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Did the Hilda collisional family form during the late heavy bombardment?
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ABSTRACT
We model the long-term evolution of the Hilda collisional family located in the 3/2
mean-motion resonance with Jupiter. Its eccentricity distribution evolves mostly due to the
Yarkovsky/YORP effect and assuming that (i) impact disruption was isotropic and (ii) albedo
distribution of small asteroids is the same as for large ones, we can estimate the age of the
Hilda family to be 4+0

−1 Gyr. We also calculate collisional activity in the J3/2 region. Our re-
sults indicate that current collisional rates are very low for a 200-km parent body such that the
number of expected events over gigayears is much smaller than 1.

The large age and the low probability of the collisional disruption lead us to the conclusion
that the Hilda family might have been created during the late heavy bombardment (LHB)
when the collisions were much more frequent. The Hilda family may thus serve as a test of
orbital behaviour of planets during the LHB. We have tested the influence of the giant-planet
migration on the distribution of the family members. The scenarios that are consistent with the
observed Hilda family are those with fast migration time-scales �0.3–3 Myr, because longer
time-scales produce a family that is depleted and too much spread in eccentricity. Moreover,
there is an indication that Jupiter and Saturn were no longer in a compact configuration (with
period ratio PS/PJ > 2.09) at the time when the Hilda family was created.
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1 IN T RO D U C T I O N

There are many independent lines of evidence that the orbits of
planets of the Solar system were not the same all the time, but
that they have changed substantially over billions of years. The
major arguments are based on the observed orbital distribution of
Kuiper belt objects (Malhotra 1995; Levison et al. 2008) or small
but non-negligible eccentricities and inclinations of the giant plan-
ets (Tsiganis et al. 2005). Observations of Jupiter’s Trojans (Mor-
bidelli et al. 2005), main-belt asteroids (Minton & Malhotra 2009;
Morbidelli et al. 2010), the amplitudes of secular oscillations of
the planetary orbits (Brasser et al. 2009; Morbidelli et al. 2009),
or the existence of irregular moons (Nesvorný, Vokrouhlický &
Morbidelli 2007) provide important constraints for planetary mi-
gration scenarios.

Asteroids are a fundamental source of information about the
evolution of the planetary system. Some of the resonant groups, i.e.
those which are located in the major mean-motion resonances with
Jupiter, might also have been influenced by planetary migration,
because their current distribution does not match the map of the
currently stable regions. For instance, there are two stable islands
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denoted by A and B in the J2/1 resonance and only the B island is
populated (Nesvorný & Ferraz-Mello 1997).

In this work we focus on the Hilda asteroid family in the 3/2
resonance with Jupiter. We exploit our ability to model long-term
evolution of asteroid families, which is usually dominated by the
Yarkovsky effect on the orbital elements (Bottke et al. 2001), of-
ten coupled to the YORP effect on the spin rate and obliquity
(Vokrouhlický et al. 2006b). Chaotic diffusion in eccentricity and
sometimes interactions with weak mean-motion or secular reso-
nances (Vokrouhlický et al. 2006a) also play important roles. In
case of asteroids inside strong mean-motion resonances, one has
to account for the ‘resonant’ Yarkovsky effect, which causes a sys-
tematic drift in eccentricity (Brož & Vokrouhlický 2008). This is
different from usual non-resonant orbits where the Yarkovsky effect
causes a drift in semimajor axis.

The Hilda collisional family – a part of the so-called Hilda group
in the 3/2 mean motion resonance with Jupiter – was already briefly
discussed by Brož & Vokrouhlický (2008). However, the modelling
presented in that paper was not very successful, since the resulting
age of the family seemed to be too large (exceeding 4 Gyr). This
was an important motivation for our current work. We think that
we missed an important mechanism in our previous model, namely
perturbations arising from the migration of the giant planets and
also an appropriate treatment of the YORP effect. Indeed, the age
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�4 Gyr suggests that the planetary migration might have played a
direct role during the early evolution of the Hilda family. In this
paper we thoroughly test this hypothesis.

The paper is organized as follows. First we study the observed
properties of the J3/2 resonance population in Section 2. Our dynam-
ical model of the Hilda family (without migration first) is described
in Section 3. Then we estimate the collisional activity in the J3/2 re-
gion in Section 4. The results of our simulations of the giant-planet
migration are presented in Section 5. Finally, Section 6 is devoted
to conclusions.

2 C U R R E N T A S T E RO I D PO P U L AT I O N
I N T H E J 3 / 2 R E S O NA N C E

Asteroids located in the 3/2 mean motion resonance with Jupiter
have osculating semimajor axes around (3.96 ± 0.04) au, i.e. beyond
the main asteroid belt. Contrary to the Kirkwood gaps (associated
with J3/1, J7/3 or J2/1 resonances), this resonance is populated
by asteroids while its neighbourhood is almost empty. The Hilda
collisional family we are going to discuss in detail is a small part of
the whole J3/2 resonant population.

Our identification procedure of the J3/2 resonant population was
described in the previous paper, Brož & Vokrouhlický (2008). Using
the AstOrb catalogue of orbits (version JD = 245 5500.5, 2010
October 31) we identified 1787 numbered and multi-opposition
bodies with the librating critical argument

σ = p + q

q
λ′ − p

q
λ − � , (1)

where p = 2, q = 1, λ′ is the mean longitude of Jupiter, λ the mean
longitude of the asteroid and � the longitude of perihelion of the
asteroid.

In order to study the detailed distribution of the bodies librating
inside the resonance, we have to use pseudo-proper resonant ele-
ments defined as approximate surfaces of sections (Roig, Nesvorný
& Ferraz-Mello 2002), i.e. the intersection of the trajectory with a
plane defined by

|σ | < 5◦ ,
�σ

�t
> 0 , |� − � ′| < 5◦ . (2)

These conditions correspond to the maximum of the semimajor
axis a over several oscillations and the minimum of the eccentric-
ity e or the inclination I. We need to apply a digital filter to σ (t)
prior to using equation (2), namely filter A from Quinn, Tremaine
& Duncan (1991), by sampling 1 yr and with a decimation factor
of 10, to suppress fast �80 yr oscillations, which would otherwise
disturb slower �280 yr oscillations associated with resonant libra-
tions. Finally, we apply an averaging of the sections a, e, I over
1-Myr running window and these averages are the pseudo-proper
elements ap, ep, Ip. The accuracy of the pseudo-proper elements is
of the order of 10−4 au for ap and 10−4 for ep or sin Ip, which is
much smaller than those of the structures we are interested in.

The overall dynamical structure of the J3/2 resonance is deter-
mined by secular resonances ν5, ν6 at high eccentricities ep � 0.3
and secondary resonances at lower values of ep � 0.13 (according to
Morbidelli & Moons 1993; Nesvorný & Ferraz-Mello 1997; Ferraz-
Mello et al. 1998; Roig & Ferraz-Mello 1999). They destabilize the
orbits at the borders of a stable island. The orbits inside the island
exhibit very low chaotic diffusion rates, so bodies can remain there
for 4 Gyr (without non-gravitational perturbation).

Next we apply a hierarchical clustering method (Zappalà et al.
1994) to detect significant clusters. We use a standard metric in the

Figure 1. The number N of the Hilda family members versus the selected
cut-off velocity vcut-off .

pseudo-proper element space (ap, ep, sin Ip):

δv = na

√
5

4

(
δap

ap

)2

+ 2
(
δe2

p

) + 2(δ sin Ip)2 . (3)

In the following, we do not discuss the known Schubart family,
which was sufficiently analysed elsewhere (Brož & Vokrouhlický
2008), but we focus on the family associated with (153) Hilda.
A suitable cut-off velocity for the Hilda family seems to be
vcut-off = 140 m s−1, because the number of members does not
change substantially around this value (see Fig. 1). The number of
members at this cut-off is 400.

The resulting plots (ap, H), (ep, H) and (Ip, H) of the Hilda
family show very interesting features (see Fig. 2). The distribution
of semimajor axis and inclination seems rather uniform and almost
independent of absolute magnitude H, but the eccentricities of small
asteroids (i.e. with high H) are clearly concentrated at the outskirts
of the family and depleted in the centre.

In order to explain the distribution of asteroids in the (ep, H) plane
we have to recall that asteroids orbiting about the Sun are affected
by non-gravitational forces, mostly by the Yarkovsky/YORP effect,
i.e. the recoil force/torque due to anisotropic emission of thermal
radiation. We consider the concentrations in the (ep, H) plane to
be a strong indication of the ongoing Yarkovsky/YORP evolution,
because they are very similar to those observed among the several
main-belt families in the (ap, H) plane and successfully modelled by
Vokrouhlický et al. (2006b). The difference between these two cases
stems from the fact that the main-belt families are non-resonant
and the Yarkovsky/YORP effect thus increases or decreases the
semimajor axis (depending on the actual obliquity of the spin axis),
while in our resonant case, the same perturbation results instead in a
systematic increase or decrease of eccentricity. A detailed modelling
of the e-distribution is postponed to Section 3.5.

The central part of the (ep, H) distribution, from e = 0.17–
0.23, seems rather extended. The large asteroids (H < 12.5 mag)
are spread over this interval of eccentricities even though their
Yarkovsky drift rates must have been small. Only 2–4 of them are
likely to be interlopers, because there is a very small number of
background asteroids in the surroundings of the family (see Fig. 3).
We think this shape might actually be the result of the initial-size-
independent perturbation that the family distribution received by
the migration of the giant planets (which we discuss in Section 5.1).

Regarding the (ap, H) distribution, the largest asteroid (153) Hilda
is offset with respect to the centre, but this is a natural outcome of
the definition of the pseudo-proper elements – fragments that fall
to the left of the libration centre are mapped to the right, which
creates the offset.

The geometric albedos for Hilda family objects are poorly known.
There are only six measured values for the family members: 0.064,
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Figure 2. The Hilda family displayed in resonant semimajor axis ap (left), eccentricity ep (middle) and inclination sin Ip (right) versus absolute magnitude
H. The libration centre is located at a � 3.96 au and all the bodies are displayed to the right of it. The ‘ears’ in (ep, H), i.e. both the concentration of small
asteroids on the outskirts of the family and their depletion at the centre are very prominent here. The thin vertical lines denote the central part of the (ep, H)
distribution discussed in the text. The family has 400 members at vcut-off = 140 m s−1.

Figure 3. The J3/2 region displayed in (ap, Ip) plot. A very prominent
Schubart cluster (studied by Brož & Vokrouhlický 2008) is visible around
sin Ip

.=0.05. The close surroundings of the Hilda family, where only a low
number of bodies is present, are highlighted by grey rectangles.

0.046, 0.038, 0.089, 0.044, 0.051 (Davis & Neese 2002). Given the
small number of values and the possibility of selection effects, we
prefer to assume that the family members have a mean value pV =
0.044, which corresponds to the whole J3/2 population. The size of
the parent body can be then estimated to be DPB = (200 ± 20) km.
We employ two independent methods to determine the diameter
DPB: (i) we sum the volumes of the observed bodies larger than an
assumed completeness limit Dcomplete = 10 km and then we prolong
the slope of the size–frequency distribution down to D = 0 to
account for unobservable bodies (see Brož & Vokrouhlický 2008),
which results in DPB � 185 km; (ii) we also use a geometric method
developed by Tanga et al. (1998) which gives DPB � 210 km. A test
with different albedo values will be described in Section 3.6.

The size–frequency distribution N(>D) versus D of the Hilda
family is steeper than that of background J3/2 population, but shal-
lower than for usual main-belt families (Fig. 4). Interestingly, the
slope γ = −2.4 ± 0.1 of the distribution N(>D) = CDγ is close to
a collisional equilibrium calculated by Dohnanyi (1969).

Colour data extracted from the Sloan Digital Sky Survey Moving
Object Catalogue version 4 (Parker et al. 2008) confirm that the
Hilda family belongs to the taxonomic type C, because most of
the spectral slopes are small. Recall that the whole J3/2 population
exhibits a bimodal distribution of slopes, i.e. it contains a mixture
of C- and D-type asteroids.

Figure 4. Cumulative size distributions of the J3/2 population and the Hilda
family. The polynomial fits of the form N(>D) = CDγ are plotted as thin
lines, together with the respective values of the γ exponent. Several main-
belt families are plotted for comparison: Eos (with slope γ = −2.8), Euno-
mia (−5.0), Hygiea (−3.8), Koronis (−2.8), Themis (−2.9), Tirela (−3.3),
Veritas (−3.4) and Vesta (−5.4).

3 TH E H I L DA FA M I LY MO D E L W I T H
R A D I AT I O N FO R C E S

To understand the long-term evolution of the Hilda family, we
construct a detailed numerical model, extending efforts in Brož
& Vokrouhlický (2008), which includes the following processes:
(i) impact disruption, (ii) the Yarkovsky effect, (iii) the YORP ef-
fect, (iv) collisions and spin-axis reorientations. We describe the
individual parts of the model in the following subsections.

3.1 Impact disruption

To obtain initial conditions for the family just after the breakup
event, we need a model for the ejection velocities of the fragments.
We use a very simple model of an isotropic ejection from the work of
Farinella, Froeschlé & Gonczi (1994). The distribution of velocities
‘at infinity’ follows the function

dN (v)dv = Cv(v2 + v2
esc)

−(α+1)/2dv , (4)

with the exponent α being a free parameter, C a normalization
constant and vesc the escape velocity from the parent body, which
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is determined by its size DPB and mean density ρPB as vesc =√
(2/3)πGρPB DPB . The distribution is usually cut at a selected

maximum allowed velocity vmax to prevent outliers. The actual
values of all these parameters are given in Section 3.5. Typically,
the overall distribution of velocities has a peak close to the escape
velocity, which is approximately 100 m s−1 for a 200-km parent
body. The initial velocities |v| of individual bodies are generated
by a straightforward Monte Carlo code and the orientations of the
velocity vectors v in space are assigned randomly.

Here, we assume the velocity of fragments is independent of their
size, which seems reasonable with respect to the observed uniform
distribution of the Hilda family in the (ap, H) and (Ip, H) planes
(Fig. 2). We also perform tests with non-isotropic distributions in
Section 3.7.

We must also select initial osculating eccentricity ei of the parent
body, initial inclination ii, as well as true anomaly f imp and argument
of perihelion ωimp at the time of impact disruption. All of these pa-
rameters determine the initial shape of the synthetic ‘Hilda’ family
just after the disruption of the parent body. Initial semimajor axis ai

is not totally free, instead it is calculated from the initial semimajor
axis of Jupiter aJi and the Kepler’s law, since the parent body has to
be confined to the J3/2 resonance.

3.2 Yarkovsky effect in a resonance

The long-term evolution of asteroid orbits is mainly driven by the
Yarkovsky thermal effect. The implementation of the Yarkovsky ef-
fect in the SWIFT integrator was described in detail in Brož (2006).
Only minor modifications of the code were necessary to incorpo-
rate spin rate evolution, which is driven by the YORP effect (see
Section 3.3).

The thermal parameter we use are reasonable estimates for C/X-
type bodies: ρsurf = ρbulk = 1300 kg m−3 for the surface and bulk
densities, K = 0.01 W m−1 K−1 for the surface thermal conductivity,
C = 680 J kg−1 for the heat capacity, A = 0.02 for the Bond albedo
and εIR = 0.95 for the thermal emissivity parameter.

We can use a standard algorithm for the calculation of the
Yarkovsky acceleration which results in a semimajor-axis drift in
case of non-resonant bodies. The drift in eccentricity in case of
resonant bodies arises ‘automatically’ due to the gravitational part
of the integrator. In Fig. 5 we can see a comparison between the
expected drift �a in semimajor axis and the resulting drift �e in
eccentricity, computed for the Hilda family (see the explanation in
appendix A of Brož & Vokrouhlický 2008). The data can be approx-

Figure 5. An almost linear relation between the expected drift �a in semi-
major axis and the simulated drift �e in eccentricity, computed for 360
members of the Hilda family located inside the J3/2 resonance.

imated by a linear relationship, where the departures from linearity
are caused mainly by interactions of drifting orbits with embedded
weak secular or secondary resonances.

Note that according to a standard solar model the young Sun was
faint (Güdel 2007), i.e. its luminosity 4 Gyr ago was 75 per cent
of the current L�. We can then expect a lower insolation and conse-
quently weaker thermal effects acting on asteroids. Since we assume
a constant value of L� in our code, the age estimated for the Hilda
family (in Section 3.5) can be 12.5 per cent larger.

3.3 YORP effect

The magnitude of the Yarkovsky drift sensitively depends on the
orientation of the spin axis with respect to the orbital plane and,
to a lesser extent, on the angular velocity too. We thus have to
account for the long-term evolution of spins of asteroids which is
controlled by torques arising from the emission of thermal radia-
tion, i.e. the YORP effect. The implementation of the YORP effect
follows Vokrouhlický et al. (2006b). We assume the following re-
lations for the rate of angular velocity and obliquity:

dω

dt
= fi(ε) , i = 1, . . . , 200 , (5)

dε

dt
= gi(ε)

ω
, (6)

where f - and g-functions are given by Čapek & Vokrouhlický (2004)
for a set of 200 shapes with mean radius R0 = 1 km, bulk density
ρ0 = 2500 kg m−3, located on a circular orbit with semimajor axis
a0 = 2.5 au. The shapes of the Hilda family members are not known,
so we assign one of the artificial shapes (denoted by the index i)
randomly to each individual asteroid. We only have to scale the f -
and g-functions by the factor

c = cYORP

(
a

a0

)−2 (
R

R0

)−2 (
ρbulk

ρ0

)−1

, (7)

where a, R, ρbulk are semimajor axis, radius and density of the
simulated body, and cYORP is a free scaling parameter, which can
account for an additional uncertainty of the YORP model. Because
the values of f and g were computed for only a limited set of
obliquities (with a step �ε = 30◦) we use interpolation by Hermite
polynomials (Hill 1982) of the data in Čapek & Vokrouhlický (2004)
to obtain a smooth analytical function each for fi(ε) and gi(ε).

If the angular velocity approaches a critical value,

ωcrit =
√

8

3
πGρbulk , (8)

we assume a mass-shedding event, so we keep the orientation of the
spin axis and the sense of rotation, but we reset the orbital period
P = 2π/ω to a random value from the interval (2.5, 9) h. We also
change the assigned shape to a different one, since any change of
shape may result in a different YORP effect.

The differential equations (5) and (6) are integrated numerically
by a simple Euler integrator. The usual time-step is �t = 1000 yr.
An example of the results computed by the spin integrator for the
Hilda family is displayed in Fig. 6. The typical time-scale of the
spin-axis evolution is τYORP � 500 Myr. After � 3 times τYORP most
bodies have spin axes perpendicular to their orbits, what maximizes
the Yarkovsky drift rate of eccentricity.
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Figure 6. An example of the YORP-driven evolution of obliquities (namely
a z-component of the spin-axis unit vector, top panel) and angular velocities
ω (bottom panel) for the members of the synthetic ‘Hilda’ family. At the
beginning, all values of ω were selected positive and spin axes were dis-
tributed isotropically. The evolution may force ω to become negative, which
simply corresponds to an opposite orientation of the spin axis. The scaling
parameter selected for this run was cYORP = 0.33.

3.4 Collisions and spin-axis reorientations

In principle, collisions may directly affect the size distribution of
the synthetic Hilda family, but we neglect this effect because most
of the asteroids are large enough to remain intact.

However, we include spin-axis reorientations caused by col-
lisions. We use an estimate of the time-scale by Farinella,
Vokrouhlický & Hartmann (1998):

τreor = B

(
ω

ω0

)β1
(

D

D0

)β2

, (9)

where B = 84.5 kyr, β1 = 5/6, β2 = 4/3, D0 = 2 m and ω0 cor-
responds to period P = 5 h. These values are characteristic of the
main belt and we use them as an upper limit of τ reor for the J3/2
region. Even so, the time-scale is τ reor � 3 Gyr for the smallest
observable (D � 5 km) bodies, and reorientations are thus only of
minor importance. Note that the probability of the reorientation is
enhanced when the YORP effect drives the angular velocity ω close
to zero.

3.5 Results for the Yarkovsky/YORP evolution

We start a simulation with an impact disruption of the parent body
and create 360 fragments. Subsequent evolution of the synthetic
Hilda family due to the Yarkovsky/YORP effect is computed up to
6 Gyr in order to estimate the time-span needed to match the ob-
served family even though the family cannot be older than �4 Gyr,
of course. Planets are started on their current orbits. A typical out-
come of the simulation is displayed in Fig. 7.

Figure 7. Eccentricity versus absolute magnitude plot for the synthetic
‘Hilda’ family just after the impact disruption (time t = 0, top panel) and
after 4 Gyr of evolution due to the Yarkovsky/YORP effect (bottom panel).
There is a comparison with the observed Hilda family (grey dots).

Due to the long integration time-span and large number of bodies,
we were able to compute only four simulations with the following
values of true anomaly and YORP efficiency:

(i) f imp = 0◦, cYORP = 0;
(ii) f imp = 180◦, cYORP = 0;
(iii) f imp = 0◦, cYORP = 1;
(iv) f imp = 0◦, cYORP = 0.33.

The remaining parameters were fixed: ei = 0.14, ii = 7.◦8,
ωimp = 30◦, α = 3.25, vmax = 300 m s−1, RPB = 93.5 km, ρPB =
1300 kg m−3, pV = 0.044.

We are mainly concerned with the distribution of eccentricities
ep, because the observed family has a large spread of ep values,
while the initial synthetic family is very compact. For this purpose
we constructed a Kolmogorov–Smirnov test (Press et al. 1999) of
the normalized cumulative distributions N(<e):

DKS = max
0<e<1

|N (<e)syn − N (<e)obs| , (10)

which provides a measure of the difference between the synthetic
Hilda family, at a given time, and the observed Hilda family (see
Fig. 8 for an example). The results of the KS tests are summarized
in Fig. 9 (the first four panels).

There is an easy possibility to asses the sensitivity of results with
respect to the vmax parameter too, without the need to compute the
simulation again. We simply select bodies fulfilling the condition
v < v′

max, with v′
max = 200, 100 or 50 m s−1, and recompute only

the KS statistics for this subset. The results are plotted in Fig. 9 as
thin lines. We can state that values lower than vmax � 100 m s−1 are
surely excluded.

As a preliminary conclusion we may say that all simulations
point to a large age of the Hilda family. The ep-distributions are
most compatible with the observed family for ages t = (4.0 ±
1.0) Gyr. This suggests that the Hilda family might have experienced
the giant-planet migration period which is dated by the late heavy
bombardment to tLHB � 3.85 Gyr (Gomes et al. 2005). The large
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Figure 8. Normalized cumulative distributions N(<e) of eccentricities for
(i) the observed Hilda family, (ii) the synthetic ‘Hilda’ family at time t = 0
(just after the impact disruption), (iii) evolved due to the Yarkovsky/YORP
effect (at time t = 3845 Myr). In this figure we show the best fit for the
simulation with parameters f imp = 0◦, cYORP = 0.33. Note that the ‘bent’
shape of the observed distribution corresponds to the ‘ears’ on the (ep,
H) plot (Fig. 2). There is no perturbation by planetary migration in this
particular case.

uncertainty of the age stems from the fact that the runs including the
YORP effect (cYORP ≥ 0.33) tend to produce ages at a lower limit
of the interval while the YORP-less runs (with cYORP = 0) tend to
the upper limit.

3.6 Alternative hypothesis: high albedos of small asteroids

We now discuss two scenarios that further reduce the minimal
age of the family: (i) high albedos of small asteroids (i.e. larger
Yarkovsky/YORP drift); (ii) strongly asymmetric velocity field af-
ter impact (like that of the Veritas family).

Albedo is the most important unknown parameter, which can
affect results on the Yarkovsky/YORP evolution. Fernández, Jewitt
& Ziffer (2009) measured albedos of small Trojan asteroids and
found systematically larger values than those for large Trojans. If
we assume that the J3/2 asteroids behave similarly to Trojans, we
may try a simulation with a rather high value of geometric albedo
pV = 0.089 (compared to previous pV = 0.044). Moreover, we
decrease density ρbulk = 1200 kg m−3, increase maximum velocity
of fragments vmax = 500 m s−1 (though the velocity distribution is
still determined by equation 4) and select true anomaly f imp = 90◦

to maximize the spread of ep values.
The KS test is included in Fig. 9, panel (e). The most probable

age is (2.3 ± 0.5) Gyr in this case. However, we do not think that the
size-dependent albedo is very plausible because both large and small
family members should originate from the same parent body and
their albedos, at least just after the disruption, should be similar.
Nevertheless, the albedos may change to a certain degree due to
space weathering processes (Nesvorný et al. 2005). Unfortunately,
we do not have enough data for small asteroids to assess a possible
albedo difference between large and small family members.

3.7 Alternative hypothesis: strongly asymmetric velocity field

Another possibility to reduce the estimate of the family age is that
the original velocity was highly anisotropic. A well-known example
from the main belt is the Veritas family. Let us assume that the

anisotropy is of the order of Veritas, i.e. approximately four times
larger in one direction. Note that Veritas is a young family and can
be modelled precisely enough to compensate for chaotic diffusion in
resonances (Nesvorný et al. 2003; Tsiganis, Knežević & Varvoglis
2007). This family is characterized by a large spread of inclinations,
which corresponds to large out-of-plane components of velocities.
In case of the Hilda family we multiply by 4 the radial components
of initial velocities to maximize the dispersion of eccentricities,
assuming the most favourable geometry of disruption (f imp

.= 90◦).
The fit in Fig. 9, panel (f), is seemingly better at the beginning of

the simulation, but bodies on unstable orbits are quickly eliminated
and the fit gets much worse at t � 500 Myr. We can see that the
synthetic Hilda family is similar to the observed Hilda family quite
early (at t � 2.5 Gyr); however, the best fit is at later times (t �
3.5 Gyr), so there is no significant benefit compared to isotropic
velocity-distribution cases.

4 D I SRU PTI ON R ATES I N THE J 3 / 2
POPULATI ON

4.1 Present collisional activity

The results presented above show that the Hilda family is old.
However, the uncertainty of the age is too large to conclude whether
or not the family formed during the late heavy bombardment (LHB)
period. An alternative constraint is the collisional lifetime of the
parent body. If the probability that the parent body broke in the last
4 Gyr in the current collisional environment is negligible, it would
argue that the family broke during the LHB when the collisional
bombardment was much more severe. Thus, here we estimate the
collisional lifetime of the parent body.

In our case, the target (parent body) has a diameter Dtarget =
200 km, a mean impact velocity V i = 4.8 km s−1 (Dahlgren 1998),
and a probable strength Q�

D = 4 × 105 J kg−1 (Benz & Asphaug
1999), and thus the necessary impactor size (Bottke et al. 2005) is

ddisrupt = (
2Q�

D/V 2
i

)1/3
Dtarget � 65 km . (11)

The population of ≥65 km projectiles is dominated by main-belt
bodies: nproject � 160, according to Bottke et al. (2006), and we
have only one 200-km target in the J3/2 region, so ntarget = 1. The
intrinsic collisional probability for Hilda versus main belt collisions
is Pi = 6.2 × 10−19 km−2 yr−1 (Dahlgren 1998) and the correspond-
ing frequency of disruptions is

fdisrupt = Pi

D2
target

4
nprojectntarget � 10−12 yr−1 . (12)

Thus, over the age of the Solar system TSS � 4 Gyr (after LHB),
we expect a very small number of such events nevents = TSSf disrupt �
0.004.

The value of strength Q�
D used above corresponds to strong tar-

gets. Though there is a theoretical possibility that the Hilda parent
body was weaker, it does not seem to us likely, because the Hilda
family is of the C taxonomic type. Thus, it is rather similar to
(presumably stronger) main belt asteroids, than to (likely weaker)
D-type objects. Anyway, even if we use an order of magnitude lower
strength inferred for weak ice, Q�

D � 4 × 104 J kg−1 (see Leinhardt
& Stewart 2009; Bottke et al. 2010), we obtain ddisrupt � 30 km,
nproject � 360 and nevents � 0.009, so the conclusion about the low
number of expected families remains essentially the same.
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Figure 9. Kolmogorov–Smirnov tests of the synthetic ‘Hilda’ family: (a) no migration, only initial disruption (at anomaly f imp = 0◦, � i = 30◦) and subsequent
Yarkovsky evolution; (b) the case with f imp = 180◦; (c) including the YORP effect; (d) YORP with efficiency factor cYORP = 0.33; (e) high albedo values (i.e.
small bodies); (f) strongly asymmetric velocity field. The horizontal line denotes the distance DKS = 0.165 for which the probability p(>DKS) that the two
eccentricity distributions differ by this amount equals 0.01.

4.2 The late heavy bombardment

We now compute the probability that the parent body broke during
the LHB. We can think of two projectile populations: (i) transient
decaying cometary disc; (ii) D-type asteroids captured in the J3/2.
Models like that of Levison et al. (2009) suggest that the decay
time-scale of the cometary bombardment is of the order of 10–
100 Myr and the flux of impactors integrated over this time-span
might have been 100 times larger than it is today. Higher mean
collisional velocities, due to projectiles on high-e and high-i orbits,
are also favourable.

In order to estimate collisional activity we use a self-consistent
model of the cometary disc from Vokrouhlický, Nesvorný &
Levison (2008). Their N-body simulations included four giant plan-
ets and 27 000 massive particles with a total mass of Mdisc = 35 M⊕.

The orbital evolution was propagated by the SyMBA integrator for
100 Myr. Using the output of these simulations, we calculate the
mean intrinsic collisional probabilities Pi(t) between the cometary-
disc population (at given time t) and the current J3/2 population.
We use an algorithm described in Bottke et al. (1994) for this pur-
pose. Typically, the Pi reaches 2to3 × 10−21 km−2 yr−1 and the
corresponding mean impact velocities are V imp = 7–10 km s−1 (see
Fig. 10).

The necessary impactor size is slightly smaller than before,
ddisrupt = 40–50 km due to larger V imp. To estimate the number
of such projectiles we assume that the cometary disc had a size dis-
tribution described by a broken power law with differential slopes
q1 = 5.0 for D > D0, q2 = 2.5 ± 0.5 for D < D0, where the diameter
corresponding to the change of slopes is D0 = 50–70 km. We then
use the following expressions to calculate the number of bodies
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Figure 10. Mean intrinsic collisional probability Pi and mean impact ve-
locity V imp versus time for one of the disc simulations from Vokrouhlický
et al. (2008).

larger than the given threshold (Vokrouhlický et al. 2008):

D1 = D0

[
(q1 − 4)(4 − q2)

(q1 − 1)(q1 − q2)

Mdisc

M0

] 1
q1−1

, (13)

N (>D) = q1 − 1

q2 − 1

(
D1

D0

)q1−1(
D0

D

)q2−1

− q1 − q2

q2 − 1

(
D1

D0

)q1−1

, (14)

where M0 = π
6 ρD3

0 and ρ = 1300 kg m−3. The result of this cal-
culation is N(>ddisrupt)

.= 0.3 to 1.7 × 109. The actual number of
bodies in the simulation (27 000) changes in course of time and
it was scaled such that initially it was equal to N(>ddisrupt). The
resulting number of events is

nevents = D2
target

4
ntarget

∫
Pi(t) nproject(t) dt

� 0.05 to 0.2 , (15)

which is 10–50 times larger than the number found in Section 4.1.
Regarding the captured D-type asteroids, they were probably not

so numerous and their impact velocities were lower but their colli-
sional probabilities were larger and the population might have had a
substantially longer time-scale of decay (Levison et al. 2009). Using
the reasonable values V i = 4.0 km s−1, ddisrupt = 70 km, nproject =
5000, Pi = 2.3 × 10−18 km−2 yr−1, TLHB � 1 Gyr, we obtain the
number of events �0.1 which is again 25 times larger than the
number presented in Section 4.1.

We conclude that the Hilda family was likely created during
the LHB when the collisions were much more frequent than in
the current collisional environment. We must now test whether the
structure of the family is consistent with the giant-planet migration,
since it is connected with the LHB.

5 PL A N E TA RY M I G R AT I O N

At the LHB-time the planetary migration was most probably caused
by the presence of a massive cometary disc. Instead of a full N-
body model we use a simpler analytic migration, with an artificial
dissipation applied to the planets. This is the only realistic possibility
in our case, because we need to test not only a large number of
various migration scenarios but also various initial configurations
of the synthetic Hilda family.

For this purpose we use a modified version of the symplectic
SWIFT–RMVS3 integrator (Levison & Duncan 1994). We account
for four giant planets and include the following dissipation term

Table 1. Free parameters of our Hilda family model.

No. Parameter Description

1 aJi Initial semimajor axis of Jupiter
2 aSi Saturn
3 eJi Initial eccentricity of Jupiter
4 eSi Saturn
5 τmig Migration time-scale
6 edampJ Eccentricity damping for Jupiter
7 edampS Saturn
8 ei Initial eccentricity of the parent body
9 ii Initial inclination

10 f imp True anomaly at the impact disruption
11 ωimp Argument of perihelion
12 α Slope of the velocity distribution
13 vmax Maximum velocity of fragments
14 RPB Radius of parent body
15 ρPB Bulk density
16 pV Geometric albedo of fragments
17 cYORP Efficiency of the YORP effect

Table 2. Fixed (assumed) parameters of the Hilda family model. There are
also a number of less important parameters, such as the thermal ones (ρsurf ,
K, C, A, εIR) or the collisional ones (B, β1, β2).

No. Parameter Description

18 aJf Final semimajor axis of Jupiter
19 aSf Saturn
20 N(<H) (observed) absolute magnitude distribution

applied to the planets in every time-step:

v = v

[
1 + �v

v

�t

τmig
exp

(
− t − t0

τmig

)]
, (16)

where v denotes a velocity vector of a given planet, v is the absolute
value of velocity, �t is the time-step, τmig is the selected migration
time-scale, �v = √

GM/ai − √
GM/af the required total change

of velocity (i.e. the difference of mean velocities between the initial
and the final orbit), t is the time and t0 is some reference time. If
there are no perturbations other than (16), the semimajor axis of the
planet changes smoothly (exponentially) from the initial value ai to
the final af . We use time-step �t = 36.525 d and the total time-span
of the integration is usually equal to 3τmig when planetary orbits
practically stop to migrate.

We would like to resemble evolution of planetary orbits similar to
the Nice model so it is necessary to use an eccentricity-damping for-
mula, which simulates the effects of dynamical friction (Morbidelli
et al. 2010). This enables us to model a decrease of eccentricities
of the giant planets to relatively low final values. The amount of
eccentricity damping is characterized by a parameter edamp.

Because inclinations of the planets are not very important for
what concerns the perturbation of minor bodies (the structure of
resonances is mainly determined by planetary eccentricities), we
usually start with the current values of inclination of the planets.

We admit that the analytic migration is only a crude approxima-
tion of the real evolution, but we can use it as a first check to see
which kinds of migration scenarios are allowed and which are not
with respect to the existence and structure of the Hilda family.

As a summary we present a list of free and fixed (assumed)
parameters of our model in Tables 1 and 2. According to our nu-
merical tests the initial configuration of Uranus and Neptune is not
very important, as these planets do not produce significant direct
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perturbations on asteroids located in the J3/2 resonance. We thus
do not list the initial semimajor axes and eccentricities of Uranus
and Neptune among our free parameters though we include these
planets in our simulations.

The problem is that we cannot tune all the 17 parameters together,
since the 17-dimensional space is enormous. We thus first select a
reasonable set of impact parameters for the family (No. 8–17 in
Table 1), keep them fixed, and experiment with various values of
migration parameters (No. 1–7). We test roughly 103 migration
scenarios. Then, in the second step, we vary impact parameters for
a single (successful) migration scenario and check the sensitivity of
results.

5.1 Results for planetary migration

In the first test we compute an evolution of the synthetic Hilda
family during planetary migration phase for the following parameter
space (these are not intervals but lists of values): aJi = (5.2806 and
5.2027) au, aSi = (8.6250, 8.8250, 9.3000) au, eJi = (0.065, 0.045),
eSi = (0.08, 0.05), τmig = (0.3, 3, 30, 300) Myr, edampJ = 10−11,
edampS = 10−11.1 The values of aJi and aSi correspond to period
ratios PS/PJ from 2.09 to 2.39 (the current value is 2.49), i.e. the
giant planets are placed already beyond the 2:1 resonance, since
the 2:1 resonance crossing would destroy the Hilda family (Brož
& Vokrouhlický 2008). Impact parameters were fixed except f imp:
ei = 0.14, ii = 7.◦8, f imp = (0◦, 180◦), ωimp = 30◦, α = 3.25, vmax =
300 m s−1, RPB = 93.5 km, ρPB = 1300 kg m−3.

The synthetic Hilda family has 360 bodies in case of short simu-
lations (τmig = 0.3or3 Myr). In case of longer simulations we create
60 bodies only. Their absolute magnitudes (sizes) were thus selected
randomly from 360 observed values. This is a minimum number of
bodies necessary to compare the distributions of eccentricities. We
performed tests with larger numbers of bodies and the differences
do not seem significant.

A comparison of the final orbits of the planets with the current
planetary orbits shows we have to exclude some migration simula-
tions (mostly those with Uranus and Neptune on compact orbits).
One of the reasons for the unsuccessful scenarios is that a com-
pact configuration of planets is inherently unstable. If the migration
time-scale is too large or the eccentricity damping too low, it may
result in a violent instability, close encounters between planets and
eventually an unrealistic final configuration.

The change in the structure of the synthetic Hilda family due to
migration can be seen in Fig. 11. The family is shifted in semimajor
axis, because it moves together with the resonance with migrating
Jupiter. Moreover, the eccentricities are dispersed while the incli-
nations are barely affected.

We have found that the eccentricity distribution is modified when
secondary resonances occur between the libration frequency f J3/2

of an asteroid in the J3/2 resonance and the frequency f 1J−2S of the
critical argument of Jupiter–Saturn 1:2 resonance (see Kortenkamp,
Malhotra & Michtchenko 2004; Morbidelli et al. 2005 for the case
of Trojans):

nfJ3/2 = f1J−2S , (17)

1 In order to increase the statistics we ran simulations multiple times
with different initial conditions for Uranus and Neptune: aUi = (18.4479,
12.3170) au, aNi = (28.0691, 17.9882) au, eUi = (0.06, 0.04), eNi = (0.02,
0.01).

Figure 11. A usual evolution of the synthetic ‘Hilda’ family in the pseudo-
proper semimajor axis versus eccentricity plot. The initial (t = 0 Myr) and
final stages (t = 100 Myr) are plotted. The migration time-scale was τmig =
30 Myr in this particular example. We selected this longer time-scale because
secular frequencies can then be computed more precisely (see Fig. 12). The
arrow indicates a total change of the position of the J3/2 resonance due to
migration of Jupiter.

where n is a small integer number, n = 2, 3 or 4 in our case.2 We can
see the evolution of resonant semimajor axes and the correspond-
ing dominant frequencies, computed by means of periodogram, in
Fig. 12.

Because the resonances are localized – they act only at particular
values of semimajor axes of planets – it is not necessary to have a
dense grid in aJi, aSi parameters to study the dependence of the syn-
thetic Hilda family shape on aJi, aSi. Essentially, there are only three
situations when the Hilda family is strongly perturbed, otherwise
the spread in e does not change much in course of time.

A very simple test, which allows us to quickly select allowed
migration scenarios, is the number of remaining Hilda family mem-
bers. We may assume that the depletion by dynamical effects was
probably low (say 50 per cent at most), otherwise we would obtain a
much larger parent body than D � 200 km, which has a much lower
probability of collisional disruption. The fractions of the remaining
bodies N left/N initial versus initial conditions for planets are displayed
in Fig. 13.

The small number of remaining bodies N left indicates that per-
turbations acting on the synthetic family were too strong. It means
either the family had to be formed later (when fewer and weaker
secondary resonances are encountered) to match the observed fam-
ily or this migration scenario is not allowed. The same applies to the
dispersion of e-distribution (see below): if it is too large compared
to the observed Hilda family, the synthetic Hilda had to be formed
later or the scenario is not allowed. Our results indicate that

(i) a faster migration time-scale τmig � 0.3–30 Myr is preferred
over slower time-scales;

(ii) Jupiter and Saturn were not in the most compact configuration
(aJi = 5.2806 au, aSi = 8.6250 au) at the time when the Hilda family
was created.

5.2 A sensitivity to the impact-related parameters

Another important test was devoted to the impact parameters, which
were varied in relatively larger steps: ei = (0.12, 0.15), ii = (6.◦8,
8.◦8), f imp = (45◦, 90◦, 135◦), ωimp = (60◦, 90◦), α = (2.25, 4.25),
vmax = (200, 400) m s−1, RPB = (83.5, 103.5) km, ρPB = (1000,
2000) kg m−3. Note that the selected impact parameters are rather
extreme, reason that we do not expect them to ever be out of these

2 We also looked for secondary resonances connected with the 4:9, 3:7 and
2:5 Jupiter–Saturn resonances, but we found no significant effects.
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Figure 12. Top panel: the frequency f 1J−2S of the Jupiter–Saturn 1:2 mean
motion critical argument (thick grey curve) versus time t. The frequency
changes due to the migration of planets with the time-scale τmig = 30 Myr.
We also computed dominant frequencies f J3/2 of librations in the J3/2 res-
onance for three selected members of the synthetic Hilda family (black
curves). We do not plot the frequency itself but a selected multiple of it
nf J3/2. Captures in the secondary resonances of type nf J3/2 = f 1J−2S are
then clearly visible when the frequencies are equal. For the test particle
number 1 it occurs between 4 and 10 Myr, particle 2 was captured from 21
to 32 Myr and particle 3 from 54 Myr till the end of the simulation. Bottom
panel: the corresponding changes of the pseudo-proper semimajor axes ap

versus time t due to the secondary resonances. The three test particles from
the top panel are shown (black curves) together with the remaining members
of synthetic ‘Hilda’ family (grey curves). Note that some particles may be
pushed to the border of the stable libration zone and then escape from the
J3/2 resonance.

bounds. The total number of simulations is 384. The migration
parameters were fixed (they correspond to one successful migration
scenario): aJi = 5.2806 au, aSi = 8.8250 au, eJi = 0.065, eSi = 0.08,
τmig = 3 Myr, edampJ = 10−11, edampS = 10−11.

This time, we decided to use a simple quantity to discuss the
results, namely the eccentricity dispersion σe of the synthetic family
at the end of the giant-planet migration. The most frequent values of
the dispersion are σe = 0.015–0.04 (see the histograms in Fig. 14).
Further evolution by the Yarkovsky/YORP effect would increase the
dispersions up to σe = 0.045–0.06, while the observed dispersion
of the Hilda family is σe = 0.046.

It is notable that the histograms look similar for all the impact pa-
rameters, there is even no apparent correlation between them. The
explanation for this ‘lack of dependence’ is that the eccentricity
distribution is mainly determined by the perturbations of the giant
planets. A given planetary evolution therefore gives a characteristic
value of σe whatever the impact parameters are. The dispersion in
σe values is due to the fact that the planetary evolutions that we have
computed change widely from one simulation to another. Though
planet migration was prescribed analytically, there are mutual in-
teractions between planets and random captures in resonances (or
jumps across resonances) which may affect the eccentricity dis-
tribution of the synthetic Hilda family. An extreme case is shown
in Fig. 15. In this particular simulation, Jupiter and Saturn were
captured in the mutual 3:7 resonance for 0.5 Myr which resulted in
a large eccentricity dispersion σe = 0.044 of the synthetic family.
Our conclusion is that the impact parameters are less important than
the parameters related to migration.

5.3 Matching results together

Even though we do not perform a joint integration which includes
both the planetary migration and Yarkovsky/YORP effect, we try to
match the previous results from Sections 5.1 and 3.5. We do it by us-
ing a straightforward Monte Carlo approach: (i) we take the pseudo-
proper eccentricities emig of bodies at the end of planetary migration
from Section 5.1; (ii) we compute the total Yarkovsky/YORP drifts
�eYE in eccentricity from Section 3.5; (iii) we assign every body a
drift randomly (efinal = emig + �eYE) and this way we construct an

Figure 13. The number of simulations N versus the fraction of remaining bodies Nleft/Ninitial from the synthetic ‘Hilda’ family. The histograms are plotted for
four different time-scales of migration τmig and six different initial configurations of Jupiter and Saturn (aJi, aSi; we indicate period ratios PSi/PJi instead of
semimajor axes here). The ranges of the remaining free parameters are mentioned in the text. We only plot the successful migration scenarios with �vplanets ≤
2000 m s−1, where �vplanets = ∑4

1 δvi is a sum of the velocity differences δv (defined similarly as in the HCM metric, equation 3) between the final simulated
orbit of the ith planet and the currently observed one. This way we join differences in orbital elements a, e, I into a single quantity which has the dimension of
velocity.
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Figure 14. Eccentricity dispersions of the synthetic ‘Hilda’ families at the end of the giant-planet migration for the various initial conditions of the impact
disruption: initial eccentricity ei, inclination ii, true anomaly f imp, argument of perihelion ωimp, exponent α, maximum velocity vmax, radius of the parent body
RPB and its bulk density ρPB. The values of the remaining parameters related to migration are mentioned in the text. Note that there is no evolution by the
Yarkovsky/YORP effect in this simulation. The dotted vertical line denotes the value σe = 0.046 of the observed Hilda family.

Figure 15. An example of the orbital evolution of Jupiter and Saturn with
a rare temporary capture in the mutual 3:7 resonance (bottom panel). This
sort of evolution leads to a large spread of pseudo-proper eccentricities of
the synthetic ‘Hilda’ family by the end of the migration (top panel).

evolved synthetic family.3 Finally, we compare the synthetic family
to the observed Hilda family by computing a Kolmogorov–Smirnov
test for N(<efinal) and N(<eobs) distributions.

To avoid problems with the small number of bodies (60 in case of
planetary migration), we perform the above procedure 100 times,
always with a different random seed for the assignment of the �eYE.
We then take a median of the 100 KS statistics as a result for one
particular run. The resulting histograms of the median DKS for
various initial conditions are shown in Fig. 16.

We confirm the conclusions from Section 5.1 – those migration
scenarios that preserve the largest number of family members (i.e.

3 Note that gravitational perturbations, caused by planetary migration, are
independent of size (mass), so a large body may be easily found at the
outskirts of the family. This is another reason for the random assignment of
Yarkovsky/YORP drifts.

high N left) are the same, for which we can find a good fit of eccentric-
ity distribution (low DKS). Moreover, it seems we can exclude also
the time-scale of migration τmig = 30 Myr since the total number
of successful simulations is significantly smaller in this case.

6 C O N C L U S I O N S

Results of this paper can be summarized as follows.

(i) The Hilda family evolves mainly due to the Yarkovsky/YORP
effect and the observed large spread of eccentricities indicates the
age 4+0

−1 Gyr.
(ii) The collisional disruption of a D � 200 km parent body is

unlikely in the current environment. Instead, it rather occurred dur-
ing the LHB when collisions with comets dominated and were up
to 50 times more frequent. Another possible source of projectiles is
the population of D-type asteroids captured in the J3/2 resonance
(Levison et al. 2009).

(iii) In case the Hilda family was created during giant-planet
migration, which seems to us likely, the major perturbations of
the family were due to secondary resonances between libration
frequency and the frequency of Jupiter–Saturn 1:2 critical argument.

(iv) On the basis of our simulations, we argue that the migration
was relatively fast (with time-scale τmig � 0.3–3 Myr) and Jupiter
and Saturn were relatively closer to the current configuration (with
period ratio PS/PJ ≥ 2.13 or more) at the moment when the Hilda
family was created, otherwise the family would be ‘destroyed’ by
migration. Slower migration time scales are only allowed for larger
values of PS/PJ ratios.

The Hilda family thus proved to be one of the oldest families in
the main asteroid belt.

There are emerging indications that orbital evolution of plan-
ets was rather violent and close encounters between planets were
present (Nesvorný et al. 2007; Brasser et al. 2009). This might be
still consistent with our model of the Hilda family, but of course
we have to assume that the family formed after severe perturbations
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Figure 16. The number of simulations N versus the Kolmogorov–Smirnov distance DKS between the synthetic and the observed Hilda family. The simulations
differ by the time-scale of migration τmig and the initial conditions for Jupiter and Saturn (aJi, aSi). We only plot the successful migration scenarios with
�vplanets ≤ 2000 m s−1 and the number of bodies left Nleft > Ninitial/2. The dotted vertical line denotes the distance DKS for which the probability p(>DKS)
that the two eccentricity distributions differ by this amount equals 0.01.

in the J3/2 region ended. A more complicated migration scenario
like that of ‘jumping Jupiter’ (Morbidelli et al. 2010) even seems
favourable in our case because Jupiter and Saturn very quickly reach
a high period ratio (PS/PJ � 2.3, i.e. the planets are quite close to
their current orbits). Then, the perturbations acting on the J3/2 re-
gion are already small and the flux of impactors becomes high just
after the jump. The Hilda family thus might have formed exactly
during this brief period of time.

Regarding future improvements of our model, knowledge of ge-
ometric albedos for a large number of small asteroids may signifi-
cantly help and decrease uncertainties. The WISE infrared mission
seems to be capable of obtaining these data in near future.
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P&SS, 46, 1425
Gomes R., Levison H. F., Tsiganis K., Morbidelli A., 2005, Nat, 435, 466
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