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Abstract. An accurate theory of the Moon’s spin-orbital motion
has been constructed by numerical integration. Several phenom-

‘ena capable of producing effects of at least 10~* arc seconds

in the lunar physical librations have been included, analysed,
and for the most part presented in previous papers. The present
work deals with the relativistic spin contributions acting on the
Earth-Moon system: (i) de Sitter precession of the Earth ref-
erence frame, (ii) quasi-Newtonian torques acting on the lunar
physical librations. The latter effect does not seem to have been
studied yet. The global behaviour of the resulting librations is
presented and described. The resulting magnitude of these li-
brations is of the order of a few 10™* arc seconds and may
reach one milliarcsecond. Unlike the very faint relativistic con-
tribution to the Earth’s rotation, the corresponding relativistic
terms in the Moon’s rotational motion are not negligible with
respect to the present observational accuracy of the lunar laser
data. Consequently it would be appropriate to consider them in
models adjusted to the observations.

Key words: celestial mechanics — Moon — gravitation — relativ-
ity

1. Introduction

The theory of lunar motion has represented one of the most im-
portant keystones of celestial mechanics throughout its history.
Having this status, it has often served for testing the currently
accepted theory of gravitation. Thus it is not surprising, that we
already meet important relativistic applications to lunar motion
in the first years of Einstein’s theory. Namely, de Sitter (1916)
discussed the appearance of the combined geodetic and Thomas
precessions of the Earth reference frame in the context of lunar
motion (nowadays known as ‘de Sitter precession’). Secondly,
Nordtvedt recognized the possible importance of lunar motion
for testing his strong equivalence breaking proposal (Nordtvedt
1968, 1973). Finally, first attempts at lunar laser ranging (LLR)
in the late sixties were accompanied by a partial goal consist-
ing in the measurement of the gravitational constant variations
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[see a review by Mulholland (1980)]. Such variations occur in
several tensor-scalar gravitational theories.

On the other hand, it should be understood that currently the
importance of lunar motion for testing theories of gravitation has
slightly changed. The underlying reasons are as follows:

i) the Earth-Moon(-Sun) system is very ‘dirty’ from the rela-
tivistic point of view because of many Newtonian physical
phenomena related to the internal structure of the bodies that
are only poorly modelled;

ii) relativistic (PN-)parameters are determined with consider-
able precision via other solar system experiments (see e.g.
Will 1992; the Eddingtonian 8 and -y parameters currently
coincide with the Einsteinian values with standard errors at
the 0.2% level);

iil) the ‘true frontiers’ of the experimental testing of viable
classes of theories of gravitation have moved to systems with
a strong field regime, represented mainly by binary pulsars
(e.g. Damour & Taylor 1992; Damour & Esposito-Farese
1992).

Concerning the second point, we can mention that the Ein-
steinian theory has been largely verified in the weak field regime,
at least with the solar system tools currently at our disposal (we
are aware of planned Earth vicinity or solar system missions de-
signed to extend the upper limits of the parameters of the post-
Newtonian theories; it however appears that currently known
constraints on those parameters are sufficiently strong for the
possibilities of the LLR experiment). In this situation, one even
faces the question: should the formulation of the lunar motion
still serve for testing the Einsteinian theory of gravitation or
simply incorporate it as a valid theory?

It has been demonstrated that there is still a place for good
routine work in testing the weak-field limit of the theories of
gravitation via lunar data (e.g. Dickey et al. 1989; Miiller et al.
1991). Notably, investigations of the Nordtvedt effect still pos-
sess interesting theoretical implications (e.g. Nordtvedt 1988;
Damour & Esposito-Farese 1992). Secondly, de Sitter preces-
sion of the Earth reference frame shows practical importance
well beyond the pure theory of lunar motion.

However, independently of the opinion concerning the an-
swer to the previous items, one has to ask: which Einsteinian
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terms are to be retained in the theory for a given precision? We
recall the important methodological fact, that the Einsteinian
theory of gravitation is embodied into the general set of post-
Newtonian theories (Damour 1993; Will 1993). Testing relativ-
ity, one always distinguishes between null and non-null tests. In
the following, we shall have in mind non-null tests of general
relativity.

Current state of the art LLR data reach the 3 centimeter
precision level, averaged over data sets of the last few years
(Dickey et al. 1994). It should be however emphasized that a
careful choice of the best performing nights over the last years
reaches even better properties — about 1 to 2 centimeters and
improvement to a few millimeter level is already envisaged (Ch.
Veillet; private communication). In terms of lunar librations this
current best data quality means the level of a few milliarcseconds
(later referred to as mas) and better can be reached in the future.

Generally, one can divide relativistic dynamical contribu-
tions into those operating on the (i) translational motion of the
bodies, (ii) rotational motion of the bodies with respect to the
locally transported frames with the bodies, (iii) orientation of
the local (reference) frames transported by the bodies. Up to
now, most of the attention (both theoretical and observational)
has been focused on the relativistic contributions to the (lunar)
translational motion and local frame definitions {. Recent ana-
lytical insights can be found e.g. in Soffel (1989) and Nordtvedt
(1994). It is interesting to note, that in the case of the Moon, the
dominant relativistic range terms (with the amplitude of a few
centimeters) are due to the relativistic tidal field of the Sun in
the Earth reference frame (e.g. Nordtvedt 1991, 1994; Shahid-
Saless 1992). The Earth causes principally an advance of lunar
perigee (a so far unmeasurable value of about 0.6 mas per year).
To our knowledge, none of the previous works touched on rela-
tivistic terms related to the lunar rotation. Even more generally:
only a small fraction of all tests of relativity theory relates to
the spin motion of the bodies (for example see the evidence for
the spin-orbital coupling in the binary pulsar systems; Weisberg
etal. 1989). From this point of view, and the fact of the existence
of high-quality LLR data, it is an interesting task to investigate
relativistic contributions to the lunar rotational motion.

In a recent brief communication (Bois & Vokrouhlicky
1994), we reported on the possible importance of a relativis-
tic phenomenon connected with the lunar rotational motion not
used so far in the LLR data reduction programs. In this paper,
we wish to elaborate more on the topic.

2. Relativistic spin terms in the Earth-Moon system

The most suitable formulation of the post-Newtonian (PN) the-
ory of motion of a system of N weakly self-gravitating extended
bodies for purposes of celestial mechanics has beenrecently pre-
sented in a series of papers by Damour et al. (Damour et al. 1991,

T We leave here aside relativistic definition of the time scales in the
solar system; Brumberg & Kopejkin 1990, Seidelmann & Fukushima
1992.
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1992, 1993, 1994; hereafter quoted as DSX). We shall essen-
tially follow their approach (the same applies for notation). Suc-
cess of DSX is based on precise distinguishing between global
(barycentric) translational motion of the bodies and their local
rotational motion resulting in careful usage of corresponding
global and local coordinate systems. Here, we shall deal only
with the local rotational motion. As the dynamical state of the
local frames is intimately connected with the rotational motion
of the corresponding body, we shall also report on the results
concerning de Sitter precession of the Earth (dynamically non-
rotating) reference frame.

Damour et al. (1993) have succeeded in defining the local
spin vector S2 characterizing rotation of body A (embodied in
the isolated system of N extended bodies). Employing first prin-
ciples they showed that it satisfies Eulerian dynamical equations

dsy = €abe Zng*KGAK+iS,¢HA (1)
dTy £~ k! KT @b e |

where (M#,S%) are mass and spin (Blanchet-Damour; BD)
multipoles characterizing the PN gravitational field of the ex-
tended bodies while (G4, H2) are tidal gravitoelectric and grav-
itomagnetic PN fields, c is the light velocity. All these quantities
are carefully defined and discussed in Damouretal. (1991, 1992,
1993). Let us just note that we adopt definition (4.24) in Damour
et al. (1993) for spin multipole moments possessing the simpler
form (1) for the dyniamical equations. Superindex A denotes a
corresponding body and T, stands for the local time measured
along the worldline %, of the origin of the local chart associ-
ated with body A (to be identified later with its mass center).
Local coordinate time T’y is related to the global coordinate time
t by the formula

%:1—215(%V2A+EA)+@(4), )

where v, is the velocity of the local frame origin expressed in
the global system and w* is the external gravitational potential
influencing the motion of body A [see Eq. (4)].

One learns from the DSX series that the first principles lead
to dynamical laws for the lowest multipoles only (zero and first-
order mass multipoles and first-order spin multipoles). If one
wanted to develop a complete theory of the motion one would
need to close the laws by some physical assumptions. As the
relativity-attributed terms in the dynamical equations contain
small parameters (squares of the orbital velocities divided by
the light speed, Schwarzschild radii divided by the orbital dis-
tances), we shall restrict ourselves to the pole-dipole-quadru-
pole (PDQ) truncated model (clarified in Damour et al. 1991,
1992). This means that we shall simply neglect all higher mul-
tipole moments in the corresponding relativistic terms. More-
over, because we do not dispose of dynamical equations for the
quadrupole moments M, (’l‘b we shall adopt the ‘rigid’ model of
the extended bodies. Although the notion of rigidity faces con-
ceptual problems in the theory of relativity, we shall formally
keep the rigid scheme as known from the Newtonian approach.
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Practically this is acceptable since the relativistic quadrupole
contributions are very small (see the Appendix for more de-
tails).

2.1. De Sitter precession of the local dynamically non-
rotating reference frames

We are free to fix several data concerning local comoving sys-
tems of the extended bodies. Namely, we shall follow the DSX
recommendation to identify the origin of the local system with
the mass center of the corresponding body: ME = 0 (in the
following, we shall use index E when specifying the Earth for
the previously arbitrary body A; similarly, index M will be re-
served for the Moon). This choice advantageously discards the
firstterm in Eq. (1) for £ = 0. Secondly, in this study we shall use
dynamically non-rotating local systems which are characterized
by the condition: HE = 0 (Coriolis effacing). Let us recall, that
local dynamically non-rotating frames show a slow (de Sitter)
rotation with respect to the kinematically non-rotating frames.
The latter ones are practically realized by the VLBI measure-
ments, so that the de Sitter rotation of the body A local chart is
measured with respect to the VLBI reference system (see e.g.
Soffel & Brumberg 1991; Jacobs et al. 1993).
Damour et al. (1993) showed that the total first order grav-
itomagnetic tidal moment reads
Ha (Tg)= — 4611ij§£0, [ij,';: + véBju‘)E]
E
3
+ €abe [VbEAE + 02%1‘{%0] ,

dTg % )

where R}, denotes the orthogonal rotational matrix involved
in the transformation between local and global systems. Notice
the clear theoretical interpretation of the first two terms in (3)
as the (PN) gravitational influence of the external bodies, while
the last two terms have coordinate origin in the transformation
between global and local systems.

In the numerical implementation of this theory (Sect. 3), we
shall adopt only the monopole part of the external metric, so
that

wE___ZGMB , wf:ZGMng’

T T
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neglecting ‘higher order terms’. It can be easily verified that
the contribution of these higher order terms is about 4 orders of
magnitude smaller than the one term arising from the monopole
part (4).

Introducing components of the rotational vector wf char-
acterizing rotation of the dynamically non-rotating frame with
respect to the kinematically non-rotating (barycentric) one in
the form

E 1 dR}

— a pk
wi = _ieijkEREa )

(ei5k is the Levi-Civita fully antisymmetric tensor) we arrive at
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which is to be compared with results of Kopejkin (1988), Will
(1993). Note that some authors (e.g. Will 1993) prefer to include
the ‘gravitational part’ of the barycentric acceleration ag in the
second term, arriving then at a factor 3 /2 rather than 2.

It should be also noted that Damour et al. (1993) proved
that local frames induced by a dynamically non-rotating local
chart are Fermi-Walker transported along the worldline %, of
the body A mass center with respect to the external metric.
This property shows that DSX also succeeded in constructing
Fermi (or generalized Fermi) frames around massive bodies
(e.g. Ashby & Bertotti 1986; Fukushima 1988).

2.2. Relativistic terms in the quasi-Newtonian torque

Damour et al. (1993) succeeded in deriving an explicit ‘quasi-
Newtonian’ form for the first relativistic contribution in the ro-
tational motion arising from the first term in Eq. (1) — the only
term remaining in the PDQ model. Laborious evaluation of the
tidal gravitoelectric multipole GM, leads to (Damour et al. 1993,
1994)

) . 3G My i 17 45
Ghy = Ryt Ras z —5—STF;;{nyp + 5 [n;VJIB (2vis
B#M T™MB ¢

B J 1
- 2’[I)M — U)B - E(DMB'VB)Z - EaB.rMB)

i J i ] i,
+ aypTive + VvV — 2(MMB-YMB)"\BViME

— (nws-vwnis (V) — 2vg)] } +O@), )

nag = (" —TB)/TMB >, TMB =TM — 7B »
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where the symbol STF;; denotes the symmetric and trace-free
part of the corresponding tensor quantity (see e.g. Damour et al.
1991). In the first term one might recognize ‘the Newtonian
torque’. However, one subtle point should be reminded here.
Mass (BD) multipoles M# are autonomous quantities defined
in the PN level and have nothing to do with analogous New-
tonian quantities] (e.g. zeroth multipole M, representing the
mass of the body is trivially constant in the Newtonian approach
while variable on the PN level as soon as mass quadrupoles are
included; however, in what follows we shall neglect such vari-
ations, as they can be shown to be extremely small for the solar
system bodies). It should be understood that, conceptually, rel-
ativity does not provide corrections to the Newtonian solution.
Rather one can identify some terms, after developing a consis-
tent PN approach, as Newtonian-like. This is exactly the case of
the similarity of the first term in Eq. (7) with Newtonian torque.
Clear appearance of this point is also one important achievement
of the DSX theory (more discussion about this point might be
found in Damour et al. 1993).

1 From this point of view all harmonic coefficients corresponding
to the multipoles of the Earth-Moon system should be theoretically
redefined when considering higher relativistic terms. In practice, due
to the smallness of the studied effects, we have accepted values of the
Earth-Moon gravity field coefficients as given by previous studies.
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Formally, the remaining terms in the right hand sides of
Eq. (7) represent the ‘relativistic’ contribution. The aim of this
paper is to investigate numerically their possible importance.

3. Numerical results

‘We have constructed a model of complete lunar motion includ-
ing relativistic effects discussed previously (more details about
our model will be published elsewhere). Our goal is to include
all phenomena up to the precision level resulting from the LLR
technology, and if possible even better for reasons of consistency
(e.g. at least 1 cm for the distance, 1 mas for the librations). In
particular, several phenomena capable of producing effects of at
least 0.1 mas in the lunar physical librations have been included
and analysed. The effects resulting from planetary actions (es-
sentially Venus), the Earth-Moon figure-figure interactions, and
non-rigidities of the Moon and the Earth have been presented
in previous papers (Bois et al. 1992; Bois & Journet 1993). In
the subsequent sections, we present the results of the relativistic
contributions related to the rotational motion of the Moon, as
well as the relativistic precession of the Earth reference frame.

The relativistic part of the model has been introduced as
a pole-dipole-quadrupole in the previous discussion. However,
such truncation would not be sufficient to meet the prescribed
precision as mentioned earlier. One has to include higher order
mass multipoles (up to [ = 5 in the Moon case while [ = 4 in
the Earth case) of the bodies. Corresponding ‘Newtonian-like’
terms do appear in the systematic construction of the PN theory
of bodies endowed with higher order multipoles as can be ver-
ified using a general scheme in the Appendix of Damour et al.
(1992). However, we neglected any terms of purely relativistic
origin associated with multipoles higher than second order. Sim-
ilarly, we took into account several terms arising from the tidal
deformations of the bodies (both elastic and anelastic). Again,
one can adopt a very broad model (including such tidal effects on
the relativistic base; see Damour et al. 1991), but subsequently
retain only necessary ‘Newtonian-like’ terms corresponding to
the required precision.

Summarizing previous ideas, we can state that our model
is not Newtonian but rather ‘Newtonian-like’, resulting from
truncation of the fully post-Newtonian (DSX) framework. We
shall focus on reporting the results related to the relativistic
effects mentioned in Sect. 2.

Table 1. De Sitter precession — results and comparison with previous
works. The first row relates to the principal secular term, the other two
to the periodic terms of year and half-year variations.

term Fukushima Bizouard et al. our results  units
secular 1.919 1.914 1.9193 as/cy
periodic (I year) 0.153 0.1525 0.1530 mas
periodic (§ year) 2x107* 1.9 x 1073 1.89 x 107% mas
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3.1. De Sitter precession of the Earth reference frame

We shall parametrize the vector w¥ [see Eq. (5)] corresponding
to the de Sitter rotation of the Earth reference frame by three Eu-
lerian angles (1, 6, ¢) referred to the ecliptic barycentric frame
(¢ being the precession angle as in usual astronomical prac-
tice). As the phenomenon demonstrates precession, we shall
focus our attention on the 1 angle. Investigating its behaviour
by a Fourier filter, we arrived at the results summarized in table
1 [for comparison we include also results of Fukushima (1991)
and Bizouard et al. (1992)].

Comparison of our results with those obtained by Fukushima
(1991) and Bizouard et al. (1992) shows a very good agreement,
or at least a very close one. It can be seen, that the half-year term
amplitude would in reality be affected by higher than monopole
contributions in the external potentials (w0, w;) in Eq. (6). How-
ever, its practical importance is small because such a term is
below the precision threshold of current astrometric methods
(e.g. Kovalevsky 1990; Jacobs et al. 1993).

It should be noticed that the lunar-reference frame undergoes
a similar de Sitter precession to the Earth one. An alternative
way of representing the two effects is to introduce the de Sitter
precession of the common Earth-Moon barycentric reference
frame (e.g. Dickey etal. 1989), as it can be easily verified that the
principal effects in table 1 originate in the solar action. However,
due to the mutual Earth-Moon action, the de Sitter precession
of the two reference frames differs slightly. Detailed inspection
shows that the lunar reference frame undergoes an additional
precession of the order of 30 mas/cy, so far not a measurable
value. Moreover, bringing out this secular effect is a complicated
task due to the other (phenomenologically modeled) secular
precessional effects related to the selenophysical phenomena.

Finally, it is to be pointed that we discuss de Sitter (geode-
tic) precession in ‘the narrow sense’ following the terminology
of Brumberg et al. [1991]. We thus involve in our calculation
only first two terms in the fundamental formula (6). Discrep-
ancy between our value and 1.9198 as/cy given by Brumberg
et al. [1991] is due to the fact that the latter value includes also
contribution from the Lense-Thirring term due to coupling of
the solar gravity field with the Earth-Moon angular momentum.

3.2. Relativistic terms in the lunar rotational motion

In what follows, we shall report on the influence of ‘the rel-
ativistic’ terms in (7) on lunar rotational motion. It should be
pointed out, that as far as the authors know such terms have not
yet been applied in lunar theory. The main reason is that the
theoretical description of the relativistic contributions in the ro-
tational motion of bodies was unsatisfactory (see Damour et al.
1991).

Figure 1 shows the behaviour of resulting librations due to
the relativistic contributions in Eq. (7). The three Eulerian an-
gles (1,0, ¢) of the classical 3-1-3 angular sequence represent
the physical librations of the Moon’s rotational motion with re-
spectto areference system given by a terrestrial equatorial frame
(J2000). As the data drawn in Fig. 1 have been obtained as a dif-
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Fig. 1a—c. Relativistic lunar librations as they formally appear in the

series of the Euler angles characterizing lunar rotation — differences

(A, A, Ag) with respect to the solution free of the relativistic torque (see also Fig. 2). Milliarseconds are on the vertical axis and years on

the horizontal axis. Dominant terms of 18.6 and 80.1 year periodicities

are in all Euler angles. The angle of lunar proper rotation contains also

a component related to the ordinary resonant frequency of 2.9 years for physical librations in longitude

ference of the two numerical integrations of the lunar rotation,
first disregarding the relativistic terms, secondly accounting for
them, we call them (A, A, Ag). The global frame time ¢ on
the z axis is the solar system barycentric time TCB. This choice
is clearly governed by the fact that the solar system barycentric
time belongs to the set of the two most important coordinate
time scales defined in the solar system, contrary to the lunar
(local) coordinate time (e.g. Soffel & Brumberg 1991; Seidel-
mann & Fukushima 1992). We have thus combined Egs. (1) and
(2) together with (7) in order to obtain the final form of the Euler
dynamical equations for lunar librations. Let us also note, that
the initial date of the integration presented in Fig. 1 coincides
with that of the JPL DE303 ephemeris. In order to justify con-
sistence of our theory, we have adjusted it to the JPL ephemeris
on the first 1.5 years up to a level of a few centimeter residuals.

Let us recall the major changes in complete libration an-
gles during the considered time span: the lunar nutation angle
changes between 22 and 25 degrees with the major periodicity
of 18.6 years being driven by the nodal period of the lunar or-

bit; the proper rotation of the Moon around its axis of figure is
effected by the complete angle ¢ with the mean period of 27.3 .
days; the precession angle v is also locked in resonance with
the lunar node period of 18.6 years. Further forced behaviour
due to the indirect action of the planets and higher harmonics
of the Moon can be found in e.g. Eckhardt (1982) or Moons
(1984).

We remark long-term components with periods of 18.6 years
(nodal rate of the lunar orbit), 80.1 years and 2.9 years (in ¢)
which are the two resonant frequencies of the spin-orbit motion
of the Moon (Kopal 1969; Yoder 1981). Appearance of these
terms is not surprising in view of the form of the relativistic
torque (7). The magnitude of the relativistic librations is of the
order of one milliarcsecond in all Euler angles. The ratio of this
magnitude with respect to the corresponding one coming from
analysis of the Newtonian-like pole-quadrupole torque [i.e. the
first term in (7)] is about 5 x 1078, Such a value corresponds to
the order of the small (PN-) relativistic parameters (v4/c)? and
wP /c? both of them being of the order of 10~%. The latter fac-
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tor also clearly determines the amplitude of the ratio of the rela-
tivistic and Newtonian torques associated with pole-quadrupole
interaction [see Eq. (7)].

The non-linear features of the differential equations, the cor-
relation degree of the studied effect with respect to its neigh-
bours (in Fourier space) and the spin-orbit resonance, in the
lunar case, make it hardly possible to speak about ‘pure’ ef-
fects with their proper behaviour (even after fitting of the initial
conditions). The differentiation method may give the right qual-
itative behaviour of an effect and a good quantification of this
effect relative to its neighbours (see Table 2). The effects are not
absolutely de-correlated but relatively isolated. It is also possi-
ble to make some comparisons with analogous problems (here
for instance, with the analogous torques acting on the Earth’s
rotation). When a rotational effect is simply periodic, a fit of
the initial conditions for a set of given parameters only refines
without changing completely the effect’s behaviour. Neverthe-
less, the particular status of the relativistic effects may lead us to
a precise quantification and will be discussed in a forthcoming
paper (see also discussion in the next section).

In order to get an idea about the importance of the rela-
tivistic contribution, Table 2 presents a comparison of various
effects acting on the Moon’s spin motion, obtained by Bois
et al. (1992), Bois & Journet (1993), and in the present work.
The amplitudes correspond to the maxima reached by one of
the three Eulerian angles (A, Af, A¢) in each case. Results
are given respectively for two periods of librations when they
exist, namely 2.9 years and a period running around 18.6 to 24
years. The acronym Exz My signifies orders of multipoles re-
spectively in interaction, namely the order z of the Earth acting
on the order y of the Moon. V' means Venus; LT L means lunar
tidal librations; RC'L refers to the relativistic contributions of
(7) represented by the librations given in Fig. 1. We note that
the amplitude of the relativistic librations is comparable with
the quasi-Newtonian interaction of the Earth quadrupole and
the Moon sextupole or the influence of the Venus pole.

4. Discussion and conclusion

The main results of this communication can be summarized as
follows:

i) numerical simulation of the de Sitter precession of the
Earth reference frame yields results very close to those of
Fukushima (1991) or Bizouard et al. (1992);

ii) preliminary tests of importance of the relativistic torque in
the case of the Moon’s rotational motion suggest that this
effect ought to be included in the lunar models.

Let us point out that the first result (i) is to be understood more as
an inner test of our model (program), because this phenomenon
has already been studied both theoretically (e.g. Fukushima
1991; Bizouard et al. 1992) and even when interpreting the LLR
data (e.g. Bertotti et al. 1987; Shapiro et al. 1988; Dickey et al.
1989; Miiller et al. 1991). On the contrary, the second result (ii)
does not seem to have been studied yet. Bizouard et al. (1992)
recently investigated the role of analogous terms in the case
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Table 2. Comparison of various effects on the Moon’s librations. See
the text for terminology.

effect 2.9years 18.6/24 years units
VOM2 <3 mas
EOMS 10 <20 mas
E2M2 < 80 mas
E2M3 0.5 <1 mas
LTL 1 <4 mas
RCL 0.1 <2 mas

of the Earth’s rotation. They concluded that the magnitude of
this effect was negligible. Interestingly, in the lunar case the
resulting contribution does not seem to be totally negligible.
Similar results were reported for the influence of the higher or-
der multipole coupling on the ‘Newtonian level’ (dominated by
the J, — J, interaction). Souchay (1994; private communica-
tion) has studied such effects for the Earth’s rotation, while Bois
et al. (1992) considered the lunar case. The resulting behaviour
is mainly explained by the ratio of the resulting torque intensity
to the angular velocity via the degree of asymmetry of the body.
This ratio is larger for the Moon than for the Earth.

It should be emphasized that results presented in Sect. 3.2
(notably, direct differences of the Euler angles) place only the
upper limit for the magnitude of the discussed relativistic lu-
nar librations with respect to their observability. Three reasons
account for this: (i) a subclass of infinitesimal rotations is not
suitably represented by the 3-1-3 Eulerian parametrization as
discussed in the next paragraph; (ii) initial conditions of the
integration have not been adjusted; (iii) interpretation of the rel-
ativistic effects requires special care due to possible coordinate
dependence of the effects. We comment on these problems in
the following paragraphs. :

Differences of the Euler angles of the two configurations
reported in Sect. 3.2 (Fig. 1) show how the relativistic librations
formally appear in the lunar rotation. However, we must face the
question of their possible observability through the LLR facility,
the problem being qualitatively more difficult. The first step to
reach the observability task would require reparametrization of
the kinematic description of a rotational motion. Instead of the
difference of the two series of Euler angles [accounting and not-
accounting for the influence of the relativistic torque (1)], we
shall actually construct the rotation of the reference frame de-
fined by the lunar rotation solution, without the relativistic term
to the reference frame given by the lunar rotation including the
relativistic contribution. It appears that a suitable representation
of the rotation we are looking for is obtained by specifying the
instantaneous (virtual) rotation axis and corresponding angle 6
of rotation around the axis (see Fig. 2 for this concept). The po-
sition of the virtual axis is actually not important for our order of
magnitude argument, as we are basically seeking the amplitude
of the additional lunar frame rotation imposed by the appear-
ance of the relativistic term in the right hand sides of the Euler
Eq. (1). Using elements of the rotation group algebra (for infor-
mation on the mathematical techniques of rigid body rotation
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Fig. 2. The concepts of representation of the difference of the two rotated frames (1 and 2) with respect to the reference one (R): a simple
difference of the Euler angles relating the two moving frames with respect to the reference one, b (6, n) parametrization of the infinitesimal
rotation of the frame 2 with respect to the frame 1. In our application, frame 1 is represented by the lunar rotation not accounting for the effect
of the relativistic lunar librations, while the rotation of the frame 2 contains contribution due to the relativistic librations. See the text for more

details

see e.g. Mignard 1989), one arrives at the following formulas

cosé=2¢% — 1, (®)

0 0
do = COS —21 cos —23 cos (Y1 — 2 + 1 — ¢2)

+ sin %1— sin % cos(h1 — 1 — 1 + ¢2)
where (1, 01, ¢1) and (,, 8,, ¢,) are two sets of Eulerian an-
gles related to the two reference frames under consideration. In
the case of small differences in precession angles A = 1, — 1,
and proper rotation angles A¢ = ¢, — ¢; (which is the case of
curves in Fig. 1), one can simplify the previous formula to the
form

62 = A? + (AY + Ag)* +2 (cos§ — 1) ApAg, )

where Af = 6, — 0, and 8 is the averaged nutation angle of the
two discussed configurations. Components of the unit vector
n = (n1, ny, n3) of the rotation axis direction then read

ny = (Afcos ¢+ AypsinGsin @) /6, (10a)
ny = (Afsing — Aysinfcos @) /6, (100)
n3 = (Aycosf + Ag) /5, (10c)

where similar quantities have been introduced for the remaining
Euler angles: At = ¢, — 1, Ap = ¢y — ¢1 and (3, ¢) for the
averaged quantities. One easily recognizes the vector character
of composition of the infinitesimal rotations. We have passed
data shown in Fig. 1 through this test computing é-angle and
corresponding rotation axis motion.

Figure 3 shows the time dependence of the é-rotational an-
gle. The resulting amplitude decreased to about 0.8 mas, as can
be expected from the series of the Ay and A¢ angles. Notice
that there essentially appears only the sum of the two quanti-
ties in Eq. (9) corresponding to the fact that the infinitesimal
rotation of the reference frame can be expressed by arbitrary
precession and proper rotation, provided that these two elemen-
tary rotations are nearly opposite (this is a well understood in-
convenience of the 3-1-3 Euler sequence, Mignard 1989). One
remarks a pure 18.6 year periodicity of this quantity forced by
the nodal motion of the Moon. It is to be reminded here that the
residual value of about one milliarcsecond is on the level of the
observability through LLR if the best quality nights are selected
(moreover a nearly half order improvement is planned for the
forthcoming years; Ch. Veillet, private communication). The
motion of the axis n, showing precession in the lunar equatorial
plane, can be decomposed into terms with periods of 2.9, 18.6
and 80.1 years. The third component of n shows oscillations
with a period of 2.9 years.

Regarding the well defined frequencies and the stable char-
acter of the signal due to relativistic librations, we hope that
our results represent well the true behaviour of the phenomena.
However, we plan to investigate in some detail the effect of the
initial condition adjustment on the results referred to here. In
any case we can conclude, that the relativistic lunar librations
introduced in this study are among a class of phenomena influ-
encing lunar rotation, which ‘are standing just behind the door
of observability in the LLR data’ and thus would require greater
care in the near future.
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Fig. 3. Rotational angle & (in mas) vs. time in years. The signal essen-
tially decomposes into the 18.6 years long-term component and the
short-term 27.3 day component

Concerning the third warning mentioned above [item (iii)],
we recall that the final proof of the observability of the relativis-
tic librations is based upon their influence on the two-way laser
beam timing, expressed in the proper time of the observer (this
being a coordinate independent quantity). Full analysis of such
problems lies out of the scope of this paper.

We hope to devote a forthcoming study to the two topics
mentioned in the two preceding paragraphs [also items (ii) and
(iii) mentioned previously].

Let us finally note that another interesting topic to be tackled
in the future concerns the generalization of the DSX formula (7)
to the parametrized framework of the PN theory of gravitation
(Dickey et al. 1989; Miiller et al. 1991)¥.
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Appendix

In this appendix, we shall comment on our rigid-body Ansatz
assumed for the relativistic part of the lunar rotation. As noted
in Sect. 2, conceptually we do not dispose of the equations for
the quadrupoles M unless a physical concept of the bodies is
settled. The most restrictive is rigidity, leaving no free parameter
in the description of the body mass multipoles. Necessarily a set
of three parameters of the rotation group should be introduced (it
is thus rather a geometric concept, being extreme in its physical

4 Methodological importance of embodying of the Einsteinian gen-
eral relativity into a wider field of parametrized PN theories for pur-
poses of testing its validity is stressed e.g. by Damour (1992).
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content). However, in the sense of a formal decomposition, the
rigidity notion expresses successfully the behaviour of the mass
multipoles of the solar system bodies. It is then conventional
to describe more complicated physical body-phenomena (e.g.
tides, rotational deformation etc.) as additional terms to those
due to the rigid concept (Munk & MacDonald 1975).

As the relativistic contribution is small due to the presence
of the first-order relativistic parameters (squares of the orbital
velocities divided by the light speed, Schwarzschild radii di-
vided by the orbital distances), it is advisable to couple it with
the rigid concept quadrupoles [see the first term in Eq. (1)]. In
this case, the mass quadrupoles M4 satisfy equations (see e.g.
Dixon 1979)

dMA

T ~STFap { UMbz}

(A1)

where Q% , = €qbc27 is a dual antisymmetric tensor to the vec-
tor of the angular velocity of the body A. Though theoretically
elegant, this approach is not suitable for astronomical calcula-
tions. Luckily the solution of Eq. (A1) is known explicitly and
allows us to express quadrupole components directly in terms
of the parameters of the proper rotation of the bodies. Moreover,
because it is conventional in astronomical and geodynamical re-
search to use spherical harmonics analysis of the gravitational
fields with the corresponding notion of harmonic coefficients
(CP,SA ), we seek expressions of the M2, in those terms.
If the system co-rotating with a particular body is defined by
the principal axis of the moment of inertia, then all quadrupole
terms vanish with the exception of two: J& = —Cj; and C3).
Next, assuming that the rotation of body A is parametrized by
the set of Euler angles (14, 04, ¢a), One gets after expansion the
following expressions of the mass quadrupoles [to be inserted
in Eq. (1)]

Mp(T) = J5 Maa% Aab(8a, ¥a) (A2)

where

1 . 1 3.
Ay =% sin? 04 cos 29 + 3 (1 -3 sin? 0A> ,

1 1
A =— :/—5 sin® 65 cos 29p + 3 (1 - % sir»n2 9A> ,

A33=—§(1—%sin29A) ,

| .
Ap =—— sin? @4 sin 29a

V2

1 .
Az =— 3 sin 204 sin Y

1
Ay =3 sin 20 sin ¥ ,

for those related to the principal quadrupole terms J2', and

MA(Ta) = Co MaaiBab(¥a, 0a, $a) (43)
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where
By = (1 +cos®fa) cos 1ha cos 2¢a

+2c0s 04 sin 14 sin 2¢a + 6sin® O cos 2¢4 ,

By = — (1 +cos® fa) cos iha cos 2¢a
— 208 04 sin 4 sin2¢5 + 6 sin? 65 ¢ cos 204 ,
By; =— 12 sin? @, cos 204 ,

Biz = (1 +cos? 0a) sin 1ha cos 2¢a

+ 20804 cos Pp SIN2¢4 ,
B3 =2sin 04 (sin 9a sin 2¢a + sin 1 cos B cos2¢a)
By3 =2 sin 04 (sin 1 sin2¢p — sin s cos O cos2¢p) ,

for the part associated with the Cj) coefficient. Parameter a,
denotes a characteristic dimension of body A related to the def-
inition of the quadrupole harmonic coefficients (it finally drops
out from the definition of quadrupole tensor M?2,). Notice that
the J,-associated part does not depend on the angle ¢4 of the
proper rotation due to axial symmetry.

Finally, let us recall the definition of the symmetric and
trace-free part of a second-rank tensor t;; [Eq. (1)]
STF” [ti]’] = % (tij +tji) - %5ijTI' ), (A4)
where §;; is the Kronecker symbol and Tr(t) stands for the
tensor trace. In particular, we have

1
=6y .

STy ["ija] = STFy [nf\an\B] =iy = 3
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