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ABSTRACT

The study of the origin of irregular satellites remains important in planetary science because it provides constraints
on the formation process of giant planets and probes the properties of a now-extinct planetesimal disk that existed
at 5-30 AU early in solar system history. While several putative scenarios of irregular-satellite capture around giant
planets have been developed, various uncertainties and the lack of an accurate model of the evolutionary history of
the solar system usually prevent an assessment of their overall likelihood. Here we study a three-body interaction
scenario in which irregular satellites are formed by dissociation of a planetesimal binary in the gravity field of a
planet. Within the frame of the Nice model, we determine how many irregular satellites are expected to be formed
about each of the giant planets. We pay special attention to a possible capture of Triton via this mechanism. We
find that Triton could have been captured via a binary dissociation very soon after Neptune’s formation when the
planetesimal disk was still dynamically cold. Triton was most likely captured by a dissociation of a binary system
where the more massive component was ∼2–5 times heavier than Triton. Our results suggest that Neptune, the
formation of Triton’s binary, and the capture of Triton around Neptune all occurred within the first ∼5–10 Myr of
solar system formation when the gas disk was still present. This would rule out the late formation of ice giants. Our
results also indicate that binary dissociation is a highly unlikely process for the origin of small irregular satellites
for two reasons. First, the orbital distribution of the captured bodies is inconsistent with that of the observed irreg-
ular satellites. Second, the efficiency of the captures is too low to explain the numerous populations of small irregular
satellites.
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1. INTRODUCTION

The irregular satellites of giant planets are an important
part of the solar system inventory. Their orbital and physical
characteristics constrain the evolutionary processes in the early
solar system, especially those related to planet formation and
their interaction with the residual disk of planetesimals. Various
hypotheses of irregular-satellite origin have been discussed in
several recent reviews—e.g., Jewitt & Sheppard (2004), Jewitt
et al. (2004), Nicholson et al. (2007), or Jewitt & Haghighipour
(2007). The origin of Triton, in particular, has recently been
addressed in Ćuk & Gladman (2005) and Agnor & Hamilton
(2006).

Nicholson et al. (2007) argued that classical capture scenarios
for irregular satellites, such as planetesimal collision in the
Hill sphere of a planet, capture by aerodynamic drag in an
extended gaseous envelope, or sudden growth of the planetary
Hill sphere due to rapid mass increase associated with collapsing
envelope, all have problems explaining various aspects of the
observations. The purely dynamical capture mechanisms that
require at least three participating bodies (not including the
Sun) seem to offer more promising explanations. In principle,
there are two possibilities: (i) planetary encounter with a binary
planetesimal that is followed by exchange reaction with one
component of the original binary ending on a planet-bound orbit,
and (ii) planet–planet close encounter stirring the surrounding
disk of planetesimals that might lead to their transfer into planet-
bound orbits. The former possibility has long been studied in
astrophysics of dense stellar populations, and was only recently
applied in planetary science (e.g., Morbidelli & Levison 2004;
Agnor & Hamilton 2006). The latter, appropriate to a particular

phase of the planetary evolution within the Nice model (see
below), has been recently proposed by Nesvorný et al. (2007).
In this work we focus on mechanism (i).

Agnor & Hamilton (2006) developed analytic arguments and
performed numerical simulations of the model in which Triton
is captured by a dissociation of a binary planetesimal in the
gravitational field of Neptune. While identifying the true capa-
bility of this process, these authors used values of encounter
parameters that favor capture. They have not, however, deter-
mined how frequent such favorable encounter parameters occur.
Therefore, Agnor & Hamilton have not been able to estimate the
overall probability of Triton’s capture by the proposed process.
This prevents a direct comparison with other, possibly compet-
ing, mechanisms such as (ii) described above (Nesvorný et al.
2007).

In this paper we develop a self-consistent model of Triton’s
capture by exchange reactions described in (i). This not only
includes considerations of the capture dynamics, but also takes
into account the context of the mechanism, namely the precise
state of the source population in the planetesimal disk (such
as its size distribution, encounter speeds and geometry of
the planetesimals approaching planets). This detailed method
allows us to estimate the efficiency of the capture process at
various stages of planet formation and evolution.

To accomplish the above task, we need to assume something
about the early evolution of the solar system. For this we
adopt the Nice model (Tsiganis et al. 2005; Morbidelli et al.
2005; Gomes et al. 2005), a new scenario for building the
final architecture of the solar system. While not addressing the
earliest phase of formation of the giant planets, the Nice model
postulates that these planets form in a compact system with
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four giant planets located between 5 and 18 AU from the Sun.
According to the Nice model, the early formation phase left these
planets on nearly circular and coplanar orbits in a region largely
devoid of planetesimals. A cold disk of planetesimals occupied
a zone outside the giant planets up to about ∼30–35 AU,
where it had an edge beyond which the accumulation of material
into sizable bodies was presumably inefficient or otherwise
prevented (see also Levison & Morbidelli 2003). The total initial
mass of the disk is not known accurately, but is estimated to
be ∼30–50 Earth masses (e.g., Gomes et al. 2005). Planetary
gravitational perturbations produced a slow decay of the disk
by occasionally releasing some of its planetesimals onto high-
eccentricity, planet-crossing orbits. These objects then strongly
interacted with the giant planets during close encounters and
eventually were ejected from the solar system. In response,
giant planets slowly migrated from their initial positions: Jupiter
moved inward, while Saturn, Uranus, and Neptune moved
outward.

A specific feature of the Nice model is the critical role
of Jupiter’s and Saturn’s passage through their mutual 2/1
mean motion resonance (Tsiganis et al. 2005). During this
passage, both gas giants acquired elevated eccentricities and
Saturn, residing on a more eccentric orbit, triggered the orbital
instability of Uranus and Neptune by its close approaches to
these planets. The ice giants were thrown onto mutually-crossing
high-eccentricity orbits and deeply penetrated the planetesimal
disk. This phase left important fingerprints in solar system
history and structure: Gomes et al. (2005) associated a high flux
of planetesimals from a destabilized disk with the late heavy
bombardment (LHB) of the terrestrial planets and the Moon
(e.g., Hartmann et al. 2000; Ryder et al. 2000), while Morbidelli
et al. (2005) demonstrated that part of the fleeing disk particles
may have produced Jupiter’s Trojans with the required orbital
characteristics. The association with LHB makes the Jupiter and
Saturn passage through the mutual 2/1 resonance constrained
in time to ∼0.6–0.7 Gyr after the origin of the solar system.
Note that this link to LHB, however, is not logically required
by other parts of the Nice model. To make this element clear,
we shall speak about the planet-crossing (PC) phase of the Nice
model when referring to the period of time when planets were
mutually crossing their orbits. Upon leaving the chaotic PC
epoch, interaction with the already depleted planetesimal disk
made Uranus’s and Neptune’s orbits migrate outward and reach
their final positions at 19.5 AU and 30 AU, respectively. Because
of the unpredictable nature of the planetary orbit crossing
phase, Uranus’s and Neptune’s orbits and the magnitude of their
residual migration may have varied greatly immediately after
this phase. We shall describe and discuss various possibilities in
Section 2.1.

In this work, we model the capture of irregular satellites, and
Triton specifically, by dissociation of the binary planetesimals
after the planets stopped crossing each other within the Nice
model. Nesvorný et al. (2007) have shown that any population
of irregular satellites captured prior to the PC phase in the
Nice model becomes largely depleted by the violent effects of
planetary encounters (except, perhaps, at Jupiter). This means
the capture mechanism via exchange reactions before the PC
phase would have to be extremely efficient to dominate the
population created in the post-PC phase (studied here). In
Section 4 we argue that this is unlikely. This argument does not
apply to Triton, whose orbit may have been circularized close
to Neptune prior to the PC phase and was probably immune to
mutual planetary perturbations. While understanding Triton’s

origin is a basic motivation of our work, we also pay separate
attention to the efficiency of capture of the overall population
of the small irregular satellites by the binary dissociation
mechanism.

Section 2 describes our assumptions and numerical model.
Results are summarized in Section 3, and their implications are
discussed in Section 4.

2. MODEL

Our numerical model consists of three parts: (i) we model the
migration of planets within a diluted planetesimal disk during
the post-PC phase, (ii) we model the detailed dynamics of
exchange reactions, and (iii) we estimate the captured satellite
population by a combination of processes (i) and (ii). The last
step is done by scaling the assumed initial mass of the disk
present in the planetary migration runs and the planetesimal
size distribution function. Each of these steps is described in the
following sections.

2.1. Selected Migration Runs

Gomes et al. (2005) proposed a new planetary-orbit evolution
model to explain LHB (PC phase in our context). Because
their numerical simulation contained a planetesimal disk of a
limited number of objects, Nesvorný et al. (2007) improved
resolution by cloning planetesimals at about 20 Myr before
Jupiter and Saturn entered mutual 2/1 mean motion resonance.
The starting data of Nesvorný et al. (2007) contained 6868
planetesimal particles, each of ∼1.6 Pluto mass. The advantage
of this initial data modification was twofold: (i) the more massive
particles in the original disk of Gomes et al. could produce an
unrealistically granulated planet migration, and (ii) a variety of
planetary migration scenarios can be studied by using different
disk clones. It is important to verify the dependence of results
on (ii). Our starting orbits of outer planets are those of Nesvorný
et al. (2007) and correspond to the situation described by Gomes
et al. about 20 Myr before PC: namely, they are near-circular
and coplanar at 5.4, 8.4, 12.3, and 18.0 AU (terrestrial planets
were not included in our work).

These initial data were propagated using a symplectic inte-
grator SyMBA (Duncan et al. 1998). SyMBA is an efficient
numerical integrator that can handle close encounters between
massive bodies. While all particles are assumed to be massive
in the simulation, only the planets gravitationally interact with
each other and gravitationally influence planetesimal disk parti-
cles. Planetesimals gravitationally interact with planets, making
them migrate, but the code neglects mutual gravitational effects
between the planetesimals themselves.

Using 50 initial disk variants, Nesvorný et al. (2007) obtained
14 cases of plausible planetary evolution, each resulting in a
solar system architecture approximately matching the current
state. Here we selected seven of them and integrated the orbital
evolution following the planet-crossing phase of the Nice model
(Tsiganis et al. 2005; we used those that best matched the final
architecture of the solar system). During this phase, planets no
longer undergo close approaches with each other, but slowly
migrate to attain their final positions. In each of the selected
simulations we recorded parameters of close planetesimal flybys
of the planets during a control interval of 100 Myr during this
post-PC phase. We believe this time interval is representative
enough to characterize such encounters and still be amenable to
our computer power (in Section 4 we argue how our results could
be extrapolated to later periods of the solar system evolution).
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Table 1
Parameters of the Selected Planetary Migration Simulations

Run Type NTP Nenc

Jupiter Saturn Uranus Neptune

1 DE 3583 34,582 48,143 329,971 615,985
2 MA 5272 83,853 95,333 461,331 782,254
3 DE 3688 43,114 51,704 295,319 727,815
4 MA/DE 3816 58,540 66,131 376,177 828,050
5 DE 3081 33,091 43,682 233,541 522,698
6 DE 3743 43,958 64,038 616,855 785,605
7 MA 4600 70,421 81,706 421,333 935,985

Notes. The second column indicates migration class: DE for direct
emplacement scenario of Uranus and Neptune, MA for Malhotra-class
scenario of Uranus and Neptune orbital evolution (see the main text for a
definition of these migration classes). The third column gives the number
of planetesimals left in our simulation after the planet-crossing (post-
PC) phase. The next four columns give the total number of planetesimal
encounters with planets during the 100 Myr of the post-PC phase.

In particular, we recorded data for every approach when a
planetesimal entered the planetary Hill sphere. At the instant
of the closest approach to the planet, we used the relative
position and velocity of the planetesimal with respect to the
planet to compute three parameters of the hyperbolic-flyby
approximation: (i) the orbital pericenter q with respect to the
planet, (ii) the velocity of the planetary approach at infinity V∞,
and (iii) the inclination of the hyperbolic plane with respect to
the ecliptic. This latter parameter was found to be isotropic in
space. For purposes of scaling our simulations to the real number
of planetesimals in the disk, we also recorded the initial number
of disk particles NTP after planets stopped crossing their orbits
and the total number of planetesimal encounters Nenc with each
of the planets.

Table 1 provides NTP and Nenc values for each of our seven
runs (note NTP is different in each of the runs because it gives
the number of particles at the moment when planets stopped
crossing their orbits). The class designations DE and MA
in Table 1 denote the type of planetary evolution defined in
Nesvorný et al. (2007): (i) DE stands for “direct emplacement”
indicating that both Uranus and Neptune attained their near-
final orbits nearly at the end of the mutual-orbit crossing phase,
while (ii) MA stands for “Malhotra-class evolution,” indicating
the post-PC planetary system was still considerably compact and
Uranus and Neptune underwent significant migration evolution,
similar to that originally proposed by Malhotra (1995) and Hahn
& Malhotra (1999). Note, however, that Malhotra (1995) started
her planetary migration simulations with zero eccentricity and
inclination orbits of both planets and planetesimals in the
disk, while in our MA class the orbits have large eccentricity
and inclination values after the planet crossing phase. Job
no. 4 is somewhat in between these two classes and we
designate it MA/DE. Following Tsiganis et al. (2005), we favor
DE-type migrations, because MA-type migrations nearly always
result in an unrealistic damping of Uranus’s and Saturn’s orbital
eccentricity. For the sake of comparison, though, we keep two
MA-type migrations among our selected cases (runs 2 and 7).

Figure 1 shows planetary-orbit evolution for two of our
simulations (runs 1 and 2). The 100 Myr test interval over which
we recorded planetesimal flybys near the migrating planets is
denoted by the black arrows. The bottom panel, corresponding
to MA-type run 2, indicates that Uranus’s eccentricity became
effectively zero, in contrast to the currently observed value.

Figure 1. Two cases of migration of major planets: Jupiter (red), Saturn (green),
Uranus (blue), and Neptune (purple). The top figure shows results for run 1,
the bottom figure shows results for run 2 (see Table 1). A planet-crossing phase
occurs at ∼20 Myr in both simulations. The solid lines show the semimajor
axes of the planets, the thin lines show their perihelion and aphelion distances,
respectively. The black arrows indicate the 100 Myr time interval where we
recorded the parameters of the planetesimal encounters to the planets.

Figure 2 shows the evolution of the planetesimal disk mass
in runs 1 and 2 from the previous figure, as well as the
time-resolved number of planetesimal flybys near the four plan-
ets (note the initial disk mass before PC phase was ∼25 Earth
masses). In both cases, the disk mass dropped by ∼65% during
the post-PC interval of 100 Myr; this is because the majority of
particles have been swept out of the solar system by encounters
with Jupiter, or placed in outer solar system structures, such as
the Oort cloud or the scattered disk, by encounters with Jupiter
and other planets. As expected, the number of planetary en-
counters decreases in time roughly proportionally to the overall
disk-mass decay. Some fine structures, such as a drop of Uranus
encounters in run 1 at about 10 Myr, can be explained by a
closer analysis of the simulations. In this case, the decrease of
Uranus’s eccentricity (Figure 1) decoupled this planet from the
denser outer parts of the planetesimal disk.

Figure 3 shows the distribution of the recorded values of q and
V∞ for all planets in two runs 1 and 2. While the overall results
are broadly similar in the two cases, there are small differences
such as systematically slightly lower encounter speeds V∞ in the
MA-type run (run 2). For instance, the distribution maximum
of V∞ in the case of Neptune occurs at ∼3 km s−1 (run 1)
and ∼2 km s−1 (run 2). The maximum shifts to larger values
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Figure 2. Time-resolved evolution of the planetesimal disk and the num-
ber of planetesimal encounters by the planets in the two simulations from
Figure 1 (the top panel is for run 1, the bottom panel is for run 2; see Table 1
and Figure 1). Time in these plots starts at the instant denoted by the first black
arrow in Figure 1, i.e., when we started to record parameters of the planetesi-
mal flybys near the planets. The upper bold black curve and the right ordinate
shows the time decay of the planetesimal disk mass (in Earth masses). The thin
histograms and the left ordinate show the number of planetesimal encounters
with the planets in the running 1 Myr window: J stands for Jupiter, S for Saturn,
U for Uranus, and N for Neptune.

of V∞ for interior giant planets, up to ∼6 km s−1 (run 1) and
∼5 km s−1 (run 2) for Jupiter. These rather high velocities are
due to the fact that the planetesimal disk is highly excited during
the post-PC phase within the Nice model (see, e.g., Figure 3 in
Nesvorný et al. 2007). Note that small relative velocities (with
respect to the planets) that are generally favorable for irregular
capture by exchange reactions (e.g., Agnor & Hamilton 2006
assumed encounter speeds � 0.5 km s−1) occur for only a very
small fraction of recorded flybys.

The distribution of planetocentric pericenter values q is nearly
linear up to the Hill radius, with only small variations at the
largest values due to details of the migration run (Figure 3). For
instance, the drop at ∼0.5 AU for Uranus in run 1 is due to the
decrease of the orbital eccentricity at ∼10 Myr (Figure 1) and

Figure 3. During migration the disk planetesimals encounter planets on near-
hyperbolic orbits centered in the respective planet. The left panels show the
distribution of pericenter value q and the right panels show the distribution of
encounter velocity at infinity V∞ (note the normalization of each incremental
distribution to unity). Labels along the solid lines indicate the planet: J stands
for Jupiter, S for Saturn, U for Uranus, and N for Neptune. The top panels
show the results for run 1 and the bottom panels show the results for run 2 (see
Table 1 and Figure 1).

the lack of interaction with denser regions of the planetesimal
disk. Similarly, the decrease of q-distribution for Neptune after
∼0.55 AU in run 2 reflects the variations of the instantaneous
Hill radius at different heliocentric distances during the migra-
tion of this planet.

The capability to dissociate a given binary planetesimal
system is determined mainly by q and V∞. In particular, it is
easy to show that the efficiency of exchange reaction is directly
related to the quantity φ = GM ′/(qV 2

∞), where M ′ is the
mass of the planet (e.g., Agnor & Hamilton 2006). In analytic
estimations by Agnor & Hamilton the other two fundamental
parameters are q itself and ψ = (M/M ′) (q/aB); M is the
total mass of the binary system and aB is the pre-encounter
semimajor axis of the binary orbit (assumed circular). Note that
the exchange reaction only weakly depends on the mass ratio
of the binary components. We postpone the analysis of ψ to
later sections, because ψ depends on additional parameters in
the model such as the distribution of aB.

The distributions of q and V∞ characterizing planetary en-
counters in our migration runs are independent and determined
from our migration runs. This makes it easy to construct the
expected distribution of φ in our model for different planets.
Results are shown in Figure 4 for migration runs 1 and 2. The
higher the φ value is, the higher the planet-intrinsic capability
to dissolve the binary.3 Despite systematically larger relative

3 Note that the excess of angular momentum of the binary orbit with respect
to the planet as a massive center, expressed as its ratio to the the angular
momentum of the limiting case of a parabolic orbit, is given by

√
1 + (1/2φ).



No. 4, 2008 IRREGULAR SATELLITE CAPTURE BY EXCHANGE REACTIONS 1467

Figure 4. Distribution of φ = GM ′/(qV 2∞) for planetesimals encountering
migrating planets in our simulation runs 1 (top) and 2 (bottom): J stands for
Jupiter, S for Saturn, U for Uranus, and N for Neptune.

velocities V∞ (Figure 3), we note that Jupiter has about an order
of magnitude larger φ values. This is due to the larger mass of the
planet and the statistically smaller q for planetesimals encoun-
tering Jupiter. In the overall statistics of the expected population
of irregular satellites created by this mechanism, the larger φ
values of Jupiter will be compensated by a much smaller number
of encounters Nenc (Table 1 and Section 3). It is worth noting
that Agnor & Hamilton (2006) only considered encounters with
values of φ larger than unity in their model of Triton’s capture.
Figure 4 indicates such values are rarely attained in the post-PC
phase.

2.2. Planetesimal Capture Simulation

Having characterized the planetary migration and encounters
within the planetesimal disk, we now describe our approach
to modeling the dissociation of binary systems. To handle this
problem we constructed a numerical code that propagates a
binary system during its approach to a planet and monitors the
resulting configuration of the three bodies. In this part of our
work we use the three-body problem (planet-binary), neglecting
the gravitational tidal field of the Sun in the planet’s vicinity. We
use a high-accuracy Burlish–Stoer integrator with automatically
controlled absolute error (e.g., Press et al. 1992). The initial
conditions and model parameters are specified as follows.

1. We assume that the two components in the binary system
have initially a circular orbit. The orbital plane is chosen
to be random in space, while the distribution of their sep-
aration, aB, is given by dN ∝ daB

/
a2

B. This distribution
corresponds to an uniform distribution of binding energies.
We note that compact systems, which favor binary disso-
ciation followed by a satellite capture, are preferred in this
way. The minimum and maximum values of aB are set so
that (i) the most compact systems correspond to the Roche

Table 2
Size Bins Used in Our Simulations of Capture of Small Irregular Satellites

Bin No. Dl Dr Deff M Ntrials

(km) (km) (km) (Pluto mass)

1 50 97 80.5 4.18 × 10−5 5 × 1010

2 97 188 160.0 3.04 × 10−4 5 × 1010

3 188 365 302.7 2.22 × 10−3 5 × 1010

4 365 707 586.5 1.62 × 10−2 2.5 × 1010

5 707 1371 1137.2 1.18 × 10−1 2.5 × 1010

6 1371 2660 2206.3 8.62 × 10−1 1.25 × 1010

7 2660 5156 4277.0 6.28 × 100 1.25 × 1010

8 5156 10,000 8294.7 4.58 × 101 1.25 × 1010

Notes. The second and third columns give the size interval of the
considered bin. The fourth column is the effective size of planetesimals
used in our simulation (see the main text). The fifth column lists the
corresponding mass, given in units of Pluto mass, assuming a bulk
density of 2 g cm−3. The last column shows the number of trials Ntrials

used in our binary dissociation simulations.

distance of bodies with a bulk density of 2 g cm−3 (e.g.,
Bertotti et al. 2003, p. 436), and (ii) the most distant systems
are at 0.3 of the Hill radius with respect to the solar tidal
forces. The nodal positions of the orbital plane of the binary
components relative motion in space are chosen randomly.

2. The barycenter of the binary system is initially assumed
to approach the planet along a hyperbolic orbit with an
isotropic distribution of incoming directions, and q and V∞
parameters are assumed to have distributions identical to
those from our migration runs (see, e.g., Figure 3).

3. Each simulation uses fixed values of the total mass of the
binary system, M , and of the secondary-to-primary mass
ratio, μ. In this respect, we consider two different cases for
which we conduct two different sets of simulations:

(a) Origin of numerous populations of small irregular
satellites with sizes �100 km (note only a few of
them are larger than this limit); we probe the capture
efficiency by assuming μ = 0 and M spans a large
interval of values, such that the secondary component
is always massless and the primary component has
various values of mass (see Table 2); and

(b) Origin of Triton such that one of the binary compo-
nents has a mass of Triton, that sets a minimum value
of M ∼ 1.64 Pluto masses, while the second compo-
nent has again a spectrum of masses from zero to large
values (see Table 3).

We note that the energy and angular momentum excess of the
incoming pair of planetesimals, which needs to be overcome
to transfer one of the components onto an orbit bound to the
planet, depends on the total mass M of the binary, while it is
basically independent of their mass ratio μ. Dependence on
this latter parameter may start to play a role in a statistically
very infrequent case of q comparable to or smaller than aB
(note, moreover, that for low-mass binaries, aB is much smaller
than the planetocentric distance of regular satellites). As a
result, our first set of simulations with a massless secondary
(μ = 0) are basically valid for an arbitrary mass ratio. This
is important because observations so far indicate that trans-
Neptunian binaries have components of comparable mass (or
typically within an order of magnitude; e.g., Noll et al. 2007). To
verify our conclusions, we also performed a series of simulations
for run 1 (Section 3.1) with equal binary components (μ = 0.5)
of sizes ranging from 10 to 100 km. None of them provided any
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Table 3
Size Bins Used in Our Simulations of Triton’s Capture

Bin No. Dl Dr Deff M μ

(km) (km) (km) (Pluto mass)

1 2700 3130 2931 2.02 0.2319
2 3130 3640 3404 3.17 0.9304
3 3640 4220 3951 4.95 0.4953
4 4220 4900 4585 7.74 0.2690
5 4900 5690 5324 12.11 0.1527
6 5690 6600 6179 18.93 0.0949
7 6600 7670 7175 29.64 0.0586
8 7670 8900 8330 46.39 0.0366
9 8900 10,330 9668 72.51 0.0231

10 10,330 12,000 11,227 113.56 0.0147

Notes. The second and third columns give the size interval of the
considered bin. The fourth column is the effective size of planetesimals
used in our simulations. The fifth column is its mass, in units of Pluto’s
mass, assuming a bulk density of 2 g cm−3; this is the total mass of
the binary system. The last column gives the ratio of the secondary to
primary mass in the binary system; one component is always Triton with
1.64 Pluto masses. In the first two bins Triton is the primary component,
otherwise it is the secondary component. In all cases we performed
Ntrial = 2.5 × 1010 trial simulations.

captured satellite, even with a large number (1015) of trials. This
is consistent with the results of μ = 0 binaries reported below.

In practice, we start our integration at distance 1.5 AU from
the planet and compute the state vector of an hyperbolic orbit
with respect the planet. This sets the location and speed of the
binary’s center-of-mass. The motion of the planet and the two
components of the binary system are then numerically propa-
gated through the encounter until the planetocentric distance of
any of the components reaches a distance of 1.5 AU again. We
then determine the relative state vectors of the primary and sec-
ondary components with respect to the planet and check if any
of them is on a planet-bound orbit. If so, we record its Keplerian
orbital elements with respect to the planet.

We conducted the analysis of satellite capture for each of the
four giant planets and for each of the selected migration runs
listed in Table 1. In each case we performed a large number
of trial simulations, Ntrials, changing randomly (but respecting
determined distributions) the initial parameters: q, V∞, aB, and
angular variables. Each simulation assumed fixed values for M
and μ.

The efficiency of satellite capture from low-mass binaries is
expected to be very low (e.g., Agnor & Hamilton 2006). On
the other hand, these systems may be more abundant in the
disk than high-mass binaries due to the steep size distribution.
Therefore, we must perform a large number of trial runs. We
used Ntrials � 1010 in each simulation. To cope with such a huge
number of numerical integrations, we adopt an additional filter
and integrate only those configurations that satisfy

q � κaB

(
3
M ′

M

)1/3

, (1)

where the coefficient κ is of the order of unity. The condition
in Equation (1) means the binary system is at the Hill stability
limit when passing through the pericenter q of its orbit relative
to the planet. The coefficient κ > 1 is a safety parameter. In
our simulations we chose κ = 1.5, except for those of Triton
capture, where we set κ = 2.5. All trial cases that violate
Equation (1) are not integrated and are assumed to fail in

producing satellites. They count, however, toward the overall
statistics. Using a limited number of simulations, we have
verified that cases violating Equation (1) do not really produce
captured satellites. Additionally, in all runs we verified that
captured orbits have q well below the critical limit κ aB

(
3M ′

M

)1/3

from the right-hand side of Equation (1) for the κ value used.
The orbital parameters of captured objects recorded by our

code are their initial osculating elements. To estimate the long-
term stability of these orbits and/or perform comparison with
the observed population of irregular satellites, we would ideally
need to perform a full-fledged integration of their subsequent
evolution. With our large number of trial cases, however, we
obtain tens to hundreds of thousands of irregular satellite orbits
in each simulation (making in total millions of satellite orbits).
Their numerical integration over appropriate time interval would
surpass our computer capacity. Therefore, we use an alternative
approach to deal with this problem. The main sources of
instability for the captured irregular satellites are due to solar
perturbations, such as the evection instability and Kozai-cycle
instability. Typically, the amplitude of the former is smaller
than that of the latter. We thus adopt the simplest approach and
compute the minimum and maximum values of the pericenter
distance during the Kozai cycle (obtaining thus also minimum
and maximum values of the inclination variations). This can
be achieved analytically because Kozai dynamics implies two
integrals of motion (e.g., Kozai 1962; Kinoshita & Nakai 1999;
Carruba et al. 2002; Nesvorný et al. 2003):

K1 = cos i
√

1 − e2, (2)

K2 = (2 + 3e2) (3 cos2 i − 1) + 15e2 sin2 i cos 2ω, (3)

where (a, e, i) are the osculating semimajor axis, eccentricity
and inclination, and ω is the osculating argument of the
pericenter. In addition to K1 and K2, the semimajor axis a is also
conserved by the Kozai dynamics (unless the dissipation effects
become important). With the initial orbital parameters (a, e, i)
known, and ω statistically modeled, we determine (K1,K2) and
compute analytically the minimum/maximum values of e, i,
and the orbital pericenter q during the Kozai cycle.4 We then
apply the following filters to eliminate unstable or inappropriate
orbits.

1. Small irregular satellites. We eliminate all orbits whose
pericenter during the Kozai cycle becomes smaller than the
planetocentric distance of the outermost regular satellite,
which turns to be 0.013 AU for Jupiter (Callisto), 0.023 AU
for Saturn (Iapetus), 0.004 AU for Uranus (Oberon) and
0.003 AU for Neptune (Triton in this case).

2. Capture of Triton. We eliminate all orbits whose pericenter
during the Kozai cycle becomes smaller than Neptune’s ra-
dius. We also eliminate those orbits for which the pericenter
is always larger than ∼0.004 AU.

In both cases we also eliminate all satellites whose semimajor
axis would exceed the long-term stability zone determined by
the numerical experiments of Nesvorný et al. (2003). This
typically means a � 0.4 RHill for prograde satellites and
a � (0.5–0.6) RHill for retrograde satellites, depending on the
time-averaged eccentricity of the orbit (see Figures 9–12 of

4 We note that when K2 > 2 (3K2
1 − 1) the trajectory circulates about the

origin in the (e, ω)-space; otherwise it circulates about a stationary solutions
located at ω = ±90◦ (Kozai 1962; Kinoshita & Nakai 1999).
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Nesvorný et al. 2003; RHill is the radius of the Hill sphere for
the planet).

The first condition described above is based on the assumption
that a population of small irregular satellites crossing the
orbits of more massive regular satellites would be destroyed
by collisions or would be dynamically eliminated from the
system. It basically results in the elimination of orbits in some
interval of inclination value around 90◦ (e.g., Carruba et al. 2002;
Nesvorný et al. 2003). The more complicated second condition
for Triton’s capture is based on the recent orbital evolution model
of Ćuk & Gladman (2005). These authors postulate that Triton
quickly evolved from its initial (capture) orbit by collisions
with a pre-existing population of regular satellites similar
to those around Uranus (and thus extending to ∼0.004 AU
planetocentric distance). Debris from those satellites produced a
massive circum-Neptunian disk that made Triton’s orbit evolve
into its current orbit in only ∼0.1–1 Myr. In particular, the
orbital eccentricity of Triton has shrunk from its initial value
to ∼0, while its inclination has not likely undergone significant
evolution (Ćuk & Gladman 2005). Note, however, that we do
not eliminate captured satellites with inclinations inconsistent
with Triton’s orbit (∼157◦ with respect to Neptune’s equator).
This is because we are interested in the intrinsic efficiency of
the capture of satellites with Triton-like orbit by the binary
splitting process, of which the actual Triton is just one possible
realization.

To evaluate the number Ncap of irregular satellites captured
in stable orbits with our method, we must include the value
of the argument of the pericenter ω. This angle is random at
the moment of capture. For this reason, with each captured
orbit, characterized by planetocentric (a, e, i) orbital elements,
we associate a statistical weight W by randomly choosing 103

values of ω and evaluating the fraction of (a, e, i;ω) orbits that
are stable according to our criteria; in particular, if M such orbits
are stable than W = M/103.

To compare the orbits of the captured satellites with those of
existing irregular satellites, we use the mean orbital elements
rather than the osculating ones (e.g., Nesvorný et al. 2003).
This is because the Kozai cycle may significantly change the
osculating elements on a timescale of ∼0.1–1 ky. It is possible
to determine time-average eccentricity and inclination values
over a Kozai cycle semi-analytically (e.g., Kinoshita & Nakai
1999). Such a computation, however, is not straightforward. We
thus use a simpler approximate approach by taking an average of
minimum and maximum Kozai-cycle values of e and i instead
of their true time averages. They are sufficiently close to the
time averages of e and i for the purposes of our paper.

2.3. Assumed Size Distribution of Planetesimals

Because of computational limitations, our migration runs
in Section 2.1 represented the planetesimal disk by only a
few thousands of equal-mass planetesimals (enough, though,
to reasonably represent planetary migration and obtain a good
statistical description of q and V∞). Thus, the characteris-
tic particle masses in these simulations were ∼1.6 of Pluto
mass, or, assuming a bulk density of 2 g cm−3, bodies of
∼2,920 km in size. In reality, however, the planetesimal disk
contains bodies with sizes ranging over the whole spectrum
from objects that are very small to objects larger than the ones
we used in our migration runs. Bodies in each size range, as-
suming that some fraction of them are binaries, may be potential
sources of irregular satellites. We take this fact into account in
the following.

We start with a description of our best guess for the size
distribution (SFD) of the planetesimals in the disk. We then
assume that the encounter parameters, such as distributions of
q or V∞ determined in Section 2.1, are the same for bodies of
different sizes (at least at some plausible interval we shall use)
and that the captured population of irregular satellites scales
with the estimated number of planetesimals of some particular
size. This will allow us to quantify the number Nsat of captured
irregular satellites from a disk with a realistic size distribution
of bodies (Section 2.4).

Both the observational constraints (e.g., Bernstein et al. 2004;
Elliot et al. 2005; Petit et al. 2006, 2007) and the evolutionary
models (e.g., Stern & Colwell 1997; Gladman et al. 2001) are,
to some degree, uncertain and yield only an approximate insight
into the SFD of the planetesimal disk prior to or just after the
planet-crossing phase. For simplicity, we shall thus assume a
broken power law size distribution with a roll-off at size D0
and differential distribution exponents q1 for D � D0 and q2
for D � D0. As far as the current population is concerned,
Bernstein et al. (2004) found that D0 ∼ 50 km, q1 ∼ 4–5,
and q2 ∼ 2–3 in the current trans-Neptunian population. While
finding nearly the same value of q1, Gladman et al. (2001)
and Petit et al. (2006) argue, however, that the roll-off size D0
happens for smaller bodies, perhaps between 10 and 25 km.
The robust finding that q1 > 4 and q2 < 4 implies that bodies
with diameters D0 dominate the mass of the system. We shall
assume that the size distributions of the planetesimals in the
trans-Neptunian disk and in the post-PC phase were the same
as now, only with their total number scaled to characterize its
initial mass in our simulations, which is tied to the assumed 35
Earth mass of the primordial planetesimal disk beyond Neptune.

Our assumptions about SFD mean that the number dN of
bodies in each size bin dD is dN ∝ D−q dD. In particular, for
D � D0

dN = (q1 − 1)

(
D1

D

)q1 dD

D1
, (4)

and for D � D0

dN = (q1 − 1)

(
D1

D0

)q1
(

D0

D

)q2 dD

D1
. (5)

Here D1 is an auxiliary size threshold for which N (D > D1) =
1; we also denote the mass of a body with size D1 to be M1. The
total mass, Mdisk, of the planetesimal disk is given by

Mdisk = M0
(q1 − 1)(q1 − q2)

(q1 − 4)(4 − q2)

(
D1

D0

)q1−1

. (6)

The shape of the assumed size distribution is determined by
the (q1, q2,D0) parameters, and the absolute number of objects
in the population is defined by the D1 value. The latter parameter
is not known a priori, especially in the early post-PC phase. We,
however, circumvent this parameter by using Equation (6) that
relates D1 to Mdisk known from the initial data of our migration
simulations. In particular, we have that

D1 = D0

[
(q1 − 4)(4 − q2)

(q1 − 1)(q1 − q2)

Mdisk

M0

]1/(q1−1)

. (7)

As an example of the (q1, q2,D0;Mdisk) parametrization of the
disk we may use Mdisk ∼ 12.4 Earth masses (the case of run 1).
To get the feeling how the (q1, q2,D0;Mdisk) parametrization
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determines our results, we use for definiteness q1 = 4.5,
q2 = 2.8 and D0 = 50 km. With these values, Equation (7)
yields M1 	 44.6 Pluto masses or about one body of Mars mass
in the disk population. We would thus expect, as a result of our
mathematical exercise, about one body of that mass in the disk
population and about 90 bodies of the Pluto mass.

It is interesting to note that (see Equation [7])

M1 ∝ M
(q1−4)/(q1−1)
0 . (8)

Since q1 > 4, the exponent on the right-hand side of
Equation (8) is positive. This means that smaller D0 values
would result in smaller D1 for a fixed value of Mdisk. For ex-
ample, with the same slope exponents as above, Mdisk ∼ 12.4
Earth masses and D0 = 25 km, the disk would hold one body
with ∼33 Pluto masses and some 60 bodies of the Pluto mass.
In addition, with D0 fixed, larger q1 values result in smaller D1
for a fixed value of Mdisk.

Finally, we note that the size distribution discussed in this
section characterizes the total population of disk objects. Our
work further considers a fraction of them are binaries. This
subpopulation is assumed to obey the same mass distribution as
the whole system, or in other words the fraction of binaries is
assumed to be roughly constant in the size interval of interest. In
further work we actually assume all planetesimals are binaries,
and only the final results would eventually be multiplied by the
expected binary fraction (e.g., Noll et al. 2007).

2.4. Estimated Population of Captured Irregular Satellites

In the final step, we use all previously collected information
to estimate the expected population of the irregular satellites
captured by dissociation of the planetesimal binaries. If the
equal-mass population of objects in our simulation were to
represent the reality, Ncap satellites become captured in stable
orbits from Ntrials trial cases (described in Section 2.2), and
fbin is the fraction of binaries, we would expect to capture
Nsat ∼ fbin Ncap (Nenc/Ntrials) satellites. With a continuum of
planetesimal sizes (Section 2.3) such that at each infinitesimal
size bin dD we have dN objects (Equations [4] and [5]), we
obtain

Nsat ∼
∫

fbin Ncap

(
Nenc

Ntrials

)(
dN

NTP

)
, (9)

where integration is performed over bodies of all sizes D. Note
that Ncap = Ncap(D) depends on the size/mass of the binary
system which underwent dissociation in the gravity field of the
planet. Similarly, fbin = fbin(D) may likely be a size-dependent
parameter.

In practice, we choose finite size/mass bins (D,D + ΔD) and
replace integration in Equation (9) with a finite summation:

Nsat ∼
∑
bins

fbin Ncap

(
Nenc

Ntrials

)(
ΔN

NTP

)
. (10)

The value ΔN of number of objects in the diameter bin of
size ΔD around D is given by Equations (4) and (5).5 Our
choice for the size bins is given in Table 2 for experiments
with the capture of small (<50 km size) irregular satellites,
and in Table 3 for the capture of Triton. In both cases we

5 Since our size bins are not infinitesimal, we use the total (integrated)
number of objects between Dl and Dr: ΔN = (D1/Dl)q1−1 [1 − (Dl/Dr)q1−1]
for Dl, Dr > D0 and ΔN = ((q1 − 1)/(q2 − 1)) (D1/D0)q1−1 (D0/Dl)q2−1

[1 − (Dl/Dr)q2−1] for Dl, Dr < D0.

Figure 5. Each of the panels shows mean orbital semimajor axis a and
eccentricity e for captured irregular satellites around Jupiter in run 1 (dots) for
size bins 5–8 (see Table 2; bin identifier is noted in each panel). The triangles
are the mean orbital elements of the observed irregular satellites of Jupiter for
comparison.

(A color version of this figure is available in the online journal.)

specify the bins by minimum Dl and maximum Dr diameters.
Moreover, since M ∝ D3, we define the effective diameter
Deff = ∫ Dr

Dl
ξ 4 dξ

/∫ Dr

Dl
ξ 3 dξ = (4/5)

(
D5

r − D5
l

)/(
D4

r − D4
l

)
and the corresponding mass Meff , assuming a bulk density of
2 g cm−3.

Our simulations of the capture of small irregular satellites
assume a massive primary and massless secondary (thus μ = 0).
The number of trials Ntrials in each size bin is given in Table 2.
The simulations of Triton’s capture must take into account that
one component of the binary is a ∼1.64 Pluto mass object.
This also sets the minimum total mass of the binary system and
fixes the mass ratio μ for each of the bins. For Triton’s capture
simulations, we used Ntrials = 2.5 × 1010 (Table 3).

In order to verify the robustness of our results on changes of
the chosen bin sizes, we also performed a test for run 1 where
we took 20 bins for the capture of small irregular satellites and
25 bins for the capture of Triton (the size range between the
smallest value of Dl and the largest value Dr was the same). In
both cases we also took twice as many trial integrations Ntrial as
indicated in Tables 2 and 3.

3. RESULTS

Our plan is to first discuss the results of run 1 in detail and
to a lesser extent those of run 2 (Table 1). These will set the
stage for what follows. As a third step we summarize overall
characteristics of the results for the remaining runs. In this
section we strictly use data from the 100 Myr interval following
the planet-crossing phase in the Nice model. In Section 4 we
extrapolate them to other phases of the solar system evolution.
For simplicity, we also assume all disk planetesimals are binary,
thus fbin = 1, but more discussion can be found in Section 4.
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Figure 6. Each of the panels shows mean orbital semimajor axis a and
eccentricity e for captured irregular satellites around Saturn in run 1 (dots) for
size bins 5–8 (see Table 2; bin identifier is noted in each panel). The triangles
are the mean orbital elements of the observed irregular satellites of Saturn for
comparison.

(A color version of this figure is available in the online journal.)

Figure 7. Each of the panels shows mean orbital semimajor axis a and
eccentricity e for captured irregular satellites around Uranus in run 1 (dots) for
size bins 5–8 (see Table 2; bin identifier is noted in each panel). The triangles
are the mean orbital elements of the observed irregular satellites of Uranus for
comparison.

(A color version of this figure is available in the online journal.)

3.1. Run 1: DE Type

We first analyze the ability to capture small irregular satellites
from our runs where the secondary in binary systems was
considered massless and the mass of the primary sampled a
broad interval of values (Table 2).

Figure 8. Each of the panels shows mean orbital semimajor axis a and
eccentricity e for captured irregular satellites around Neptune in run 1 (dots) for
size bins 5–8 (see Table 2; bin identifier is noted in each panel). The triangles
are the mean orbital elements of the observed irregular satellites of Neptune for
comparison.

(A color version of this figure is available in the online journal.)

Figures 5–8 show the values of the semimajor axis a and
the Kozai-cycle mean value of the eccentricity e for captured
satellites that meet stability criteria from Section 2.2. We give
results for bins 5–8 (i.e., large primary components in the binary
systems), because bins 1–4 provide only very limited (or even
zero) number of captured satellites, typically with orbits of large
a (close to stability limit) and very high e (typically e > 0.8).
We nevertheless include them in the statistical analysis below.
In all cases, capture from binary systems results in orbits with
systematically higher values of the orbital eccentricity than that
of the observed satellites (red triangles). The discrepancy is the
largest for Jupiter, but even for Neptune the match is not good.

Next we used Equation (10) to obtain the total number Nsat of
small irregular satellites by adding captured populations in each
of the size bins. Table 4 gives results for selected disk parameters
(D0, q1, q2). We also explored (D0, q1, q2) more extensively,
namely assuming D0 in the (10, 50) km range, q1 in the (4.1, 4.9)
range, and q2 in the (2.3, 3) range. Performing 106 random trials,
the maximum number of captured irregular satellites around
Neptune (in a statistical sense explained in Section 2.4) was
	 0.25. We also found that a smaller population (by about an
order of magnitude) is expected around the other giant planets.
This result is in contrast with the finding of Sheppard et al.
(2006); see also Jewitt & Sheppard (2004) or Nicholson et al.
(2007), who show that the D � 10 km population of irregular
satellites is numerous and broadly similar for each of the giant
planets. Our predicted ∼0.01–0.1 captured satellites is about
three orders of magnitude below the observed population.

In order to check how sensitive our results are on the
particular choice of 8 size bins from Table 2, we repeated the
simulation with 20 size bins that covered the same interval (50–
10,000 km) for the primary size. Secondaries were again
massless and we also performed twice as many trial integrations.
For a given set of disk parameters (D0, q1, q2) we obtained
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Table 4
Results of Our Simulations

Run Nsat NTrit

Jupiter Saturn Uranus Neptune

D0 = 50 km
1 0.0001 0.0000 0.0016 0.0491 0.009
2 0.0002 0.0000 0.0727 1.6882 0.034
3 0.0001 0.0000 0.0035 0.1198 0.014
4 0.0002 0.0000 0.0202 0.4548 0.035
5 0.0001 0.0000 0.0016 0.1198 0.007
6 0.0001 0.0000 0.0095 0.0709 0.008
7 0.0002 0.0000 0.0111 0.2188 0.021

D0 = 25 km
1 0.0000 0.0000 0.0010 0.0282 0.005
2 0.0001 0.0000 0.0418 0.9697 0.019
3 0.0001 0.0000 0.0020 0.0688 0.008
4 0.0001 0.0000 0.0116 0.2612 0.020
5 0.0000 0.0000 0.0009 0.0688 0.004
6 0.0001 0.0000 0.0055 0.0407 0.005
7 0.0001 0.0000 0.0064 0.1257 0.012

D0 = 10 km
1 0.0000 0.0000 0.0005 0.0136 0.003
2 0.0001 0.0000 0.0200 0.4558 0.009
3 0.0000 0.0000 0.0010 0.0331 0.004
4 0.0000 0.0000 0.0056 0.1255 0.010
5 0.0000 0.0000 0.0004 0.0330 0.002
6 0.0000 0.0000 0.0026 0.0196 0.002
7 0.0001 0.0000 0.0031 0.0604 0.006

Notes. For different migration runs (first column), we give the
number of irregular satellites captured in the 100 Myr timespan
with D � 50 km and the efficiency to capture Triton at Neptune (the
last column; here called NTrit, but computed according to algorithm
for Nsat from Equation (10)). All results assume that every disk
planetesimal is a binary (fbin = 1). We used three different values of
size D0, a parameter that characterizes the inflection point of the disk
SFD. We used slope index q1 = 4.8 for D > D0 and q2 = 2.8 for
D < D0. In the Saturn case, the captured population of the irregular
satellites was always 	 10−5 or smaller.

	30% fewer captured satellites Nsat. This difference is not
significant. Because of much lower computer time expense, we
shall use the 8-bin set in the following.

We took advantage of our test run to probe which binary
systems contribute most to the population of the captured
irregular satellites. Figure 9 shows the contribution ΔNsat =
Ncap (Nenc/Ntrials) (ΔN/NTP) of each of the bins in the final
value Nsat for all of the planets. Note that much more massive
primaries are necessary to provide satellites around Jupiter than
around Neptune. The primaries with a peak efficiency for the
delivery of small irregular satellites have ∼5, ∼1, ∼0.05, and
∼0.002 Pluto-masses for Jupiter, Saturn, Uranus, and Neptune,
respectively. Comparison of ΔNsat for the simulations with 8
and 20 size bins also allows us to understand why the nominal
case with 8 bins overestimates the number of captured satellites
(Figure 9).

3.1.1. Capture of Triton

Figure 10 shows osculating orbital parameters for satellites
meeting the criteria of Triton capture (Section 2.2). Each of
the panels corresponds to one individual size bin outlined in
Table 3 (the bin identifier is labeled in the right bottom corner).
Obviously, a smaller number of Triton-like objects are captured
from systems of lower total mass (the initial bins 1, 2, 3. . .),

Figure 9. Contribution ΔNsat of individual size bins to expected Nsat for capture
of massless irregular satellites in run 1. Data for satellites around different giant
planets are the three histograms with appropriate labels: J for Jupiter, U for
Uranus and N for Neptune (Saturn satellites would be below the resolution
limit in this figure). The top panel for the nominal simulation with 8 size bins
(Table 2), the bottom panel for a check simulation with finer grid of 25 size
bins. The arrows indicate upper bounds for ΔNsat from the resolution of our
integration (in the case of satellites around Jupiter and Saturn these upper
bounds are below the minimum value at the ordinate). Note the ΔNsat values
for bins in the bottom panels are smaller because they are calibrated to less
disk particles ΔN (Equation [10]). The cumulative value

∑
ΔNsat of captured

satellites is 	30% less for the finer grid of bins at the bottom part. This is
because the capture efficiency steeply rises toward a maximum value in the first
few bins. The coarse bins at the top assign too much weight to smaller primaries
that in the bottom case already do not contribute to Nsat. The upper abscissa
shows mass of the primary in the binary system in masses of Pluto for reference.

while much more are captured when the mass of the primary
increases (the last bins . . . , 9, 10). In the first case the initial
eccentricity is systematically very high (�0.9), while only
massive primaries allow lower eccentricity capture orbits. The
importance of each of the bins for Triton capture probability
depends not only on the number of the captured satellites Ncap,
but also on the estimated number ΔN of the binary systems
in the planetesimal disk (see Equation [10]). Figure 11 shows
the contribution ΔNsat = Ncap (Nenc/Ntrials) (ΔN/NTP) of each
of the bins in the final value Nsat for three different values of
(D0, q1, q2) triples. Interestingly, bins 2 and 3, corresponding to
about 2 to 3 mass ratio between the primary and secondary
(Triton), are preferred for the Triton capture. Systems with
a lighter primary are more abundant in the disk but provide
comparably less captured satellites. On the other hand, very
massive binary systems yield a lot of captured satellites, but are
very rare in the disk.

Figure 12 shows the expected number of satellites Nsat
meeting the criteria of Triton capture (Section 2.2) when the
parameters of the planetary-disk distributions are varied in their
admissible intervals. In particular, we considered D0 values in
the interval (10, 50) km, q1 values in the interval (4.1, 4.9), and
q2 values in the interval (2.3, 3). Overall, the chance to capture
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Figure 10. For each of the size bins from Table 3, and with adopted capture criteria from Section 2.2, we show the initial osculating orbital semimajor axis a (abscissa)
and the eccentricity e (ordinate) of an orbit potentially evolving into the current Triton state. Numbers in the bottom right corner of each panel show the identifier of
the bin. The shaded zone shows for the reference pericenter value of the current Triton orbit ±0.001 AU; note that the current orbit of Triton has a 	 2.4 × 10−3 AU
and e 	 2 × 10−5.

(A color version of this figure is available in the online journal.)

Triton during the 100 Myr interval during the post-PC phase
is less than 2%. The highest values of Nsat are obtained for
q1 ∼ 4.1–4.3, while observations tend to prefer higher values
of this parameter (e.g., Gladman et al. 2001; Bernstein et al.
2003; Elliot et al. 2005; Petit et al. 2006). The right panel in
Figure 12 shows a correlation between Nsat and q1, which is
mainly due to the strong influence of q1 on the number of
planetesimals ΔN in the size bins used in our simulation. We
found that Nsat is significantly less dependent on D0, and nearly
independent of q2.

We have re-run our simulation with 25, instead of 10, size bins
and we obtained results that predict only 7% fewer satellites (see
Figure 11). This accuracy is enough for our conclusions and it
justifies our usage of coarser bins from Table 3 for further runs.

3.2. Run 2: MA Type

The orbits of the captured massless irregular satellites in run
2 indicate the same inconsistency with the observed population,

as shown in Figures 5–8 for run 1. In particular, orbits with
high eccentricities are preferentially populated leaving the space
of low-eccentricity orbits, where the observed satellites reside,
depleted or entirely void. As expected, the total number of
captured satellites is up to one order of magnitude larger than
in run 1. This is especially true for Uranus and Neptune,
because these two planets penetrate into a heavier residual
disk with less scattered orbits of planetesimals, such that the
efficiency factor of capture φ is a factor larger than in run 1 (see
Figure 4). Nevertheless, Nsat for all planets is still significantly
smaller than unity and several orders of magnitude smaller
than the observed population. The exception is Neptune, for
which we would predict about one captured irregular satellite,
obviously not enough to explain its debiased population of small
irregular satellites (e.g., Jewitt & Sheppard 2004). Moreover,
the predicted population of small irregular satellites at Saturn
is more than three orders of magnitude smaller than that at
Neptune, contradicting the observations (e.g., Jewitt & Sheppard
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2004). In the same way, although our expected likelihood of
capturing one Triton-like orbit increases by a factor of a few,
yet, at its maximum, it reaches only a few percent.

3.3. Comments on Other Jobs

The planet-crossing phase of the Nice model is violently
chaotic. The planetary configuration at its end, the degree of
the planetesimal disk depletion, and its dynamical excitation
at different heliocentric distances is unknown and strongly
dependent on the sequence of planet encounters. As a result,
the realistic uncertainty of the irregular satellite capture does
not derive only from parameter details of simulations described
above (such as the number of size bins, the number of trial
integrations, the size-distribution parameters D0, q1, or q2 etc),
but is likely dominated by variations in the possible planetary
evolution scenarios. To face this fact, we used the results of
Nesvorný et al. (2007), who determined 14 different possibilities
of the planet evolution after Jupiter and Saturn entered the 2/1
mean motion resonance. Here we selected seven of them and
applied our method to estimate the number of captured irregular
massless satellites and likelihood of capturing Triton during the
first 100 Myr of the post-PC phase.

Table 1 indicates that the mass of the residual trans-Neptunian
disk and the number of planetesimal encounters with planets
varied by nearly a factor of 2 in these different variants
of planetary evolution. Overall, the resulting population of
irregular satellites does not deviate from that in runs 1 and 2
(described above) by more than a factor of 2 (see Table 4). In
none of the cases did the number of captured satellites come
close to the observed population. In addition, the likelihood of
Triton’s capture remained between 0.1 and 3%. For the small
satellites, we also noted in all runs that the eccentricity of the
captured satellites is significantly smaller than observed.

4. DISCUSSION AND CONCLUSIONS

Based on the above results we conclude that capture from
disk binaries does not seem to be a promising mechanism for the
origin of either the overall population of the irregular satellites or
Triton during the control interval of time of the post-PC phase
within the Nice model (while we have always been working
within the frame of this model, we believe our conclusions
also apply to the case of the more traditional planet migration
model of Malhotra and colleagues; e.g., Malhotra 1995; Hahn
& Malhotra 1999). This mechanism lacks necessary efficiency
and results in the small irregular satellites captured in orbits
having distributions of orbital elements that are incompatible
with those of the observed population.

4.1. Inconsistency of the Orbital Distribution

We note this orbital inconsistency occurred in all our simula-
tions and presents, in our opinion, the strongest argument against
the capture mechanism. It might, in principle, only be removed
by assuming subsequent weak orbital evolution that could pull-
down orbital eccentricities while preserving the semimajor axis
after satellite capture (e.g., McGleam et al. 2006). However, in
our mind, no such universal process has been found as yet. In the
absence of gas drag at the late stage of planetary evolution de-
scribed in this paper, tidal evolution remains the most important
long-term effect. This is too weak and it would also primarily
drive the evolution along lines of constant pericenter distance
q. Another possibility is mutual collisions between the satel-
lites, which may be an interesting evolutionary process yet to be

Figure 11. Contribution ΔNsat of individual size bins to expected Nsat for Triton
in run 1. Three different choices of (D0, q1, q2) disk parameters are illustrated:
(i) (D0, q1, q2) = (25, 4.8, 2.8) curve 1 (D0 in kilometers), (ii) (D0, q1, q2) =
(50, 4.8, 2.8) curve 2 (D0 in kilometers), and (iii) (D0, q1, q2) = (25, 4.5, 2.8)
curve 3 (D0 in kilometers). The upper panel is for our nominal set of bins from
Table 3. The bottom panel is from a robustness test, where we used 25 bins
instead of 10. In both cases ΔNsat peaks between D ∼ 3000–4000 km, when the
binary components have the comparable mass of Triton. Note the ΔNsat values
for bins in the bottom panels are smaller because they are calibrated to fewer
disk particles ΔN (Equation [10]). The cumulative value

∑
ΔNsat of captured

satellites is, however, the same in both cases (only 7% less in the latter case).
The upper abscissa shows the ratio of the total mass of the binary to the mass
of Triton (one component).

studied in depth, but below we argue that the initially captured
population is not populous enough to explain the discrepancy
via this mechanism.

4.2. Too Few Satellites Captured

Note that we always assumed fbin = 1, which likely makes
our population of captured satellites an overestimate. We pur-
posely avoid closer analysis of how fbin(D) affects our results
because too little is known about this function. Current obser-
vations suggest a 22+10

−5 % abundance of binaries in the classical
Kuiper belt, with smaller fractions observed in the hot Kuiper
belt and the scattered disk (Noll et al. 2007). This fraction might
be, however, larger among the largest trans-Neptunian objects
(e.g., Brown et al. 2006), and if these objects possess more than
one satellite, one may effectively have also fbin � 1. This would
slightly enhance the role of the satellite capture from the popu-
lation of the largest planetesimals. Another process that might
slightly increase the role of satellite captures from these largest
planetesimals is that their orbits could be dynamically less ex-
cited than those of the smaller disk components, such that their
relative encounter velocity with planets might be systematically
smaller. We have seen, however, that the largest objects do not
contribute dominantly to the overall capture probability. We thus
do not expect that these omitted effects would significantly in-
crease the efficiency of irregular satellites production from the
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Figure 12. Left: distribution of the Nsat for Triton values in run 1; D0 ranges
randomly an interval of values (10, 50) km, q1 ranges randomly in an interval
of values (4.1, 4.9), and q2 ranges randomly in an interval of values (2.3, 3)
(105 trial cases performed). Right: Nsat vs. q1 exponent used in the trial cases,
showing their mutual correlation (Nsat is only weakly correlated with D0, and
nearly independent of q2). The variation of Nsat for a fixed q1 values is thus
basically given by different D0 values: smaller Nsat for a smaller D0 value.

exchange reactions that was several orders of magnitude low in
our simulations.

4.3. Extrapolation of Our Results

All the above-mentioned conclusions apply to the interval
of 100 Myr following the planet-crossing phase of the solar
system evolution according to the Nice model. We now argue
how they might be extrapolated further in time, but also to the
pre-PC phase of the Nice model. First, we comment on the
possible satellite population captured during the phase post-
dating the 100 Myr analyzed previously in Section 3. In spite
of the fact that this phase lasted another ∼3.7 Gyr, we see
from Figure 2 that the number of planetesimal encounters with
planets decreases very fast. It is not a straightforward exercise
to extrapolate this observed trend because a quasi-exponential
match of the 100 Myr integrated time interval would provide
an unrealistically low-mass trans-Neptunian population today.
Clearly, at some time during the late evolution the rapid decay
rate of the disk mass (e.g., Figure 2) and the number of planetary
encounters had to change into a slower evolution. However, we
argue that rather than extrapolating our previous results using
a ratio of timespan it makes more sense to use the ratio of
mass losses from the planetesimal disk. Indeed, if the number
of planetary encounters in Figure 2 decays proportionally to the
disk mass, their ratio is constant. So the accumulated number
of the planetary encounters during the past ∼3.7 Gyr might be,
in the first approximation, proportional to the remaining mass
loss from the disk. In run 1, for instance, the final disk mass of
∼4 Earth masses should be next decreased to today’s value by
another ∼4 Earth masses (note, for the sake of our argument,
we do not actually need to know the small residual mass of the
trans-Neptunian population today). This is a factor of ∼2 less
than what the planetesimal disk lost during the above analyzed
100 Myr interval. As a result, we would expect about half the
number of irregular satellites created in this late phase than
during the time interval investigated in Section 3. Overall, this
would mean a negligible population.

Next, we comment on the pre-PC phase of the Nice model. It
is important to note that this interval of time does not include as
yet the planetary formation phase during which the giant planets
formed within a comparably cold planetesimal disk and were

surrounded by a residual gas disk. What we have now in mind
is the phase covered by analysis of Gomes et al. (2005), no-
tably starting from a compact configuration of outer planets that
already have cleared most of their orbital space. An edge of a
∼35 Earth mass planetesimal disk is located about ∼1–1.5 AU
beyond the outer planet, which was found to provide a
∼600–800 Myr long quasi-stable period before LHB takes
place. Note, however, that our analysis remains valid even if the
PC phase of the Nice model occurred earlier in the evolution of
the solar system and was not related to the LHB. During the pre-
PC time interval outer planets experience only little migration
evolution, preserving their compact configuration until Jupiter
and Saturn reach their mutual 2/1 mean motion resonance. This
is reflected by the fact that disk particles only occasionally reach
the planet zone.

If we apply the disk mass-depletion scaling for the number
of planetary encounters, we may expect a comparable number
or fewer satellites created during the pre-PC phase than in the
100 Myr interval after planets stopped crossing their orbits (note
the initial disk mass had 30 Earth masses and it decreased to
about 24 Earth masses before the PC phase). This assumes
that the encounter parameters, such as distribution of V∞ or
q, are the same as described in Section 3. Indeed, we verified
this using two simulations. At first, we started again the initial
∼20 Myr of run 1 (Figure 1), during which the gas giants
did not yet reach their mutual 2/1 mean motion resonance.
During this time interval we recorded parameters of planetary
encounters and verified that distributions in Figure 3 still hold.
Moreover, the frequency of the encounters was about two orders
of magnitude less than during the post-PC phase, as we expected.
We also performed a series of test simulations putting the initial
planetary system described by Gomes et al. (2005) interior to
massive disks with various surface density profiles. We again
integrated the evolution for about 20 Myr and verified that even
in this initial phase of Gomes et al. evolution, V∞ and q, with
respect to planets, have approximately the same distribution as in
Figure 3.

However, we have to point out that a comparable, or even a
factor of few larger, captured population of irregular satellites
before the PC phase is not enough to explain their observed
population today. We recall the results of Nesvorný et al. (2007),
who determined that the planet-crossing phase should decimate
the pre-existing irregular population by a factor of ∼1000 or
more. As a result, the pre-PC captured satellites from binaries
should be even much less populous than those created later.
This argument does not apply to Triton’s capture, because once
evolved into its current orbit it would not likely be destabilized
during the planetary-encounter phase. Yet, the small factor of
increase does not bring the probability of capturing Triton in the
pre-PC phase of the Nice model any closer to unity.

We may thus conclude that since the giant planets completed
their formation, the surrounding planetesimal disk was cleared,
and gas was dissipated from the solar system (the initial moment
of the current version of the Nice model), irregular satellite
capture from disk binaries is not a viable mechanism to provide
the overall populations of irregulars or capture of Triton: the
captured orbits are inconsistent with the observed ones and
the efficiency is low. It is fair to recall that Jupiter may be
a special case, since this planet does not typically participate
in close planetary encounters within the current version of the
original Nice model (although see a novel route by Morbidelli
et al. 2007 that may possibly involve Jupiter’s participation in
planetary close-encounters and a discussion in Nesvorný et al.
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2007). It is possible that its population of irregular satellites was
created in part by dissociation of the primordial binary systems
in the planetesimal disk very early after (or simultaneously with)
Jupiter’s formation. A number of Jupiter’s irregulars in secular
resonances are considered to suggest their early formation in
the gaseous environment. Our work, however, suggests that the
capture from binaries is likely ineffective in later epochs because
of the poor match of orbital characteristics (Figure 5) and a small
number of captured satellites.

As far as Triton is concerned, our simulations above make
a capture possible onto orbits that could then evolve to the
precursor of its currently observed orbit. However, they also
indicate that it is unlikely to happen after the planet-crossing
phase within the Nice model. In fact we only see a possibility
of its capture from a binary system very early after planet
formation. In this early phase, orbits of both growing planets
and planetesimals in the disk were kept cold by the action
of surrounding gas. This means that the relative velocity at
the encounters between the planetesimals and the planets was
much lower than shown in Figure 3 for the later phase and
more consistent with assumptions in Agnor & Hamilton (2006).
Whatever formation process of disk-binaries dominated, it is
likely that it was operational during this early phase of planet’s
evolution (in fact, might have been at the peak of its efficiency,
e.g., Goldreich et al. 2002; Astakhov et al. 2005). Given the
time constraints for this phase, it would be interesting to study
constraints on disk parameters (such as its state of excitation,
its mass and planetesimal size distribution) to attain an order of
unity probability to capture Triton.
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