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ABSTRACT

Context. The asteroid 25143 Itokawa is one of the candidates for the detection of the Yarkovsky-O’Keefe-Radzievskii-Paddack
(YORP) effect in the rotation period. Previous studies were carried out up to the 196 608 facets triangulation model and were not able
to provide a good theoretical estimate of this effect, raising questions about the influence of the mesh resolution and the centre of mass
location on the evolution the rotation period.
Aims. The YORP effect on Itokawa is computed for different topography models up to the highest resolution Gaskell mesh of
3 145 728 triangular faces in an attempt to find the best possible YORP estimate. Other, lower resolution models are also studied
and the question of the dependence of the rotation period drift on the density distribution inhomogeneities is reexamined. A compari-
son is made with 433 Eros models possessing a similar resolution.
Methods. The Rubincam approximation (zero conductivity) is assumed in the numerical simulation of the YORP effect in rotation
period. The mean thermal radiation torques are summed over triangular facets assuming Keplerian heliocentric motion and uniform
rotation around a body-fixed axis.
Results. There is no evidence of YORP convergence in Gaskell model family. Differently simplified meshes may converge quickly
to their parent models, but this does not prove the quality of YORP computed from the latter. We confirm the high sensitivity of the
YORP effect to the fine details of the surface for 25 143 Itokawa and 433 Eros. The sensitivity of the Itokawa YORP to the centre of
mass shift is weaker than in earlier works, but instead the results prove to be sensitive to the spin axis orientation in the body frame.
Conclusions. Either the sensitivity of the YORP effect is a physical phenomenon and all present predictions are questionable, or the
present thermal models are too simplified.

Key words. celestial mechanics – minor planets, asteroids – methods: numerical

1. Introduction

The success of the Yarkovsky-O’Keefe-Radzievskii-Paddack
(YORP) effect after the article of Rubincam (2000) is by no
means surprising. After the epoch of considering weak tidal
damping torques (Burns & Safronov 1973) or planetary flybys
(e.g. Scheeres et al. 2000) as the only effects that systematically
alter rotation states of asteroids, astronomers now have an at-
tractive mechanism capable of shaping the spin statistics surpris-
ingly quickly. Indeed, the timescale of the YORP effect, resulting
from nonisotropic thermal radiation, proved to be short enough
to allow its direct observational confirmation.

The candidate asteroids should be small enough, sufficiently
irregular in shape and have well determined rotational ele-
ments over at least a few years. In 2007, three objects were
reported to reveal a detectable change of the rotation period
coherent with the YORP estimates: 2000 PH5, subsequently
renamed 54 509 YORP (Taylor et al. 2007; Lowry et al. 2007),
1862 Apollo (Kaasalainen et al. 2007), and 25 143 Itokawa
(Kitazato et al. 2007). Although Itokawa’s YORP detection was
withdrawn soon after its announcement, Ďurech et al. (2008a)
reported the observational confirmation of the YORP effect on
1620 Geographos.

Curiously, Itokawa (formerly 1998 SF36) had looked like
a perfect candidate for the YORP detection, with its small

(0.3 km) diameter, observationally convenient orbital semi-axis
of 1.3238 au, irregular shape and well determined pole position
and rotation period. Vokrouhlický et al. (2004) published an op-
timistic prediction that the change of rotation rate ω should in-
duce the quadratic phase drift detectible in future oppositions of
2004 and 2006, as well as from the expected high precision ob-
servations from the Hayabusa spacecraft expected in 2005. But
the next years observational efforts indicated that the asteroid’s
rotation does not agree with the YORP predictions; not only
with the original Vokrouhlický et al. (2004) results, but also with
more recent ones of Scheeres et al. (2007). According to Ďurech
et al. (2008b) if there is any sign of the YORP-induced rota-
tion rate evolution for Itokawa, it must be hidden within the cur-
rent observational error bounds. More precisely, a detectible ω̇
should be at least |ω̇| ≈ 1.5 × 10−7 rad d−2 – the value that raises
the χ2 of the present observations by at most 10%. Theoretically
predicted values are significantly higher than that, but they have
not been detected in reality.

Whether fulfilled or not, expectations of detecting the YORP
on Itokawa required apparently routine computations of the
theoretically predicted ω̇. Vokrouhlický et al. (2004) used
early shape models derived from radar observations (Ostro
et al. 2004) and lightcurve inversion (Kaasalainen et al. 2003).
Both models were quite small (4036 and 2040 facets respec-
tively) and convex, leading to positive ω̇ (the negative value of
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Vokrouhlický et al. 2004; was due to a sign error, as shown
by Scheeres et al. 2007). But then the rich flux of data from
Hayabusa has flooded the existing YORP modeling software
with topography models of increasing complexity. Scheeres
et al. (2007) were capable of handling the 50 696 triangles of the
preliminary Gaskell et al. (2006b) model. Comparing the results
with subsequently improved radar shapes of Ostro et al. (2005),
they noticed that the appearance of concavities in the Itokawa
shape models leads to negative ω̇ with increasing magnitude and
the values of YORP derived from increasingly finer topography
models do not seem to stabilize. Ďurech et al. (2008b) went a
step further, computing the YORP for a larger model, reach-
ing 196 608 facets resolution and including 1D thermophysi-
cal modelling at the same time. In agreement with the trend
observed by Scheeres et al. (2007), the resulting ω̇ was nega-
tive and greater in magnitude than its 49 152 facets counterpart.
Hoping that there might be no reason to use more detailed mod-
els, they derived a sequence of 21 triangular meshes by sim-
plifying Gaskell’s 196 608 mesh to 1000 facets. But the result-
ing sequence of the YORP effect values revealed no sign of
“saturation” while approaching the finest mesh, indicating that
the last value of ω̇ = −3.097 × 10−7 rad d−2 is not the ulti-
mate. Of course, there was a slight chance that at higher reso-
lution the trend might be reversed, lifting ω̇ back to the interval
consistent with the observational bounds, but higher resolution
models have been beyond the capability of the authors’ com-
puting power. Within a computationally cheap, but rather un-
realistic “pseudo-convex” algorithm that ignores the shadowing
effects, Scheeres et al. (2007) computed the effect due to the
196 608 facet model, and Scheeres & Gaskell (2008) went up to
the 3 million facets mesh. According to their conclusions, there
was no sign of convergence even in this simple case.

An interesting path to lower the computed YORP strength
for Itokawa to the observational constraints was proposed by
Scheeres & Gaskell (2008), who pointed out that shifting the
centre of mass by 15 m may cancel the component of the mean
YORP torque responsible for the spin rate evolution. Such a
translation may be justified by inhomogeneous density – quite
probable in a rubble-pile body like Itokawa. The influence of the
centre of mass location for the YORP effect was first signaled in
the analytical solution of Nesvorný & Vokrouhlický (2008), but
this feature did not look like an important factor for the mildly
irregular objects discussed in their model.

The present paper continues the computations of the theoret-
ical YORP effect on Itokawa. Using our optimized code run in
parallel on about 12 computers, we have been able to compute
the YORP effect on Itokawa up to the most detailed Hayabusa
model of over 3 million triangular faces. The results are summa-
rized in Sect. 2. We also recomputed the chain of models dis-
cussed by Ďurech et al. (2008b) and compare it with alternative
families of smaller models derived using various mesh simplifi-
cation (decimation) strategies1. For comparison, we compute the
YORP effect on 433 Eros – a second object with a mega-facet to-
pography model.

The hypothesis of Scheeres & Gaskell (2008) is discussed
in Sect. 3. We account for the translation of the centre of mass
(COM) using a less approximate approach. Moreover, we con-
sider the influence of the rotation of principal axes rejected a
priori by Scheeres & Gaskell (2008).

1 All simplified shape models derived for the purpose of the present
study are available from the first author upon request in the form of
Wavefront OBJ data files.

2. YORP effect values from different topography
models

2.1. Computational model

All known recipes for computing the YORP torques can be
roughly divided in two main groups: most of them use a dis-
crete mesh, summing the contributions from each triangular face
(Vokrouhlický & Čapek 2002; Čapek & Vokrouhlický 2004;
Scheeres 2007; Scheeres & Mirrahimi 2008; Statler 2009),
whereas others use a continuous shape model described in terms
of spherical harmonics (Breiter & Michalska 2008; Mysen 2008;
Nesvorný & Vokrouhlický 2008). The latter group cannot be ap-
plied to Itokawa, because its irregular shape, not being starlike,
cannot be expressed in terms of spherical harmonics. In these
circumstances, to compute ω̇ as a function of time t, we use the
standard “per triangle” summation

ω̇(t) = − 2
3 c I3

∑
j

[
εtσT 4

j

]
e3 ·
(
r j × S j

)
, (1)

where c is the speed of light, σ is the Stefan-Boltzmann con-
stant, and I3 is the maximum principal moment of inertia along
the axis determined by the unit vector e3. The same vector co-
incides with the spin vector ω, because we assume the principal
axis rotation mode without wobbling. The summation index j
runs over all triangular faces with centroids r j, outward oriented
surface elements S j and temperature T j = T (r j, t). Assuming a
homogeneous object we let all triangles share the common emis-
sivity εt.

The temperature distribution on the body surface should be
modeled by solving the heat diffusion equation with boundary
conditions at each triangular face

εtσT 4
j + K nj · ∇T j = E j, (2)

resulting from the energy conservation principle. The left hand
side is a sum of thermally re-radiated power flux and of the heat
convected into an asteroid’s interior; the right-hand side E j is
the irradiation of the jth triangle by the sunlight. None of the
published YORP models uses the exact form of Eq. (2) as the
boundary conditions. Rubincam (2000), Vokrouhlický & Čapek
(2002) and Statler (2009) neglect the conductivity K obtaining
the “Rubincam approximation”

εtσT 4
j = E j. (3)

Note that in this case the surface temperature is directly given
by the boundary conditions and the heat diffusion equation it-
self can be discarded. Čapek & Vokrouhlický (2004), Scheeres
(2007), Scheeres & Mirrahimi (2008), Mysen (2008), Nesvorný
& Vokrouhlický (2008), and Breiter & Michalska (2008) use
various approximations to account for the nonzero conductiv-
ity. Their thermal models use a “plane parallel” approximation
reducing the problem to a 1D heat diffusion model. The asteroid
is treated like a union of disjoint, noninteracting, one end heated
semi-infinite rods.

All the enumerated models indicate that – in contrast to the
YORP effect in obliquity – the secular evolution of ω does not
depend on conductivity in the plane parallel thermal model2. In

2 Although Fig. 2 of Čapek & Vokrouhlický (2004), reproduced also as
Fig. 6 in Bottke et al. (2006), might suggest a weak dependence of the
spin YORP on conductivity for 6489 Golevka, this effect may merely
reflect numerical errors. Also, the spin related part of these figures has
an incorrect shape due to the interpolation of undersampled data. For a
more reliable version, see Fig. 9 in Vokrouhlický & Čapek (2002).
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these circumstances, being interested only in the YORP effect
on the rotation period, we have assumed K = 0 – a choice that
avoids having to solve the heat diffusion equation numerically.
Using Rubincam’s approximation, one has to face only one se-
rious problem: computing the irradiation. If the direction to the
Sun in the body-fixed frame is given by the unit vector n�(t),
then for a convex body with the uniform surface albedo A

E j = max (0, nj · n�(t)) (1 − A)Φ0R(t)−2, (4)

where Φ0 = 1366 W m−2 is the solar constant and R j(t) is the
heliocentric distance in astronomical units. But asteroids are
rarely (if ever) convex, so we have to add a visibility function
v j = v j(r j, n�) to the final formula

ω̇(t) = −2 (1 − A)Φ0

3 c I3 R2

∑
j

(
nj · n�

)
v j e3 ·

(
r j × S j

)
. (5)

The value of v j is either 1, if the Sun is visible from the cen-
troid r j, or 0 if the Sun is occluded by any other triangle of the
surface mesh or its zenith distance exceeds 90◦. In our algorithm,
the occlusion tests are based on the exact “ray-triangle stabbing”
queries, optimized by appropriate sorting of triangles projected
onto local celestial spheres.

Assuming uniform rotation and a Keplerian orbit, the values
of ω̇ are computed in nested loops (the rotation phase loop in-
side the mean anomaly loop). Then the composite Simpson rule
is used to compute the mean value. To our surprise, sampling
the mean anomaly instead of adhering to the usual routine of
uniformly sampling the true anomaly (followed by a correcting
factor multiplication) gives a better accuracy when the sampling
density is low (in our case 100 × 100 points).

Unlike Scheeres (2007) or Statler (2009), we use the simple
Lambertian emission/diffusion model. Hence, setting A = 0 in
all computations we concatenate the contributions due to thermal
radiation and diffuse reflection. To some degree, our algorithm
can be seen as the extension of the old Vokrouhlický & Čapek
(2002) approach, with most of the efficiency gained by appro-
priate programming. The models involving up to 200 000 facets
were treated on a single CPU (taking at most 2 days of computa-
tions), but more challenging cases were run in parallel on about
12 computers (a mesh of 3 × 106 faces required about a week).

In all computations with Itokawa, we adopted the orbital
semi-axis a = 1.3236 au, eccenricity e = 0.280126, the moment
of inertia I3 = 7.77 × 1014 kg m2, and the obliquity ε = 178.◦5.
The tests performed indicated that the formal accuracy of our
results is about 1%.

Except for explicitly mentioned instances, all the results re-
ported in this paper were computed with the shadowing effects
included. No reduction to the centre of mass and principal axes
was made (except for the transformation explicitly described in
Sect. 3) and all shape models were considered in their original
reference systems.

2.2. Will it converge?

Starting our work, we used the preliminary Gaskell et al. (2006a)
topography models of Itokawa downloaded from Abe (2007).
This collection consists of four meshes build of quadrilateral
patches with additional triangulated variants obtained by simple
diagonal cuts of the original facets. Referring to these triangu-
lations, we use the following abbreviations: 6G6 for the mesh
of 49 152 triangles, 8G6 for the 196 608 facet set, 10G6 for the
786 432 triangles, and 12G6 for the mesh of 3 145 728 triangular
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Fig. 1. YORP effect for Gaskell models of Itokawa. Dots (from top to
bottom): 6G6 (magenta), 8G6 (red), 10G6 (green), 12G6 (blue). Lines
(from top to bottom, same colours as for G6): 6G8, 8G8, 10G8, 12G8.
Dashed line: pseudo-convex 12G6.

patches. The coding rule we use for the models is the following:
kM stands for a model of 768 × 2k triangles, belonging to a fam-
ily M (for example, M is “G6” for the aforementioned Gaskell
et al. 2006a, collection).

Spanning all obliquities with a step of 2◦, we obtained the
dotted curves in Fig. 1. All curves have similar shapes, practi-
cally flat in the regions of 0 � ε < 10◦ and 170◦ < ε � 180◦.
This property indicates that the YORP effect on Itokawa is not
sensitive to errors in obliquity. To our surprise, Gaskell mod-
els with different resolutions result in curves differing mostly by
a vertical shift. The vertical distance between 6G6 and 8G6 is
larger than, for example, between 10G6 and 12G6, but not to
the extent that might suggest approaching some limit with the
12G6 mesh.

Later, we abandoned the G6 family in favor of more re-
cent G8 Hayabusa-based topography models available on the
NASA PDS server (Gaskell et al. 2008). The meshes had the
same origin and structure as their G6 predecessors. The re-
sulting YORP curves are plotted in Fig. 1 as continuous lines.
Once again, the pattern is repeated: all curves are similar, but
with a vertical translation depending on the number of facets.
Moreover, comparing the distance between G6 and G8 models
having the same resolution, we see that the distance increases
for more complicated models, so that the results of 12G6 are
quite similar to 10G8 for the actual obliquity of Itokawa, 178.◦5.
The G8 Gaskell models show even less evidence of approach-
ing a limit, because the vertical distance from 10G8 to 12G8
(8.4 × 10−8 rad d−2) is almost as large as the one from 6G8 to
8G8 (1.1 × 10−7 rad d−2).

Thus we confirm the sensitivity of YORP on Itokawa to
the resolution of the Gaskell model reported in Ďurech et al.
(2008b) or Scheeres et al. (2008). Moreover, we find Itokawa
highly sensitive to the version of the Gaskell model if we com-
pare the meshes with the same high number of triangular faces.
We found no sign of saturation in the YORP effect when ap-
proaching 12G8 – the finest available mesh.

The question of shadowing is important for any nonconvex
object and ignoring occlusions (i.e. using the zenith distance of
the Sun as the only visibility criterion) cannot be a viable ap-
proximation unless concavities are very shallow and smooth.
But for Itokawa we see many different level shadows: from the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=1
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Fig. 2. Differences between the complete shad-
owing and pseudo-convex YORP values for the
Itokawa 8G8 model and obliquity ε = 178.◦5.

large scale body-head occlusions to local shadow lines drawn
by small boulders and crater rims. Our computations confirm –
in principle – the sensitivity of the computed YORP effect to
the occlusions (shadowing) announced by Scheeres et al. (2007,
2008). The black dashed line in Fig. 1 was computed accord-
ing to the 12G8 mesh without the occlusion tests and its shape
agrees with the top panel of Fig. 2 of Scheeres et al. (2008). The
remaining G8 meshes also give results matching their plots and
that are significantly different from the values with the shadow-
ing turned on. However, we find the influence of shadowing in
a form different to the bottom panel of the figure from Scheeres
et al. (2008). The shadowing effect effect is illustrated in Fig. 2,
where we present the differences δω̇ = ω̇ − ω̇pc for each sur-
face triangle, where the pseudo-convex values of ω̇pc were com-
puted without the occlusion tests. The differences reached the
maximum of 1.09 × 10−9 rad d−2 and the minimum −1.78 ×
10−9 rad d−2, but we clipped the data to the range from −1 ×
10−9 rad d−2 (black) to 1 × 10−9 rad d−2 (white) in order to
enhance details in Fig. 2. The error introduced by the pseudo-
convex model is best visible in the “head” part occluded by the
“body”, and in the “body”-facing slopes of major boulders.

Why do subsequent G6 or G8 models result in simulated
YORP curves that differ mostly (although not exclusively) by a
vertical translation, hence, by a constant, obliquity-independent
torque? There is no doubt that the phenomenon is related to
shadowing effects, although one might also suspect the accumu-
lation of discretization or roundoff errors in our software. Such
errors should systematically depend on the number of triangles
considered. However, a simple test excluded this possibility: we
took the 6G8 mesh of 49 152 facets and performed a planar sub-
division of each triangle into 4 and 16 subtriangles using edge
midpoints as new vertices. In this way we increased the num-
ber of triangles without affecting the shape itself. The results for
these subdivided meshes agreed with the original 6G8 curve up
to 1% in the worst case of ε = 90◦ and up to 0.2% for the actual
obliquity of Itokawa.

If the phenomenon of gradual shifting of ω̇ curves in Fig. 1
is not a numerical artifact of the YORP simulating algorithm
(and after numerous tests we believe it is not), it may be re-
lated to a particular algorithm deriving the lower resolution
models from the basic 12G8 mesh. To shed some light on this

possibility, we decided to create our own downsampled versions
of the Itokawa shape using different mesh simplification meth-
ods. Unexpectedly, the results raised doubts concerning the use
of convergence in a family of different resolution models as an
argument for the YORP accuracy.

2.3. Simplified meshes

According to the description accompanying the Gaskell et al.
(2008) data files at the NASA PDS repository, lower resolu-
tion models were derived3 from the basic, highest resolution
mesh by repeated removal of vertices merging four incident
quadrilaterals into one. In terms of triangular variants that we
dubbed G8, it also implies that the number of facets drops by
factor of 4 after each coarsening operation. Due to the technical
limitations, Ďurech et al. (2008b) did not go beyond 6G6 and
8G6 models, and not much can be deduced from a sequence
of two YORP values. So, the 8G6 model was taken as a de-
parture point and 21 meshes were produced with the number
of triangular faces decreasing first by 2 × 104, then by 104,
and finally by 103 (Ďurech et al. 2008b). A simple algorithm
of edge contraction was used, consisting in replacing the short-
est edge of the mesh with a single vertex located at the mid-
point and repeating the procedure until the requested number of
faces is reached (Ďurech, private communication). The fact that
edge contraction for a triangular mesh leads to a different out-
come than the merging of quadrilaterals is seen in the results
of Ďurech et al. (2008b): the results for 6G6 and the alternative
mesh of 49 152 triangles differ by 15%. The results reached the
final ω̇ = −3.097 × 10−7 rad d−2 with no sign of approaching a
well defined limit.

Comparing the value for the 8G6 Gaskell model from
Ďurech et al. (2008b) with our results shown in Fig. 1 (ω̇ =
−3.53 × 10−7 rad d−2) we found a 10% difference. But the com-
parison with the remaining values from Ďurech et al. (2008b,
Table 3) was found to be complicated, because some of the mod-
els provided by the author contained a number of nonmanifold
faces that had to be removed and patched before use.

3 The term “dumbed down” used by Gaskell et al. (2008) is more
descriptive.
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Fig. 3. YORP effect for Itokawa Gaskell models G6 (green squares), G8
(blue circles) and Ďurech meshes. Triangles represent the data quoted
from Table 3 of Ďurech et al. (2008b); red diamonds label the results of
our computation using patched Ďurech meshes.

Comparing our computations based upon the patched
Ďurech meshes (Fig. 3, red diamonds) with the original data
from Ďurech et al. (2008b) (Fig. 3, magenta triangles), we find
differences that are almost systematic. This offset of about 5 ×
10−8 rad d−2 is almost independent of the mesh density and re-
veals systematic errors in the results of Ďurech et al. (2008b), but
it does not contradict the main conclusion, that the sequence of
derived meshes YORP values converges to the final 8G6 very
slowly; as slowly as the sequence of G8 models approaches
12G8 (Fig. 3, blue circles).

Observing that two meshes with 49 152 triangles derived by
simplifying the same 8G6 model using two different methods
result in the relative difference of ω̇ reaching 0.6 × 10−8 rad d−2

i.e. almost 25% of the computed value, we tried other methods of
mesh simplification, but this time taking the best 12G8 model as
the primary source. Mesh manipulations were performed using
two open-source programs: ReMESH 2.0 (Attene & Falcidieno
2006) and MeshLab 1.2 (Cignoni 2008).

We studied three basic types of simplified meshes:

– E was generated by the principle of the shortest edge con-
traction, similarly to the Ďurech meshes. E meshes were ob-
tained directly by the “Simplify” filter of the ReMESH pack-
age with the option “priority on the edge length”.

– UR provided an almost uniform meshing with almost equi-
lateral triangles and was generated by the “Uniform remesh”
filter of ReMESH. The interpolation in this algorithm typi-
cally produces noisy patterns that we removed by adjusting
the uniform mesh to the original 12G8 model by the RIMLS
method (Robust Implicit Moving Least Squares projection
of Öztireli et al. 2009, implemented in MeshLab).

– Q was substantially different from the previous ones: de-
cisions about the choice of an edge to be collapsed were
made not only according to its length, but also with a goal
to preserve sharp features of the surface for as long as pos-
sible. The classical Garland & Heckbert (1997) method of
quadric error metrics implemented in MeshLab was used for
this purpose.

Each mesh family consisted of 11 members. In contrast to
Ďurech et al. (2008b), we assumed a logarithmic spacing with
the 768 × 2k rule. Thus, starting from the 11E mesh of
1 572 864 triangles, we stepped down to 1E with 1536 faces and
similarly so for kUR and kQ.
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Fig. 4. YORP effect for Itokawa Gaskell models G8 (blue circles) and
derived meshes: E (magenta triangles), UR (red diamonds), Q (green
squares).
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Fig. 5. YORP effect as a function of obliquity for selected Itokawa mod-
els: 12G8 (blue dots), 6E (magenta, dashed), 6UR (red, dash-dot), and
6Q (green, solid). Left – pseudo-convex approximation, right – with
shadowing effects. The remaining part of each curve is symmetric with
respect to the ε = 90◦ line.

The results of the YORP computations are presented in
Fig. 4. Compared with Fig. 3 it shows that our E family con-
verges to Gaskell 12G8 roughly the same way as the Ďurech
meshes did to 8G6, although more smoothly and slightly more
horizontally in the 9E-11E zone. The YORP values based upon
the uniform triangulations UR show a more nonlinear trend on
the semi-logarithmic plot and their convergence is better than
for E, but neither of these two approach that of the Q family. The
differences between 12G8 and kQ remain below 5 × 10−8 rad d−2

until k = 3. The 3Q mesh of 6144 triangles still gives the YORP
closer to the 12G8 based reference value than Gaskell’s 10G8
with its 786 432 facets.

Figure 5 presents the dependence of the YORP effect
on obliquity for models with the same number of triangular
faces (49 152). It confirms our statement that vertical translation
of the YORP curves is a shadowing-based phenomenon. It does
not depend on the number of triangles, but rather on the presence
or absence of sharp features of the surface. It is also an example
of how misleading the pseudo-convex approximation can be.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=5
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Fig. 6. Itokawa shape according to three models: 12G8 (3 145 728 triangles) – top, 6Q (49 152 triangles) – middle, and 6G8 (49 152 triangles) –
bottom.

The superiority of the Garland-Heckbert decimation for the
YORP simulation deserves discussion. In order to understand
why it works so well for Itokawa, recall:

1. With the obliquity of Itokawa close 180◦, most of the
YORP torque should be generated in the equatorial regions
of the asteroid.

2. Two major smooth regions that exist on Itokawa are located
close to the poles (Demura et al. 2006; Barnouin-Jha et al.
2008).

3. The Garland-Heckbert method spares small triangles at
sharp features, creating large triangles in smooth areas
(Garland & Heckbert 1997).

For these reasons Itokawa is particularly well suited for the
application of the Garland-Heckbert method and even a mesh
with a small number of triangles may provide good YORP val-
ues. Figure 6 clearly illustrates the superiority of the Garland-
Heckbert decimation and its feature-preserving properties. The
6Q mesh of 49 152 triangles looks almost like the original 12G8,
whereas the 6G8 of Gaskell et al. (2008), using a different mesh
simplification method, presents a much smoother surface in spite
of having the same number of facets as 6Q.

The notion of “mesh resolution” is justified to some ex-
tent for an almost uniform UR mesh, but it would be mis-
leading in the context of Q models which are based upon the
Garland-Heckbert decimation. In terms of the edge lengths of
a given model, the meshes with the same number of facets
gives quite different triples (min, max, mean) expressed in
meters. Taking the 49 152 facets as an example, we obtain
(1.6, 15, 4.7) for 6G8, (1, 13, 5.2) for 6E, (2.6, 6.8, 4.4) for
6UR, and (0.8, 22, 4.6) for 6Q. Judging by the number of tri-
angles or by the mean value of edge lengths, one would qualify
all models as “4−5 m resolution” ones. Yet their influence on the
computed YORP values is quite different.

The rapid convergence of Q meshes to 12G8 or relatively
good behaviour of UR leads to a question: can we use the
rapid convergence of a sequence of simplified meshes to 12G8
as an argument that the model is sufficiently accurate for the
YORP computations?

In our opinion, the answer to this question is negative accord-
ing to an argument from another family of meshes: the 8G6 mesh
was taken as the reference model and we reduced its number of
triangles using the Garland-Hecbkert edge contraction method.
Figure 7 compares our ad hoc models with the results based on

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=6
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Fig. 7. YORP effect for Itokawa Gaskell models G6 (blue circles)
and two meshes derived by simplification of 8G6: Ďurech set (green
squares) and Garland-Heckbert (red diamonds).

Ďurech meshes. Looking at the almost flat curve approaching the
8G6 based YORP value and ignoring all the remaining points in
Fig. 7 one might conclude that the Gaskell mesh 8G6 with its
196 806 facets provides an ultimate YORP value and there is no
need for higher resolution models.

Obviously, this conclusion is false. But we can reject it only
because we know the results for 10G6 and 12G6. So, even if
Scheeres et al. (2007) or Ďurech et al. (2008b) observed a good
convergence to the 8G6 values, this would not be evidence of
the YORP value accuracy, but only a proof that lower resolution
meshes had been appropriately sampled.

2.4. More than Itokawa

Is the sensitivity to surface fine details a special property of
Itokawa, or is it a more common problem? One cannot rule out
the possibility that only a special combination of a large scale
shape and small scale roughness impedes the YORP model-
ing. Although Statler (2009) addressed a similar question, but
he used relatively simple models of synthetic objects. Our at-
tention was drawn to 433 Eros for two reasons. First, Gaskell
(2008) provides space-based shape models of Eros with the same
number of facets as for Itokawa. On the other hand, the topog-
raphy features of Eros make it the negative of Itokawa: the for-
mer is mostly cratered, whereas the latter is mostly bouldered.
Assuming an obliquity of 89◦, the maximum moment of inertia
I3 = 4.9781× 1023 kg m2, and the orbital elements a = 1.458 au,
e = 0.223, we found the YORP values of ω̇ ranging from
−6.46× 10−11 rad d−2 for the 49 152 triangles of 6GE, to −9.47×
10−11 rad d−2 for the complete 12GE mesh of Gaskell (2008).
The relative difference is smaller than for Itokawa, but the con-
vergence is equally poor, as shown in Fig. 8.

Curiously, the last value, obtained from over 3 × 106 facets,
is quite close to what we computed according to a much older
7790 triangle shape model by Thomas et al. (2002): −1.07 ×
10−10 rad d−2. This time we are in good agreement with the
−1.12 × 10−10 rad d−2 computed by Čapek & Vokrouhlický
(2004) using the same model, as well as with the observational
estimate of −1.0 × 10−10 rad d−2 suggested by Ďurech (2005).

3. Centre of mass shift versus the spin axis tilt

Scheeres & Gaskell (2008) were the first to observe that the
strength of the mean YORP torque on Itokawa can significantly
decrease if the centre of mass (COM) is shifted with respect to
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Fig. 8. YORP effect for Eros Gaskell (2008) models GE (blue circles)
and derived meshes: E (green squares) and Q (red diamonds).

the present origin of the topographic model reference frame.
In their approach, the insolation and temperature distribution
(hence the forces and reference torques on each facet) were
computed once, assuming the “centre of figure” origin and rota-
tion around the original model Oz axis. Then, corrections to the
torques were computed to account for different locations of the
current rotation axis, say O′z′, passing through a new origin in
the Oxy plane and parallel to Oz. The corrections were linearized
according to the principle that the translation of COM is a small
fraction of the body size. The possibility of skewing O′z′ with
respect to Oz was discarded by Scheeres & Gaskell (2008) as a
small quantity of the second order. But the most important sim-
plification introduced was to neglect the shadowing, i.e. using a
pseudo-convex approximation. It was not stated explicitly in the
article, but may be deduced from the comparison of Scheeres
et al. (2008, Fig. 2) and Scheeres & Gaskell (2008, Fig. 1).

The sensitivity of YORP on Itokawa to the shape models, so
clearly manifested in Sect. 2, incited us to check the influence
of the Scheeres & Gaskell (2008) simplifications on the com-
puted ω̇. To this end we first sampled various locations of O′
in the body frame, maintaining the rotation axis O′z′ parallel
to Oz. Using the 6QR model (a Garland-Heckbert decimated
mesh of 49 152 facets, derived from 12G8), we were able to
scan a wide range of presumed centres of mass, each time per-
forming a full simulation with obliquity ε = 178.◦5. For O′ lo-
cated at (Δx,Δy, 0) in the Oxyz frame, we subtracted Δx and Δy
from the coordinates of the mesh vertices. Then we computed the
mean YORP torque projection on Oz′ assuming uniform rotation
around this axis. The computations were performed as described
in Sect. 2.1, without any additional simplifications, and repeated
independently for each Δx and Δy. Interested in the location of
ω̇ = 0 points on the (Δx,Δy) plane (with the linear interpola-
tion on the grid), we did not recompute the moments of inertia
for a new COM, because their values are irrelevant when the
numerator in Eq. (5) is zero. The axes Ox′ and Oy′ were main-
tained parallel to the original Ox and Oy, because their rotation
around Oz′ has no effect after averaging with respect to the daily
rotation.

The obtained results confirm those of Scheeres & Gaskell
(2008) qualitatively, but differ in numerical values. While
Scheeres and Gaskell found the “zero deceleration line” as a
straight line passing through the points (x = 19 m, y = 0)
and (x = 0, y = −30 m), our simulation locates the points at
(x = 51 m, y = 0) and (x = 0, y = −58 m). Thus our line of
possible zero YORP locations of COM has a slightly different
direction and – what is more important – passes further from the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=8
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origin, requiring a stronger inhomogeneity to justify the COM
translation. The minimum distance OO′ according to our results
is about 38 m, compared to 16 m obtained by Scheeres & Gaskell
(2008) – the difference that should be attributed indirectly to the
influence of shadowing. Directly, the greater OO′ is a conse-
quence of three the times stronger YORP effect to be suppressed
as compared to the pseudo-convex approximation of Scheeres &
Gaskell (2008) (see the green lines in Fig. 5 – without shadow-
ing, the effect is three times weaker)4.

Recalling that the Ox axis points to the “head” of Itokawa,
the translation in the positive x direction agrees with a hypothesis
that the “head” part has a higher density compared to the “body”
part (Scheeres & Gaskell 2008). Another hypothesis of Scheeres
& Gaskell (2008), that the “neck” part has a higher density, is
also possible, although it requires a greater inhomogeneity.

Investigating the parallel translation of COM, we identified
the line of the steepest descent of ω̇ on the (Δx,Δy) plane

Δy + 0.873Δx = 0, (6)

the line passing through the origin Δx = Δy = 0, and perpendic-
ular to the line of ω̇ = 0. Our next step consisted of scanning the
line (6) in the direction of increasing Δx and Δy. For each new
COM, located at the distance

R =
√

(Δx)2 + (Δy)2 (7)

from the original centre, we computed ω̇ at various orientations
of the spin axis Oz′ with respect to Oz, applying a sequence
of two 3−1 rotations: first by angle φ around Oz, and then by
the “tilt angle” θ around the new Ox axis. More precisely, we
took the original mesh, translated its vertices to the O′ centered
frame by subtracting Δx and Δy, and then rotated the vertices to
the final O′x′y′z′ frame using the angles φ and θ. These angles
are, respectively, the longitude and colatitude of the Oz′ pole in
the Oxyz frame. The moments of inertia were not recomputed,
because: a) assuming uniform rotation around Oz′, we implic-
itly postulate that the third row and column of the inertia ma-
trix are free from off-diagonal terms; b) the value of I3 is irrel-
evant for the ω̇ = 0 condition; and c) contribution of remaining
non-diagonal terms disappears after averaging with respect to
the daily revolution.

So, for each pair of (Δx,Δy) a grid of φ, θ was filled with the
associated values of ω̇ computed from the full simulation with
ε = 178.◦5, as usual. The line of ω̇ = 0 was identified and the
smallest value of colatitude θ was registered together with its as-
sociated φ. Thus we collected a set of quadruples (Δx,Δy, θ, φ)
with the property that for a given COM distance R they produce
the null YORP effect by a minimum deviation of the rotation
pole from the original Oz direction. Figure 9 presents the mini-
mum values of θ found at the COM located on line (6) at a given
distance from the Gaskell’s model centre. The points location
is accurate up to about 0.◦2 due to the interpolation error. Both
angles, expressed in degrees, can be roughly approximated as

θ =

{
0.11 (38 − R), for R ≤ 38 m,
0.14 (R − 38), for R > 38 m, (8)

(solid lines in Fig. 9), and

φ =

{
15 − 0.33 (R − 38), for R ≤ 38 m,

195 − 0.45 (R − 38), for R > 38 m. (9)

4 We verified that without shadowing our results agree with Scheeres
& Gaskell (2008) exactly in (x = 19 m, y = 0) and with a 2 m difference
in (x = 0, y = −28 m).

0 10 20 30 40 50 60

0

1

2

3

4

R �m�

Θ
�d

eg
�

Fig. 9. Null YORP combinations of centre of mass (COM) shift R and
Oz axis tilt θ for Itokawa.

Scheeres & Gaskell (2008) neglected the effect of axis rotation;
their reasoning was fairly justified on the ground of transform-
ing a torque while keeping the force on each facet unchanged.
However, the rotation of the spin axis changes the mean energy
acquired and re-radiated by different points on an asteroid. Thus,
it relocates polar circles and the equator on a highly irregular ob-
ject like Itokawa. Interestingly, the sensitivity to the spin axis ori-
entation in the body frame (which should not be confused with
a weak sensitivity to the obliquity at ε close to 180◦) can be no-
ticed even in the pseudo-convex approximation, being related to
the global shape irregularity.

4. Conclusions

The main conclusion is that the value of the YORP effect on
Itokawa within the Rubincam’s zero conductivity approxima-
tion strongly depends on the adopted surface model mesh. In
this respect we have confirmed the general, qualitative conclu-
sions of Scheeres et al. (2007) or Ďurech et al. (2008b), al-
though we differ in quantitative terms. Our simulations were
pushed up to the best available mesh resolution, showing that
the sensitivity does not decrease when a few centimeter level
is reached. Moreover, the YORP value at the highest resolu-
tion 12G8 (−5.53 × 10−7 rad d−2) is the farthest from the ob-
servational constraint provided by Ďurech et al. (2008b). In the
agreement with Statler (2009), we find the YORP surface de-
tail sensitivity is a generic phenomenon that exists also for Eros
or for artificial Gaussian random spheres with additional surface
features.

As far as the sensitivity of the Itokawa YORP to the inho-
mogeneities of mass distribution is concerned, we used a more
accurate modelling approach than Scheeres & Gaskell (2008).
According to our results, the YORP-cancelling parallel transla-
tion of axes should be at least twice as large as the one found
by Scheeres & Gaskell (2008). This might suggest a weaker de-
pendence on the mass distribution, but combining the translation
with the rotation of axes we restore the high sensitivity.

In our opinion, the implications of the attempts to model the
YORP effect on Itokawa are far reaching, and the present paper
adds more weight to pessimistic conclusions from the papers of
Scheeres et al. (2007), Ďurech et al. (2008b), Scheeres & Gaskell
(2008), and Statler (2009). After the lesson of Itokawa, the state
of art in YORP modelling has to be judged according to an an-
swer to a fundamental question: What are the error bounds of the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912543&pdf_id=9
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simulated YORP values? The answer can no longer be limited to
the numerical properties of an applied algorithm.

If the assumptions of the present modelling tools are jus-
tified, we cannot trust even the sign of the YORP effect com-
puted from low resolution models. And once we obtain a de-
tailed topography model, like a mega-faceted Itokawa or Eros
mesh, we have no way to decide whether its resolution is fine
enough. Exploring the sequence of coarsened models, it is diffi-
cult to obtain a satisfactory answer. As we tried to demonstrate in
the present paper, this kind of test tells us much about the quality
of the simplification algorithm, and nothing about the quality of
the departure mesh as a source of the YORP effect.

In the worst case, if the sensitivity of YORP to tiny features
on a surface is a physical fact, simulations of this effect will have
to be qualified similarly to those of chaotic motion: uncertain, al-
though not meaningless. But it is not evident as yet whether the
hypersensitivity is a physical phenomenon or a product of incor-
rect assumptions (c.f. the remarks of Scheeres et al. (2007) con-
cerning the secondary illumination). Recalling that isothermal
bodies reveal no YORP torque regardless of their shapes (Breiter
& Michalska 2008), we should observe a key role of the temper-
ature surface gradient. All classical assumptions, like zero con-
ductivity, a plane-parallel model, or ignoring indirect lighting,
tend to increase the gradient. It looks as if all phenomena that
make the surface temperature distribution more even and lower
the gradient are neglected in current YORP models. The assump-
tions were justified for large, locally smooth and convex bodies,
but there are no reasons to expect that they are suitable for irreg-
ularly shaped asteroids with craters and boulders. Regardless of
computational cost, thermal models for the YORP effect have to
be improved until a realistic interplay of conduction and radia-
tion heat exchange is reached.
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Čapek, D., & Vokrouhlický, D. 2004, Icarus, 172, 526
Cignoni, P. 2008, MeshLab, http://meshlab.sourceforge.net/
Demura, H., Kobayashi, S., Nemoto, E., et al. 2006, Science, 312, 1347
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