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ABSTRACT

The Nice model of the dynamical instability and migration of the giant planets can explain many properties of
the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the
Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has
encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model.
This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits
of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked
the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný &
Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number
of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other
two, the orbital eccentricities of all moons were excited by encounters, Callisto’s semimajor axis changed, and, in
a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution
by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is
represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably
damped by tides. We find that one instability case taken from Nesvorný & Morbidelli clearly does not meet this
constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters
in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

Key words: planets and satellites: dynamical evolution and stability – planets and satellites: general – planets and
satellites: individual (Jupiter, Galilean satellites)
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1. INTRODUCTION

It is currently well accepted that the outer planets radially
migrated in the past (Fernandez & Ip 1996). In Hahn &
Malhotra (1999) and Tsiganis et al. (2005), two different
migration histories were proposed. In the former, the planets
were suggested to migrate in a smooth manner from their
original orbits to those that they occupy today. The latter,
instead, invoked a highly chaotic stage, where the outer planets
underwent close encounters among themselves. Specifically, in
the simulations of Tsiganis et al. (2005), the outer planets were
initially located between 5 and 18 AU, and a massive outer
planetesimal disk was placed beyond 20 AU. The instability was
triggered in these simulations when Jupiter and Saturn migrated
(by scattering planetesimals) over their mutual 2:1 mean motion
resonance (MMR). During the instability, the orbits of Uranus
and Neptune became Saturn-crossing, Uranus and Neptune
were scattered out by Saturn, and these planets subsequently
migrated to their current locations by gravitationally interacting
with the outer disk. This model, also known as Nice model,
appears to well explain many properties of the present solar
system, such as the final orbital elements of the giant planets
(Tsiganis et al. 2005), origin of the Late Heavy Bombardment
(Gomes et al. 2005), capture of Jupiter’s Trojans and the
irregular satellites at Saturn, Uranus, and Neptune (Morbidelli
et al. 2005; Nesvorný et al. 2007), origin of the dynamical
structure of the Kuiper belt, and the implantation of primitive
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trans-Neptunian objects into the outer asteroid belt (Levison
et al. 2008, 2009).

However, as originally envisioned, the Nice model is unlikely
to be correct in details. This is, for example, because the initial
configuration of planets used in Tsiganis et al. (2005) is difficult
to reconcile with the previous stage when planets formed and
migrated in the protoplanetary gas disk. Instead, according to
Morbidelli et al. (2007), Jupiter and Saturn should have emerged
from the dispersing gas nebula with orbits in the 3:2 MMR (or
possibly the 2:1 MMR), while Uranus and Neptune should have
evolved onto nearby resonant orbits as well. The instability
trigger proposed by Morbidelli et al. (2007) was the crossing
of the 5:3 MMR between Jupiter and Saturn (later the crossing
of the 2:1 MMR also occurs, but much faster than in Tsiganis
et al. 2005). Another possible instability trigger was proposed
by Levison et al. (2011), were the authors assumed a self-
gravitating planetesimal disk. In that work, Levison et al. (2011)
considered the delay between the dispersion of the proto-solar
nebula and the instability. The planets were initially assumed to
be locked in a multi-resonant state (Morbidelli et al. 2007), and
the inner edge of the planetesimal disk was placed several AUs
beyond the orbit of the outermost planet. Levison et al. (2011)
modeled the disk’s viscous stirring, induced by the presence of
Pluto-sized objects embedded in the outer disk. They showed
that viscous stirring leads to an irreversible exchange of energy
between planets and the planetesimal disk. This exchange of
energy induces the inward migration of the inner ice giant.
As this planet is locked in resonance with Saturn, due to
the adiabatic invariance, its eccentricity increases. During this
process, the system crosses many weak secular resonances.
Those resonances can disrupt the mean motion resonances and
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make the planetary system unstable long after the dispersal of
the protoplanetary nebula.

Additional modifications of the original Nice model were
motivated by the evolution of secular modes during planetary
migration, mainly g5, g6, and s6, and their effects on the
terrestrial planets and asteroid belt. Brasser et al. (2009) found
that it would be problematic if g5 slowly swiped over the g1
or g2 modes of the terrestrial planets, because the g1 = g5
and g2 = g5 resonances would produce excessive excitation
and instabilities in the terrestrial planet system (see also Agnor
& Lin 2012). Moreover, Morbidelli et al. (2010) and Minton &
Malhotra (2011) showed that the behavior of the g6 and s6 modes
was crucially important for the asteroid belt, where, again, slow
evolution of the g6 and s6 modes would violate constraints from
the orbital distribution of asteroids.

To avoid these problems, it has been suggested that Jupiter’s
orbit should have discontinuously changed by encounters with
an ice giant. The g5, g6, and s6 frequencies are mainly a function
of the orbital separation between Jupiter and Saturn. Thus,
as Jupiter’s semimajor axis moves in during encounters (and
Saturn’s semimajor axis moves out), these frequencies decrease
in discrete steps. This kind of evolution is desirable, because the
secular resonances with the terrestrial planets can be stepped
over, and not activated. This instability model is known as the
jumping-Jupiter model. Taken together, the initial conditions
leading to the instability and the dynamical evolution of the
planets were likely different from those originally envisioned in
the Nice model.

Nesvorný (2011) and Nesvorný & Morbidelli (2012) studied
the possibility that more than four giant planets formed in
the outer solar system. They showed that including a planet
with mass comparable to that of Uranus or Neptune on an
orbit between the original orbits of Saturn and Uranus can
significantly increase the success rate of instability simulations.
This is because, more often than not, at least one ice giant is
ejected from the solar system during the instability. The five-
planet cases considered in Nesvorný (2011) and Nesvorný &
Morbidelli (2012) showed just the right kind of the jumping-
Jupiter evolution discussed above, and also often satisfied
various other constraints. The six-planet case worked as well but
did not offer significant advantages over the five-planet case.

To understand the early evolution of the solar system it is
important to not only consider the evolution of giant planets,
but also to determine the effects of the planetary evolution on
the populations of small bodies. Many recent works studied the
effects of planetary migration on Jupiter and Neptune Trojans,
asteroids and Kuiper belt objects, etc. (Morbidelli et al. 2005;
Levison et al. 2008, 2009; Nesvorný & Vokrouhlický 2009).
Here, we consider the planetary satellites.

The satellites of the giant planets can be divided into several
categories. The regular moons have orbits close to their host
planet, and small orbital eccentricities and orbital inclinations
with respect to the planet’s equator. The irregular satellites,
on the other hand, have distant orbits, and high eccentricities
and high inclinations (as measured with respect to planet’s
orbital plane). It is believed that the irregular satellites were
captured from heliocentric orbits. Nesvorný et al. (2007), for
example, suggested that the irregular satellites were captured
during encounters between planets in the Nice model when
background planetesimals were deflected onto bound orbits.
They showed that this type of capture has the right efficiency
(up to a factor of few) to explain observations and leads to
a roughly correct distribution of orbits of captured satellites at

Saturn, Uranus, and Neptune. However, because Jupiter does not
generally participate in planetary encounters in the original Nice
model (Nesvorný et al. 2007), where the encounter statistics
were based on the original Nice model simulations, we were
unable to address with their model the origin of the irregular
satellites at Jupiter. The problem of the irregular satellite capture
at Jupiter was recently reconsidered by us (Nesvorný et al.
2014a) in the context of the jumping-Jupiter model, where
Jupiter participates in encounters.

The regular satellites represent a different concern. They pre-
sumably formed near their present orbits well before the insta-
bility, and were exposed to the effects of planetary encounters
during the instability. Therefore, it is interesting to evaluate the
degree of orbital excitation to determine whether the currently
favored instability models are consistent with the systems of
regular satellites we see at the outer planets today.

Our work described here builds on the previous efforts that
considered the effect of planetary encounters on the regular
satellites. Deienno et al. (2011) studied the history of planetary
encounters in the instability model with four planets and found
that the regular satellites at Uranus became destabilized in about
40% of the considered cases, if Uranus had close encounters with
Saturn. Also, if these encounters occurred, any satellites beyond
Oberon’s orbit would have most certainly become unbound
(Deienno et al. 2011).

The encounters between Uranus and Saturn do not typically
occur in the instability model with five planets (Nesvorný &
Morbidelli 2012). The survival of Uranus’s satellites is therefore
less of a problem in the five-planet model (Nesvorný et al.
2014b). Instead, in this model, Saturn has encounters with
the ejected ice giant. Interestingly, these planetary encounters
can lead to the orbital excitation of Saturn’s moons Titan and
Iapetus, and may potentially explain, as shown in Nesvorný
et al. (2014b), the anomalous inclination of Iapetus with respect
to the Laplace surface (Tremaine et al. 2009).

Our main goal in this paper is to determine the orbital per-
turbations of the Galilean moons at Jupiter in the five-planet
jumping-Jupiter models taken from Nesvorný & Morbidelli
(2012). This is an important issue because the third ice giant
included in these simulations has many dozens of close encoun-
ters with Jupiter, and is ejected as a results of these encounters
to interstellar space. The other planets that remain in the solar
system (Saturn, Uranus, and Neptune) suffer fewer encounters
with the ice giant; the perturbations of their regular satellites
should therefore be less of an issue (see Nesvorný et al. 2014b).
We also simulate the tidal evolution of the Galilean moons after
the instability to show that their orbital eccentricities, if excited
by the encounters, could have decreased by tides during the
subsequent evolution.

The structure of this paper is as follows. Section 2 explains
our method for tracking the planetary encounters and orbits
of the regular satellites. In Section 3, we discuss the number
and distribution of encounters in different instability cases and
the orbital excitation of the Galilean moons during encounters.
We also discuss in this section the tidal effects on the Galilean
satellites and the behavior of the Laplace resonance. In Section 4,
we summarize the main conclusions of this paper.

2. METHODOLOGY

We used three different cases of planetary instability taken
from the simulations of Nesvorný & Morbidelli (2012). We
refer to these cases as Case 1, Case 2, and Case 3. They are the
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same cases as the ones used in the previous studies of capture of
Jupiter’s Trojans and irregular satellites (Nesvorný et al. 2013,
2014a). By using the same cases as in the previous works, we
aim to subject the selected instability scenarios to a number
of tests. Our hope is to advance toward a fully self-consistent
model of the early solar system instability.

The three selected cases feature three different histories of
encounters of Jupiter with ice giants, resulting in different
dynamical perturbations of the Galilean satellites. We have
considered planetary encounters whenever the distance between
the planets was less than the sum of their Hill radii (d <

R
Jup
Hill +RIce

Hill). The original simulations in Nesvorný & Morbidelli
(2012) were repeated and we recorded all encounters of Jupiter
that satisfied the above criteria. See Section 3.1 for a discussion
of encounters in each case.

The configuration of the Galilean satellites at the onset of the
planetary instability is unknown. To set up our simulations, we
opted to use the current orbits of Io, Europa, and Ganymede
from JPL Horizons6 at ten slightly different epochs. This
choice implies that our initial satellite configurations have the
inner three moons in the Laplace resonance, and we can test,
among other things, how the Laplace resonance is affected
by planetary encounters. Callisto was placed on an orbit with
Callisto’s present semimajor axis, and zero eccentricity and zero
inclination to Jupiter’s equator. To increase the statistics, we
considered a hundred different positions of Callisto along the
orbit for each one of the ten epochs. The mean longitude �
was set such that � = kΔ�, where integer k = 0, 1, ..., 99 and
Δ� = 3.◦6. Thus, in total, we have 1000 different configurations
of the Galilean satellites for each case. In addition, we also
considered an additional set of 1000 initial configurations, where
Callisto was placed in the outer 2:1 MMR with Ganymede. This
was done to test whether it is possible that all four Galilean
satellites started in a chain of mean motion resonances, and
Callisto was kicked out of the resonance with Ganymede by
planetary encounters.

We proceed as follows. (1) Starting from the planetary
positions and velocities recorded at the first encounter, the
system containing the Sun and planets is integrated backward
until the separation of Jupiter and the ice giant reaches 2 AU
(let Δt be the time for this to happen). (2) The Galilean satellites
are placed at Jupiter on orbits described above. (3) We then
integrate the orbits of planets and the Galilean satellites forward
for time 2Δt + PJ , where PJ is the orbital period of Jupiter
(we also tested timespans of 10 and 100 times PJ to verify that
the results do not depend on our assumptions). The effects of
Jupiter’s oblateness (J2) and obliquity (ε � 3◦) are included
in these integrations (precession of Jupiter’s spin vector is
ignored). (4) The orbits of the Galilean satellites obtained at
this point are used as the initial orbits for the next encounter
and the procedure is iterated over all encounters. (5) Finally,
the satellite orbits after the last encounter are integrated for an
additional 1000 yr. We use this simulation to compute the mean
orbital elements of the Galilean satellites. As the encounters
happen in a narrow window of time, tidal damping in between
encounters is negligible. All the integrations described above
were conducted using the Bulirsch–Stoer integrator from the
Mercury code (Chambers 1999).

Before the computed mean elements can be compared with
the real mean elements of the Galilean satellites in the present
solar system, we must account for the orbital evolution of the

6 telnet://horizons.jpl.nasa.gov:6775 (terminal access).
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Figure 1. Perijove velocity, inclination (with respect to Jupiter’s orbit), and
minimum distance of each recorded encounter in Cases 1, 2, and 3.

(A color version of this figure is available in the online journal.)

Galilean satellites from the time of instability to the present.
Considering that the planetary instability most likely occurred
about 4 Gyr ago, the tidal effects can be particularly important.
To study tidal evolution, we modified the symplectic integrator
known as swift rmvs3 (Levison & Duncan 1994) to include
the tidal acceleration terms from Mignard (1979). The tidal
dissipation in this model depends the Love number k2 and
dissipation parameter Q. The values of these parameters for
Jupiter and the Galilean satellites are poorly known. Lainey
et al. (2009) found, by fitting a tidal model to the astrometric
observations of the Galilean satellites, that k2/Q = 1.102×10−5

for Jupiter and k2/Q = 0.015 for Io. We adopt these values here,
and for simplicity keep them constant throughout the evolution.
The results of our tidal simulations are presented in Section 3.4.

3. RESULTS

3.1. Properties of Encounters

Figure 1 shows the minimum distance between planets,
perijove velocity of the ice giant, and trajectory inclination for
all planetary encounters of Jupiter. The number and geometry of
encounters differ from case to case. The number of encounters is
117, 386, and 80 in Cases 1, 2, and 3, respectively. The number of
encounters reaching minimum distance dmin < 0.05 AU is 2, 9,
and 0 in these cases. As we will see below, these deep encounters
matter the most for the excitation of the Galilean satellites. Most
encounters have perijove velocities roughly within the range
from 3 to 6 km s−1 and inclinations smaller than 10◦. Only Case
2 shows inclinations up to 30◦.
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Figure 2. From top to bottom: evolution of the semimajor axis, eccentricity, orbital inclination (relative to the equatorial plane of Jupiter), and the minimum distance
of encounters as a function of the integration time (integration time = n × [2Δt + PJ ], n = 1...Nenc), for two different phases of Callisto on its orbit (red and black).
From left to right: Cases 1, 2, and 3. The dashed lines in the bottom panels, from top to bottom, represent four values of minimum encounter distance from 0.05 AU
to 0.02 AU.

(A color version of this figure is available in the online journal.)

Figure 2 shows an example of orbital perturbations of Cal-
listo’s orbit obtained in our simulations. In each case, the re-
sults are shown for two different initial phases of Callisto.
The figure illustrates that the effect of encounters can lead to dif-
ferent outcomes. In some encounters, the satellite eccentricity,
inclination, and semimajor axis increase, while in other encoun-
ters the values of orbital elements decrease.

The degree of perturbation during an encounter apparently
depends on the minimal distance dmin. In general, the encounters
with dmin > 0.05 AU do not cause significant variations (see
Case 3 in Figure 2). The encounters with 0.03 < dmin <
0.05 AU can lead to relatively small changes in the orbital
inclinations, but otherwise do not affect orbital elements much.
The encounters with 0.02 < dmin < 0.03 AU, on the other
hand, are already deep enough to significantly perturb the
orbits of satellites, mainly that of Callisto (for reference,
Callisto’s semimajor axis is �0.012 AU). Only very few of these
encounters can happen if major excitation of Callisto’s orbit is
to be avoided. Finally, the encounters with dmin < 0.02 AU are
the most destructive in that they lead to a major excitation of the
satellite orbits, and, in some cases, can eject Callisto from the
system.

3.2. Excitation of Satellite Orbits

3.2.1. Case 1

Case 1 is an intermediate case with 117 total encounters,
two of which have 0.02 < dmin < 0.03 AU (Figures 1 and 2).
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Figure 3. Case 1. Top: final averaged eccentricity as a function of the final
averaged semimajor axis. Bottom: the final averaged orbital inclination with
respect to Jupiter’s equator. The simulation results are shown by black dots.
The triangles show the current averaged values of the orbital elements of the
Galilean moons (from left to right: Io, Europa, Ganymede, and Callisto). The
labels denote the percentage of simulated trials that ended up below the reference
lines (discussed in the main text).

(A color version of this figure is available in the online journal.)

Figure 3 summarizes the results of our simulations in Case 1. For
reference, as a simple criterion of the plausibility of the results,
we plot in this figure the lines eref = 0.05 for eccentricities, and
iref for inclinations, where iref was chosen to be 0.◦5 greater than
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Figure 4. Same as Figure 3 but for Case 2.

(A color version of this figure is available in the online journal.)

the current mean inclination. We calculate the fraction of final
orbits that end up having e < eref and i < iref . These fractions
are shown in Figure 3.

The orbits of the inner three satellites are only modestly
excited by the encounters. The fraction of trials in which
the eccentricities and inclinations end up below the reference
values is large (>75% and �90%, respectively). These results
are plausible. A more stringent constraint is represented, as
expected, by Callisto’s orbit. We find that about one-third
of the trials end up with Callisto’s eccentricity e < eref .
This is, however, still a relatively large fraction. Moreover,
as we will see in Section 3.4, Callisto’s and other moon’s
eccentricities can be damped by tides after the stage of planetary
encounters. The eccentricity excitation cannot therefore be used,
in general, to rule out specific encounter histories (except if
orbits become unbound). The results for Callisto’s inclination
are more interesting, because only a very small fraction of
trials end up with i < iref (Figure 3), and the inclination
remains nearly unchanged during the subsequent tidal evolution
(Section 3.4).

As for the effect of encounters on the semimajor axis, the
inner three satellites end up very near their original semimajor
axis values. Even if the changes are small they can have a
major consequence for the Laplace resonance in that, at least in
some cases, the libration amplitude of the Laplace resonance can
significantly increase or the moons can end up on non-resonant
orbits. We will discuss this issue in Section 3.5.

The semimajor axis of Callisto can change substantially (by
up to �5 RJupiter, where Jupiter’s equatorial radius RJupiter �
71500 km). This raises a question of whether Callisto could
have originally shared the Laplace resonance with the inner
moons (the 2:1 MMR with Ganymede is located at a � 23.76
RJupiter), and was scattered to its current orbit (a � 26.33 RJupiter)
by encounters. We address this issue in Section 3.3.

3.2.2. Case 2

Figure 4 shows orbital perturbations of the Galilean satellites
in Case 2. In this case, we have nine encounters with dmin <
0.05 AU and two encounters with dmin < 0.02 AU. These
close encounters produce very large perturbations of orbits
of the Galilean satellites. For example, in only 11% of trials
Ganymede’s orbital inclination ends up below our reference
value (i < 0.◦7), and in only 3% of trials this criterion holds for
Callisto’s inclination. The changes to Io’s and Europa’s orbits

 0.001

 0.01

E
cc

en
tr

ic
ity

0.004

 0.001

 0.01

E
cc

en
tr

ic
ity

0.004

 0.001

 0.01

E
cc

en
tr

ic
ity 0.008

 0.001

 0.01

E
cc

en
tr

ic
ity 0.008

 0.001

 0.01

E
cc

en
tr

ic
ity

0.002 0.001

 0.01

E
cc

en
tr

ic
ity

0.002 0.001

 0.01

E
cc

en
tr

ic
ity 0.007

 0.001

 0.01

E
cc

en
tr

ic
ity 0.007

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.03o

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.03o

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.46o

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.46o

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.19o

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.19o

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.43o

 0.01

 0.1

 1

0 5 10 15 20 25 30 35 40

In
cl

in
at

io
n 

(o )

Semimajor axis (RJupiter)

0.43o

Figure 5. Same as Figure 3 but for Case 3. The numbers denote the average
values of the eccentricity and inclination (with respect to the planet equator) of
the Galilean moons.

(A color version of this figure is available in the online journal.)

are also substantial. Given these results, we believe that this case
can be ruled out.

3.2.3. Case 3

Figure 5 summarizes the outcomes of our simulations in
Case 3. In this case, there were no planetary encounters with
dmin < 0.05 AU and orbits of the Galilean moons did not change
much. Therefore, Case 3 is clearly plausible and would imply
that the architecture of the Galilean system has remained nearly
unchanged during the instability.

An interesting observation, unrelated to planetary encoun-
ters, concerns Callisto’s inclination. Recall that we started with
Callisto’s orbit with zero inclination with respect to Jupiter’s
equatorial plane. It may then seem surprising, as seen in Fig-
ure 5, that mean orbital inclination with respect to the equato-
rial plane ends up exactly matching the present value of Cal-
listo (i = 0.◦43). This result arises because the Laplace sur-
face at the location of Callisto’s orbit is inclined by �0.◦43 to
Jupiter’s equator (Ward & Canup 2006; Tremaine et al. 2009).
Thus, an orbit starting on the equatorial plane will have oscil-
lations, with an amplitude reaching almost 1◦ in the equato-
rial reference plane, and an average inclination value equal to
the tilt between equatorial and Laplace planes. On the other
hand, the oscillation of Callisto’s orbital inclination with re-
spect to the Laplace plane is negligible and follows the evo-
lution of the Laplace surface during the evolution of Jupiter’s
semimajor axis. This observation may have interesting implica-
tions for the origin of Callisto’s orbital inclination, because it
shows that Callisto’s orbit should have initially coincided with
Jupiter’s equator, as expected, for example, in the presence of a
heavy circumplanetary disk, or if Jupiter’s obliquity was zero.
This would require that the circumplanetary disk was dispersed,
or the Jupiter’s obliquity was tilted, on a very short timescale
(∼102 yr).

3.3. Tests with Callisto in a Resonance

With Callisto’s semimajor axis considerably changing in
Cases 1 and 2, we decided to test a possibility that Callisto’s orbit
was initially in the 2:1 MMR with Ganymede (potentially driven
there when satellites radially migrated by interacting with the
circumplanetary gas nebula, or when Ganymede was pushed out
by tides; Yoder & Peale 1981; Canup & Ward 2002, 2006, 2009),
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Figure 6. Same as Figure 3 but starting with all four Galilean satellites in a
chain of the 2:1 MMRs (i.e., Callisto in the 2:1 MMR with Ganymede).

(A color version of this figure is available in the online journal.)

and Callisto was kicked out of the resonance during planetary
encounters. These tests were done for Case 1, because this case
leads to a large variation of Callisto’s semimajor axis, as needed
to move Callisto’s orbit from the resonance to its current location
(without any large eccentricity and/or inclination excitation
seen in Case 2).

The initial orbits of the Galilean satellites were set by the
method described in Section 2, except that Callisto was placed
in the 2:1 MMR orbit with Ganymede. We find that these
new simulations produce results very similar to those obtained
with the original initial conditions (compare Figure 6 with
Figure 3). The fraction of trials in which Callisto’s eccentricity
and inclination ended up below the reference values are now
higher than before (42% and 20%, respectively). This is related
to a strong gradient of the excitation pattern with the radial
distance from Jupiter and the fact that Callisto started with a
slightly smaller semimajor axis value in these new simulations.

Figure 6 shows that, while it is plausible to change Callisto’s
semimajor axis by the required amount, the eccentricity and
inclination are typically excited quite a bit for encounter
distances 0.02 < dmin < 0.03 AU, such that only a negligible
fraction of trials end up with a � 27 RJupiter, and e < eref
and i < iref . This may not be such a problem as far as the
eccentricity is concerned, because Callisto’s eccentricity could
have been damped by tides during the subsequent evolution (see
Section 3.4).

Its orbital inclination, however, is almost unaffected by tides,
and thus presents a more rigid constraint. In particular, we do
not see how the excited orbits with a � 27 RJupiter and i > 3◦
(Figure 6) could reach i < 1◦ to become a plausible proxy for
the current Callisto orbit. We conclude that it is unlikely Callisto
could have reached its current orbit by starting in the 2:1 MMR
with Ganymede, being kicked out of the resonance by planetary
encounters, and subsequently evolving by tides. Additional
processes responsible for damping Callisto’s inclination would
have to be identified for this possibility to become viable.

3.4. Tidal Evolution

In the previous sections, we determined orbital perturbations
of the Galilean satellites during close encounters in the jumping-
Jupiter model. These perturbations happened most likely some
4 Gyr ago. A question therefore arises of whether (and how) the
satellite orbits could have changed during the ∼4 Gyr period
between the instability and the present time. Here, we consider

the orbital changes produced by the tidal interaction of moons
with Jupiter.

To achieve this goal, we performed a number of numerical
integrations with a symplectic N-body code known as swift
rmvs3 (Levison & Duncan 1994) that we modified to include
the tidal acceleration terms from Mignard (1979; see also Lainey
et al. 2009, Equations (1) and (2) in their supplement). These
simulations were performed in a reference system centered on
Jupiter. We considered both the planetary and satellites tides. We
found that the tidal dissipation in the system is overwhelmingly
due to the interaction between Io and Jupiter. The direct tidal
effects of other satellites can be neglected, but important indirect
effects arise on these satellites because they are coupled with
the Jupiter–Io pair. Therefore, Callisto’s orbital eccentricity can
be damped as a consequence of the strong dissipation in the
pair Jupiter–Io, similar to what happens in the case of extra-
solar planets, when damping is applied to the innermost planet
in a planetary system (Lovis et al. 2011; Van Laerhoven &
Greenberg 2013).

The satellite rotation was assumed to be synchronous. To im-
plement the synchronous rotation in the code, we adopted the
following approximation (V. Lainey 2013, private communica-
tion). First, we considered only the radial component of the tidal
acceleration that results from changing planetocentric distance
(and the related dissipation). The radial component does not de-
pend on satellite’s rotation rate, and is therefore independent of
the detailed assumptions about synchronicity. The longitudinal
tidal acceleration is then effectively included by multiplying the
strength of the radial tide by 7/3. This is because in the limit
of small eccentricities, which is applicable here, the orbital en-
ergy dissipated in satellite’s librations is 4/3 of that dissipated
in radial flexing (e.g., Murray & Dermott, 1999, Chapter 4).

The strength of tidal dissipation is parameterized by the time
delay due to tidal response of the deformed body or equivalently
by k2/Q, where Q is the dissipation function and k2 is the
Love number. We assume k2/Q = 1.102 × 10−5 for Jupiter
and k2/Q = 0.015 for Io (Lainey et al. 2009), and evolve the
system for 4 Gyr. Possible variations of k2/Q over the age of the
solar system are not considered, because we are not interested in
detailed modeling of the tidal evolution, but rather in the average
magnitude of the tidal effect in 4 Gyr.

Figure 7 shows the eccentricity of the four Galilean satellites
affected by tides in 4 Gyr. Most notably, as previously envi-
sioned, we find that Callisto’s eccentricity can be significantly
damped through the coupling to the inner moons resonant sys-
tem. In the specific case shown in Figure 7, Callisto’s eccen-
tricity decreases from 0.05 to 0.025. This change should not
be taken at its face value because the parameters of the tidal
model are uncertain. The eccentricity drop can be a factor of
several smaller, if the effective k2/Q of Io was lower than con-
sidered here, or a factor of several larger, if the effective k2/Q
was higher. What this shows is that Callisto’s eccentricity could
have been significantly damped by tides over 4 Gyr. Conversely,
Figure 8 shows that the orbital inclination of the satellites does
not appreciably change during the tidal evolution.

These results have major implications for the interpretation
of our scattering experiments discussed in the previous sections.
First, they show that Callisto’s eccentricity cannot be used as
a rigid constraint on the instability models, because even if
Callisto’s eccentricity was significantly excited during plane-
tary encounters, it could have decreased to the current value
during the subsequent evolution. The orbital inclinations of the
moons, on the other hand, represent a more useful constraint on
the planetary encounters, and can be used to rule out specific
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instability models. For example, Case 2 discussed above is
clearly implausible because Callisto’s inclination remains rea-
sonably low only in a few percent of trials.

As for the semimajor axes of the satellites, after several
experiments with their different initial values we determined that
the global result does not change much by changing semimajor
axes. So, while the semimajor axes of the Galilean satellites can
somewhat change in some cases, we believe that it should be
enough to point out that tidal migration of Callisto was small
and insufficient to resolve the problem in Figure 6.

3.5. Laplace Resonance

Another useful constraint on the instability models is repre-
sented by the fact that Io, Europa, and Ganymede are in the
Laplace resonance. This is because, if the semimajor axes of
these satellites change as a result of the planetary encounters,

the orbits can end up escaping from the resonance. If this hap-
pens, the resonant angle φL = λI − 3λE + 2λG, where λI , λE ,
and λG are the mean longitudes of Io, Europa, and Ganymede,
respectively, starts to circulate. By analyzing our simulations
we found that this happened in 47%, 93%, and 0% of the trials
in Cases 1, 2, and 3, respectively.

These results show that Case 2 is problematic, as already
pointed out above based on considerations related to the orbital
inclination of Callisto. The Laplace resonance constraint, how-
ever, is not as solid as the inclination constraint, because tides
could re-capture satellites in the Laplace resonance. For exam-
ple, if Europa and Ganymede have roughly the same probability
to be scattered inward and outward, we find that the outward
tidal evolution of Io could re-capture Europa and Ganymede
in the Laplace resonance in up to 25% of cases. This means,
for example, that in up to roughly 65% of trials in Case 1,
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the Laplace resonance could have been left undisturbed or was
re-established during the subsequent tidal evolution. An illustra-
tion of a case where the moons were re-captured in the Laplace
resonance is shown in Figure 9.

4. CONCLUSIONS

Here, we studied the orbital behavior of the Galilean satellites
during the dynamical instability in the outer solar system. By
carrying out numerical simulations, we determined the level
of orbital perturbation in three instability cases taken from
Nesvorný & Morbidelli (2012). The orbital perturbations occur
when Jupiter has a close encounter with an ice giant, and the
gravity of the ice giant acts on the satellite orbits. We also studied
the subsequent evolution of the surviving satellites due to the
tidal effects.

We found that the orbits of the Galilean satellites can be
profoundly affected by the planetary encounters between Jupiter
and an ice giant, especially in the cases where the encounter
distance 0.02 AU < denc < 0.03 AU. The extremely deep
encounters with distance denc < 0.02 AU can be clearly ruled
out, because those would lead to strong orbital excitation,
collisions of moons, and their removal. On the other hand,
encounters with 0.03 AU < denc < 0.05 AU cause only small
variations of the orbital elements, and those with denc > 0.05
AU leave the satellite system essentially undisturbed.

The subsequent tidal evolution of the moons, principally
due to the tidal dissipation in the Jupiter–Io pair, is capable
of damping Callisto’s orbital eccentricity. Therefore, even if
Callisto’s eccentricity becomes excited by planetary encounters,
it can decrease to values similar to Callisto’s present eccentricity
(�0.03) later. Similarly, even if the Laplace resonance of the
inner three moons can be broken during planetary instability, it
can be reestablished later when Io moves tidally outward, and
recaptures Europa and Ganymede in outer MMRs. Together,
this means that the eccentricity and Laplace resonance do not
represent stringent constraints that could be used to rule out
specific instability models.

Conversely, the orbital inclinations of the Galilean moons,
and mainly that of Callisto, provide an important constraint.

This is because the inclinations are nearly unaffected by tides.
Therefore, if the inclinations would have been strongly excited
during planetary encounters, such as in the Case 2 discussed
earlier, they would survive to the presently. These cases could
clearly be ruled out when compared to the currently low orbital
inclinations of the Galilean satellites. Specifically, we find
that any planetary encounters with denc < 0.02 AU (Case 2)
can clearly be ruled out, and that encounters with 0.02 AU
< denc < 0.03 AU (Case 1) cannot be too many.

Encounters with denc > 0.03 AU can happen more often. This
is interesting because these more distant encounters can be im-
portant for capturing the irregular satellites at Jupiter (Nesvorný
et al. 2014a). We therefore find that the Galilean and irregular
satellites represent different constraints on the planetary encoun-
ters: the former limit the distance and number of the few closest
encounters, while the latter require that many distant encounters
occur. These constraints are complementary and should ideally
be used together when evaluating the plausibility of a specific
instability model. For example, applying these constraints in
Cases 1, 2, and 3 studied here and in Nesvorný et al. (2014a),
we find that Case 3 is clearly plausible, Case 2 is clearly implau-
sible, and Case 1 stands in the middle, where most parameters
are acceptable except for Callisto’s inclination, which ends up
too high in most trials.

Still, orbital inclinations could have been damped by another
mechanism such as, for example, dynamical friction exerted by a
disk of debris (Deienno et al. 2012; R. Deienno & T. Yokoyama,
in preparation). In this case, Callisto could interact with a disk
of debris and its orbital inclination be damped together with
the other orbital elements. Such a disk could have formed if
one considers that Jupiter could have had more satellites in the
past than it has today (beyond Callisto’s orbit), and those extra
satellites were lost by collisions among themselves during the
instability phase of the solar system (as proposed for Uranus’
satellites by Deienno et al. 2011), or by a residual mass produced
from collisional grinding of irregular satellites (Bottke et al.
2010). This could be an interesting alternative, because as
shown by Ćuk & Gladman (2005), dynamical friction is more
effective in damping Triton’s orbit than tides alone (working
on inclination as well). However, such a hypothesis needs to
be carefully analyzed to determine whether or not the mass
and life time of the disk are plausibly large to affect Callisto’s
inclination. We leave this work for future investigations.

In a broader scope, while the Galilean satellite constraints
discussed here can be used to rule out specific instability
models, they cannot be used to rule out the jumping-Jupiter
model in general. This is because many (but not all) previously
developed jumping-Jupiter models should satisfy the Galilean
satellite constraint as well. There is also the possibility that the
initial giant planet system had more than five planets, where the
additional planets were smaller in mass (Nesvorný & Morbidelli
2012). In this case, satellite excitation would be presumably less
severe than found in Cases 1 and 2 in this paper. This result
should be seen in positive light, because the jumping-Jupiter
model is required from the terrestrial planet constraint (Brasser
et al. 2009; Morbidelli et al. 2007; Nesvorný & Morbidelli
2012), the dynamical structure of the asteroid belt (Morbidelli
et al. 2010), and for the capture of the irregular satellites at
Jupiter (Nesvorný et al. 2014a).
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