 0.380
0.02 166 59 0.395
0.0005 147 54 0.395

a The factor by which the f and g functions of Fig. 6 are multiplied.
b F3/1 and F�6 denote the corresponding fluxes (number of bodies with

H � 18 per million year) into the 3/1 and �6 resonances.
c The exponent coefficient of the H distribution (1) in the 15.5–18 range

of the bodies captured into resonances during the last 0.5 Gyr of simula-
tion.
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7. Conclusions and discussion

In this paper we have investigated the role of the Yark-
ovsky effect in the origin of near-Earth asteroids. We have
designed an original simulation scheme that allows us to
compute the “current steady-state” fl uxes of H � 18 aster-
oids (roughly larger than 1 km in size) into the most im-
portant NEA source resonances. By “current steady-state”
we mean a steady-state situation in which the main belt has
its current properties. In particular, we have not tried to
investigate how the asteroid flux changes when an asteroid
family forms nor have we tried to reconstruct the evolution
of the NEA population over the age of the Solar System.

The simulations depend on a number of poorly con-
strained parameters, such as the collisional disruption and
reorientation time scales, their size dependence, and the
average magnitude of the Yarkovsky and YORP effects.
The latter is a variant of the Yarkovsky effect, which acts on
the spin axis obliquity and rotation frequency of the bodies.
Therefore, we have explored the sensitivity of the results on
the values of these parameters. The results also depend on
the assumed properties of the current main belt population,
in particular the total number of bodies with H � 18 and
their magnitude distribution. In the reported simulations we
have used the main belt model described in Section 2 but the
dependence of the results on the main belt parameters is
quite straightforward and will be discussed in the following.

With the exception of the cases with a very fast reorien-
tation time scale (a tenth of the nominal values), our esti-
mated fluxes into the 3/1 and �6 resonances are quite large.
About 100–160 bodies with H � 18 should enter the 3/1
resonance every million years while 40–60 should enter the
�6 secular resonance. These rates are similar to those inde-
pendently derived by Bottke et al. (2002) on the basis of
their NEA population model (100 � 50 and 55 � 18
respectively). However, in our simulations, the ratio be-
tween the fluxes into 3/1 and �6 is in the range 2.5 to 3.0,
while in Bottke et al. it is 1.8 � 0.75. But it should be taken
into account that Bottke et al. had difficulty in distinguish-
ing NEAs coming from the �6 resonance from those coming
from the Mars-crossing population, so that it might be
possible that the former contribution has been somewhat
overestimated.

The Yarkovsky-driven fluxes reported here have been
obtained assuming that there are 563,000 asteroids with H
� 18 in the belt with a � 2.8 AU, implying some 1,300,000
bodies in the entire belt. A population of about 1,000,000 H
� 18 bodies would still give fluxes consistent with Bottke et
al. rates. However, had we assumed a main belt population
containing only 520,000 H � 18 bodies, as claimed by
Ivezić et al. (2001), the fluxes into the resonances would
have been 40–65 and 16–24 H � 18 bodies per million
years respectively, far too small with respect to the Bottke
et al. values. This seems to support the suspicion that there
might be a problem in the conversion between the number
of bodies detected by the SDSS survey and the total number

of bodies in the belt. We remark however that if the estimate
by Ivezić et al. is correct, then there is a serious problem in
the absolute magnitudes reported in the asteroid catalogs
(see Section 2 for a discussion). In this case it is plausible
that a similar problem also exists in the NEA catalog, so that
the real number of discovered NEAs with H � 18 would be
considerably smaller than the one currently claimed. This
would have the consequence of reducing the total number of
H � 18 NEAs in the models of Rabinowitz et al. (2000),
Bottke et al. (2000b), and Stuart (2001). Therefore, the
estimates of the resonant fluxes in Bottke et al. (2002)
would be comparatively reduced as well. It is unclear,
however, if the new fluxes would decrease as low as �50
and �20 bodies per million years in the 3/1 and �6 reso-
nances respectively, to be consistent with our model.

To conclude whether the Yarkovsky effect can produce
the observed NEA population, a second aspect to be con-
sidered is the H distribution of the bodies captured into
resonance. In the simulations that do not account for the
YORP effect and assume that the reorientation time scale is
proportional to the square root of the size of the bodies, the
slope coefficient � of the H distribution (1) is 0.39–0.40 for
15.5 � H � 18. This is compatible with the slope of the real
NEA population (0.39) according to Stuart (2001) but is
steeper than that (0.35) derived by Rabinowitz et al. (2000)
and Bottke et al. (2000b). If the dependence on size of the
reorientation time scale is steepened, the resulting value for
� is decreased (Table 2) and may approach 0.35. Finally, if
the YORP effect is taken into account, with nominal or
slightly reduced strength (up to a factor 2), then � � 0.35.
We consider that the simulations accounting for the YORP
effect are superior, because they account for an additional
real dynamical phenomenon. We stress that taking into
account the Yarkovsky effect but not the YORP effect is,
strictly speaking, inconsistent.

It should be qualified that the values of � discussed here
have been obtained assuming that the H distribution of the
main belt population in the 15.5 � H � 18 range has slope
� � 0.25. This is the slope determined by Jedicke and
Metcalfe (1998) for H 
 15.5. It is also the asymptotic slope
of the main belt distribution according to Ivezić et al.
(2001). However, according to the latter work, the effective
slope in the 15.5–18 range would be steeper (the dash-
dotted curve in Fig. 1), giving � � 0.3. In general, if we
change the main belt slope from �� to �� � ��, the slope of
the population captured into resonance passes from � to � �
��. With this simple rule in mind and assuming the SDSS
slope (�� � 0.05), we can conclude that most of our sim-
ulations would give a slope of the NEA population that is
too steep even with respect to Stuart’s value. But the sim-
ulations accounting for YORP, or assuming a very steep
size dependence of the reorientation time scale, would give
� � 0.39, compatible with Stuart’s NEA population.

This discussion on the slopes assumes that all NEAs
come from either the 3/1 or the �6 resonance, but it should
be taken into account that the NEA population is also
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sustained by a network of diffusive resonances (Bottke et al.
2000b, 2002). The bodies transported to the NEA space by
chaotic diffusion might have a main-belt-like distribution,
unlike those coming through the strong resonances, whose
magnitude distribution is steepened by the Yarkovsky ef-
fect. Therefore, the slope of the magnitude distribution of
the NEA population should be in reality a weighted average
of the two slopes. This makes the results of our simulations
even more compatible with the observed NEA distribution.

In conclusion, the results of our simulations strongly
suggest that the Yarkovsky effect is the major mechanism
by which asteroids are continuously supplied to resonances
and the NEA population is maintained in steady state. The
Yarkovsky effect is compatible—from a quantitative point
of view—with both the NEA generation rates and the NEA
magnitude distribution. No other mechanism studied so far,
including the collisional breakup of parent bodies in the
resonance vicinity, are nearly as satisfactory. Our work also
shows the importance of the YORP effect for understanding
why the NEA magnitude distribution is only moderately
steeper than the main belt magnitude distribution, as indi-
cated by the observations. These encouraging results should
motivate the development of more sophisticated simulations
of the Yarkovsky-driven origin of NEAs. These simulations
will need to start from more detailed models of the orbital
and magnitude distribution of main belt asteroids, account
for a fully consistent collisional cascade process, and take
advantage of more accurate estimates of the magnitude of
the YORP effect.
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Gladman, B., Michel, P., Froeschlé, Ch., 2000. The near-Earth object
population. Icarus 146, 176–189.

Greenberg, R., Nolan, M., 1989. Delivery of asteroids and meteorites to the
inner Solar System, in: Binzel, R.P., Gehrels, T., Matthew, M.S. (Eds.),
Asteroids II, Univ. of Arizona Press, Tueon, pp. 778–904.

Grieve, R.A., Shoemaker, E.M., 1994. The record of past impacts on Earth,
in: Gehrels, T., Matthews, M.S. (Eds.), Hazards due to Comets and
Asteroids, Univ. of Arizona Press, Tucson, pp. 471–462.

Guillens, S.A., Vieira Martins, R., Gomes, R.S., 2002. A global study of
the 3:1 neighborhood: a search for unstable asteroids. Astron. J. 124,
2322–2332.
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evolution of NEOs, in: Bottke, W.F., Cellino, A., Paolicchi, P., Binzel,
R.P. (Eds.), Asteroids III, Univ. of Arizona Press, Tucson, pp. 409–
422.

Morbidelli, A., Jedicke, R., Bottke, W.F., Michel, P., Tedesco, E.F.,
2002b. From magnitudes to diameters: the albedo distribution of
near-Earth objects and the Earth collision hazard. Icarus 158, 329–
342.
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Nesvorný, D., Ferraz-Mello, S., Holman, M., Morbidelli, A., 2003. Regular
and chaotic dynamics in the mean motion resonances: implications for
the structure and evolution of the asteroid belt, in: Bottke, W.F.,
Cellino, A., Paolicchi, P., Binzel, R.P. (Ed.), Asteroids III, Univ. of
Arizona Press, Tucson, pp. 379–394.

Pravec, P., Harris, A.W., 2000. Fast and slow rotation of asteroids. Icarus
148, 12–20.

Rabinowitz, D.L., 1997. Are main-belt asteroids a sufficient source for the
Earth-approaching asteroids? Part I. Predicted vs. observed orbital
distributions. Icarus 127, 33–54.

Rabinowitz, D.L., Helin, E., Lawrence, K., Pravdo, S., 2000. A reduced
estimate of the number of kilometre-sized near-Earth asteroids. Nature
403, 165–166.

Rubincam, D.P., 2000. Radiative spin-up and spin-down of small asteroids.
Icarus 148, 2–11.

Stuart, J.S., 2001. A near-Earth asteroid population estimate from the
LINEAR survey. Science 294, 1691–1693.

Tanga, P., Cellino, A., Michel, P., Zappalà, V., Paolicchi, P., Dell’Oro, A.,
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