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Abstract

The ESA mission BepiColombo will include a Mercury Planetary Orbiter equipped with a full complement of instruments to perform
Radio Science Experiments. Very precise range and range-rate tracking from Earth, on-board accelerometry, altimetry and accurate angular
measurements with optical instruments will provide large data sets. From these it will be possible to study (1) the global gravity !eld
of Mercury and its temporal variations due to tides, (2) the medium to short scale (down do 300 � 400 km) gravity anomalies, (3) the
rotation state of the planet, in particular the obliquity and the libration with respect to the 3=2 spin orbit resonance and (4) the orbit of
the center of mass of the planet.
With the global gravity !eld and the rotation state it is possible to tightly constrain the internal structure of the planet, in particular to

determine whether the solid surface of the planet is decoupled from the inner core by some liquid layer, as postulated by dynamo theories
of Mercury’s magnetic !eld. With the gravity anomalies and altimetry it is possible to study the geophysics of the planet’s crust, mantle
and impact basins. With the orbit of the planet closest to the Sun it is possible to constrain relativistic theories of gravitation.
The possibility of achieving these scienti!c goals has been tested with a full cycle numerical simulation of the Radio Science Experiments.

It includes the generation of simulated tracking and accelerometer data, and the determination, by least squares !t, of a long list of variables
including the initial conditions for each observed arc, calibration parameters, gravity !eld harmonic coe?cients, and corrections to the
orbit of Mercury. An error budget has been deduced both from the formal covariance matrices and from the actual di@erence between
the nominal values used in the data simulation and the solution. Thus the most complete error budget contains the e@ect of systematic
measurement errors and is by far more reliable than a formal one. For the rotation experiment an error budget has been computed on the
basis of dedicated studies on each separate error source.
The results of the full cycle simulation are positive, that is the experiments are feasible at the required level of accuracy. However,

the extraction of the full accuracy results from the data will be by no means trivial, and there are a number of open problems, both in
the data processing (e.g., the selection of the orbital arc length) and in the mission scheduling (e.g., the selection of the target areas for
the rotation experiment). c© 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The European BepiColombo mission will be launched in
the year 2009, and will achieve orbit insertion around Mer-
cury at some time in 2011 (or perhaps in 2012, depending
upon the selected launch window). The innermost planet of
the solar system was last visited by Mariner 10 in 1974–
1975.With its small Ceet of three spacecraft and a large com-
plement of advanced scienti!c instruments, BepiColombo
should provide a huge leap forward in our knowledge of
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Mercury and, as a consequence, in our understanding of the
structure, formation and evolution of the terrestrial planets.
This paper is speci!cally dedicated: !rst, to the de!nition

of the goals to be set for the understanding of the internal
structure of the planet, from the point of view of gravimetry,
geodesy and solid geophysics; second, to describe the exper-
imental method, the so-called Radio Science Experiments,
to be used to obtain the necessary measurements; third, to
the assessment of the possibility to achieve the stated goals
with the available resources. This assessment has been con-
ducted by means of a full cycle numerical simulation of
the experiments. Besides the simulation results we discuss
the di?culties found in the processing of the simulated data
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(which presumably would occur also in the processing of
the real data), the main limiting factors controlling the accu-
racy of the results, and some possible ways to remove these
limitations to further increase the science return.
We anticipate that the results of the simulations have been

favorable, that is the scienti!c goals are achievable with
the proposed instrumentation. However, the task of actually
extracting the full accuracy results from the data appears far
from trivial, and we cannot claim that we have solved all the
problems, which will require an additional research e@ort,
to be conducted in the years between now and 2011.

1.1. Science background

The gravity !eld of Mercury is essentially unknown. The
tracking data from the three Cy-by of Mariner 10 in 1974–
1975 have been reanalyzed (Anderson et al., 1987), to give
a low accuracy estimate of the normalized degree 2 coe?-
cientsC20 =−(2:7±0:9)×10−5 andC22 = (1:6±0:8)×10−5
(values in the body-!xed frame of the principal axes of in-
ertia tensor). This level of knowledge does not allow to
constrain in a signi!cant way the internal structure of the
planet. Moreover, already Newton (1687) had shown that
no amount of information on the gravity !eld—measured
outside the body of the planet—can be su?cient to recon-
struct the internal mass distribution in a unique way. In fact
there is no way to determine uniquely the internal structure
by remote sensing; but, it is possible to strongly constrain
the models of the interior if the low degree coe?cients of
the gravity !eld are accurately determined, and at the same
time the rotation state of the planet is accurately determined
(Spohn et al., 2001). In simple words, knowing in which way
the rotation state of the planets reacts to external torques (in
this case, to the di@erential attraction from the Sun), and also
knowing the low degree gravity !eld, allows to solve for the
principal moments of inertia of the planet. If the planet has
a liquid layer, completely decoupling a more or less rigid
crust from a solid core, it is possible to separately estimate
the moment of inertia of the solid layer above the liquid in-
terface. Moreover, accurate measurements of the low degree
and order (2–4) coe?cients of the development in spheri-
cal harmonics of the gravity !eld impose global evolutive
constraints. The static part of the !eld provides informa-
tion on how the global shape of Mercury has been a@ected
by the solar tide over its history, while the time-dependent
part, parametrized mostly by the Love number k2, provides
information on the elasticity of the response of the bulk of
Mercury to externally induced deformations.
Lateral inhomogeneities in the mantle at a wavelength

comparable to the height of the orbiter above the surface
could be deduced from high order harmonics (from this point
of view, the measurements performed near the pericenter
are the most useful). By analogy with the Moon, we may
ask whether Mercury has “mascons”, large positive anoma-
lies in density at comparatively low depths (50–100 km).

The lunar mascons are well understood in terms of in!ltra-
tion of basaltic lava with a density higher than that of the
crustal rocks. This results from the fracturing of the crust,
down to the crust–mantle interface, by a large impact. Since
the thickness of the crust of Mercury is very poorly con-
strained at present, and since the albedo=color contrast be-
tween the supposed maria of lava and the highlands is much
less on Mercury, we have no way to predict quantitatively
what a gravity map of the planet could reveal. However,
the absence of mascons would be very surprising. Thus we
can only propose to measure, as well as the orbital con!g-
uration allows us, the local gravity anomalies. The depth
of the crust–mantle interface can be constrained using the
gravity and the topography data from the altimetry, with the
assumption that the local variations of the gravity !eld are
caused by variations on the crust thickness.

1.2. Statement of objectives

The goals of the Radio Science Experiment can be qual-
itatively described as follows:

1. to measure the rotation state of Mercury, to an accuracy
allowing to constrain the size and physical state of the
core of the planet;

2. to measure the global structure of the gravity !eld of
Mercury, to an accuracy allowing to constrain the internal
structure;

3. to measure the local gravitational anomalies of Mercury,
to an accuracy allowing to constrain the structure of the
mantle, the crust=mantle interface, and characterize the
mascons; and

4. to measure the orbit of Mercury around the Sun and the
propagation of radio waves between the Earth and Mer-
cury in order to test general relativity to an unprecedented
level of accuracy through improving constraints on the
post-Newtonian parameters.

Note that the last of these goals is outside the scope of
this paper; it is discussed in Iess and Boscagli (2001) and
Milani et al. (2001).
To give quantitative statements of the !rst 3 goals we need

to introduce the normalized harmonic coe?cients C‘m; S‘m
of Mercury’s gravity potential:

U =
GM
R

∑
‘m

(
R
r

)‘+1

P‘m(sin �)

×[C‘m cos(m�) + S‘m sin(m�)];

where G is the gravitational constant, M;R are the mass
and the radius of the planet, r the distance from the center,
�; � the longitude and latitude, P‘m the normalized Legendre
function, ‘ is the degree and m6 ‘ the order. The resolution
of the gravity !eld modeled by harmonics up to degree ‘ is
�R=‘. The goal of a gravimetry experiment can be expressed
in terms of the signal-to-noise ratio; by this we mean the
ratio between the expected coe?cients at a given degree ‘
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and the error, including random error and systematic error,
in the same coe?cients. For BepiColombo, with a pericenter
of the orbit at 400 km altitude, the goal should be to have a
signal one order of magnitude above the noise at the degree
corresponding to a resolution of 400 km, that is ‘ � 20. The
signal, that is the harmonics of the gravity !eld of Mercury,
is of course unknown, but the order of magnitude is predicted
by the so-called Kaula’s rule (Kaula, 1966) by which the
average (in the RMS sense) value of the coe?cients of
degree ‘ is � c=‘2. The constant c has a value depending
upon the planet: c � 9 × 10−6 for Earth, c � 10−5 for
Venus, c � 10−4 for Mars, c � 3 × 10−4 for the Moon.
Since c scales roughly with the inverse of the surface gravity
(Vincent and Bender, 1990) we can expect for Mercury c �
3× 10−5.
For the low degree harmonics, a much better relative ac-

curacy is required to constrain the models of the planetary
interior; the signal-to-noise required is about 103 for degrees
2–4. The Love number k2 and the corresponding dissipation
factor Q2 are measures of the response of the solid body of
Mercury to the tidal deformation induced by the Sun; for pre-
cise de!nitions see Munk and Macdonald (1960, Chapter 5).
They appear in the equations of motion of a satellite of Mer-
cury as time variations of the harmonic coe?cients of de-
gree ‘=2 depending upon the mercurycentric position of
the Sun. The Love number k2 for the Earth is � 0:3, while
the dissipation factor Q2 � 20 (at very low, tidal frequen-
cies); is it not easy to predict the values for Mercury, but the
dissipation factor should be signi!cantly larger, hence the
phase lag of the solid tidal wave is very di?cult to measure.
The value of k2 is an important constraint in the models for
the interior of Mercury (Spohn et al., 2001), thus it would
be desirable to measure it with an accuracy of 1% or better.
To describe the rotation of the planet we need to refer to

the principal moments of inertia A; B; C of the planet; C is
the largest one, corresponding to an axis close to the rotation
one. If a solid upper layer is decoupled from a solid inner
core by a complete liquid layer, the largest moment of iner-
tia Cm of the solid upper layer alone can be measured inde-
pendently (Peale, 1976). This will be described in Section
5. A signi!cant goal would be to measure the ratio Cm=C,
which would be 1 for a frozen solid planet, and is expected
to be � 0:5 for a planet with an important liquid layer, with
an accuracy of 0:05 (i.e. ≈ 10% of the quoted range).
The degree of mass concentration towards the center

of the planet is measured by the concentration coe?cient
C=MR2, whose value is an important constraint to the size
and density of the core; the value is 0:4 for a homogeneous
planet, and is expected to be signi!cantly less for Mercury;
a signi!cant goal would be to measure this to an accuracy
of 0:003, which means � 1% of the expected value.

1.3. The Radio Science Experiments

The Radio Science Experiments are a complex of mea-
surements and scienti!c goals; note that it is not possible to

separate them neatly in independent experiments, but each
one of them depends to some extent upon the intermediate
and !nal results of the others. Nevertheless we can distin-
guish a gravimetry experiment, with the goal of determin-
ing the gravity !eld of Mercury; a rotation experiment, with
the goal of determining the rotation state of Mercury and
a relativity experiment, with the goal of determining the
post-Newtonian parameters and other quantities of interest
in the very accurate dynamic modeling of the solar system,
such as the mass and the dynamic oblateness of the Sun.
The basic idea is as follows. The BepiColombo Mercury

Planetary Orbiter (MPO), themain spacecraft of themission,
will be tracked from ground antenna(s) with a ultra-stable
multiple frequency radio link; range and range-rate will be
thus measured with great accuracy (the expected RMS are a
few tens of cm and a few tens of micron=s). Note that these
are among the most accurate measurements in all !elds, at
the level of 1 part in 1012 for range and a few parts in 1010

for range-rate.
This will allow an extremely accurate orbit determina-

tion, which in fact will result in three separate data products
(Section 3):

1. the initial conditions of the mercurycentric orbit of
the spacecraft, for each short arc corresponding to
an observing session from the ground antenna (see
Section 2.1);

2. the corrections to the orbit of Mercury; and
3. the parameters appearing in the equations of motion
of the spacecraft, including the harmonic coe?cients
of the planet’s gravity !eld and the nongravitational
perturbations.

The nongravitational perturbations, particularly strong in
the intense radiation environment of Mercury, can be re-
moved from the list of unknowns by replacing them with the
reading of the on-board accelerometer (in fact, some of the
unknown parameters are replaced by the calibration coe?-
cients of the instrument, see Section 2.2, but the number of
unknowns is sharply reduced). In this way not only the orbit
of the spacecraft (and that of Mercury) is better determined,
but especially the e@ects of the gravitational anomalies are
well isolated by any other perturbation which can act with
similar e@ects.
Since the pericenter of the MPO will be at an altitude of

400 km, its orbit will be mainly sensitive to gravity anoma-
lies with a scale equal or larger than about 400 km. How-
ever, the MPO will have a moderately elliptic orbit, with
apocenter at an altitude of 1500 km. The orbit will be polar,
with pericenter always located at a low latitude (between
17◦ South and 17◦ North), thus the surface of the planet will
be overCown at such a low altitude only over a latitude band
around the equator. However, we have checked that the en-
tire surface will be overCown at less than 750 km altitude:
the polar regions will be covered more often but from some-
what higher altitude, which results in some compensation.
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The tracking data, especially the range-rate, taken during the
low portion of the orbit will be most sensitive to the gravity
anomalies of degree up to ‘=20. The tracking data taken
during the high portion of the orbit will be more sensitive
to the low degree harmonics, and to the Love number k2.
With all that, the data processing needs to be done in a sin-
gle global least squares !t, and all the harmonic coe?cient,
calibration coe?cients, initial conditions and Mercury orbit
corrections will be solved at once.
The Mercury orbit corrections will then be fed as input to

a !t solving for the orbit of the planets Earth and Mercury,
and for the relativistic post-Newtonian parameters (Iess and
Boscagli, 2001; Milani et al., 2001). Since the poorly known
quadrupole coe?cient of the solar gravitational !eld can pro-
duce a measurable e@ect at the level of precision of the Bepi-
Colombo tracking, we consider it as a solved-for parameter
as well. Similarly, a small adjustment of the solar mass (or
equivalently the astronomical unit which is presently known
with a precision of ≈ 30 m) is also allowed.
The initial conditions of the mercurycentric orbit of the

MPO, available for every short observed arc, can be prop-
agated to estimate the position of the spacecraft even out-
side of the observation sessions. The accuracy is of course
degraded, e.g., tens of meters rather than the tens of cen-
timeters possible within the observed arcs; but still the MPO
will be an extremely stable platform realizing very accu-
rately an absolute, inertial reference system. From this plat-
form a high resolution camera (which of course is also used
for mapping the planet) will repeatedly look at a number of
patches on the surface.
The pointing direction of the camera will be well known,

because a star mapper (and=or possibly another camera, ex-
pected to search for Near Earth Objects) will de!ne the ori-
entation of the spacecraft in a stellar reference frame, which
in turn is related to an inertial frame by star catalogs contain-
ing good proper motion data (e.g., the ones exploiting the
results from Hipparcos). This allows one to compute the di-
rection from the MPO to a speci!c footprint on the surface;
by correlating two images it is possible to directly measure
the rotation of the planet in the inertial frame de!ned by the
MPO and the stars.
Once the rotation state of the planet is known, the values

of the obliquity � and of the libration in longitude � will be
used together with the values of the degree ‘=2 harmonic
coe?cients to solve for both C=MR2 and Cm=C; the relevant
equations are given in Section 5.
Organization of the paper: Section 2 discusses the

two main data sets we expect to have available from the
BepiColombo Radio Science measurements, their temporal
structure and the noise models. In Section 3 we discuss the
determination of the mercurycentric orbit of the spacecraft.
Section 4 presents the results on the gravity !eld of Mer-
cury, while Section 5 discusses the rotation experiment.
The conclusions are outlined in Section 6, together with
indications for the work to be done in order to be ready for
the arrival of BepiColombo at Mercury.

2. The measurements

To measure the gravity !eld and the rotation state of Mer-
cury we have to perform an accurate orbit determination of
both the spacecraft and the planet, and measure the orienta-
tion of the solid surface of Mercury in an inertial reference
frame. To accomplish this task we make use of the follow-
ing observable quantities:

1. the range and range-rate between the ground station(s)
and the spacecraft, provided by the ground station by
using the on-board multi-frequency transponder (Iess and
Boscagli, 2001);

2. the nongravitational perturbations acting on the space-
craft, given by the on-board accelerometer (Iafolla and
Nozzoli, 2001);

3. repeated images of selected areas on the surface of Mer-
cury, taken from the spacecraft with the high resolution
camera (Balogh et al., 2000, Section 3:1:2); and

4. images of the sky with reference stars, taken from the
spacecraft with either the star mappers (Balogh et al.,
2000, Section 6:4:5) or the NEO telescope which has
been proposed as an additional instrument.

Note that in this context by spacecraft we mean only
the Mercury Planetary Orbiter (MPO), since the Mercury
Magnetospheric Orbiter (MMO) is not equipped with the
necessary instrumentation (Ka-band transponders and ac-
celerometer, high resolution camera and star mapper) to
achieve top accuracy in the Radio Science Experiments.
The !rst step in a simulation of the Radio Science Experi-

ments is to simulate the data set which will be available from
all types of measurements. The datasets 3 and 4 are used
only in the rotation experiment, and they will be discussed
in Section 5; the datasets 1 and 2 are used in all the Radio
Science Experiments, and are described in this section.

2.1. Range and range-rate

The range and range-rate between the ground sta-
tion(s) and the spacecraft are obtained by means of a
multi-frequency link in X- and Ka-bands, allowing to re-
move the e@ects of the ionospheric and coronal plasma
along the path, provided by a high stability transponder on
board (Iess and Boscagli, 2001).

2.1.1. Visibility conditions
While the transponder could, in principle, provide contin-

uous measurements, the relative position and motion of the
ground antenna(s), the spacecraft, Mercury and the Sun limit
the actual measurement time to selected intervals. Studying
the time evolution of the complex geometry of the system
(Fig. 1) the visibility conditions of the spacecraft from the
ground antenna can be determined.
In the simulations we made the (worst case) assump-

tion of having just one ground station available, located
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Fig. 1. Geometry of the system, given by the ground station, Mercury and the BepiColombo spacecraft, determining the visibility conditions.

in Perth, Australia. From this station we assumed to have
range-rate measurements taken whenever possible, while the
range measurements were taken during only 2 min every
15 min, to minimize the impact on the downlink data rate
(see Balogh et al., 2000, Section 6:4:4). As mentioned above,
given the relative position of the planets, the Sun and the
probe, the link between the station and the satellite may not
be always possible. In particular, in order to establish the
visibility conditions from the ground station we took into
account the following limitations:

• Antenna pointing limitations: The observations are not
possible when the angle between the on-board antenna
axis (which is always pointed in the direction opposite to
the center of Mercury) and the ground station becomes
larger than a threshold value (115◦ for the current design,
see Balogh et al., 2000, Fig. 6:4 − 19). This condition
includes the case of the satellite eclipse behind Mercury.

• Ground antenna elevation limit: The antenna cannot be
operated if the elevation of the satellite above the horizon
is lower than a given value; we have set this value to
20◦ to discriminate against data which could be of lower
accuracy due to errors in the models for tropospheric
propagation.

• Sun corona limitation: The ground antenna cannot be
aimed directly to the Sun, the o@set angle has a minimum
value. The use of dual band tracking allows one to main-
tain the accuracy of the range and range-rate even when
the radio waves are passing at a few radii of the Sun above
the corona. In the simulation we have used the conserva-
tive assumption that this o@set must be above 2◦.

The time evolution of these limiting conditions were
studied during a one year data simulation; the spacecraft
antenna visibility conditions are summarized in Figs. 2
and 3, for a time span of 30 and 365 days respectively.
In the plots, the horizontal solid lines set the limits for the

three conditions described above. The curved line in the
middle denotes the angular distance between the ground
antenna line of sight and the direction to the Sun. The
constraint on this angle is not very demanding: the line
lies almost always above the 2◦ limiting value. The bot-
tom line gives the elevation angle of the ground antenna
and the top line denotes the angle between the ground
antenna line of sight and the spacecraft antenna. These
two constraints are satis!ed only for a limited amount of
time (the most stringent being the elevation of the ground
antenna). Since a measurement is possible only when all
the three visibility conditions are satis!ed, it turns out
that the probe is tracked by the ground station only for
the 26% of the time during a one year simulation time
span.
Plots such as Figs. 2 and 3 clearly show the interplay

of three periods: the orbital period of the spacecraft around
Mercury (2:3 h for the Mercury Planetary Orbiter), the ro-
tation period of the Earth (resulting in 8–10 h observing
sessions for the ground antenna) and the synodic period of
Mercury with respect to the Earth. Moreover, the orbital
plane of the mercurycentric orbit hardly precesses, thus there
are e@ects with period one year, related to the angle between
the Mercury–Earth direction and the orbital plane: e.g., oc-
cultations by the planet Mercury do not occur when the di-
rection to the Earth is almost orthogonal to the spacecraft
orbit plane.
Note that the transit time of the light from the ground to

the probe is not negligible (on average 8 min) and was taken
into account in the computation of the visibility conditions,
and in all the simulations. This requires a substantial change
in the standard algorithms used in satellite geodesy. For
a satellite of the Earth the light travel time is very short
with respect to the orbital period, and even with respect
to the integration step size, while in this case the state of
the spacecraft needs to be interpolated at a “radio waves
arrival time”. The algorithms to be used are very similar to
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Fig. 2. Visibility conditions for an interval of 30 days. Middle line (slowly varying): angular distance between the ground antenna line of sight and the
direction to the Sun. Bottom line: elevation angle at the ground antenna. Top line (high frequency): angle between the ground antenna line of sight and
the spacecraft antenna axis (see Fig. 1). The threshold values for these three angles are marked with solid lines at 2

◦
; 20

◦
and 115

◦
respectively.

Fig. 3. Visibility conditions for an interval of 365 days, with the same conventions as in the previous !gure. Visibility of Mercury from the ground
station is better in the !rst 100 days of the mission, which correspond to late spring and summer at the Australian ground station. Occultations by the
planet Mercury do not occur when the direction to the Earth is almost orthogonal to the spacecraft orbit plane, between days 200 and 310. The Sun
corona limitation is relevant only during six short intervals of time near conjunctions.
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the ones used for the processing of interplanetary radar data
(Yeomans et al., 1992).

2.1.2. The arc length problem
The measurement process has been divided in time inter-

vals, each called an arc. This is not just an arbitrary partition
of the dataset; for each arc we compute a separate set of
initial conditions, as if the spacecraft orbit was not causally
connected. The purpose of this over-parameterization is to
absorb the unmodeled perturbations, which accumulate with
time and would make impossible to solve for a purely de-
terministic orbit over much longer arcs. The motivation and
the algorithm of this multiarc method are discussed in Mi-
lani et al. (1995). This procedure works even if the mission
duration is cut into arcs of arbitrarily selected length (as in
Albertella and Migliaccio, 1998); however, it works better
if the arcs correspond to time intervals in which there are
many observations, separated by “dark” intervals with no
observations. Thus the partition into arcs needs to take into
account the time structure of the visibility of the spacecraft.
There are two obvious solutions in the case of an orbiter
around Mercury:

• the arcs could be terminated whenever one of the three
visibility conditions fails; these we call very short arcs;

• the arcs could be terminated only by the setting of Mer-
cury below the horizon, as seen from the station (or any-
way below the minimum acceptable elevation, we have
assumed 20◦); these we call short arcs.

Assuming a single ground station, the typical length of
a short arc is around 8 h; note that, due to the occultations
of the probe behind Mercury, the range-rate observations
within such an arc are not continuous, but the eclipse periods
are less than 1 h.
The typical length of a very short arc is between 1:5 and

2 h, less than an orbital period. There are even “extremely
short” arcs, resulting from an eclipse occurring near the
station horizon crossing, lasting 0:5 h or even less. On the
contrary, when the mercurycentric orbital plane is roughly
orthogonal to the Earth–Mercury line of sight (see the inter-
val between days 200 and 310 in Fig. 3) there are no eclipses
and a very short arc is actually the same as a short arc.
As it will be clear from Sections 3 and 4, the choice

between short and very short arcs is critical to achieve the
best results in determining the parameters of interest, for
both the gravimetry and the relativity experiments. For the
rotation experiment somewhat longer arcs will be considered
in Section 3.2.
The attitude=orbit maneuvers performed with jets are

cause for concern; while orbit maneuvers are infrequent, the
attitude ones are required to discharge the reaction wheels;
they also result in changes of linear momentum because the
jets are never exactly aligned and do not give the same im-
pulse. Their number and collocation in time with respect to
the ground station operating schedule need to be controlled

carefully, because they could also result in a decrease of
the e@ective duration of the orbital arcs. The rotation ex-
periment, which needs to propagate the knowledge of the
spacecraft position over time spans beyond the observing
sessions, could also be a@ected.

2.1.3. Error model
A nontrivial noise model (i.e., not just white noise) was

applied in the simulation of the range and range-rate ob-
servations; it is justi!ed, both by the physical models and
by experience, and discussed in detail by Iess and Boscagli
(2001). Fig. 4 shows the behavior of the noise during the
one year simulated time span. The RMS values are 10 cm
for range and 18 �m=s for range-rate, but the noise model
is correlated and the RMS is not enough to de!ne it. For
the range-rate, the noise is obtained (by inverse Fourier
transform) from a noise spectrum containing separate com-
ponents accounting for the known physical sources of
error, e.g., interplanetary plasma, the Earth’s troposphere,
transponder noise, etc. For the range, a random noise is
superimposed upon a constant o@set plus a quadratic drift.
The long term drift, clearly visible in Fig. 4, results from the
assumption of component degradation in the transponder.
This systematic drift in the range measurements has a very
critical role in the relativity experiment, but it turns out to
have little impact on the gravity and rotation experiments,
which essentially use the range-rate data.

2.2. Nongravitational accelerations

The accelerometer measurements were assumed to be
continuous, with an integration time of 20 s. There is no
interruption of the measurement when the spacecraft is not
visible from the ground station because the data can be eas-
ily stored.

2.2.1. Accelerometer calibration and noise
Again, a nontrivial model was used for the instrument

noise. Fig. 5 shows the behavior of the accelerometer noise
during the simulated time span of one short arc. The physical
model justifying this error model, and the results of the long
term ground tests of the Italian Spring Accelerometer (ISA)
are described in Iafolla and Nozzoli (2001).
The calibration of the accelerometers is always a thorny

issue, because all accelerometers perform only relative mea-
surements. The calibration formula for ISA is as follows:

y= ax + bT + c + · · · ;
where x is the accelerometer reading, y is the absolute ac-
celeration to be measured, a is a scale coe?cient which is
calibrated in Cight to an accuracy su?cient for the purpose
of this experiment and T is the temperature. The dots stand
for nonlinear e@ects and short period noise which are known
(from the ground tests) to be smaller than the required ac-
curacy. The coe?cient b=5×10−4 cm=s2 K is well known
from ground measurements, but the absolute value of the
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Fig. 4. Noise model for the on-board transponder; the top panel shows the noise in the range measurements, in centimeters, and the bottom one shows
the noise in the range-rate measurements, in micrometers per second.

Fig. 5. Accelerometer noise model, in units of 10−6 cm=s2. The grey line shows the original noise, as given by the adopted model, while the black thick
line shows the !ltered noise, with the short period components smoothed.
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temperature is not easy to measure with the necessary ac-
curacy and the absolute calibration c is unknown (its value
in space is anyway di@erent from the one which could be
measured on the ground). Thus the procedure needs to in-
volve a digital calibration, that is the composite d= bT +
c is added to the variables to be determined in the least
squares !t.
The critical issue is how d can change with time. Ex-

perience with this (and other) accelerometers indicates that
the calibration in this sense does not change on time scales
shorter than 104 s, apart from the changes resulting from
temperature variations. The latter occur mostly over time
scales comparable to the orbital period and longer. The
changes in the heat Cow on the external surface of the space-
craft occur mainly with the orbital period, because of the
changes in the spacecraft attitude with respect to the Sun
and in the illuminated portion of the Mercury surface which
is visible. Since the spacecraft is very strongly insulated, it
has a huge thermal inertia and the short term changes in the
heat Cow result in very small changes in the internal temper-
ature. Thus it is possible to assume d as a constant over one
very short arc; the case of the short arcs is more critical, as
will be shown later. We have already experimented, in the
BepiColombo simulations, with this digital calibration and
found that the addition of the corresponding d variables to
be solved has indeed improved the results.
Thus we have assumed an error model of the accelerom-

eter measurement consisting of noise correlated over time
scales of the order of the orbital period, as in Fig. 5, simu-
lating thermally driven changes to the calibration. However,
the digital calibration removes the e@ects with longer time
scales. The short period variations, simulating instrumen-
tal noise, are visible in the grey curve, and were smoothed
by means of a low pass !ltering of the signal; we used a
!nite impulse response (FIR) linear !lter (Carpino et al.,
1987). This smoothing was necessary to avoid instability in
the numerical integrator used to propagate the orbit of the
spacecraft, and does not decrease the accuracy of the orbit
because the high frequency components are mostly noise,
and anyway would result in very small displacements.
It turns out, as discussed in Section 4, that the systematic

components of the acceleration noise are the most important
cause of the systematic errors in the results for the determi-
nation of the gravity !eld. A simulation based upon the as-
sumption of Gaussian uncorrelated noise would have given
results with illusory precision. This also implies that an im-
provement in the performance of the accelerometer, and a
better understanding of its error model allowing a better
absolute calibration, would allow to obtain in the gravime-
try experiment results even better than those presented in
Section 4.

3. Orbit determination

After the data simulation process described in Section
2 the available data consist of range-rate measurements (a

datum every 20 s, taken whenever possible) and range mea-
surements (a datum every 20 s, but taken during only 2 min
every 15 min), plus the !ltered accelerometer data (contin-
uous with a point every 20 s). The acceleration data are fed
into the corrector to compensate for the inaccuracy of the
dynamical modeling of the nongravitational perturbations.
In the algorithm to obtain a least square !t of the range

and range-rate measurements there is a !rst necessary step.
We need to solve for the initial conditions of the spacecraft
mercurycentric orbit. This is indeed possible, with a stan-
dard least squares !t algorithm; for each orbital arc, the lin-
earization of the problem consists of linear equations with
coe?cients forming a 6 × 6 matrix, the normal matrix N ,
which has to be inverted to obtain the covariance matrix �.
The problem is that the normal matrix turns out to be very
poorly conditioned (with very large ratio between the largest
and the smallest eigenvalue); as a result, there is a loss of
precision, that is the uncertainties in the initial conditions
are much larger than the uncertainties in the measurements.
This phenomenon has to be fully understood; !rst, be-

cause without a modi!cation of the algorithm allowing to
stabilize the orbit determination, the results of all the Radio
Science Experiments would be degraded; second, because
this problem is intrinsically related to the geometry of the
observation and orbit determination process, as opposed to a
numerical accuracy and=or software problem. The next sub-
section introduces the mathematical theory of this e@ect and
indicates some of the possible solutions.

3.1. Rank deBciency

In the process of orbit determination of an object moving
in outer space, be it a spacecraft or a natural body (e.g., a
planet), the problem of rank deBciency often occurs. In the
extreme case, the normal matrix N (of type n × n) has a
rank r ¡n and it cannot be inverted at all; this implies that
the least squares !t has a solution on a set not consisting
of a single point, but containing a manifold with dimension
n− r. In a more common case, N is nondegenerate, but has
n− r eigenvalues which are smaller than the largest one by
many orders of magnitude.
This phenomenon can be explained by !nding a symmetry

group G such that the action of the group on the space of
the parameters to be solved does not change at all the target
function Q (the sum of the squares of the residuals). In this
case all the values of the parameters which can be obtained
by the group action starting from some minimum of Q are
also minima, and the dimension of this set of solutions is the
rank de!ciency n − r. Let us assume that the symmetry is
broken, but still holds approximately, that is, by applying to
the minimum the symmetries the target function Q increases
by a very small amount, of the order of "2, where " is a small
parameter. Then the normal matrix will have an eigenvalue
of the order of "2, and the poor conditioning of N will result
in a loss of precision, amplifying the uncertainty by a factor
of the order of 1=".
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The case of an orbiter around another planet, e.g.,
Mercury, tracked from the Earth by means of range and
range-rate measurements, has been rigorously studied (Bo-
nanno and Milani, 2001). This problem has an exact rank
de!ciency in the simpli!ed case where (i) the planet has a
spherically symmetric gravity !eld and (ii) the length of the
arc for which initial conditions are determined is negligible
with respect to the orbital motions of the Earth and of the
planet. In this ideal case the rank of the normal matrix is
5, that is, only !ve orbital elements can be determined. If
mercurycentric Keplerian orbital elements are used, with
the reference plane orthogonal to the Earth–Mercury line
of sight, than the longitude of the node # cannot be solved
by least squares !t.
If the change in the Earth–Mercury direction, within the

time span of the arc, is by an angle ", then the normal ma-
trix has an eigenvalue of the order of "2; an explicit esti-
mate is available. Also the oblateness of the planet results
in symmetry breaking, but, in the case of a Mercury orbiter,
its contribution to the increase in the target function is less
important.
Two conclusions can be drawn from this theoretical ana-

lysis. The approximate rank de!ciency could be completely
eliminated by using orbital arcs, for which a single set of
initial conditions is determined, with a length comparable to
the synodic period of Mercury (with respect to the Earth).
This is not possible: over an arc of several weeks the system-
atic errors in the orbit determination resulting from dynamic
model errors (mainly nongravitational perturbations) would
by far exceed the loss of precision occurring in short arcs.
Then it is necessary not to attempt a fully independent orbit
determination for a short arc; the sixth orbital element needs
to be constrained by means of information obtained from
longer arcs, even if this constraint has in itself lower accu-
racy. Among the di@erent algorithms available to perform
this constraint (discussed in Bonanno and Milani, 2001) we
have used the simplest one, the standard collocation method:
some a priori knowledge of all the initial conditions is as-
sumed, at levels of accuracy compatible with the systematic
errors in the dynamic model for arcs spanning several days.
In a complete treatment of the orbit determination around

another planet we should include the uncertainty on the orbit
of the planet around the Sun. In the case in which this uncer-
tainty is bigger than the accuracy of our observations, this
would require to determine, for each arc, also six orbital el-
ements of the planet. Another approximate symmetry, again
intrinsic in the geometry of the problem, would then result
in a loss of precision. This new symmetry, together with
the previously studied one, would lead to a 12× 12 normal
matrix N with 5 eigenvalues much smaller than the largest
one, that is we would have an approximate rank de!ciency
of 5. This would negatively a@ect the precision of both the
mercurycentric orbit of the spacecraft and the heliocentric
orbit of Mercury.
This problem is solved by correcting the heliocentric po-

sition and velocity of the planet only in the direction of the

Earth–planet line of sight. Thus each arc has only 8 local
parameters, out of which 2 are indirect measurements of the
range and range-rate to the center of mass of the planet,
to be used in the orbit determination of Mercury for the
purpose of the relativity experiment, as described in Milani
et al. (2001).

3.2. Results and problems

In the simulation of the di@erential correction process
we have assumed an a priori knowledge of the initial mer-
curycentric position with an RMS of 3 m in each coordinate,
and 3 m=day in each coordinate of the velocity.
As pointed out in Section 2.1, we can work with two

kinds of arcs: short and very short. In the !rst case the
simulation produced 353 arcs, while in the second one we
are dealing with 1267 arcs, covering a one year nominal
mission duration.
In Fig. 6 we summarize the results of the initial condi-

tions determination for very short arcs. For each arc, the
circles represent the formal uncertainty of the initial con-
dition determination, while the crosses give the “real” er-
ror, obtained as di@erence between the initial conditions
used in the data simulation and the values determined in
the !t; the latter take into account all the systematic er-
ror components. The spacecraft orbit can be usually deter-
mined very well; nonetheless we note that there are many
arcs for which both the formal uncertainty and the error are
large. These are generally “extremely short” arcs, during
which the angular displacement of Mercury is very small,
hence the rank de!ciency is close to an exact one. In fact
there are many arcs for which the formal position uncer-
tainty is about 3 m. This can be understood by considering
the case in which the eigenspace of the normal matrix cor-
responding to an eigenvalue of the order of "2 is along one
of the coordinate axes; than the knowledge of that coordi-
nate would not be improved at all with respect to the 3 m a
priori.
In the case of the short arcs the time span is enough

to allow for some angular motion of the Earth–Mercury
line of sight and the rank de!ciency problem is not severe;
on the other hand, from Fig. 7, we note that in this case
the errors lie almost all above the formal uncertainty, due
to the systematic e@ects from nonmodeled nongravitational
perturbations, accumulated over the time span of the short
arc. In fact the RMS value of the actual errors was 123 cm for
the short arcs while it was only 51 cm for the very short arcs.
The loss of accuracy due to the rank de!ciency is inversely
proportional to the time span, while the accumulated e@ect
of unmodeled accelerations is proportional to the square of
the time span (for the along track component), thus it is clear
that the ratio of the two e@ects can change sharply when the
arc length increases. As it is apparent from Fig. 7, with the
very short arcs some especially poor orbit determinations
occur for a few arcs; this can be understood because the
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Fig. 6. Formal uncertainties (circles) and actual errors (crosses) in the initial conditions determination for each arc, in the very short arc case. The arcs
cover one year (nominal mission duration).

Fig. 7. Formal uncertainties (circles) and actual errors (crosses) in the initial conditions determination for each arc, in the short arc case. The arcs cover
one year (nominal mission duration).
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Fig. 8. Uncertainty in the position knowledge of the orbiter in a mercurycentric frame (short arcs, interrupted only by the setting of Mercury below the
horizon at the station). The uncertainty is computed for one day after the observations, which is more than what is required for the rotation experiment.

“bad” arcs are either especially short or have an especially
unfavorable geometry. Some algorithm could be devised to
select some arcs to be discarded, thus reducing the RMS
error.

3.2.1. Accuracy of orbit predictions for the rotation
experiment
The rotation experiment is described in Section 5; the

only component of its error budget which depends upon the
orbit determination process is the error in the mercurycentric
position of the spacecraft. Fig. 8 shows the errors in the
position of the spacecraft one day after the observations,
forming one short arc, which have been used in the !t. The
!gure shows only the actual errors, since the formal errors
would largely underestimate the uncertainty; the RMS is
22:9 m, for this simulation over 6 months.
However, this is an overestimate of the contribution of

orbital uncertainty to the rotation experiment. We have used
propagation of 24 h for the convenience of comparing the
initial conditions of each short arc with the prediction re-
sulting from the next short arc, which is the next day. But
the propagation needs to be done for no more than half that
time, since it can be done both from the previous and from
the following day; thus we estimate the RMS error would
be less than 10 m.

4. Determination of the gravity �eld

The gravimetry experiment, that is the determina-
tion of the gravity !eld of Mercury, has been simu-
lated by using a hypothetical gravity !eld obtained as
follows. The mass and the degree 2 coe?cients have
been set to the values from Anderson et al. (1987).
Normalized coe?cients of degrees 3–20 have been ob-
tained by multiplying the corresponding harmonic co-
e?cients for the Earth by a factor 3. This roughly
simulates a gravity !eld following a Kaula’s rule 3 ×
10−5=‘2 (for the RMS of the normalized coe?cients of
degree ‘).
The harmonic coe?cients are solved in a global least

squares !t, using all the data, together with corrections to
the orbit of Mercury, accelerometer calibration constants
and initial conditions for each arc. The multiarc algorithm
(Milani et al., 1995) has the property that the correlations
between the local variables (applicable only to a single arc,
e.g., initial conditions) and the global variables (such as the
harmonic coe?cients) are taken into account, providing a
consistent covariance matrix for all the variables. Neverthe-
less, we need to investigate the systematic errors and not
only the random ones, and this has been done by comparing
the values determined in the di@erential correction process
with the “true” values used in the data simulation.
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Fig. 9. Results of the simulation for the determination of the coe?cients of the gravity !eld of Mercury. As a function of the degree ‘ the four lines in
the !gure show, from top to bottom: the expected RMS value of the coe?cients according to the well established Kaula’s rule; the random values used
in the simulation (degree 2 coe?cients have been set to the value determined with the Mariner 10 tracking data); the actual RMS error including the
systematics and the formal RMS uncertainty of the results.

4.1. Results of the full simulation

The simulation results for the determination of the har-
monic coe?cients of the Mercury gravity !eld are summa-
rized in Fig. 9, where the gravity signal, expressed by means
of harmonic coe?cients as a function of the harmonic de-
gree ‘, is compared with the uncertainty in the results in the
formal sense (as described by the covariance matrix) and
to the actual error found in the output of the simulated full
cycle data processing.
As already pointed out, the assumptions used in this simu-

lation include a full error model for both the range=range-rate
observations and the accelerometer measurements, and not
only white noise errors. This is why it is essential to com-
pare the actual errors to the formal standard deviation as de-
rived from the covariance matrix. Fig. 9 indeed shows that
systematic errors are dominant; an estimate of the achiev-
able accuracy based upon the formal covariance would be
misleading by an order of magnitude, both for long and
short wavelength gravity signals. The simulation has actu-
ally been performed in two ways: with short arcs and with
very short arcs (see the de!nitions in Section 2.1). The re-
sults in Fig. 9 refer to the simulation with very short arcs;
in the other case, the systematic errors were larger by a fac-
tor between 2 and 5 (depending upon ‘), while the formal

errors are essentially the same. This means that the cause
of the systematic error in the results is in some incomplete
modeling, not absorbed by the variables included in the so-
lution, whose e@ect increases sharply with time. This is con-
sistent with the results shown by the orbit determination in
the two cases, in particular with the systematic e@ects ap-
parent in Fig. 7. The most likely explanation is that this is
the e@ect of the time dependent accelerometer calibration,
while the solution contains only a calibration constant for
each arc.
The results are particularly good for the medium to high

resolution gravity !eld: the signal-to-noise ratio is still 3×
10−3 at degree 10, and about 7 at degree 20. This means
the gravity anomalies (and geoid undulations) are well de-
termined down to a resolution (half wavelength) of 400 km,
roughly equal to the minimum altitude of the spacecraft, an
intuitive result indicating that the dynamical mismodeling is
not degrading the results.
Fig. 10 shows, for each degree ‘0, the cumulative er-

ror resulting from the sum of the errors done for degrees
26 ‘6 ‘0. In this case they are represented as gravity
anomalies on the surface of the planet; since the spherical
harmonics are orthogonal, the RMS of the cumulative error
in the gravity anomalies is obtained as the square root of
the sum of squares. One obvious feature of Fig. 10 is that
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Fig. 10. Results of the simulation for the gravity anomalies on the surface of Mercury. The two top lines are the signal present at each degree, the two
bottom ones are the accumulated error in the gravity anomalies up to a given degree. The values are in milliGal and have to be understood as RMS
over the entire surface.

the accumulated error resulting from inaccurate determina-
tion of the coe?cients up to degree 20 is much less than
the signal at degree 20. This implies that the omission error
resulting from truncation of the spherical harmonics expan-
sion at degree 20 is larger than the error internal to the solu-
tion. Thus we have been too conservative in our simulation,
and we should have used an expansion up to degree � 25
to bring the omission error at the same level as the internal
error. This also means that the BepiColombo data should
allow to solve, with a signal-to-noise ratio larger than 1, up
to degree � 25.
The relative accuracy for the coe?cients of degree 2, most

important for constraining the global internal structure, is
about 10−4; the Love number k2 is determined to a real ac-
curacy of 6 × 10−3. These results are satisfactory in that
they are good enough to allow for very strong constraints to
the models of the interior structure; only the result for the
Love number is worse by a factor � 2 than the a priori re-
quirements of Section 1.2. The problem is, the ratio between
the actual errors and the formal ones, deduced from the full
covariance matrix, is very high, with a maximum at � 60
in the case of the Love number k2 (see Table 1). We do
not fully understand the reason for such a high ratio, while
this ratio is6 10 for most harmonic coe?cients. It appears
that the cause of such large systematic errors is more in the
systematic components of the accelerometer noise, rather

Table 1
Summary of the results for the determination of the gravity of Mercury

Systematic error Random error

C20 −2:2× 10−9 1:3× 10−10
S21 1:8× 10−9 4:5× 10−11
C21 −5:1× 10−10 4:7× 10−11
S22 2:3× 10−10 1:5× 10−11
C22 7:5× 10−10 1:8× 10−11

k2 −6× 10−3 9:7× 10−5

than in the ones of the range and range-rate measurements.
This is also consistent with the sensitivity of the systematic
e@ects to the arc length. Obviously this is an open problem,
which should be fully investigated to explore the possibil-
ity of a further improvement in the results of the gravimetry
experiment.

5. The rotation experiment

The rotation of Mercury is the most peculiar among those
of all the planets and satellites of our Solar System. The
2=3 resonance between the rotation period and the orbital
period was discovered by direct measurement of the rota-
tion rate with Doppler radar, and explained from the point
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of view of mechanical stability in a series of fundamental
papers by Colombo (Colombo, 1965, 1966; Colombo and
Shapiro, 1966). As proposed by Colombo, the resonant ro-
tation of Mercury can be analyzed in terms of Cassini states,
generalizing those known for the 1=1 resonance, e.g., for
the Moon. In short, the rotation axis of Mercury lies in the
plane de!ned by the vectors normal to the orbit of Mercury
and normal to the mean orbital plane (which is close to the
ecliptic plane), and between the two vectors which form
an angle of ≈ 7◦. In fact the rotation axis is much closer
to the orbit normal: the obliquity � of the Mercury equa-
tor with respect to the orbital plane is estimated to be only
≈ 7 arcmin. The exact value of the obliquity is not known:
it is a function of the concentration coe?cient C=MR2.
Because of the large eccentricity of the orbit, a forcing

torque, periodic with the orbital period of Mercury, acts on
the equatorial asymmetric bulge of the planet. Thus the main
component of the libration induced by the nominal resonant
rotation is characterized by the same period, one Mercury
year, and consists of an oscillation in longitude of amplitude
�. That is, the surface of Mercury is rotated with respect to
a uniform rotation, with an expected displacement of ampli-
tude R� � 400 m at the equator. The strength of the forcing
torque contains the value of C22 and of the concentration
coe?cient C=MR2; the response depends upon the value of
the maximum moment of inertia C. The amplitude of the li-
bration in longitude is small for a rigid body, and increases
signi!cantly when the surface layer (crust and mantle) is
decoupled from the core; that is the moment of inertia e@ec-
tively determining the amplitude of the libration is Cm ¡C,
associated with the mass contained in the solid layer. Mer-
cury, like the Earth, should have a liquid outer core, since
it appears to have a dipolar magnetic !eld. This !eld is ac-
counted for by current dynamo theories, but would be hard
to explain for a completely solid planet.
The ratio of the moment of inertia of the decoupled surface

layer Cm to the moment of inertia C of the entire planet
(about the rotation axis) is the product of three factors:

Cm

C
=

Cm

B− A
B− A
MR2

MR2

C
;

where A and B are the other principal moments of inertia.
The !rst factor can be determined from the amplitude of the
forced libration in longitude �, the second factor from the
C22 harmonic coe?cient and the third factor from the Cassini
state obliquity � of the rotation axis (Peale, 1988). Each one
of the three factors is by itself an important scienti!c objec-
tive of the mission; the expected values are C22 � 1:6×10−5
from the Mariner 10 tracking data, C=MR2 = 0:34 for the
concentration coe?cient (must be ¡ 0:4) and Cm=C =0:5
(both highly uncertain). The product of the three factors pro-
vides a key to understand the physical state of the interior
of Mercury and the origin of its magnetic !eld.
The method to measure the rotation of the surface of

Mercury with respect to a nonrotating frame is outlined in
Fig. 11. Let G1 and G2 be the positions of the same

Fig. 11. Geometry of the rotation experiment. The on-board camera, when
the spacecraft is at S1; S2, takes images of a patch on the surface of
Mercury around the points G1;G2 respectively, at times selected in such
a way that these two points correspond to the same place on the surface.
The tracking of the spacecraft from the Earth does not need to be done
simultaneously.

reference point on the solid surface of Mercury at two well
separated times t1 and t2 (for the constraints on these times,
see Section 5.1). Let S1 and S2 be the positions of the
spacecraft at the same times, and let O be the center of mass
of Mercury. The vectors S1–O and S2–O are measured
by tracking from the Earth, in a reference frame which is
by de!nition inertial; the vectors G1–S1 and G2–S2 are
measured by the camera in a reference frame de!ned by
the star mapper measurements. Since this second reference
frame is also inertial to a very good accuracy, the absolute
rotation of the reference point on the surface of the planet
is obtained simply by

G1–O= (S1–O) + (G1–S1);

G2–O= (S2–O) + (G2–S2):

Of course this is a simpli!ed account; the images do not refer
to a single point on the surface, but to patches which have
to be correlated, and the error in this correlation must be
taken into account. The stellar reference system is realized
in an imperfect way, and the camera pointing has errors.
All these sources of error have to be included in the error
budget discussed in Section 5.2.

5.1. Scheduling of the dedicated imaging

The measurement of the rotation of Mercury is obtained
by correlating images of the same patch on the surface taken
with the on-board camera at di@erent times. We need to !nd
at which times the imaging of the same spot will be possible,
and check that these times are suitable to measure a libration
with a period of one Mercury year.
The information necessary for this task is summarized in

Fig. 12. The slanted lines are the phase of the rotation of
Mercury in an inertial frame (dotted) and the mean anomaly
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Fig. 12. Visibility conditions for the rotation experiment. The slanted dotted line is the rotational phase of Mercury, the slanted solid line is the mean
anomaly of Mercury. The curved line is the true anomaly of Mercury minus the rotation phase, which de!nes the illumination conditions: the line
is drawn with small dots for illuminated conditions and with circles for nonilluminated conditions (at some reference longitude). The horizontal lines
indicate the location of some target longitude at the sub-satellite points in the orbital plane.

of the orbital motion of Mercury (solid). The two are in res-
onance, that is they are both back to the same value after ex-
actly oneMercury day, corresponding to twoMercury years
and three rotations of the planet. However, the illumination
conditions on the surface are controlled by the true anomaly
of Mercury’s heliocentric orbit; because of the large eccen-
tricity (� 0:206) of the orbit, the mean and the true anomaly
are quite di@erent. In particular the illumination conditions
are controlled by the di@erence between the rotation phase
and the true anomaly. The curved lines in the !gure indicate
the illumination phase (for a given longitude). They show
the surprising property that the Sun goes back for several
days in its path as seen from the surface of the planet; this
occurs when the planet is near perihelion.
Taking into account that the plane of the polar orbit of

BepiColombo will hardly precess, the visibility conditions
from the spacecraft are represented in the !gure by two hor-
izontal lines 180◦ apart; one of the two corresponds to pas-
sages closer to pericenter, the other to passages closer to
apocenter, thus at a larger altitude (with imaging at a lower
resolution). The opportunities to image a patch located on
a given meridian are represented by the intersections of the
horizontal lines with the dotted diagonal lines representing
the rotation of the planet; there are 12 intersections in the
nominal mission duration of one terrestrial year, correspond-

ing to� 2 Mercury days. However, at the times correspond-
ing to these intersections, we need to check the illumination
conditions: there will be (on average over a range of longi-
tudes) 6 opportunities when the surface patch is illuminated.
Because of the resonance, the !gure repeats exactly every

Mercury day, thus for each patch on the surface there are
two identical groups of (on average) 3 images. The libration
in longitude has the mean anomaly as an argument, thus by
correlating images taken one Mercury day apart we would
obtain no information on the amplitude � of the libration.
From this analysis we can draw an important conclusion:
there is no way to perform the rotation experiment by corre-
lating images with the same scale and the same illumination
conditions.
The selection of the location on the surface of the patches

to be repeatedly imaged for the rotation experiment cannot
be entirely done a priori, but needs to take into account the
local properties of the surface (Jorda and Thomas, 2001).
We can assume that there would be locations distributed
in longitude. As for latitude, the libration in longitude � is
best measured at the equator while the obliquity � is best
measured at the poles. Low latitudes would result in a too
large change of scale between images taken from distances
close to 400 km and close to 1500 km. At this stage of
the study we can only state that some intermediate latitude
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should be used, but the optimal way to select the locations
remains to be determined.

5.2. Error budget

The target accuracies required for a better understand-
ing of the interior structure of Mercury, as discussed in
Section 1, are

V(C=MR2)6 0:003;

V(Cm=C)6 0:05

and this results in an error budget for the concentration
coe?cient

V(C=MR2)=
C

MR2

[
V�
�
+VP

]
;

where VP arises from the errors in the determination of
the harmonic coe?cients of degree 2; from the results of
Section 4 we can conclude that this contribution is negli-
gible. For the fraction of the moment of inertia associated
with the decoupled upper layer (if any) the error budget is

V(Cm=C)=
Cm

C

[
V�
�
+
V�
�
+VP

]
:

From these equations we can solve for the required accura-
cies in � and �:

V�6 3:2 arcsec;

V�6 3:7 arcsec;

corresponding to displacements of the surface of 37 m at the
equator for � and 43 m at the poles for �.
This error budget for R�; R� must in turn be allocated to

the known sources of error:

1. error in the knowledge of the position of the spacecraft
in a mercurycentric non-rotating frame;

2. error in the relative position of reference points on the
surface, as measured by correlating two images;

3. error in the knowledge of the pointing of the star mapper
with respect to an absolute reference frame (de!ned by
stars); and

4. error in the angles de!ning the pointing of the camera
with respect to the pointing of the star mapper.

Item 1 has been discussed in Section 3.2; the conclusion
is that this error can be assumed to be¡ 10 m (RMS value).
Items 2–4 have been the subject of dedicated studies.
For item 2we rely on the conclusions of Jorda and Thomas

(2001), which can be stated (in a very simpli!ed way) as
follows. The patches on the surface to be used have to be
selected among those with suitable albedo and=or elevation
features. The accuracy of the pattern matching, using either
albedo spots or craters, can be maintained at one pixel or
less, provided some conditions on the illumination angles
and on their di@erence in the two images are satis!ed. As

discussed in Section 5.1, the imaging to be used for the
rotation experiment cannot be performed at the pericenter,
but from an altitude depending upon the selected latitude;
we can assume an altitude of � 1000 km for one of the
two images taken from higher altitude. Thus the pixel size
is increased from the value at pericenter (10 m, see Balogh
et al., 2000, Section 3:1:2) to about 25 m.
For item 3, the accuracies of the best star mappers avail-

able now are better than 2 arcsec. From 1000 km this cor-
responds to 10 m on the surface.
For item 4, a dedicated study has been conducted by the

prime contractor of the System and Technology Study, Ale-
nia Spazio. An accommodation strategy has been found to
ensure a high degree of rigidity to a common support for
the narrow !eld camera and a star mapper. The deCection,
resulting from thermo-mechanical forcing of this support, is
estimated to be less than 2 arcsec, that is again 10 m on the
surface.
Since these sources of error are independent, an estimate

of the RMS error is obtained simply by√
102 + 252 + 102 + 102 = 30:4 m

on the surface.
The signi!cance of this estimate is clear: the required

accuracy is achievable with a single shot measurement,
that is by looking repeatedly (six times, as discussed in
Section 5.1) at a single patch on the surface of Mercury.
This of course does not conclude a study of the accuracy

achievable in the rotation experiment of BepiColombo, be-
cause we have yet to study how much of this error would
be accidental, and therefore could be decreased simply by
repeating the experiment 10, 100, maybe several hundred
times (which is perfectly compatible with the data volume
available). However, this is enough to show that the exper-
iment is feasible, and that its accuracy can reach and even
exceed the speci!cations deduced from the scienti!c goals
stated in Section 1.2.

6. Conclusions

The results of the full cycle data simulation have con-
!rmed that the BepiColombo Radio Science Experiments
can achieve the stated science goals, and in some cases even
exceed the speci!cations (i.e., information can be provided
on the gravity anomalies down to a resolution of � 300 km,
even better than the original goal of 400 km).
This does not imply that there are no problems, and that

the preparation work necessary before the mission arrives to
Mercury is complete. We would like to conclude with the
list of open problems which we plan to investigate.

• To !nd the nature of the aliasing mechanism between
some systematic measurement errors (already present in
our error models) and the e@ect of some gravity signals,
especially the ones from the low order harmonics and the
tidal deformations;
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• In the hypothesis, which we favor, that this aliasing takes
place between colored noise in the accelerometer mea-
surement and the gravity signals, to establish whether
an increase in the performance of the accelerometer
would allow an overall increase in the performance of
the gravimetry experiment.

• To establish whether very short or short arcs should be
used in the orbit determination. For the gravimetry exper-
iment the results of the simulation indicate that the very
short arcs give better results, but for the relativity experi-
ment the results are signi!cantly improved by using short
arcs, as discussed in Milani et al. (2001).

• In the context of the choice of the previous item, !nd the
optimal way to constrain the orbit determination process,
by removing the approximate degeneracies by means of
information gathered over time scales longer than the
arcs.

• To assess the improvement in the accuracy of the re-
sults which could be obtained by using two (or more)
ground antennas, thus by processing more data, organized
in much longer observed arcs.

• To study the contribution to the determination of the
geophysically signi!cant parameters which could be
achieved by adding a laser altimeter to the MPO payload.
The impact of this additional instrument has not been
assessed yet, because it was not included in the payload
used in the last spacecraft design exercise.

• To assess the problems introduced by the attitude and
orbit maneuvers and determine operational control pro-
cedures which do not degrade the Radio Science Experi-
ments and are at the same time acceptable from the point
of view of mission control.

• To evaluate the improvement, with respect to the single
shot accuracy, achievable in the rotation experiment by
repeating the measurements on a number of di@erent sur-
face patches; also, to de!ne an optimal strategy to select
the location of these patches, and a corresponding sched-
ule for the experiment, compatible with the mission con-
straints.

References

Albertella, A., Migliaccio, F. (Eds.), 1998. SAGE, Satellite Accelerometry
for Gravity !eld Exploration: Phase A. Final report, International Geoid
Service, Milano, Italy.

Anderson, J.D., Colombo, G., Esposito, P.B., Lau, E.L., Trager, G.B.,
1987. The mass, gravity !eld and ephemeris of Mercury. Icarus 71,
337–349.

Balogh, A. et al., 2000. BepiColombo: an interdisciplinary Cornerstone
Mission to the planet Mercury. ESA-SCI(2000)1.

Bonanno, C., Milani, A., 2001. Symmetries and rank de!ciencies in the
orbit determination around another planet, submitted.

Carpino, M., Milani, A., Nobili, A.M., 1987. Long-term numerical
integrations and synthetic theories for the motion of the outer planets.
Astron. Astrophys. 181, 182–194.

Colombo, G., 1965. Rotational period of the planet Mercury. Nature 208,
575.

Colombo, G., 1966. Cassini’s second and third laws. Astron. J. 71, 891.
Colombo, G., Shapiro, I.I., 1966. The rotation of the planet Mercury.
Astrophys. J. 145, 296.

Iafolla, V., Nozzoli, S., 2001. Italian Spring Accelerometer (ISA): a high
sensitive accelerometer for “BepiColombo” ESA Cornerstone. Planet.
Space Sci., this issue.

Iess, L., Boscagli, G., 2001. Advanced radio science instrumentation for
the mission BepiColombo to Mercury. Planet. Space Sci., this issue.

Jorda, L., Thomas, N., 2001. The accuracy of pattern matching techniques
for the radio science experiment of ESA’s Mercury Cornerstone
mission. Planet. Space Sci.

Kaula, W.M., 1966. Theory of Satellite Geodesy. Blaisdell, Waltham,
MA.

Milani, A., Carpino, M., Rossi, A., Catastini, G., Usai, S., 1995. Local
Geodesy by satellite laser ranging: an European solution. Manuscripta
Geodetica 20, 123–138.

Milani, A., Vokrouhlick1y, D., Rossi, A., Villani, D., Bonanno, C.,
2001. Test of general relativity from the BepiColombo Radio Science
Experiment, in preparation.

Munk, W.H., Macdonald, G.J.F., 1960. The Rotation of the Planet Earth.
Cambridge University Press, Cambridge.

Newton, I., 1687. Philosophiae Naturalis Principia Mathematica, 1st
Edition. Streater, London; for modern translation to English see Cajori,
F., 1934. Newton’s Principia. University of California Press, Berkeley.

Peale, S.J., 1976. Does Mercury have a molten core. Nature 262, 765–766.
Peale, S.J., 1988. Rotational dynamics of Mercury and the state of its
core. In: Vilas, F., Chapman, C.R., Matthews, M.S. (Eds.), Mercury.
University of Arizona Press, Tucson, pp. 461–493.

Spohn, T., Sohl, F., Wieczerkowski, Conzelmann, V., 2001. The
interior structure of Mercury: what we know, what we expect from
BepiColombo, Planet. Space Sci., this issue.

Vincent, M.A., Bender, P.L., 1990. Orbit determination and gravitational
!eld accuracy for a Mercury transponder satellite. J. Geophys. Res.
95B, 21,357–21,361.

Yeomans, D.K., Chodas, P.W., Keesey, M.S., Ostro, S.J., Chandler, J.F.,
Shapiro, I.I., 1992. Asteroid and comet orbits using radar data. Astron.
J. 103, 303–317.


