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ABSTRACT

Context. The largest asteroids in the Koronis family (sizes ≥25 km) have very peculiar rotation state properties, with the retrograde-
and prograde-rotating objects being distinctly different. A recent re-analysis of observations suggests that one of the asteroids formerly
thought to be retrograde-rotating, 208 Lacrimosa, in reality exhibits prograde rotation, yet other properties of this object are discrepant
with other members this group.
Aims. We seek to understand whether the new spin solution of Lacrimosa invalidates the previously proposed model of the Koronis
large members or simply reveals more possibilities for the long-term evolutionary paths, including some that have not yet been explored.
Methods. We obtained additional photometric observations of Lacrimosa, and included thermal and occultation data to verify its new
spin solution. We also conducted a more detailed theoretical analysis of the long-term spin evolution to understand the discrepancy
with respect to the other prograde-rotating large Koronis members.
Results. We confirm and substantiate the previously suggested prograde rotation of Lacrimosa. Its spin vector has an ecliptic longitude
and latitude of (λ, β) = (15◦ ± 2◦, 67◦ ± 2◦) and a sidereal rotation period P = 14.085734± 0.000007 h. The thermal and occultation data
allow us to calibrate a volume equivalent size of D = 44± 2 km of Lacrimosa. The observations also constrain the shape model relatively
well. Assuming uniform density, the dynamical ellipticity is ∆ = 0.35± 0.05. Unlike other large prograde-rotating Koronis members,
Lacrimosa spin is not captured in the Slivan state. We propose that Lacrimosa differed from this group in that it had initially slightly
larger obliquity and longer rotation period. With those parameters, it jumped over the Slivan state instead of being captured and slowly
evolved into the present spin configuration. In the future, it is likely to be captured in the Slivan state corresponding to the proper
(instead of forced) mode of the orbital plane precession in the inertial space.
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1. Introduction

Modern automated surveys have revolutionized our knowledge
of the near and far Universe in many respects. When com-
plemented with the dedicated efforts of specific individual
projects, sometimes also supported by observations of amateur
astronomers, our current knowledge largely surpasses what we
had two or three decades ago. Consider, as an example, well-
calibrated photometric observations, which are now available
for a sufficient period of time for determination of the rotation
state of the minor bodies in the Solar System. As of now, we
have information about rotation periods for tens of thousands
of asteroids in the near-Earth and main-belt populations (e.g.,
Warner et al. 2009, updated as of October 20201). For several
thousand among them we have additional information about the
orientation of their spin axis and basic shape parameters (e.g.,
Ďurech et al. 2010, and updates2). These numbers have grown
so large that they enable population-scale studies, rather than
simple analyses of individual objects (e.g., Ďurech et al. 2015).

One of the first examples of an interesting result from this
tremendous progress was the unexpected discovery of the non-
random distribution of rotation states among large members in
the Koronis family by Slivan (2002) (see also further details in

1 http://www.minorplanet.info/lightcurvedatabase.html
2 http://astro.troja.mff.cuni.cz/projects/damit/

Slivan et al. 2003, 2008, 2009). At first glance, the fact that the
Koronis family is 2 to 3 Gyr old, and formed likely by a super-
catastrophic collision (e.g., Nesvorný et al. 2015), would lead
us to expect a random distribution of the rotation states of its
large members. In particular, rotation periods were expected to
be consistent with a Maxwellian distribution and the direction
of rotation poles isotropic in space. In stark contrast, observa-
tions reported by Slivan (2002) told an entirely different story.
Of the ten D ≥ 25 km objects, six were found to rotate retro-
grade, (i) having either slow or fast rotation (periods P ≤ 4.63 h
or P ≥ 13.06 h), and (ii) rotation poles pushed toward the south
ecliptic pole (obliquities ε ≥ 154◦). Even more puzzling was the
set of four prograde-rotating objects (i) whose rotation periods
were all within a rather tight interval of values (7.5 < P < 9.5 h),
and (ii) whose rotation poles were near to parallel in the inertial
space (within about 50◦ cone), all having obliquity '45◦.

All these astonishing findings were soon reconciled with
Koronis long-term history by Vokrouhlický et al. (2003). These
authors demonstrated that the missing key element in the
pre-2000 thinking was the Yarkovsky–O’Keefe–Radzievskii–
Paddack (YORP) effect, reintroduced into the planetary studies
by Rubincam (2000) (see also Vokrouhlický et al. 2015, for an
overview of its history and recent status). YORP is a weak,
nonconservative torque capable, in the long term, of either accel-
erating or decelerating the rotation rate, and at the same time
tilting the spin axis toward extremal values of the obliquity
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(0◦ or 180◦). Vokrouhlický et al. (2003) noted that for their
sizes and heliocentric distance, asteroids in the Koronis family,
whose rotation was initially retrograde, would roughly complete
such an evolution toward the asymptotic period and obliquity
values just within its expected age. This would readily explain
the group of retrograde rotators observed by Slivan (2002).
The group of prograde rotators were more difficult to explain,
because the pattern reported by Slivan (2002) was not symmet-
ric. Here, the additional key element is the intriguing interplay
between the effects of gravitational torque due to the Sun and
the motion of the asteroids’ heliocentric orbital plane. Regu-
lar precession due to the former phenomenon may enter into
a resonance with precession of the latter (see Appendix A.1).
A possibility for such secular spin orbit resonance exists only
for prograde-rotating bodies. Assuming elongated shapes com-
patible with light curve observations, and periods of '8 h of
the prograde group of large Koronis objects, the resonance in
question would be located at about 40◦−50◦ obliquity. Impor-
tantly, near this value, the YORP evolution of the rotation rate
temporarily stalls (e.g., Rubincam 2000; Vokrouhlický & Čapek
2002; Čapek & Vokrouhlický 2004). This means that, while still
evolving by YORP, the large Koronis prograde-rotating asteroids
may spend giga years near such a temporary state once cap-
tured in the resonance. Vokrouhlický et al. (2003) also proved
that when YORP previously brought the spin towards a small
obliquity state while decelerating the rotation rate, the capture
into the resonance must occur. Finally, the apparently most puz-
zling observation, namely spin parallelism in the inertial space,
is also readily explained by the above-mentioned spin orbit res-
onance. This is because the particular precession mode of the
heliocentric orbital plane that resonates with regular precession
of the Koronis asteroids is forced by the current configuration
of giant planets, in particular the direction of the orbital node of
Saturn. As a result, there is no mysterious direction in the iner-
tial space due to distant cosmic objects that would attract rotation
poles of Koronis members, but simply the resonance stationary
point – about which they librate – has a specific direction related
to the configuration of the orbital planes of the giant planets.
In order to pay tribute to the painstaking observational work of
Steve Slivan that brought to life all these elegant theoretical con-
cepts, Vokrouhlický et al. (2003) proposed naming the spin-orbit
resonant state, in which the prograde-rotating Koronis members
are locked, “the Slivan state”.

Focusing still on the sample of D ≥ 25 km objects in the
Koronis family, we note that the follow-up work of Slivan et al.
(2009) reported a fifth member in the Slivan state with very
similar rotation parameters to the other prograde-rotating Koro-
nis members, namely (462) Eryphila, further strengthening the
story. However, these latter authors also found evidence of a first
stray prograde-rotating object with somewhat divergent parame-
ters, namely (263) Dresda. In particular, Dresda’s obliquity was
found to be only '15◦ and its rotation period '16.8 h (we note,
however, that Hanuš et al. (2016) corrected this solution, bring-
ing the pole closer to the original Slivan group with an obliquity
of '35◦).

Information about the rotation state of smaller Koronis fam-
ily members has been provided by the analysis of data from
all-sky surveys from the past decade or so (we purposely omit
the interesting case of (832) Karin Slivan & Molnar 2012, sav-
ing it for a future detailed study). Hanuš et al. (2013), followed
with Hanuš et al. (2016) and Ďurech et al. (2019), determined the
spin states of thousands of asteroids, among them also 13 D ≤
25 km members of the Koronis family. Many of them, especially
among the retrograde rotators, follow the trends first observed by

Slivan (2002), but some do not. We comment on the implications
of this below. However, one of these new spin models con-
cerned a D ' 45 km Koronis member, asteroid (208) Lacrimosa,
which was included in the original study of Slivan (2002) and
belonged to the retrograde group of bodies with rather long rota-
tion periods3. Ďurech et al. (2019) pointed out that this solution
was incorrect. While the rotation period of '14.086 h was in
agreement with their findings, the rotation pole in their solution
moved to the prograde group with two possible solutions for the
ecliptic longitude λ and latitude β, namely (λ, β)1 = (16◦, 60◦)
or (λ, β)2 = (202◦, 61◦). Curiously, the first pole solution would
fit rather well with the originally reported group of Koronis
prograde rotators in the Slivan state, but the rotation period is
longer.

This new solution for one of the original Slivan targets
prompted us to re-evaluate the situation and see if the above-
outlined story of Vokrouhlický et al. (2003) still holds. Before
we deal with this primary goal (in Sect. 3), we first present the
current rotation-state solution for (208) Lacrimosa in more detail
(Sect. 2). In particular, to confirm the stability of the solution,
we obtained new observations during the last Lacrimosa oppo-
sition and added them to the full observational record for this
asteroid. Additionally, we included sparse photometric observa-
tions from numerous sky surveys and stellar occultations from
two different epochs. We then conducted a numerical exploration
of its short- and long-term evolution (Sect. 3). Some details of
the mathematical methods and numerical tools are summarized
in Appendix A. Basic information about our new observations
of Lacrimosa are given in Appendix B. Our best-fitting model is
compared with all available observations in Appendix C.

2. Rotation state of (208) Lacrimosa

As mentioned above, the spin state of (208) Lacrimosa published
by Ďurech et al. (2019) was different from that in Slivan (2002)
and Slivan et al. (2003). To ensure that the new pole solution
is correct, we repeated the light-curve inversion with a much
larger dataset. We collected all available light curves (Binzel
1987; Slivan & Binzel 1996; Stephens 2014) and sparse pho-
tometry from Gaia DR2 (Gaia Collaboration 2018), ASAS-SN
(All-Sky Automated Survey for Supernovae; Shappee et al. 2014;
Kochanek et al. 2017), ATLAS (Asteroid Terrestrial-impact Last
Alert System; Tonry et al. 2018), and United States Naval Obser-
vatory (USNO) and Catalina observatories downloaded from
Minor Planet Center (MPC). We also carried out new photo-
metric observations of Lacrimosa with TRAPPIST-South and
TRAPPIST-North telescopes in March and June 2020 (e.g., Jehin
et al. 2011). Some technical details of these new observations and
their reduction methods are given in Appendix B. All photomet-
ric data used for the inversion are listed in Table B.1, and their
comparison with the best-fitting model is shown in Appendix C.

2.1. Data analysis and new model for (208) Lacrimosa

From light curves and sparse photometry, we reconstructed two
convex shape models with the inversion method of Kaasalainen
et al. (2001). One of the models (shown in Fig. 1) has the pole
direction (15◦ ± 2◦, 67◦ ± 2◦) in ecliptic longitude and latitude
and its rotation period is P = 14.085734± 0.000007 h. The sec-
ond model has the same rotational period, and its pole direction

3 Lacrimosa belongs to the largest members in the Koronis family. In
fact, Masiero et al. (2013) opted to call the cluster “Lacrimosa family”,
which proved unsuitable because of a long tradition and history of the
Koronis family since the pioneering work of Hirayama (1918).
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Fig. 1. Shape model of Lacrimosa for pole direction (15◦, 67◦) shown
from equatorial level (left and center, 90◦ apart) and pole-on (right).

is (204◦, 68◦). Both models provide the same RMS fit of the
data. Because Lacrimosa’s orbital inclination to the ecliptic is
only 1.7◦, the viewing and illumination geometry of observa-
tions is always limited to the ecliptic plane. For that reason,
disk-integrated photometry can never distinguish between these
two symmetric pole solutions, which have the same ecliptic lat-
itude and ecliptic longitudes that are 180◦ apart (Kaasalainen
& Lamberg 2006). The uncertainty on spin parameters given
above was estimated using a bootstrap approach. We created
1000 bootstrapped data sets by randomly resampling light curves
and sparse data points and repeated the light-curve inversion. For
each resampling, the inversion algorithm converged to a slightly
different set of parameters. Their standard deviation served as an
estimate of their uncertainties.

The new spin solution is different from that derived by Slivan
et al. (2003), which was also used in the original spin-clustering
paper by Slivan (2002). These latter authors derived a rotation
period of 14.07692± 0.00002 h and a retrograde pole solution.
Their result was based on a limited data set (see Table B.1), and
was apparently only one of several local minima in the param-
eter space. Indeed, this weakness was noted already by Slivan
et al. (2003), who mentioned: “The pole results for Lacrimosa
are preliminary and should be checked by further observations;
especially needed are a good single-apparition solar phase func-
tion and complete light curves at unobserved or incompletely
observed aspect longitudes”. Our new analysis with a much
larger data set shows that the correct sidereal rotation period is
slightly different from that of Slivan et al. (2003). Interestingly,
this small discrepancy in periods leads to a dramatic difference
in spin axis directions, namely the change from retrograde to
prograde rotation.

Our new model is also consistent with thermal infrared (IR)
data from for IRAS, Akari, and WISE observatories compiled in
the Small Bodies: Near and Far Database (SBNAF, Szakáts et al.
2020), from where we downloaded processed fluxes. We used
the approach of Ďurech et al. (2017) and reconstructed a model
of Lacrimosa from its light curves combined with thermal data.
There were different possibilities for thermophysical parameters
that gave similar fits to data, one of them having thermal inertia
Γ = 30 J m−2 s−0.5 K−1, geometric albedo pV = 0.20, and volume-
equivalent diameter D = 44 km. Its pole direction of (13◦, 70◦)
is close to the value based on photometry alone. Because ther-
mal data were also acquired at plane-restricted geometries, the
same symmetry applies here, and both pole directions are equally
good in fitting thermal data. Our solution utilizing thermal data
is therefore very close to that obtained by Masiero et al. (2011),
who obtained D = 45.0± 4.6 km and pV = 0.168± 0.055.

Finally, there are two stellar occultations by Lacrimosa
observed in 2003 and 2016 (Herald et al. 2020). We computed
the orientation of our two models for the time of occultations,

computed the projected silhouettes, and scaled and shifted the
shape models to get the best agreement between the silhouettes
and the occultation chords (for details, see Ďurech et al. 2011).
Because there were no timing errors reported for the 2003 occul-
tation, we assumed errors of 0.1 and 0.5 s for photoelectric and
visual observations, respectively. Only one positive chord was
observed during the occultation in 2016, and so the only con-
straint comes from the 2003 occultation. The results are shown
in Fig. 2. Although the number of chords is not sufficient for
any high-fidelity work, the first pole solution (15◦, 67◦) fits the
occultation data better than the second one with pole direction
(204◦, 68◦). The volume-equivalent diameter is 44± 2 km for the
first model; this diameter is 46± 3 km for the second model with
much worse formal fit. For comparison, we also show a silhou-
ette of the shape model derived by simultaneous inversion of
optical and thermal data.

An important take-away experience from our analysis of
Lacrimosa can be summarized as follows. Although further pho-
tometric observations can refine the shape model and increase
the accuracy of spin parameters, the pole ambiguity cannot be
avoided by any amount of disk-integrated data. The only way to
distinguish between the two spin axis directions is through disk-
resolved data. For example, a well-observed occultation would
enable us to confirm that the (15◦, 67◦) pole is the correct one.
Moreover, it could also help us to constrain the shape more
tightly, namely its dynamical ellipticity ∆, which is discussed
in the following sections. Nevertheless, because the available
occultation data already now favor this first photometric solu-
tion of the pole of Lacrimosa, we consider it a viable solution in
what follows.

2.2. YORP torques for (208) Lacrimosa

Vokrouhlický et al. (2003) pointed out that modeling of the
very long-term evolution of Koronis asteroid spin states requires
inclusion of the YORP effect in the dynamical model. We there-
fore need to estimate its strength. This task is quite troublesome
if high precision is required (such as needed for comparison with
YORP detections on small near-Earth asteroids; see discussion in
Vokrouhlický et al. 2015) but this is not the case here. Our goal
is to simply characterize the possible evolution of Lacrimosa’s
spins state that would result in its current value. It is not our
ambition, and it is not even possible, to hope for any determin-
ism in this task. Therefore, it is adequate to estimate the YORP
effect within a factor of a few in accuracy for our purposes.

We used the zero thermal conductivity approach of
Vokrouhlický & Čapek (2002), adopted the best-fit, scale-
calibrated model of Lacrimosa outlined above (volume-size
corresponding to a spherical body of diameter '44 km), and
assumed a bulk density of 2 g cm−3. With the parameters of
the present spin state, and the heliocentric orbit, we obtained:
(i) the rate of change of the rotational frequency ω equal to
dω/dt ' −2.98× 10−8 s−1 Myr−1, and (ii) the rate of change of
the obliquity ε equal to dε/dt ' −0.014 deg Myr−1 (we did not
need to compute the YORP effect on ecliptic longitude, because
this contribution is much smaller than the precession due to solar
gravitational torque). Both ω and ε are thus predicted to decrease
at this moment. The current value of the doubling timescale
(e.g., Rubincam 2000) therefore reads |ω/(dω/dt)| ' 4.16 Gyr.
Another way of illustrating the YORP effect is to translate dω/dt
to the present-day rate of change of the rotation period P. If
this value is conserved, P will increase by '3.4 h in the next
gigayear. In reality, the effect is even larger, because dP/dt ∝ P2

for an approximately constant dω/dt. As P increases, the rate
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Fig. 2. Projections of two occultations from December 31, 2003 (left), and October 20, 2016 (right). Individual observations are shown as
straight red lines. Solid lines are photoelectric observations, dashed are visual observations, and dotted are negative observations. Timing errors are
displayed as gray strips. The blue solid silhouette is that of the best-fit model, the dotted silhouette is of the second pole solution, and the dashed
silhouette is of the IR-based shape model without any scaling. North is up, west to the right.

dP/dt therefore accelerates. The take-away message is that the
YORP effect is indeed fully capable of significantly changing
Lacrimosa’s rotation period on a timescale of 1 Gyr, which is
comparable to the age of the Koronis family.

To enable efficient long-term propagation of spin state with
the YORP torques, we also precomputed dω/dt and dε/dt values
for the dense grid in obliquity (using 2◦ step). In our simula-
tions described in Sect. 3.2 we simply interpolated among these
values to obtain dω/dt and dε/dt for an arbitrary obliquity (see
Appendix A.1).

3. Theory

The analysis of observations in the previous section provides
parameters of the rotation state at the current epoch. It assumes
the spin orientation and sidereal rotation rate are constant, at
least over the few decades covered by the data. Given the mea-
surement accuracy, this is a justifiable assumption. However,
over a longer period of time all rotation-state parameters evolve.
Here we pay attention to secular effects, namely those with char-
acteristic timescale longer than the sidereal rotation period of
the asteroid and its orbital period about the Sun. We first char-
acterize short-term secular effects (1 Myr timescale; Sect. 3.1).
This initial step is important for two reasons. First, its formula-
tion is a little more simple and deterministic, because we may
safely neglect inaccurately quantified nongravitational torques.
At the same time, the analysis provides us a clear response as to
whether the current rotation state of (208) Lacrimosa occupies
the Slivan state or not. Equipped with this knowledge, we can
then explore possibilities of very long-term evolutionary scenar-
ios for Lacrimosa (1 Gyr timescale; Sect. 3.2), although in this
case with less determinism.

3.1. Short-term spin state evolution of (208) Lacrimosa

The sidereal rotation frequency ω is conserved when restricting
to the secular effects of the solar gravitational torque. Conse-
quently, the only evolving component of the rotation state is the
direction s of the spin vector. As discussed in Appendix A.1, the

flow of s on a unit celestial sphere may be understood using the
Colombo top model. The orbital precession frequency of inter-
est may be either the forced frequency s6 ' −26.34 arcsec yr−1

or the proper frequency s ' −67.25 arcsec yr−1. As the flow of
s in the prograde-rotating mode is fundamentally affected by
the presence of the resonant zone about the Cassini state 2
(“Cassini resonance”), it is useful to first determine whether
or not this resonance exists. For a given orbit, such as that of
(208) Lacrimosa, and the two possible orbital precession modes,
the answer depends on two parameters (more specifically, on
their product P ∆): (i) the sidereal rotation period P, and (ii) the
dynamical ellipticity ∆. At the current epoch, P is known very
accurately. As discussed in the previous section, observations
constrain ∆ as well, but with a much smaller accuracy.

Figure 3 shows maximum obliquity extension of the Cassini
resonance as a function of ∆ for two different values of the rota-
tion period: (i) the present value P = 14.085734 h (left), and (ii)
a twice that value, P = 28 h (right). The latter may correspond
to the situation in the distant future, because we showed that the
YORP effect decreases the rotation rate. In the first case, (i), the
Cassini resonance exists for the precession mode s6 whenever
∆ > ∆? ' 0.217. As ∆ increases, the location of the Cassini res-
onance moves to larger obliquity values and its extension slightly
decreases. The Cassini resonance related to the proper frequency
s does not exist for any value of ∆. In the case of the longer
rotation period P = 28 h, (ii), the onset of the Cassini resonance
associated with the s6 frequency moves to ∆? ' 0.115. This is
because for a fixed orbital precession frequency ∆? ∝ P−1. The
novel feature consists of bifurcation of the Cassini resonance
associated with the s frequency at ∆? ' 0.305. This resonance
is wider in the obliquity because the proper orbital inclination
IP is about four times larger than the forced inclination I6. The
s-frequency Cassini resonance appears at low obliquity values
at ∆?, and is well separated from the s6-frequency Cassini res-
onance. For ∆ > 0.4, on the other hand, the two resonances
approach and eventually overlap. The resonance overlap occurs
at the ∆ value which is inversely proportional to the rotation
period; for instance with ∆ ' 0.35 the required rotational period
is P ' 32 h.
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Fig. 3. Obliquity ε2 of the Cassini state 2 as a function of the dynamical ellipticity ∆ (see Eq. (A.3)). Orbital parameters of (208) Lacrimosa are
assumed. Left panel: nominal rotation period P = 14.085734 h of (208) Lacrimosa used. The solid line labeled C2(s6) provides ε2 for the s6 (forced)
frequency mode of the nodal precession. The spin-orbit resonance onsets for ∆ are denoted by the light-gray dashed line (transition determined by
the Eq. (A.7) condition); beyond this value the Cassini state 2 becomes an equilibrium point of the spin-orbit resonance, whose maximum extension
in obliquity is shown by the gray area. Solid line labeled C2(s) provides ε2 for the s (proper) mode of the nodal precession. Here the spin-orbit
resonance does not exist. Red symbols show obliquity and ∆ values for a little less than 1000 solutions for (208) Lacrimosa from the bootstrap
method discussed in Sect. 2 and using only the optical light-curve observations. The blue star is the nominal, best-fit solution. Right panel: same as
in the left panel, but now for a hypothetical, longer rotation period of P = 28 h. Now the spin–orbit resonance exists beyond some critical ∆ value
for both frequencies s6 and s.

Returning to the present rotational configuration of
Lacrimosa (left panel of Fig. 3), we now focus on the red sym-
bols: these are just under 1000 solutions described in Sect. 2,
all of which correspond to statistically acceptable fits to the
observations. The 95% confidence level interval of the obliq-
uity ranges from 19.5◦ to 26.9◦, with the best-fit value of 22.4◦.
The same confidence-level interval of the dynamical elliptic-
ity is in between 0.30 and 0.39, with the best-fit value of 0.35.
There is a slight correlation between these two values, pushing
the obliquity to larger values for smaller ellipticity values. The
main take-away message here is that only two stray solutions out
of 1000 fall into the range of the obliquity values delimiting the
Cassini resonance of the s6 orbit precession mode; the major-
ity of the 1000 solutions, including the best-fitting solutions,
provide dynamical ellipticity values away from the resonance
criterion. Assuming the rotation pole direction (i.e., obliquity)
is set accurately enough, the necessary value of the ellipticity ∆
would be about 30–35% smaller than the values determined from
the shape models. It is highly unlikely that the shape models
would be mistaken at this level, or that the internal density would
deviate so much from a uniform distribution. Instead, we may
preliminarily conclude that the spin state of (208) Lacrimosa is
not in the Slivan state.

A more detailed understanding of the situation – leading to
the same conclusion – is provided by Figs. 4 and 5. Here, we
show output from a numerically integrated spin evolution over
the next 2 Myr. Initial data are from the best-fitting solution
in Sect. 2, namely (λ, β) = (15.2◦, 66.9◦) and P = 14.085734 h.
Results in Fig. 4 are for dynamical ellipticity ∆ = 0.23. This
value is incompatible with the shape models fitting the obser-
vations, but it is the value that we predict will match the
Slivan-state location. Results in Fig. 5 are for the best-fitting
dynamical ellipticity ∆ = 0.35, and confirm Lacrimosa’s spin
misalignment with respect to the Slivan state. We used a full-
fledged numerical scheme described in Appendix A.2 in which

the secular spin evolution is propagated together with the helio-
centric orbital motion. Radiative torques were neglected, which
is an approximation that is well justified by the short interval of
time described.

The upper panels on both Figs. 4 and 5 show the osculat-
ing obliquity as a function of time. The bottom panels show
the phase space of the Colombo-top model associated with the
s6 precession frequency (see the Appendix A.1): (i) the longi-
tude ϕ6 (coordinate) reckoned from the direction 90◦ away from
the ascending node Ω6 = s6t + Ω6,0 (with Ω6,0 ' 289◦ in the
planetary invariable system and time t origin at J2000.0), and
(ii) ε6 (or cos ε6 on the left ordinate; momentum) which is the
obliquity value in the orbital frame with node Ω6 and inclina-
tion I6 ' 0.53◦. The solid black line in all panels is the result
from our numerical propagation. The gray lines in the bottom
panels are isolines of the Colombo model first integral (A.11).
Because there are more terms contributing to the precession of
Lacrimosa’s node, in particular the proper s term, the gray lines
serve only as guidelines of the true motion about which the solu-
tion oscillates. Two particularly interesting isolines of the first
integral are highlighted in red: (i) the separatrix (boundary) of
the Cassini resonance, and (ii) the Cassini state 2 (red dot in
the center of the resonant zone). The spin evolution described
in Fig. 4 confirms what is suggested by Fig. 3, namely that a
smaller dynamical ellipticity value ∆ = 0.23 would help to locate
the spin evolution to the Slivan state. The phase space trajectory
librates about the Cassini state 2. The usefulness of representing
the secular spin evolution in this coordinate system stems from
the fact that the Slivan state dictates the principal features of the
motion. In particular, the large-amplitude and long-period oscil-
lation of the obliquity directly reflects libration motion about the
resonance center C2. The effects related to the leading term in
the orbital plane precession, namely the proper term with fre-
quency s, represent only a small perturbation. This is because
the libration period of '745 kyr is an order of magnitude longer
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Fig. 4. Top panel: time evolution of the osculating obliquity ε for
(208) Lacrimosa over the 2 Myr interval using numerical integration
of Eq. (A.1) with Tng = 0. The initial conditions at the present epoch
from the best-fit rotation state solution (P = 14.085734 h, λ= 15.2◦ and
β= 66.9◦) and ∆ = 0.23. The short-period oscillations are due to the
proper term of nodal precession with frequency s (which have a period
of '2π/(s− s6) ' 32 kyr). The long-period and large-amplitude oscilla-
tions of '745 kyr are due to libration about the resonant Cassini state 2
associated with frequency s6 (“the Slivan state”). Bottom panel: phase
portrait of the Colombo top model for the s6 frequency and preces-
sion constant α ' 29.75 arcsec yr−1 (i.e., P = 14.085734 h and ∆ = 0.23
in Eq. (A.4)); the ordinate is either cos ε6 (left) or ε6 (right) and the
abscissa is ϕ6. The light-gray curves are isolines of the first integral
C(ε6, ϕ6) = constant given by Eq. (A.11). Critical curves of the spin-
orbit resonance, namely the separatrix and the stable equilibrium C2,
are highlighted in red. The black curve is the numerically integrated
pole of (208) Lacrimosa from the top projected into the plane of these
variables; the blue diamond is the current position of the pole.

than any of the periods of significant terms characterizing the
precessional motion of the orbital plane in space.

However, the observations support a different behavior
depicted by Fig. 5. In this case, the Cassini resonance is dis-
placed to larger obliquity and the true evolutionary path of
Lacrimosa’s spin simply circulates about the Cassini state 1
(phase space representation in Fig. 5 is not suitable to show the
location of this center, which maps onto obliquity ε6 ' 0.73◦ and
ϕ6 =±180◦). The osculating obliquity of Lacrimosa (top panel)
shows a simple oscillatory behavior with an amplitude of '6.5◦.
This value is larger than the obliquity oscillation related to the
motion about the C1 center and is even larger than the proper
inclination IP ' 2.15◦ of Lacrimosa’s orbit. In fact, it is entirely
forced by the obliquity of the Cassini state 2 related to the orbital
plane precession mode with proper frequency s (see left panel of
Fig. 3).

In order to better understand this effect, we also re-mapped
the numerically determined spin evolution of Lacrimosa to the

Fig. 5. Top panel: time evolution of the osculating obliquity ε for
(208) Lacrimosa over the 2 Myr interval using numerical integration
of Eq. (A.1) with Tng = 0. The initial conditions at the present epoch
from the best-fit rotation state solution (P = 14.085734 h, λ= 15.2◦ and
β= 66.9◦) and ∆ = 0.35. The amplitude of the oscillations, which is
larger than the proper inclination ('2.15◦), is forced by the Cassini state
2 of the s frequency at '6.5◦ (see Fig. 3). Bottom panel: phase portrait
of the Colombo top model for the s6 frequency and precession constant
α ' 45.27 arcsec yr−1 (i.e., P = 14.085734 h and ∆ = 0.35 in Eq. (A.4));
the ordinate is either cos ε6 (left) or ε6 (right) and the abscissa is ϕ6. The
light-gray curves are isolines of the first integral C(ε6, ϕ6) = constant
given by Eq. (A.11). Critical curves of the spin-orbit resonance, namely
the separatrix and the stable equilibrium, are highlighted in red. The
black curve is the numerically integrated pole of (208) Lacrimosa from
the top projected into the plane of these variables; the blue diamond is
the current position of the pole.

coordinates of the phase space of the Colombo-top model asso-
ciated with the s precession frequency. This is shown in the
bottom panel of Fig. 6. The numerically integrated trajectory
of Lacrimosa’s spin now more closely follows isolines of the
Colombo model first integral (A.11), which means the spin evo-
lution is more conveniently represented in these coordinates. The
effects due to the s6 precession mode in the orbital plane evolu-
tion produce only a very small perturbation. The Cassini state 2
(red symbol in Fig. 6) has an obliquity of '6.5◦ and its pres-
ence triggers the whole amplitude of the obliquity evolution. The
period of the osculating obliquity oscillations, '53 kyr, is just the
period of spin vector circulation about the Cassini state 2.

We conclude this section by observing that the present-day
spin state of (208) Lacrimosa is not in the Slivan state despite
its prograde sense of rotation. In this respect its behavior differs
from that of the other Koronis family asteroids in this size range.
How this is possible, and its implications for the very long-term
evolution of the spin state of this asteroid are investigated in the
following section.
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Fig. 6. Same as in Fig. 5, but here the bottom panel shows phase space
coordinates of the Colombo top model for the s frequency. As shown
in Fig. 3, the Cassini resonance does not exist and the Cassini state 2
has an obliquity of '6.5◦ (red point). Lacrimosa’s spin vector circulates
about C2 (black line) and follows the isolines of the first integral (A.11)
more closely than in Fig. 5.

3.2. Possible long-term evolution of the rotation state
of (208) Lacrimosa

Vokrouhlický et al. (2003) noted that many but not all initial con-
ditions of possible long-term evolution scenarios resulted in the
Slivan-state situations reported by Slivan (2002). Vokrouhlický
et al. (2003) showed the positive cases (e.g., Fig. 1 in their paper)
but only commented on the negative cases. For obvious reasons,
we are now interested in the opposite situation.

The initial data suitable for capture in the Slivan state had
the following common properties (see Vokrouhlický et al. 2003):
(i) the YORP evolution asymptotically decelerated the rotation
of the asteroid, and (ii) the initial rotation period was smaller
than '7 h. If these conditions were satisfied, the initial obliq-
uity had only to be positive, but was not restricted otherwise.
The generic evolution first made the obliquity reach a small
value due to the YORP torque, while still keeping the rota-
tion period short enough. As a result, the precession frequency
α cos ε from Eq. (A.2) along this evolutionary path remains
smaller than the −s6 frequency. Only when the rotation period
increases sufficiently does the resonant condition α ' −s6 for
small obliquity values become satisfied (this is because α ∝ P,
Eq. (A.2)). At the same time, the capture into the resonance
is guaranteed (i.e., 100% probable) as long as the resonant
condition occurs when the instantaneous obliquity is ≤20◦, a
comfortably large value. Once captured in the Slivan state, the
continuing increase in the rotation period due to the YORP effect
only makes the Cassini resonance drift toward a larger obliquity,

which eventually approaches ε ' 50◦−55◦ where the YORP-
driven period evolution stalls. We note that the spin state follows
this evolution adiabatically, because the characteristic timescale
of the YORP-driven changes is much longer than the libration
period about the Cassini state.

What happens in the situation where (i) in the above para-
graph is satisfied, but (ii) is not satisfied (i.e., the initial rotation
period is longer)? An example of such evolution is shown in
Fig. 7. In this case, we assume P = 12.25 h and ε= 70◦ initially,
and let the evolution proceed with the YORP torques character-
istic of Lacrimosa, i.e., body of D ' 44 km size and 2 g cm−3

bulk density. We used ∆ = 0.35, which is Lacrimosa’s nominal
value of dynamical ellipticity (Fig. 3). The initial phase of the
evolution resembles what has been described above: the YORP
torque causes the obliquity to decrease, while the rotation period
evolves slower (this is because near ε ' 55◦ the rotation period
change due to YORP is nil). However, the main difference is that
already the initial value of the spin axis precession rate α cos ε is
faster than −s6 because of the larger P value. At about 1.45 Gyr,
the resonance condition α cos ε ' −s6 becomes satisfied. At this
moment, the mean obliquity is still large – about 50◦ – and the
resonance has been approached from the zone of larger obliq-
uity values (rotation pole circulating about the Cassini state C3).
The adiabatic capture theory described in Appendix A.1 (see
also Henrard 1982) allows us to estimate the capture probabil-
ity. Using Eqs. (A.12) and (A.13) we find this probability is
zero (see Fig. 9). Indeed, the numerically propagated spin of
Lacrimosa jumped over the resonance and continued evolving
toward smaller obliquity while the rotation period increased due
to the YORP torques. At '2.4 Gyr, the possible age of the Koro-
nis family (e.g., Nesvorný et al. 2015), the simulated obliquity
and rotation period closely resemble those of Lacrimosa. In this
view, the lack of Lacrimosa’s pole residence in the Slivan state
is naturally explained by avoiding a capture in the first place.

For the sake of interest, we continued our simulation until
6 Gyr, allowing us to predict what may possibly happen to
Lacrimosa’s spin state in the future. At about 2.8 Gyr, the simu-
lated spin starts to closely follow the Cassini state C2 associated
with the proper orbital frequency s. At small obliquity values, the
rotation period continues to decrease and at about 4.1 Gyr, when
P ' 24.4 h, the Cassini resonance of this frequency bifurcates
(see also right panel on Fig. 3, which applies to only slightly
larger rotation period of 28 h). From that epoch, the modeled spin
state becomes locked in the new Slivan (resonant) state, but this
time associated with the proper frequency. Because the proper
frequency s is larger than s6, the required rotation period is
longer. The evolution follows the pattern known from the theory
of classical Slivan states in Vokrouhlický et al. (2003), namely a
long-term increase in the obliquity and rotation period. Finally,
at about 5.63 Gyr the amplitude of obliquity oscillation starts
to increase. This is associated with the increase in the ampli-
tude of oscillation of the resonant libration angle (bottom panel
at Fig. 7). This phase of evolution is triggered by an overlap
of the Cassini resonances associated with the s6 and s orbital
frequencies, which were separated until that moment.

An interesting intermediate case of possible long-term spin
evolution is shown in Fig. 8. We kept the same initial conditions,
and other parameters, as above (Fig. 7, except for the shorter ini-
tial rotation period of P = 9 h to expect a regular evolution that
would result in a capture in the Slivan state, Vokrouhlický et al.
2003). Because of the shorter P value in the initial phase of the
evolution, the resonance condition α cos ε ' −s6 is now met in
the situation where obliquity ε has already evolved to a smaller
value of '20◦. As a consequence (see Fig. 9), the capture in the
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Fig. 7. Example of a possible long-term evolution of the rotation state
for (208) Lacrimosa. Rotation period P (top), osculating obliquity ε
(middle-up), and longitude ϕ in the orbital frame associated with the
s6-frequency and s-frequency term of the nodal precession (middle-
down and bottom; note ϕ is measured from an axis 90◦ away from the
corresponding nodal line). The gray dots are densely output osculating
values (with a time-step of 5 kyr). Black symbols in the obliquity panel
are average values in a 2 Myr running window; black symbols in the
bottom panels are maximum and minimum values of the respective lon-
gitude in a 2 Myr running window. The dynamical model uses solar
gravitational torque and the YORP effect with parameters determined
from the best-fitting solution in Sect. 2. The red lines in the upper two
panels show the present state of (208) Lacrimosa for reference. At the
epoch of '2.4 Gyr, the propagated spin evolution roughly matches the
present state (as indicated by the gray arrows). At '1.45 Gyr (vertical
dashed line 1), the solution jumps over the Slivan state of the s6 preces-
sion frequency, where other large Koronis prograde-rotating asteroids
are located. At '2.8 Gyr (vertical dashed line 2), the solution starts to
closely follow the Cassini state 2 associated with the s precession fre-
quency. This is allowed by (i) the low obliquity (where C2 is located),
and (ii) the increasing rotation period. The Cassini resonance formally
bifurcates when the rotation period reaches '24.4 h, i.e., at '4.1 Gyr.
Finally, at '5.63 Gyr (vertical dashed line 3), the small-amplitude oscil-
lations about the resonant Cassini state 2 in the s precession frequency
frame become perturbed by an overlap with the Cassini resonance asso-
ciated with the s6 precession frequency. The simulations had an initial
rotation period of 12.25 h and an initial obliquity of 70◦.

Fig. 8. Same as in Fig. 7, but now for a different initial rotation period
of 9 h. In many respects, the evolution is similar to that shown in the
previous figure with one important exception: at '2.25 Gyr (vertical
dashed line 1) the spin state becomes captured in the Slivan state of
the s6 precession frequency; it remains located in the Slivan state until
'5 Gyr (vertical dashed line 2), when the amplitude of resonant libra-
tion grows to 180◦. Consequently, the spin state leaves the Slivan state
and continues to evolve primarily by YORP torques: the obliquity drifts
to small values and the rotation period slowly increases; at '5.85 Gyr
(highlighted by the arrows), both roughly match the current values of
(208) Lacrimosa. As the rotation period continues to grow, the spin evo-
lution follows the trend seen also in Fig. 7: it starts to closely follow the
Cassini state 2 associated with the s precession frequency (eventually
becoming captured in the corresponding Slivan state).

Slivan state is possible at '2.25 Gyr. However, the condition is
just barely satisfied and the capture results in a large-amplitude
libration situation about the Cassini state C2. Subsequently, the
evolution takes the usual direction towards larger obliquity while
being characterized by the Slivan state capture. However, the
large-amplitude libration state is susceptible to instability, and
the spin state is released from the resonance followed by an
interval of time dominated by YORP torques, during which the
obliquity again migrates toward the smaller value. At '5.85 Gyr,
the obliquity and rotation period match those of Lacrimosa.
Obviously, this cannot be accepted as a satisfactory history for
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Fig. 9. Left panel: capture probability to the spin-orbit resonance in a Colombo top model with an adiabatically slow change in the asteroid rotation
period P (at the abscissa). Heliocentric orbit of (208) Lacrimosa, dynamical ellipticity ∆ = 0.35, and s6 mode of the orbital node precession were
used. With these assumptions, the resonance bifurcates at '8.73 h rotation period (vertical dashed line). The red line indicates probability P+ of
a capture from orbits originally circulating about the Cassini state C3, the blue line indicates probability P− of a capture from orbits originally
circulating about the Cassini state C1. The analytical theory of Henrard & Murigande (1987) is briefly recalled in the appendix; see Eqs. (A.12)
and (A.13). The upper abscissa shows obliquity ε2 of the Cassini state C2, the equilibrium point of the resonance. Right panel: phase portrait of the
Colombo top for rotation period P = 14.085734 h (other parameters as above). The gray curves are isolines of the integral C(ε, ϕ) = constant given
by Eq. (A.11). The black curve is the separatrix and the black dot shows the location of the Cassini state C2. The arrows schematically indicate the
capture in the resonance from orbits originally circulating about the Cassini state C1 (blue) and C3 (red); in a model where only the rotation period
P slowly changes, the former occurs for a decrease in P and the latter occurs for an increase in P.

this object, because the needed timescale is longer than the age
of the Solar System. However, smaller members in the Koronis
family with a similar rotation state as in (208) Lacrimosa, such
as (263) Dresda, could take the evolutionary path described in
Fig. 8. This is because, for them, the YORP torques are stronger
and the associated characteristic timescale of evolution scales
∝ D2. Therefore, with a size of about 26 km, Dresda’s spin
evolves due to YORP about 2.8 times faster. The 5.85 Gyr then
recalibrates to '2.1 Gyr, plausible for the Koronis family age (we
note that this is obviously just a size-scale argument, because
the shape of Dresda may lead to YORP torques of somewhat
different strength). While these details are important for spe-
cific cases, they do not invalidate a general conclusion that some
smaller members (say, 15−25 km in size) in the Koronis family
might have undergone the spin evolution depicted in Fig. 8. The
interesting difference from larger objects consists of the past cap-
ture in the Slivan state, but later evolution away from it. This is
especially expected to happen among the smaller Koronis mem-
bers for which the YORP torques are stronger. The take-away
message is that as the spin states of the smaller members of
the Koronis family become known in the future, we may expect
more cases unrelated to the Slivan pattern seen in the population
of the larger Koronis objects (Slivan 2002). It is interesting to
note that the spin evolution shown in Fig. 8 evolves also to the
capture in the Slivan state associated with the s rather than s6
frequency. As a result, we may also expect the future spin-state
solutions for small Koronis members to bring evidence of this
configuration.

For sake of completeness we mention that numerical tests
with initial rotation period larger than 16 h did not lead to con-
figurations that would match Lacrimosa’s rotation parameters in
2−4 Gyr.

4. Conclusions

In this paper, we present new observations of asteroid (208) Lac-
rimosa, one of the largest members of the Koronis family.
When joining these new data with the previously available pho-
tometric dataset, we confirm (and improve) the rotation state
solution obtained earlier by Ďurech et al. (2019). Unlike in Slivan
(2002), the rotation of Lacrimosa is found to be prograde. While
Ďurech et al. (2019) still had two possible pole solutions sepa-
rated by 180◦ in the ecliptic longitude, here we find that stellar
occultation data allow one of them to be favored. Our analy-
sis indicates a rotation period of P = 14.085734± 0.000007 h
and a pole direction in ecliptic longitude and latitude of
(λ, β) = (15◦ ± 2◦, 67◦ ± 2◦). Thermal and occultation data also
effectively constrain Lacrimosa’s volumic size to D = 44± 2 km,
in good agreement with a previous solution based on WISE
observations.

Large asteroids in the Koronis family, when in prograde rota-
tion, were found to be locked in the Slivan state (e.g., Slivan
2002; Vokrouhlický et al. 2003). Therefore, we analyzed Lac-
rimosa’s status with respect to this configuration. We find that
Lacrimosa’s spin may well be confined to the Slivan state pro-
vided the value of the dynamical ellipticity ∆ is in the range
'(0.22–0.26). However, our convex shape models obtained from
the light-curve inversion analysis result in larger values, namely
∆ ≥ 0.28. The bootstrap approach to the observation fit helps us
to constrain ∆ to 0.35± 0.05. Therefore, we conclude that Lac-
rimosa’s rotation pole does not reside in the Slivan state: in other
words, its dynamical ellipticity is too large or its obliquity too
small for the rotation pole to be in the Slivan state (Fig. 3).

We then sought a reason as to why Lacrimosa is different
in this respect from other large Koronis asteroids rotating in a
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prograde fashion. The easiest solution we find consists in the
assumption that the initial rotation period of Lacrimosa was
slightly longer, notably in the range of 11 to 15 h. For those
values, and initial obliquity larger than '50◦, we find that spin
evolution avoids capture in the Slivan state. Instead, it typically
reaches the Cassini resonance condition at a still too high obliq-
uity value and consequently jumps over the Slivan state. Further
evolution toward a small obliquity value explains the current spin
configuration of Lacrimosa. Our numerical simulations also sug-
gest that Koronis members with slower rotation are efficiently
captured in the Slivan state associated with the proper mode
s of the orbital precession, instead of the forced mode s6 (the
classical Slivan state).

One of the main purposes of this paper is also to highlight
an expected diversity of spin states among the small asteroids
in the Koronis family. While the large members of this fam-
ily generally follow the Slivan-state paradigm (Slivan 2002;
Vokrouhlický et al. 2003), small members – for which the YORP
torques are stronger – may evolve further. Their possible past
Slivan states might already have been destabilized, allowing evo-
lution to longer rotation periods and small obliquities. If pushed
even further, a new type of Slivan state, namely capture in the
Cassini resonance associated with the s precession frequency
of the orbits, is also expected. Some other evolutionary paths
may also entirely avoid capture in the traditional Slivan state by
jumping over the Cassini resonance. In summary, small Koronis
members should exhibit a much larger variety of spin states than
would be expected from the Slivan sample of large members.
The forthcoming data from future large-scale surveys will allow
this conclusion to be tested.
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Hanuš, J., Brož, M., Ďurech, J., et al. 2013, A&A, 559, A134
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Appendix A: Methods and numerical tools

In this appendix, we provide a brief overview of the mathe-
matical formulation and numerical tools needed for description
of an asteroid’s rotation state over long periods of time. This
has become a classical chapter of celestial mechanics, and so
we mostly refer to previous publications, where more detailed
calculations were performed.

A.1. Theory

Rotational angular momentum L of an asteroid evolves as a
response to external torques of both gravitational Tg and non-
gravitational Tng origin. Aiming to describe long-term evolution
of L, we assume Tg and Tng are averaged over rotation and orbital
timescales. For sake of simplicity, we also assume the asteroid
rotates about the shortest axis of the inertia tensor (appropri-
ate for cases discussed in this paper), therefore L = Cω s with
C the largest principal value of the inertia tensor, ω the rotation
frequency, and s the unit vector specifying direction of L. The
gravitational part Tg is dominated by the effect of the Sun, in
particular quadrupole representation of its tidal field at the loca-
tion of the asteroid (higher-multipole contributions and those
from planets may be safely neglected). The nongravitational part
Tng is due to the YORP effect. In this model, the gravitational
torque may be expressed using a simple analytical formula (e.g.,
Bertotti et al. 2003). Analytic approaches for the YORP torques
are also available (e.g., Nesvorný & Vokrouhlický 2007, 2008;
Breiter & Michalska 2008), but they are not practical for our
purposes. Rather, we use an averaged representation of a numer-
ical work presented in Čapek & Vokrouhlický (2004). With all
these assumptions adopted, the Euler equation describing secular
evolution of L reads

dL
dt

=− [α (c · s) c + h] × L + Tng, (A.1)

with the first term on the right-hand side being essentially the
gravitational torque.

Let us first briefly focus on the effects due to the grav-
itational torque (hence, for a moment assuming Tng = 0).
Referring L to the inertial space would imply h = 0 and
cT = (sin I sin Ω,− sin I cos Ω, cos I), where I and Ω are inclina-
tion and longitude of the node of the asteroid’s heliocentric orbit.
The precession constant α reads

α=
3

2η3

n2

ω
∆, (A.2)

where η=
√

1 − e2, e is the orbital eccentricity, n is the orbital
mean motion, and ∆ is dynamical ellipticity of the body defined
as

∆ =
C − 1

2 (A + B)
C

. (A.3)

Here (A, B,C) (A ≤ B ≤ C) are the principal values of the inertia
tensor. It is useful to note that for the low-eccentricity orbits in
the Koronis family (a ' 2.89 au and e ' 0.05) we have (e.g.,
Vokrouhlický et al. 2006)

α ' 55.1 ∆ P6 arcsec yr−1, (A.4)

where P6 = P/6 h is the rotation period P expressed nondi-
mensionally in units of 6 h (characteristic of many asteroids).

The value of ∆ is restricted to the interval (0, 0.5), with most
typical values between 0.2 and 0.4 for small asteroids (e.g.,
Vokrouhlický & Čapek 2002).

An alternative to the above-described choice is to refer com-
ponents of L to the axes comoving with the heliocentric orbital
frame of the asteroid (e.g., Bertotti et al. 2003; Breiter et al.
2005). In this case, c takes a trivial form, namely cT = (0, 0, 1),
but now hT = (A,B,−2C), with

A = cos Ω İ − sin I sin Ω Ω̇,

B = sin Ω İ + sin I cos Ω Ω̇, (A.5)
C = sin2 I/2 Ω̇,

where overdots mean time derivatives. In fact, this latter term
−h× L in Eq. (A.1) is not of gravitational origin, but purely
induced by transformation to the noninertial, comoving orbital
frame.

In either choice, the gravitational torques alone conserve
rotation frequency ω and change the spin direction s only. If
the heliocentric orbit was fixed in the inertial space (i.e., I and
Ω constant, in particular), s would perform a simple precession
about c with a frequency ψ̇=−α (c · s) =−α cos ε. This notation
comes from a traditional representation of s in the orbital frame
using

s =

 sin ε sinψ
sin ε cosψ

cos ε

 , (A.6)

where ε is the obliquity and ψ the precession angle (e.g., Breiter
et al. 2005).

However, things are more complicated in reality. In our
context of secular spin evolution, this is mainly because the
heliocentric orbital plane is not fixed in the inertial space. On
the contrary, the planetary perturbations produce its compli-
cated evolution which is reflected in time dependence of I and
Ω. It is convenient to merge this information into a complex
and nonsingular variable, ζ = sin I/2 exp(ıΩ). This is because ζ
may be represented to an acceptable level of approximation with
a finite number of Fourier terms, namely ζ(t) =

∑
Ak exp(ıΩk),

each of which has a constant amplitude Ak (i.e., associated
inclination value Ak = sin Ik/2) and frequency Ω̇k = sk (there-
fore Ωk = skt + Ωk,0). A typical spectrum of frequencies sk for
an asteroid consists of (i) a proper mode, associated with free
initial conditions of the orbital motion and denoted by s, and
(ii) forced modes, imprinted from the perturbing planets (addi-
tionally, terms with frequencies given by linear combinations of
s, and planetary frequencies may also contribute). The forced
terms are dominated by effects of giant planets denoted by s6,
s7 and s8. Their numerical values are s6 ' −26.34 arcsec yr−1,
s7 ' −2.99 arcsec yr−1 and s8 ' −0.69 arcsec yr−1 of consecu-
tively decreasing frequency (e.g., Laskar 1988). As the s6-related
term reflects primarily perturbations by the gas giants, Jupiter
and Saturn, its amplitude I6 is the largest. As an example, in the
case of (208) Lacrimosa we have I6 ' 0.53◦, while the proper
term has IP ' 2.13◦ and s ' −67.25 arcsec yr−1. All other terms
in Fourier representation of ζ have amplitudes at least an order of
magnitude smaller. In the first approximation, we may therefore
assume representation of ζ with only two Fourier terms, namely
(i) the proper term, and (ii) the forced term with the s6 frequency.

The core of complexity related to the moving orbital plane
arises from the fact that the above-mentioned precession fre-
quency ψ̇ may enter into a resonance with some of the frequen-
cies sk in the Fourier representation of ζ. The nature of this
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resonance is best explained in a model where ζ is represented
with only one Fourier term. In our application of asteroids in
the Koronis family, the more realistic situation with two terms
in ζ may be understood at the zero order as a high-frequency (s)
perturbation of the single-term model with the lower-frequency
(s6), or vice versa. This works well especially when the two
frequencies, s6 and s, are well separated.

The single-term model for ζ is very useful because of its
integrability. This model has been extensively studied and it is
known as a Colombo top problem (e.g., Colombo 1966; Henrard
& Murigande 1987; Saillenfest et al. 2019; Haponiak et al. 2020).
Here we provide its most important features relevant to our study.

We assume that ζ = sin I/2 exp[ı(st + φ)], namely the orbital
plane has a constant inclination I and a node precessing
with constant frequency s. The most interesting features of
the Colombo top derive from occurrence of stationary solu-
tions. Their number depends on a nondimensional parameter
κ=α/(2s). In a simpler situation, when |κ| < κ?, there exists two
stationary solutions, otherwise there are four stationary solutions
(astronomical tradition has it that we call them Cassini states).
The threshold value for κ reads (e.g., Henrard & Murigande
1987; Haponiak et al. 2020)

κ? =
1
2

(
sin2/3 I + cos2/3 I

)3/2
. (A.7)

For low-inclination cases, κ? ' 1
2 , and the two new stationary

solutions bifurcate when α ' −s. While stationary with respect
to the (moving) frame with nodal longitude Ω = st + φ, the
Cassini states obviously regularly precess in the inertial space.
Their obliquity value is given by solutions of the equation

κ sin 2ε=− sin (ε ∓ I), (A.8)

with the upper sign − for ϕ= 0◦ and lower sign + for ϕ= 180◦;
the definition of the longitude in the moving frame is ϕ=−(ψ +
Ω) and it reckons from a direction 90◦ away from the ascending
node (interestingly, the values of cos ε for the Cassini state may
be obtained analytically as roots of a quartic equation derived
easily from (A.8); see, e.g., Saillenfest et al. 2019; Haponiak
et al. 2020). Of particular interest is ϕ= 0◦ stationary point when
|κ| > κ? which is usually referred to as the Cassini state 2 (C2).
This is because it has a character of a stable resonant state:
small perturbations make obliquity oscillate about ε2 and lon-
gitude ϕ librate about zero (see lower panel on Fig. 4). The
nature of the resonance is seen from (A.8) whose limit for I ' 0
becomes κ sin 2ε ' − sin ε. The obvious solutions ε1 ' 0◦ and
ε3 ' 180◦ correspond to the Cassini states 1 and 3 (to be denoted
C1 and C3), while the Cassini states 2 and 4 are at approximately
α cos ε2,4 ' −s. The left-hand side is the regular precession of
s produced by the gravitational torque of the center, while the
right-hand side is the orbital precession rate. Thus the Cassini-
state 2 resonance expresses 1:1 commensurability between the
two. Together with the Cassini-state 4 (C4), C2 form stable and
unstable equilibria of the spin-orbit resonance. The maximum
width ∆ε of the resonant zone associated with the Cassini state
2 may be determined from (e.g., Henrard & Murigande 1987;
Ward & Hamilton 2004; Vokrouhlický et al. 2006; Saillenfest
et al. 2019; Haponiak et al. 2020)

sin
∆ε

2
=

1
|κ|

√
sin 2I
sin 2ε4

, (A.9)

where ε4 is the obliquity of the unstable equilibrium from
Eq. (A.8). Alternatively, one can also use somewhat simpler

tan
∆ε

4
=

√
tan I
tan ε4

. (A.10)

An important implication of the square-root factor on the right-
hand side of (A.9) or (A.10) is that ∆ε may be significant (e.g.,
tens of degrees) even for very small values of I (e.g., a degree);
see Fig. 3 for specific examples. Another useful aspect of inte-
grability of the Colombo top problem is the existence of the first
integral of motion,

C (ε, ϕ) = κ cos2 ε + cos I cos ε + sin I sin ε cosϕ. (A.11)

Conservation of C(ε, ϕ) allows us to easily represent solutions in
the obliquity (ε) versus longitude (ϕ) plane such as those shown
on Fig. 4. Critical points of the surface C(ε, ϕ) = constant are
obviously the above-mentioned stationary points; in the more
interesting case of a set of four: (i) the minima specify location
of C1 and C3, (ii) C2 is the maximum, and (iii) C4 is the saddle
point.

When some of the parameters of the Colombo top model
vary slowly in time, C(ε, ϕ) is not strictly constant. Rather,
the system slowly drifts among solutions approximately con-
serving this parameter. A special situation happens when the
motion approaches the separatrix of the spin–orbit resonance.
At this moment, the future evolution may either (i) avoid the
resonance and continue to circulate about either C1 or C3 equi-
librium states, or (ii) it may be captured in the resonance (thus
librating about the Cassini state C2). The process is inherently
chaotic (unpredictable). Nevertheless, in an adiabatic model it
can be approached probabilistically (e.g., Henrard 1982). Sur-
prisingly, all necessary algebra may be carried out analytically
in the Colombo top model (e.g., Henrard & Murigande 1987).
Assume, as an example, the rotation period of an asteroid slowly
changes. This is reflected in a slow change of the precession
constant α in Eq. (A.2). Following the elegant formulation in
Henrard & Murigande (1987), one can determine resonance cap-
ture probability P+ of a transition from the solution circulating
about C3 (see the sense of the red arrow in Fig. 9) and resonance
capture probability P− of a transition from the solution circulat-
ing about C1 (see the sense of the blue arrow in Fig. 9). In fact,
both may be given using a compact formulation:

P± = max
 Ψ

±1 + 1
2 Ψ

, 0
 , (A.12)

where

Ψ =
4
π

{
arcsin

[
tan(∆ε/4)

tan ε4

]
(A.13)

−2
|κ| sin(∆ε/4)

cos I

√
sin2 ε4 − sin2(∆ε/4)

}
.

In our context, the rotation period of an asteroid is changed by
the YORP effect (Eq. (A.14)). However, the above-given results
are only approximate. This is because the YORP effect directly
changes also the obliquity (Eq. (A.15)), namely one of the active
variables in the Colombo top model. Hence, results from numer-
ical simulations are needed to verify the capture probabilities
given above.

The symplectic numerical scheme of Breiter et al. (2005)
allows, aside from quadrupole solar torque, to include a general
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weak dissipative torque T. In our case, T = Tng represents the
YORP effect. A distinctive feature of the YORP effect is its abil-
ity to change the rotation rate of the asteroid in the long term.
This is associated with the nonzero along-spin component of the
torque, namely (see Eq. (A.1)),(

dω
dt

)
ng

=
Tng · s

C
. (A.14)

The YORP effect also acts on s, in particular obliquity ε and
precession angle ψ (e.g., Eqs. (5)–(8) in Čapek & Vokrouhlický
2004). However, the latter represents only a small perturbation
compared to the effect produced by the gravitational torque.
Therefore, we neglect this component and include the YORP
effect on obliquity only:(

d cos ε
dt

)
ng

=
Tng · c

Cω
− cos ε

ω

(
dω
dt

)
ng

; (A.15)

(we note that this is conveniently the third component of s
in our representation by Eq. (A.6)). Because in this work we
aim to illustrate the likely processes in the Koronis family,
we do not need highly accurate determination of the YORP
effect. We consider the YORP strength determined for the
nominal (best-fit) model of Lacrimosa from Sect. 2. Instead
of computing YORP torque for a spin-orbit configuration at
a given moment during the numerical simulation, we follow
the approach of Vokrouhlický & Čapek (2002) and Čapek &
Vokrouhlický (2004). In particular, we pre-computed values of
the factors (Tng · s)/C and (Tng · c)/C − cos ε (dω/dt)ng on the
right-hand side of Eqs. (A.14) and (A.15) as a function of obliq-
uity ε (we note the basic YORP theory does not assume them
to be a function of ω). We used a sufficiently dense grid of two
degrees in obliquity (see Sect. 2.2). When performing our long-
term spin simulations we simply interpolated these rotation-rate
and obliquity YORP torques.

A.2. Numerical implementation

We implemented the algorithm developed in Breiter et al. (2005)
to numerically integrate Eq. (A.1) (in particular, we use their
LP2 splitting scheme). In our approach, the components of L
are represented with respect to the frame comoving with the
heliocentric orbit. As we deal with secular evolution of L, we
may use a long-enough time-step of 50 yr. In addition to ini-
tial conditions and dynamical ellipticity ∆ as the only external
parameter, the code needs information about the orbital evo-
lution due to planetary perturbations. To that end we use two
methods.

In the first, more detailed method used in Sect. 3.1, we
determine osculating orbital parameters, in particular semima-
jor axis a, eccentricity e, inclination I, and longitude of node Ω
(all needed in Eq. (A.1)), using direct numerical integration of
the asteroid’s heliocentric motion. For that purpose we adapted
the widely known and well-tested integration package4 swift.
Because swift integrates the full system of equations of motion
for both planets and asteroid(s) it requires an accordingly short

4 http://www.boulder.swri.edu/~hal/swift.html

time-step. We used 3 days, short enough to realistically describe
orbital evolution of all bodies (including planet Mercury). Ini-
tial orbital state vectors for the chosen asteroids and a given
epoch were taken from the AstDyS internet database5. and for
the planets from the JPL DE405 ephemerides file. To organize
the propagation efficiently, we embedded our secular spin inte-
gration scheme into the swift package. This arrangement not
only allows to propagate the spin evolution online, avoiding
large output files with the orbital evolution, but also allows to
simultaneously propagate the spin evolution of more asteroids or
parametric variants of the same asteroid (for instance testing evo-
lution for different values of the dynamical ellipticity parameter
∆). We note that the spin propagation only needs at a given time
to know the orbital parameters in the neighboring grid points in
time, which are readily provided by the swift integrator.

The above-mentioned implementation is very precise and has
been used for short-term tests such as those shown on Figs. 4–6.
However, it is unnecessarily detailed for the propose of very
long-term simulations, where our goal is to demonstrate the pos-
sible evolutionary tracks of Lacrimosa’s spin state over very long
timescales (Sect. 3.2, e.g., Figs. 7 and 8). This is because the
implementation based on swift code requires a rather short
time-step of the order of days. Therefore, to fully profit from a
possibility of a longer time-step (order of years or so) for the
propagation of L, we also adopted an approximate variant where
the heliocentric orbit evolution was simplified. This means the
semimajor axis and eccentricity were assumed constant (and
equal to the proper elements of the asteroid), and ζ was repre-
sented with two Fourier terms, namely the proper term and the
s6-frequency term (as discussed above). In this case, we also
adopted our simplified approach to the YORP effect, namely
interpolating the rotation-rate and obliquity torques precomputed
using the shape model of Lacrimosa (see Sect. 2.2). For this
task, we wrote our own numerical code that implements spin
propagator described in Breiter et al. (2005).

Appendix B: Observations using TRAPPIST
system

TRAPPIST-North (TN) and -South (TS) are 0.6-m Ritchey-
Chrétien robotic telescopes operating at f /8 on German equato-
rial mounts (Jehin et al. 2011). TN is located at the Oukaimeden
Observatory in Morocco (Z53) and the camera is an Andor
IKONL BEX2 DD (0.60′′/pixel, 20′ × 20′ field of view). TS is
located at the La Silla Observatory in Chile (I40) and the camera
is a FLI ProLine 3041-BB (0.64′′/pixel, 22′ × 22′ field of view).
We observed Lacrimosa in 2020 using the Johnson–Cousins Rc
filter in March and June and obtained dense lightcurves at solar
phase angles of ∼19◦ and ∼7◦ respectively (Table B.1). The
images were first calibrated with IRAF scripts using the cor-
responding flat fields, bias, and dark frames. The differential
photometry was then performed using Python scripts by select-
ing nonvariable comparison stars with high S/N and by testing
various aperture sizes.

The complete list of the observations available for (208)
Lacrimosa, including the new set from the TRAPPIST system,
is given in Table B.1.

5 https://newton.spacedys.com/astdys/
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Table B.1. Aspect data for available observations of (208) Lacrimosa.

Date r ∆ α λ β Obs.
[au] [au] [deg] [deg] [deg]

Dense photometry
1985 02 15.4 2.872 2.158 15.8 199.0 0.1 Binzel (1987)
1989 02 03.2 2.860 1.991 11.2 100.4 2.4 Slivan & Binzel (1996)
1989 02 04.2 2.860 1.998 11.5 100.3 2.4 Slivan & Binzel (1996)
1990 03 31.3 2.887 1.899 3.6 200.9 −0.6 Slivan & Binzel (1996)
1992 10 24.2 2.897 1.919 4.4 18.3 0.8 Slivan & Binzel (1996)
1992 11 16.2 2.895 2.061 12.5 14.8 0.9 Slivan & Binzel (1996)
1992 11 21.1 2.894 2.108 13.9 14.4 1.0 Slivan & Binzel (1996)
1994 01 09.3 2.864 1.883 2.0 114.0 2.5 Slivan & Binzel (1996)
1994 01 10.3 2.864 1.882 1.6 113.8 2.5 Slivan & Binzel (1996)
1994 01 11.2 2.864 1.881 1.3 113.6 2.5 Slivan & Binzel (1996)
1994 01 16.2 2.863 1.881 1.5 112.5 2.5 Slivan & Binzel (1996)
1994 01 19.2 2.863 1.885 2.6 111.8 2.5 Slivan & Binzel (1996)
2014 01 14.3 2.857 1.990 11.2 148.2 1.8 Stephens (2014)
2014 01 14.5 2.857 1.989 11.1 148.1 1.8 Stephens (2014)
2014 01 15.3 2.857 1.982 10.9 148.0 1.8 Stephens (2014)
2014 01 15.5 2.857 1.981 10.8 148.0 1.8 Stephens (2014)
2014 01 16.3 2.857 1.975 10.5 147.9 1.8 Stephens (2014)
2014 01 16.5 2.857 1.973 10.5 147.9 1.8 Stephens (2014)
2020 03 07.3 2.906 2.562 19.6 246.7 −1.3 TRAPPIST-South
2020 03 08.2 2.907 2.550 19.6 246.9 −1.4 TRAPPIST-North
2020 03 09.1 2.907 2.537 19.5 247.0 −1.4 TRAPPIST-North
2020 03 09.2 2.907 2.536 19.5 247.0 −1.4 TRAPPIST-South
2020 03 10.2 2.907 2.523 19.5 247.2 −1.4 TRAPPIST-North
2020 03 10.3 2.907 2.522 19.5 247.2 −1.4 TRAPPIST-South
2020 03 11.2 2.907 2.510 19.4 247.3 −1.4 TRAPPIST-North
2020 03 11.3 2.907 2.508 19.4 247.3 −1.4 TRAPPIST-South
2020 03 12.3 2.907 2.495 19.3 247.4 −1.4 TRAPPIST-South
2020 03 19.3 2.908 2.403 18.7 248.2 −1.5 TRAPPIST-South
2020 06 02.0 2.915 1.914 4.0 240.3 −2.3 TRAPPIST-North
2020 06 03.0 2.915 1.917 4.4 240.2 −2.3 TRAPPIST-North
2020 06 07.0 2.916 1.931 5.9 239.4 −2.3 TRAPPIST-North
2020 06 11.0 2.916 1.949 7.4 238.7 −2.3 TRAPPIST-North
2020 06 14.9 2.916 1.970 8.8 238.0 −2.3 TRAPPIST-North
2020 06 18.0 2.917 1.989 9.9 237.6 −2.3 TRAPPIST-North

Sparse photometry
2015/01–2016/05 Gaia DR2
2012/10–2018/11 ASAS-SN
2015/08–2018/02 ATLAS c
2015/08–2018/09 ATLAS o
1998/11–2009/02 USNO
2003/11–2016/09 Catalina

Notes. The table lists its distance from the Sun r and from the Earth ∆, the solar phase angle α, its geocentric ecliptic coordinates (λ, β), and the
observatory or source of data. Our new observations taken in March and June 2020 were made as part of the TRAPPIST survey. Sparse-in-time
photometry is listed at the bottom of the table and covers a wide range of geometries. The data come from Gaia Data Release 2, All-Sky Automated
Survey for Supernovae, Asteroid Terrestrial-impact Last Alert System (cyan and orange filters), the US Naval Observatory, and the Catalina Sky
Survey.

Appendix C: Model fit to the observations

In this appendix, we show performance of the model using the
best-fitting parameters versus observations listed in Table B.1.
Figures C.1 to C.3 show the traditional light curves, i.e., dense
photometry data. We note that the rotation state solution in
Slivan (2002) and Slivan et al. (2003) was based on observations
shown in Fig. C.1 only. The relative brightness on the vertical

axis is scaled to have the mean value of one. The red curve
is the prediction from our model, the blue symbols are obser-
vations. All data are treated as relative photometry. Figure C.4
shows sparse photometry data from various surveys: blue sym-
bols are the individual observations, red symbols are the model
predictions. The right panels show residuals and the phase curve
(dashed line).
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Fig. C.1. Observed light curves of Lacrimosa (blue points) shown with synthetic light curves corresponding to the best-fitting model with the pole
direction (15◦, 67◦) and rotation period 14.085734 h (red curves). The viewing and illumination geometry is described by the aspect angle θ, the
solar aspect angle θ0, and the solar phase angle α.
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Fig. C.2. Observed light curves of Lacrimosa (blue points) shown with synthetic light curves corresponding to the best-fitting model with the pole
direction (15◦, 67◦) and rotation period 14.085734 h (red curves). The viewing and illumination geometry is described by the aspect angle θ, the
solar aspect angle θ0, and the solar phase angle α.
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Fig. C.3. Observed light curves of Lacrimosa (blue points) shown with synthetic light curves corresponding to the best-fitting model with the pole
direction (15◦, 67◦) and rotation period 14.085734 h (red curves). The viewing and illumination geometry is described by the aspect angle θ, the
solar aspect angle θ0, and the solar phase angle α.
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Fig. C.4. Left: observed sparse photometric data with their brightness reduced to a unit distance from the Sun and the Earth (blue points) and
synthetic data produced by the best-fitting model with the pole direction (15◦, 67◦) and rotation period 14.085734 h (red points). Right: residuals
(the difference between data and model) plotted on the model phase curve (dashed curve).
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