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ABSTRACT

Aims. To interpret adaptive-optics observations of (216) Kleopatra, we need to describe an evolution of multiple moons orbiting an
extremely irregular body and include their mutual interactions. Such orbits are generally non-Keplerian and orbital elements are not
constants.
Methods. Consequently, we used a modified N-body integrator, which was significantly extended to include the multipole expansion
of the gravitational field up to the order `= 10. Its convergence was verified against the ‘brute-force’ algorithm. We computed the
coefficients C`m, S`m for Kleopatra’s shape, assuming a constant bulk density. For Solar System applications, it was also necessary
to implement a variable distance and geometry of observations. Our χ2 metric then accounts for the absolute astrometry, the relative
astrometry (second moon with respect to the first), angular velocities, and silhouettes, constraining the pole orientation. This allowed
us to derive the orbital elements of Kleopatra’s two moons.
Results. Using both archival astrometric data and new VLT/SPHERE observations (ESO LP 199.C-0074), we were able to identify the
true periods of the moons, P1 = (1.822359± 0.004156) d, P2 = (2.745820± 0.004820) d. They orbit very close to the 3:2 mean-motion
resonance, but their osculating eccentricities are too small compared to other perturbations (multipole, mutual), meaning that regular
librations of the critical argument are not present. The resulting mass of Kleopatra, m1 = (1.49± 0.16) × 10−12 M� or 2.97 × 1018 kg, is
significantly lower than previously thought. An implication explained in the accompanying paper is that (216) Kleopatra is a critically
rotating body.

Key words. minor planets, asteroids: individual: (216) Kleopatra – planets and satellites: fundamental parameters – astrometry –
celestial mechanics – methods: numerical

1. Introduction
(216) Kleopatra was discovered in 1880 by Johann Palisa, a
famous Czech astronomer working at the Austrian observatory
? Based on observations made with ESO Telescopes at the La Silla

Paranal Observatory under program 199.C-0074 (PI Vernazza).

located in Croatia (Palisa 1880). While we celebrate 140 yr of its
observational arc, the time-span of observations of the moons
orbiting Kleopatra is ‘only’ several tens of years. These began in
1980, when a serendipitous occultation by the outer moon was
observed, and in 2008 (Descamps et al. 2011) both moons were
discovered using adaptive-optics observations on Keck II. The
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moons have been assigned permanent names: Alexhelios and
Cleoselene.

This time-span is sufficient to not only determine ‘static’
orbits but also to analyse their orbital evolution. In particular,
the oblateness of the central body induces nodal precession, Ω̇ =
−(3/2) nJ2(R/a)2 cos i, where J2 denotes the zonal quadrupole
moment, R the body radius, n the mean motion, a the semimajor
axis, and i the inclination with respect to the equator (assuming
e = 0). For J2 ' 0.8, this means 3 deg d−1 for a small-inclination
orbit at the distance of 500 km. However, (216) Kleopatra is an
extreme example. Its shape is so irregular (Ostro et al. 2000;
Shepard et al. 2018) that multipoles of higher orders certainly
play some role. One should use either a direct integration, which
would be extremely time consuming, or a multipole expansion,
as we do in this work. As an outcome, we determine orbital
parameters with better accuracy by accounting for as many
dynamical effects as possible.

2. Adaptive-optics observations

To fit the orbits of Kleopatra moons, we used three astro-
metric datasets denoted DESCAMPS (from 2008; Descamps
et al. 2011), and SPHERE2017 and SPHERE2018, which were
obtained with the VLT/SPHERE instrument (Beuzit et al. 2019)
in the framework of the ESO Large Programme (199.C-0074;
PI: P. Vernazza). A detailed description of all adaptive-optics
observations, their observational circumstances, reductions, and
resulting astrometric positions is included in the accompanying
paper by Marchis et al. (2021; see Tables 2 and 3 therein), where
the same observations are used to analyse Kleopatra’s shape.

Altogether, the number of measurements is 15 and 18 for the
absolute astrometry of the inner and the outer moon, respec-
tively. For testing purposes, we also used measurements taken
using individual close-in-time images, which are much more
numerous (45 and 45 for the inner and outer moon, respectively).
A conservative estimate of the position uncertainties is approx-
imately 10 mas. We accounted for a systematic shift between
the photocentre and the centre of mass, which is typically a
few miliarcseconds. We used a convex-hull shape model (with
zero centre of mass), rotated and illuminated according to obser-
vational circumstances, and computed its photocentre as the
weighted average over all observable facets in the (u, v) plane. A
difference in photocentre for a non-convex model would be neg-
ligible, because the observations were taken close to oppositions.
Alternatively, we used 14 relative astrometry measurements of
the two moons, which partly mitigates remaining systematic
errors in the photocentre motion (or allows their detection).

3. Orbital dynamics of the moons

3.1. N-body model

For orbital simulations, we use the Xitau program1 which
was originally developed for stellar applications (Brož 2017;
Nemravová et al. 2016). It is a full N-body model based on the
Bulirsch-Stoer numerical integrator from the SWIFT package
(Levison & Duncan 1994), and accounts for mutual interactions
of all bodies. For our purposes, it was necessary to modify it in
several ways. Namely, we implemented: (i) a fitting of relative
astrometry, (ii) angular velocities, (iii) adaptive-optics silhou-
ettes of the primary, (iv) variable distance, (v) variable geometry

1 http://sirrah.troja.mff.cuni.cz/~mira/xitau/

(u, v, w), (vi) a brute-force algorithm, (vii) multipole develop-
ment (up to the order `= 10; see Sect. 3.2), and (viii) external
tide (see Sect. 3.3).

Consequently, for a comparison of observations of Kleopatra
and its moons with our model, we can use the metric:

χ2 =wskyχ
2
sky + wsky2χ

2
sky2 + wsky3χ

2
sky3 + waoχ

2
ao , (1)

χ2
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Nbod∑
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σ2
sky major i

+
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σ2
ao i

, (6)

where the index i corresponds to observational data, j to indi-
vidual bodies, k to angular steps of silhouette data, ′ to synthetic
data interpolated to the times of observations ti (including the
light-time effect). Also, u, v denote the sky-plane coordinates, u̇,
v̇ their temporal derivatives, R the rotation matrix, σ observa-
tional uncertainties along two axes (distinguished as ‘major’ and
‘minor’), and φellipse the angle of the corresponding uncertainty
ellipse. Necessary (216) and Sun ephemerides for computations
of the variable distance and geometry were taken from the Jet
Propulsion Laboratory (JPL) Horizons (Giorgini et al. 1996).

The four terms correspond to the absolute or 1-centric
astrometry (SKY), relative astrometry (SKY2; i.e. body 3 with
respect to body 2), angular velocities (SKY3), and adaptive-
optics silhouettes (AO). Optionally, we can also use weights,
for example wsky3 = 0, if the observed u̇, v̇ are systematically
underestimated, or wao = 0.3, which serves as a regularisation,
preventing unrealistic pole orientations.

Given the overall time-span of observations, our integrations
were performed for 3 780 d (forward) and 1 d (backward) with
respect to the epoch T0 = 2 454 728.761806. The integrator has
an adaptive time-step, with the respective precision parameter
ε = 10−8. The internal time-step was typically 0.02 d, or smaller
if the time was close to the ‘time of interest’, that is, any of the
observational data.

3.2. Brute-force versus multipole

In order to account not only for J2 but for the total gravi-
tational acceleration attributable to the arbitrary shape of the
central body, we implemented a brute-force algorithm in Xitau.
Hereafter, we assume a constant density within the body. The
respective volumetric integral:

fbf(r) =−Gρ
∫

V

r − r′

|r − r′|3 dV ′, (7)

was approximated by a direct sum over 24 099 tetrahedra, which
itself was obtained by a Delaunay triangulation of the ADAM

A56, page 2 of 9

http://sirrah.troja.mff.cuni.cz/~mira/xitau/


M. Brož et al.: An advanced multipole model for (216) Kleopatra triple system

shape model using the Tetgen program (Si 2006). The shape was
also shifted to the centre of mass and rotated so that the prin-
cipal axes of the inertia tensor correspond to the reference axes.
Although the computation is slow (24 099 interactions instead of
1), it can be used as a verification of fast algorithms.

As far as ‘fast’ is concerned, we also implemented a multi-
pole development of the gravitational field up to the order `= 10,
according to Burša et al. (1993); Bertotti et al. (2003). We review
the governing equations here, using the same notation as in the
Xitau program:

U =−GM
r

Npole∑
`= 0

(R
r

)̀ ∑̀
m = 0

P`m(cos θ)[C`m cos(mφ) + S `m sin(mφ)],

(8)

dU
dr

= −GM
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dU
dθ
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(
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2
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(` − m)!
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S `m =
2

MR`

(` − m)!
(` + m)!
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∫
V
|r|`P`m(cos θ) sin(mφ) dV, (15)

P0(x) = 1 , P1(x) = x , P2(x) =
1
2

(3x2 − 1), . . . (16)

P11(x) = (1 − x2)
1
2 , P21(x) = 3x(1 − x2)

1
2 , . . . (17)

where r, θ, φ are body-frozen spherical coordinates of bodies
2, 3, and so on, which are determined from 1-centric eclip-
tic coordinates by rotations Rz(−lpole), Ry(−(π/2 − bpole)), and
Rz(−2π(t − Tmin)/P − φ0), where lpole denotes the ecliptic lon-
gitude of the rotation pole, bpole the ecliptic latitude, P the
rotation period, Tmin the rotation epoch, φ0 the reference phase,
R the reference radius of the gravitational model, U the grav-
itational potential, fmp acceleration (which is then transformed
from spherical to Cartesian and by back-rotations), C`m, S `m
denote real coefficients, which have to be evaluated for the given
shape model (see Table 1), P` the Legendre polynomials, and
P`m the associated Legendre polynomials. In total, there are 121
dynamical terms in our model.

Table 1. Multipole coefficients of Kleopatra’s gravitational field using
the ADAM model and constant density.

C00 1.00000000
C10 0.00000000
C11 0.00000000 S 11 0.00000000
C20 −7.65106929× 10−1

C21 3.98110264× 10−4 S 21 −3.07876838× 10−4

C22 3.59335850× 10−1 S 22 −8.65906339× 10−5

C30 1.49466956× 10−2

C31 −5.24916471× 10−2 S 31 5.20018496× 10−4

C32 −1.48712568× 10−3 S 32 2.52505000× 10−3

C33 1.17882333× 10−2 S 33 −3.43079734× 10−4

C40 1.30914835
C41 −1.41497526× 10−2 S 41 7.18145896× 10−4

C42 −1.39568658× 10−1 S 42 −1.72827301× 10−3

C43 3.44681126× 10−4 S 43 −6.95352555× 10−5

C44 1.53908741× 10−2 S 44 5.76718751× 10−4

C50 −3.01286209× 10−2

C51 1.39623684× 10−1 S 51 −4.39146849× 10−5

C52 9.49158788× 10−4 S 52 −3.50208422× 10−3

C53 −6.31945029× 10−3 S 53 1.44844074× 10−6

C54 7.63010533× 10−5 S 54 2.87991860× 10−4

C55 7.06444516× 10−4 S 55 9.22871681× 10−6

C60 −2.92621603
C61 5.01230966× 10−2 S 61 −3.30583966× 10−3

C62 1.41764499× 10−1 S 62 2.29130383× 10−3

C63 −9.12143591× 10−4 S 63 2.24108452× 10−4

C64 −4.29428304× 10−3 S 64 −1.93439069× 10−4

C65 1.33372930× 10−5 S 65 −9.83952170× 10−6

C66 3.04072429× 10−4 S 66 3.14393964× 10−5

C70 −1.49050705× 10−3

C71 −4.94081000× 10−1 S 71 −2.54792669× 10−3

C72 1.49282198× 10−3 S 72 6.59185873× 10−3

C73 7.58761100× 10−3 S 73 1.54865702× 10−5

C74 −1.06667828× 10−4 S 74 −2.55582680× 10−4

C75 −2.15423464× 10−4 S 75 −4.16149717× 10−6

C76 5.72095667× 10−6 S 76 1.01143177× 10−5

C77 1.54723186× 10−5 S 77 1.12688336× 10−6

C80 7.61525254
C81 −1.66415917× 10−1 S 81 1.15002782× 10−2

C82 −2.12136010× 10−1 S 82 −4.07662706× 10−3

C83 2.01880918× 10−3 S 83 −4.60678358× 10−4

C84 3.27454389× 10−3 S 84 1.62346625× 10−4

C85 −2.40746340× 10−5 S 85 1.09881420× 10−5

C86 −6.84753900× 10−5 S 86 −7.21260224× 10−6

C87 3.52331279× 10−7 S 87 −2.79130886× 10−7

C88 3.55651688× 10−6 S 88 7.47645373× 10−7

C90 4.18361848× 10−1

C91 1.06717720 S 91 −5.47346878× 10−4

C92 −1.15403753× 10−2 S 92 −1.39184073× 10−2

C93 −2.74503944× 10−2 S 93 −1.53156145× 10−3

C94 2.12636564× 10−4 S 94 3.22499931× 10−4

C95 1.74908520× 10−4 S 95 3.27374899× 10−6

C96 −4.45393947× 10−6 S 96 −6.47023483× 10−6

C97 −3.52023978× 10−6 S 97 −2.27651271× 10−7

C98 1.20584507× 10−7 S 98 1.64507039× 10−7

C99 1.83429337× 10−7 S 99 3.05515155× 10−8

C10,0 −2.21145150× 101

C10,1 5.03865729× 10−1 S 10,1 −3.33850136× 10−2

C10,2 4.00901809× 10−1 S 10,2 9.98417914× 10−3

C10,3 −4.78661768× 10−3 S 10,3 9.35952923× 10−4

C10,4 −3.83595725× 10−3 S 10,4 −2.25073571× 10−4

C10,5 4.13709990× 10−5 S 10,5 −1.37689312× 10−5

C10,6 4.30269516× 10−5 S 10,6 4.84072887× 10−6

C10,7 −4.17610659× 10−7 S 10,7 1.86498646× 10−7

C10,8 −6.83864198× 10−7 S 10,8 −1.39471718× 10−7

C10,9 6.37173159× 10−9 S 10,9 −2.88792150× 10−9

C10,10 2.80465119× 10−8 S 10,10 1.02591965× 10−8

Notes. The normalisation is given by Eq. (8). The reference radius is
R = 59.633 km.
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Table 2. Convergence test of the multipole approximation.

ax [m s−2] ay [m s−2] az [m s−2] Description

−1.23875008× 10−3 0.00000000 0.00000000 Point mass
−1.32251141× 10−3 3.52412309× 10−8 −3.27218005× 10−8 Brute force
−1.23875008× 10−3 0.00000000 0.00000000 Multipole, 0
−1.23875008× 10−3 0.00000000 0.00000000 Multipole, 1
−1.31595722× 10−3 −9.15458551× 10−9 2.10446228× 10−8 Multipole, 2
−1.31810548× 10−3 −4.32382838× 10−8 −7.29497823× 10−8 Multipole, 3
−1.32205774× 10−3 2.39696605× 10−8 −3.72801209× 10−8 Multipole, 4
−1.32228394× 10−3 2.52638733× 10−8 −3.83029760× 10−8 Multipole, 5
−1.32248271× 10−3 3.37726230× 10−8 −3.39267296× 10−8 Multipole, 6
−1.32250036× 10−3 3.42765669× 10−8 −3.32858996× 10−8 Multipole, 7
−1.32251056× 10−3 3.50906194× 10−8 −3.28680108× 10−8 Multipole, 8
−1.32251185× 10−3 3.51653783× 10−8 −3.27725086× 10−8 Multipole, 9
−1.32251239× 10−3 3.52352260× 10−8 −3.27371874× 10−8 Multipole, 10

Notes. The acceleration components a = (ax, ay, az) were evaluated for the position vector r = (500 km; 0; 0).
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order `. The model was optimised for `= 10 and then recomputed (not
optimised) for lower orders. It is important to account for orders ` ≤ 6.

A verification of convergence is demonstrated in Table 2
(monopole→ brute-force; non-optimised version). While a dif-
ference for the monopole is substantial, 10−1, the relative error
for `= 10 is of the order of 10−6 for the largest x-component of
acceleration.

Yet the acceleration computation is about 50 times faster
(optimised version) compared to the brute-force algorithm. It is
almost impossible to distinguish between the two algorithms for
circular and equatorial orbits on a 40-day time-span; relative dif-
ferences are of the order 6 × 10−12/3 × 10−6 = 2 × 10−6. On the
other hand, in extreme cases (e.g. high inclinations with respect
to the equator, leading to a precession on a timescale of 100 days)
there is a noticeable phase shift, resulting in 4× 10−8/3× 10−6 '
10−2 variations in (x, y, z).

In this work, C`m, S `m coefficients were not fitted, but kept
constant. In principle, it is possible to fit all of them (with a
dedicated version of Xitau), but it turned out that for almost
circular and equatorial orbits (and sparse astrometric datasets)
it is not possible to distinguish between individual multipoles,
which makes the problem degenerate.

In order to understand which multipoles are important, we
estimated χ2 for different multipole degrees (up to some `; see
Fig. 1). We used an already converged model for `= 10, though
without re-convergence. It is clear that the model is very sensi-
tive up to `= 6. It may be the case that changing other model
parameters (especially P1, P2) might improve the fits for ` < 6.
Degrees ` > 6 seem to be insignificant for our analysis.

3.3. External tide

Additionally, we account for the effect of a tide on the orbits of
the moons exerted by the Sun:

ftidal2 =
GM�

r3
�

[3(r · n̂)n̂ − r] , (18)

where M� denotes the mass of the Sun, r� its distance from
Kleopatra, and n̂ its direction with respect to Kleopatra. This
contributes to the precession of the satellite orbits by an amount
comparable to that from the otherwise included higher multi-
pole terms of Kleopatra’s gravitational field. We also checked
that Jupiter’s influence is negligible.

The solar tide also acts on Kleopatra itself. However, the
related precession of Kleopatra’s spin axis is very slow and
can be neglected in the modelling of its rotation (and shape).
The much faster precession of satellite orbits (driven by oblate-
ness, or J2 ≡ −C20) and non-inertial acceleration terms imply
that the Laplace plane always coincides with Kleopatra’s equator
(Goldreich 1965), regardless of any tidal dissipation.

3.4. Fitting of individual seasons

The free parameters of our model are as follows: masses m1, m2,
m3, osculating orbital elements of the two orbits P1, log e1, i1,
Ω1,$1, λ1, P2, log e2, i2, Ω2,$2, and λ2 at a given epoch T0, and
the rotation pole orientation lpole, bpole, that is, 17 parameters in
total. With Xitau, we can fit any or all of them with the simplex
algorithm (Nelder & Mead 1965).

Initial values (Ps, ms) were taken from Descamps et al.
(2011). All es and is were ‘zero’ at t = T0, but they are free
to evolve. As a first step, we tried to fit individual datasets.
Regarding DESCAMPS, we immediately reproduced Fig. 2 from
Descamps et al. (2011), including the suspicious outlier (bottom
left), which fits on the other side of the orbit, but its error in true
longitude is ∼90◦; it is an important observation.

For SPHERE2017 and SPHERE2018, the χ2 for the nomi-
nal Ps was excessively large. This is an indication that the true
periods might be either shorter or longer. Consequently, we com-
puted periodograms (as χ(P)) for a wide range of periods (see
Figs. 2 and 3). It was quite important to start with P2, because
the true period is longer, and this allowed us to realise that P1 is

A56, page 4 of 9



M. Brož et al.: An advanced multipole model for (216) Kleopatra triple system

DESCAMPS SPHERE2017 SPHERE2018

100

10
3

10
4

10
5

 2  2.2  2.4  2.6  2.8  3  3.2

χ
2

P2 [d]

100

10
3

10
4

10
5

 2  2.2  2.4  2.6  2.8  3  3.2

χ
2

P2 [d]

100

10
3

10
4

10
5

 2  2.2  2.4  2.6  2.8  3  3.2

χ
2

P2 [d]

Fig. 2. Periodograms for P2 computed separately for three datasets (DESCAMPS, SPHERE2017, SPHERE2018). The χ2 = χ2
sky value was optimised

for the first dataset and then only P2 was varied. We show the old incorrect period (dotted line) together with an expected spacing between local
minima given by the time-span ∆P = P2/(t2 − t1), and the new correct one (grey line). The shift of P2 for SPHERE2017 and an increased χ2 for
SPHERE2018 were present because of incorrect identification of the two moons; this was corrected after computing the periodograms and before
fitting the orbits.
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Fig. 3. Same as Fig. 2 but for P1, with P2 already shifted towards ∼2.7 d.

also longer. Otherwise, P1, P2 were so close to each other that
the moon system became totally unstable.

After recomputing the periodograms, we obtained pre-
liminary values of the true periods: P1 = (1.818± 0.010) d,
P2 = (2.740± 0.010) d. The uncertainties are still large, because
seasons have been treated separately. Nevertheless, the corre-
sponding mass m1 of Kleopatra should be much lower than
derived in previous works. We see below that a low m1 implies
Kleopatra is actually very close to a critical surface, which we
think is not a coincidence.

3.5. Fitting of DESCAMPS + SPHERE

As a next step, we fitted all datasets together. This required
not only a substantially longer time-span (3780 d vs. 40 d), but
also a two-dimensional periodogram with a fine spacing, ∆P '
P2/(t2 − t1) ' 10−3 d. We simply cannot use one-dimensional
periodograms for P1 and P2 because the moons are interact-
ing. If we change P1 (only), χ2 for P2 also changes (albeit more
slowly). The only way to find a joint minimum is to try all combi-
nations. Given the period uncertainties are at least several 10−2 d,
this represents about 103 combinations. For each of the (initial)
values, we performed 50 iterations using simplex (with both P1
and P2 free)2. We verified that this was enough to reach a local
minimum. This way, we can be sure that we did not miss a global
minimum. The result is shown in Fig. 4. It is not a simple χ2 map

2 One iteration takes ∼10 min, in total 1 week on 70 CPUs.
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Fig. 4. χ2 = χ2
sky values for a range of periods P1 and P2 and optimised

models. Every black cross denotes a local minimum (i.e. not a simple χ2

map). All datasets (DESCAMPS, SPHERE2017, SPHERE2018) were
used together, and consequently the spacing between local minima is
very fine. The global minimum is denoted by a red circle. The dashed
line indicates the exact 3:2 period ratio.

– every point is a local minimum. Apart from blue areas, there
are many local minima in between, where the simplex is stuck.
Global-minimum algorithms (e.g. simulated annealing, differ-
ential evolution, genetic) are not very useful here because one
would have to try all combinations anyway.

Now, we can reiterate the problem: we want to make all
parameters free, but if we change anything in our dynamical
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sky2 values for a range of moon masses m2 and m3.
All models were optimised with respect to the periods P1 and P2. Other
parameters were fixed. The global minimum is denoted by a red circle.

model, then we may be offset from our previously found local
minimum of P1, P2. We also have to check neighbouring local
minima. In other words, some perturbations (e.g., the precession
of Ω, $) can be compensated for by an adjustment of P1, P2.
This is especially true for almost circular and almost equatorial
orbits, where we cannot recognise the precession or e > 0, i > 0
in sky-plane motions, only as a phase shift.

Consequently, we iterated parameters sequentially with help
of several finer grids (in P1, P2). We also remeasured one outlier
and included the relative astrometry (SKY2) in order to check
for possible systematic errors. In particular, we confirmed that
m1 is indeed low, namely around 1.5 × 10−12 M�, with the corre-
sponding bulk density ρ1 = 3 300 kg m−3. The minimum reached
so far is χ2 = χ2

sky + χ2
sky2 = 315.

3.6. Moon masses

We also looked for the optimum masses of the moons (Fig. 5),
and find them to be approximately m2 = 2 × 10−16 M� and
m3 = 3 × 10−16 M�, which together with diameters (Descamps
et al. 2011) D2 = 6.9 km and D3 = 8.9 km correspond to densities
of ρ2 = 2300 kg m−3 and ρ3 = 1600 kg m−3. These are somewhat
lower than the value for Kleopatra, but the 1σ uncertainties are
still too large (50%) for any robust conclusions to be made.

For example, the case with ρ1 = ρ2 = ρ3 (i.e. m2 = 3 ×
10−16 M�, m3 = 6 × 10−16 M�) is marginally (3σ) allowed, hav-
ing χ2 = χ2

sky + χ2
sky2 = 305 versus 182. A possibility of massive

moons (ρ2, ρ3 > ρ1), especially when we increase m1 = 1.65 ×
10−12 M� at the same time, is also allowed, with χ2 = 205 ver-
sus 182. A hypothetical possibility of ‘zero-mass’ moons, with
χ2 = 214 versus 182 after a manual adjustment of P1 and P2,
cannot be excluded. Nevertheless, if we believe that Ds > 0,
we should believe that ms > 0. Interactions of the moons are
inevitable.

3.7. Best-fit and alternative model

Let us finally present the best-fit model, with χ2 = χ2
sky + χ2

sky2 +

0.3 χ2
ao = 368. Its parameters are summarised in Table 3 and the

results are shown in Figs. 6–8. The orbits can be perhaps seen
more clearly if we plot the three datasets separately (Figs. 9
and 10). In the interest of emphasis, the orbital elements are
not constants in our dynamical model; we demonstrate this in
the accompanying Fig. 11. The oscillations of a, e, and i for the

Table 3. Best-fit (left) and alternative (middle) model parameters,
together with realistic uncertainties (right).

var. val. val. Unit σ

m1 1.492735× 10−12 1.651829× 10−12 MS 0.16× 10−12

m2 2× 10−16 4× 10−16 MS 2× 10−16

m3 3× 10−16 9× 10−16 MS 3× 10−16

P1 1.822359 1.818203 day 0.004156
log e1 −3.991 −4.100 1 −3 (i.e. 0.001)
i1 70.104 68.719 deg 1.0
Ω1 252.920 253.751 deg 1.0
$1 0.089 13.892 deg 10.0
λ1 59.665 60.565 deg 1.0
P2 2.745820 2.740999 day 0.004820
log e2 −3.998 −4.138 1 −3
i2 70.347 69.383 deg 1.0
Ω2 252.954 252.033 deg 1.0
$2 1.601 −9.757 deg 10.0
λ2 108.357 107.865 deg 1.0
lpole 72.961 73.472 deg 1.0
bpole 19.628 20.480 deg 1.0

nsky 66 66
nsky2 28 28
nao 3240 3240

χ2
sky 113 124
χ2

sky2 66 78
χ2

ao 621 584
χ2 368 381

χ2
R sky 1.71 1.87
χ2

R sky2 2.35 2.78
χ2

R ao 0.19 0.18

Notes. Orbital elements of the moons are osculating, for the epoch
T0 = 2 454 728.761806 (cf. Fig. 11). m1 denotes the mass of body 1
(i.e. Kleopatra), m2 body 2 (first moon), m3 body 3 (second moon), P1
the orbital period of the first orbit, e1 eccentricity, i1 inclination, Ω1
longitude of node, $1 longitude of pericentre, λ1 true longitude, etc.
of the second orbit; lpole ecliptic longitude of Kleopatra’s rotation pole,
bpole ecliptic latitude; n numbers of observations (SKY, SKY2, AO),
χ2 values, χ2

R ≡ χ2/n reduced values. The angular orbital elements are
expressed in the standard stellar reference frame. If the orbits lie in the
equatorial plane of body 1, they fulfil i = 90◦ − bpole, Ω = 180◦ + lpole.

inner moon reach 6 km, 0.04, and 0.5◦, respectively. The inclina-
tions with respect to Kleopatra’s equator are close to zero. The
dominant short-periodic terms are directly related to the ∼5.4-h
rotation of Kleopatra. The longer 100-day and 270-day periods of
inclinations correspond to the nodal precession if the reference
plane is the equator.

The RMS residuals of absolute astrometric measurements
are approximately 17 mas (or 23 mas for relative astrometric
measurements), which should be compared to the assumed
uncertainties of 10 mas. This fit is acceptable, with the reduced
χ2

R = 1.71 (or 2.35), especially because we do not see significant
systematic problems. These values may be caused by under-
estimated uncertainties of astrometric observations, remaining
systematic errors related to the tangential (along-track) motion,
an incorrect shape model (C`m, S `m), and/or a non-uniform
density distribution.

As there is no unique solution, we also present an alternative
model, namely with χ2 = 381 (Table 3, right). This model has a
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Fig. 6. Best-fit model with χ2 = χ2
sky +χ2

sky2 +0.3 χ2
ao = 368. Top: orbits of

Kleopatra’s moons plotted in the (u, v) coordinates (blue, green lines),
observed absolute astrometry (SKY; black circles), and residuals (red
and orange lines for bodies 2 and 3, respectively; i.e., inner and outer
satellites). Kleopatra’s shape model for one of the epochs is overplotted
in grey. The axes are scaled in km; with a variable viewing geome-
try, but without a variable distance. The mean semimajor axes of orbits
are: a1 � 499 km, a2 � 655 km. Bottom: residuals of (u, v) in arcsec-
onds for the epochs of the three datasets (DESCAMPS, SPHERE2017,
SPHERE2018). The uncertainties on astrometric observations were
approximately 0.01 arcsec.

slightly higher mass m1 (by 10%), and adjusted periods P1 and
P2, meaning that the number of revolutions over t2 − t1 remains
the same, with epochs E1 = 2149.08 and E2 = 1407.55. On the
other hand, the masses of the moons m2 and m3 are substan-
tially higher (by a factor of between two and three). Last but not
least, we can use the difference between these models to estimate
realistic uncertainties on the parameters.

4. Implications for the moons

The nominal periods of the moons, P1 = 1.822359 d and
P2 = 2.745820 d, – or the semimajor axes 499 and 655 km – are
relatively close to each other. In our nominal model, the mutual
interactions are weak, but if we artificially increase the masses,
they soon become strong. The upper limit for the stability of the
moon system is about m2,m3 ' 3×10−15 M�. Eccentricities can-
not be significantly larger than e1, e2 ' 0.1 because orbits then
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Fig. 7. Same as Fig. 6, but for the relative astrometry (SKY2; third body
with respect to the second). Point (0,0) is centred on the inner moon.
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Fig. 8. Silhouettes of Kleopatra in (u, v) coordinates (orange) com-
puted for nine epochs (JD − 2 400 000.0), compared to SPHERE2017
and SPHERE2018 observations (blue), and residuals (red).

start to perturb and cross each other. Such a closely packed moon
system strongly indicates a common origin.

Moreover, the period ratio is close to the 3:2 mean-motion
resonance, with P2/P1 � 1.507 (cf. Fig. 4). Nevertheless, we
should specify the resonant condition more precisely, because
the perihelion precession rate $̇ is non-negligible in the vicin-
ity of an oblate body (namely, n1 = 197 deg d−1, $̇1 ' 3 deg d−1).
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Fig. 9. Same as Fig. 6, but plotted separately for the three datasets.
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Fig. 10. Same as Fig. 7, but plotted separately for the three datasets.
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Fig. 11. Evolution of the osculating elements over a time-span of 3780 d shown for the semimajor axes a1 and a2, eccentricities e1 and e2, and
inclinations i1 and i2. Oscillations are mostly caused by the multipoles of Kleopatra. The moons show only a weak mutual interaction.

The resonant angle is defined as:

σ= 3λ2 − 2λ1 −$1, (19)

or alternatively $2 instead of $1. The stable configuration is
expected when conjunctions occur in the apocentre of the outer

moon (or the pericentre of the inner moon). On the other hand,
it is not a circular restricted three-body problem: (i) the moons
have comparable masses, (ii) the central body is irregular which
induces perturbations on the synodic rotation timescale (sidereal
P = 0.224386 d). According to our tests with bodies purposely
placed in the exact resonance or offset in the longitude so that the
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libration amplitude is ∼90◦, regular librations are notable only if
the initial (osculating) eccentricities e1, e2 & 10−2 (cf. Fig. 11).
In the current best-fit configuration, they are not.

In the future, it is important to better constrain the masses
of the moons of Kleopatra. This task will require an extended
astrometric dataset compared to what is available at present. If
their low densities are confirmed, the interpretation would be
that regolith making up both Kleopatra and the moons is rela-
tively ‘fine’ (with block sizes smaller than the moon diameters)
and is more compressed in Kleopatra and less compressed in
the moons. On the contrary, if densities are high, the interpreta-
tion would be the opposite: a ‘coarse’ regolith in Kleopatra and
monolithic material in the moons, but this does not seem likely.

For comparison, let us recall the basic parameters of the
Haumea moon system (Ortiz et al. 2017; Dunham et al. 2019).
Although everything is about ten times larger than in the Kleopa-
tra system, the central body is a very elongated triaxial ellipsoid
(2.0:1.6:1), which is rapidly rotating (3,9 h). The closest to the
centre is the ring system, with ring particles orbiting close to the
3:1 spin–orbit resonance. There are two moons, inner Namaka
and outer Hi’iaka, which are close to the 8:3 mean-motion reso-
nance. The inner orbit is inclined and possibly perturbed by the
ellipsoidal body, and the outer is co-planar with the equator and
the ring. A distinct collisional family related to Haumea was also
identified (Brown et al. 2007; Leinhardt et al. 2010).

Clearly, the Kleopatra moon system is somewhat different
– its moons are co-planar and more closely packed. There is
no ring and no family (Nesvorný et al. 2015). Nevertheless, the
almost critical rotation as well as the mass ratios of the order
of 10−3 versus 10−4 are similar. Consequently, moon forma-
tion by mass shedding following rotational fission initiated by
a low-energy impact (as in Ortiz et al. 2012) seems viable.

5. Conclusions

Having revised the mass of (216) Kleopatra, it is worth revising
the interpretation of its shape (see the paper by Marchis et al.
2021). We plan to use our multipole model for analyses of other
triple systems observed by the VLT/SPHERE (e.g. (45) Eugenia,
(130) Elektra).

In this paper, we focus on future improvements of dynamical
models. According to our preliminary tests, it should be possible
to also measure angular velocities because astrometric posi-
tions measured on close-in-time images are aligned with derived
orbits. Even if the velocity magnitude is incorrect because of
residual seeing and an under-corrected point-spread function
(PSF), it is sufficient to measure its direction (‘sign’), which
would prevent some of the ambiguities.

In our current model, we assume a fixed shape (derived by
other methods). During the fitting, we let the pole orientation
vary slightly, although the shape and pole are always correlated.
Moreover, we only fit silhouettes, which is surely inferior com-
pared to other methods. While it is not easy for us to combine
a full N-body modelling with a full shape modelling, it may

be viable to treat the multipole coefficients C`m, S`m as free
parameters. If adaptive-optics observations of asteroid moon sys-
tems continue in the future, we may be at the dawn of asteroid
‘geodesy’ from the ground.
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