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ALBEDO PERTURBATION MODELS :
GENERAL FORMALISM AND APPLICATIONS TO LAGEOS
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Abstract. The force due to radiation pressure on a satellite of arbitrary shape is written in a general
form within a formalism similar to that used in the theory of radiative transfer in atmospheres. Then
the corresponding integrals are evaluated for the simple case of a spherically symmetric satellite,
and applied to model the perturbation due to the Earth-reflected radiation flux on LAGEOS. For this
purpose, the optical behaviour of the Earth’s surface and atmosphere is described as a combination of
Lambertian diffusion (continents), partial specular reflection consistent with Fresnel law (oceans) and
anisotropic diffusion according to Chandrasekhar’s radiative transfer theory (clouds). The in—plane
Gauss components 7" and S vs. mean anomaly are computed for a simple orbital geometry and for
different models of the Earth’s optical properties. A sensitive dependence is found on the assumed
cloud distribution, with significant perturbations possibly arising from oceanic specular reflection
when the satellite is close to the Earth’s shadow boundaries.
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1. Introduction

Non-gravitational perturbations on artificial satellites have been an active research
subject for celestial mechanicians in the 50s and the early 60s, at the beginning
of the space age; later on, the widespread use of purely numerical models for
predicting and fitting the orbital evolution of satellites and probes decreased the
interest in more general and/or abstract approaches. However, starting in the late 70s
the situation has changed again. The main reason has been the availability of very
accurate tracking techniques, specifically designed nearly spherical and “passive”
satellites and drag—free technology — to be applied in particular to space geodesy
and geodynamics, but also to other purposes, such as general relativity tests. In
this context, new physical mechanisms have been analyzed and new formalisms
and algorithms have been developed, both for predicting the instantaneous value
of very tiny non—gravitational forces, and for modelling their long—term orbital
effects (for a general review, see Milani et al., 1987).

One of the most complex such forces is that due to radiation pressure result-
ing from light rediffused or reflected from the Earth’s surface and atmosphere —
commonly referred to as albedo force or albedo perturbation. Though the corre-
sponding force is typically at least one order of magnitude smaller than that due
to solar radiation pressure, the model uncertainties are normally higher, due to the
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difficulties involved in modelling the momentum flux associated with radiation
for a source such as the Earth, geometrically extended and having a complex and
variable optical behaviour. Often in the past simplifying approximations have been
used — e.g., uniform albedo, purely diffusive behaviour, etc. — which neglect
some critical features of the process resulting into detectable orbital perturbations.
For this reason, in the last decade a significant number of papers have been devoted
to discuss more general or refined treatments of the albedo force, with applications
to spacecraft as diverse as LAGEOS, ERS-1, Magellan and MACEK (Anselmo
et al., 1983; Barlier et al., 1986; Rubincam and Weiss, 1986; Rubincam et al.,
1987; Borderies, 1990; Borderies and Longaretti, 1990; Lucchesi and Farinella,
1992; Vokrouhlicky and Sehnal, 1992a, 1992b). Still, however, these models are
typically based on “paradigms” on the relevant physical mechanisms which limit
their suitability in a more general framework.

The main purposes of this paper are the following : (i) to present very general
formulae, inspired by the treatment of radiative transfer in planetary and stellar
atmospheres, that give the force due to radiation pressure on a satellite of arbitrary
shape moving within the radiative field of an arbitrary source, and that can then
be specialized to deal with the simple case of a spherically symmetric satellite
(Section 2); (ii) to discuss a physical model of the optical behaviour of the Earth’s
surface and atmosphere, which is relatively simple from a physical point of view
but at the same time realistic enough to incorporate some subtle critical effects
(Section 3); (iii) to apply these formulae and models to LAGEOS, a satellite for
which the assumption about spherical symmetry provides a good approximation
of its real structure and whose laser-tracked orbit has shown residual unmodelled
accelerations probably caused for a significant part by the albedo force (Section 4).

2. Acceleration of a Satellite Plunged into a Radiative Field

In this section we will formulate in a general manner the mathematical tools needed
for the derivation of the perturbative acceleration of a satellite, arising from the
interaction with a radiative field. Of course, this is not the first attempt to deal with
this problem (for another recent treatment see e.g. Borderies and Longaretti, 1990),
but our aim is to present the theory in a different formalism. Our approach — which
was already partially used by Vokrouhlicky and Sehnal, 1992a,b) is inspired by
the techniques widely used in the radiative transfer theory applied to planetary and
stellar atmospheres (see e.g. Mihalas, 1978).

Our basic physical quantity is the radiative intensity I, which from the macro-
scopic point of view fully describes the radiative field interacting with the satel-
lite. More precisely, this is true provided one neglects the effects of polarization,
which are negligible as far as the radiative acceleration of satellites is concemned.
Moreover, we use the frequency integrated radiative intensity, as we neglect any
frequency dependence of all the relevant processes. This is actually a strong ap-
proximation, which a priori rules out the possibility of taking into account energy
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transfers due to frequency—dependent processes in the Earth’s surface and atmo-
sphere and thus, for instance, of describing by a unified theory the albedo effect
(due to visible light) and the perturbations due to the Earth’s thermal radiation.
This can be justified a posteriori by considering that the dynamical effects of the
infrared radiation field are very different, owing to its nearly—isotropic geometry
with no significant day—night asymmetry (see ¢.g. Rubincam, 1987).

Many previous papers devoted to this subject use from the very beginning
the radiative flux, which in our approach is a quantity derived from the radiative
intensity (see Eq. (1) below). In our opinion, a clear formulation of the basic
equations using as a fundamental quantity the radiative intensity is useful, in
particular when deriving more complicated formulae (e.g. in the case of a complex
satellite geometry or of a radiative field without any symmetry). The formulation of
Borderies and Longaretti (1990) is close to our approach (note that they speak about
the radiance rather than about radiative intensity; we adopt the latter terminology
which is closer to that of the classical radiative transfer theory). They concentrate
mainly on some subtle methods aiming at integrating their formulae analytically as
far as possible (for another impressive analytical work see Rubincam and Weiss,
1986). Our goal here is different — to present a formulation (i) as compact and
clear as possible; (ii) putting no restriction on the involved radiative field; and (iii)
allowing to incorporate directly the results of the radiative transfer theory of the
stellar/planetary atmospheres. Of course, when the equations have to be applied to
specific concrete situations, we will need to adopt suitable numerical integration
methods; on the other hand, the analytical formalisms such as those quoted above
can be applied only after strongly restricting the generality of the model (e.g., by
assuming purely diffusive light scattering by the Earth).

Let us assume that the satellite surface is a two—dimensional surface § pa-
rameterized by any two variables pu, ¢ (for instance, for a spherical satellite we
can use y = cos v, 9, ¢ being some spherical angles). Moreover, we assume that
the satellite is plunged into a radiative field R parameterized by another pair of
variables v, ¢ (for instance, specifying a direction; in any specific situation both
sets of parameters together with the corresponding reference frame will be explic-
itly given). Under this assumptions, the perturbative acceleration is given by the
following formula

a=— [ oy (AG) (B p(, RN 90) 31 + 5600 (D

mc

where

Ji=- / Hn(u,qﬁ)(N(p’a 30)) I(l/? ¢ s (P) @(1/, s 90) dvdg,
R(v,d)

o=~ /’R(z/,¢>) HN(#,W)(n(V’ $) I(v, é; 1, ) é(l/7 ¢ 1, ) dvdg,
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R(a) =2lla—E , O(v,6p,¢) =O(-N(g,¢) -n(v,¢)).

Here dA(p, @) is the satellite surface element, E is the unit matrix of dimension 3,
I1is a projection operator defined by : Ila(b) = (a-b) a, ©(z) is the Heaviside step
function, ¢ is the velocity of light and m is the satellite mass, N(u, ¢) is the surface
normal and n(v, ¢) the unit vector in the the direction of a chosen ray. The three
terms in Eq. (1) describe respectively the linear momentum of radiation removed
from the incident beam (both by absorption and scattering), specular reflection
(phenomenologically described by the coefficient p(u, ¢)) and diffusive scattering
by the satellite’s surface (phenomenologically described by the coefficient 8(u, ¢)).
We stress that this decomposition of the interaction of radiation with the satellite
surface is just another paradigmatic assumption of the radiation pressure model,
whose validity may become questionable under specific circumstances. Let us also
note, that we take into account only processes connected with direct momentum
exchange between radiation and satellite, disregarding the emission of thermal
radiation from it. The latter effect is due to the true absorption (i.e. contingent on
energy exchange between the radiation and satellite). Although the two effects are
physically related, their consequences are different : while the reflected radiation
acts immediately and (roughly speaking) in a direction opposite to that of the
source, the thermal re-emission of the absorbed radiation is normally subjected to
some time delay (the so—called thermal inertia, which for a spinning satellite may
show up as a phase delay) and also depends on other parameters characterizing the
structure and orientation of the satellite itself. This effect has been studied in detail
for LAGEOS (see Rubincam, 1987; Afonso et al., 1989; Farinella et al., 1990;
Scharroo et al., 1991) and we will not deal with it further in the present paper.

It is to be stressed that formula (1) does not take into account possible role of the
photon multiple reflections on the satellite surface. As for the specular reflection,
this rather complicated task was treated by tricky numerical models (e.g. Renard
and Koeck, 1989). However, keeping in mind the LAGEOS application, the satellite
shape is simple enough (spherical in a good approximation) so that formula (1) is
sufficiently general. Moreover, since no shadowing of one satellite part by another
can occur, we suppress the satellite surface element (u, ¢) dependence of the
radiative intensity I (see formulas (2-5)).

We do not give here a full formal proof of Eq. (1), for which we refer to
Vokrouhlicky, 1991. The essential hints can also be found in Vokrouhlicky and
Sehnal, 1992a, who also give a proof of the full equivalence with the formulae of
Borderies (1990). Instead, we will apply Eq. (1) to evaluate the total acceleration in
a simple particular case, that of a spherical satellite with constant optical parameters
(p, 6).Eq. (1) involves in fact a double integration (say, “over the satellite surface”
and “over the radiation field””). We shall show that in the case of a spherical satellite
the integral over the satellite surface can be evaluated analytically, leaving just one
integral in the final formula. The introduction of a spherical angle parameterization
of the satellite surface is advantageous in this case, though we shall fix later
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on the reference frame (in fact we will profit from this freedom to simplify the
computations).

For practical reasons let us treat the three terms in Eq. (1) separately. The first
one (E in the integrand brackets) is to be treated in the following way :!

2
a, = /S oy e / dvdé (n(v, ) -N(u, ) n(v, $)I(v, )
O(v, & 1, ¢)
2
== oy WA T )0, 9) / dudip (n(v, $) - N(p, ¢))

u,cp

O(v, & 1, )
B RQC. 1 2
S IR COLO0 S [ dudn

mc JRr
= = /R o) dvdg I(n(v, $))n(v, ) . )

where R, and A, are the satellite radius and cross section, respectively. Note that
we have fixed the local satellite frame (in which the spherical angles J, ¢ are
defined) in such a way to simplify the expression in the second line of Eq. (2), thus
resulting in the third line. The quantities v, ¢ parameterizing the radiative field (up
to now unspecified, but normally also spherical angles in possibly another local
frame) specify ’one ray’ in it. The second line in Eq. (2) clearly shows that for
every such ray we have to fulfill the integration over the satellite surface S. In each
of these cases we have rotated the satellite local frame in such a way that its z—axis
coincides with the direction of the chosen ray. Thus, for each ray (v, ¢) we use a
different satellite frame (and therefore different spherical angles ¥, ). This trick
is allowed by the isotropy of satellite surface with respect to the parameters p, 9.

In the same manner we can treat the other two terms in Eq. (1). The second one,
corresponding to the specularly reflected radiation, becomes

2
an = L [ dudp [ dvdd ((0,6)-N(u) 19)

me P R(v,¢
(R(n(u, ) -n(v, ¢)) O(v, d; u, )
RZ
= —H‘i /R(U’qs) dVd¢I I/ ¢)/ (i) d,U/dLP (n(Va ¢) N(/.L,(,D))
| (21N (02 6)) = (1, 8)) (1, 61 1, )
RZ

27
- L —
= /(u,¢) dvdgI(v, $)n(v, /_ /_ dudop(2p?® — 1) = 3)

mc JR

! Note, that we implicitly neglect variations of the radiative field at different part of the satellite.
Instead, we work with radiative field I (v, ¢), which results from averaging over its surface. The same
applies for formulas (3) and (4).
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This result is a classical one, and in fact has its counterpart in the same result for
the elastic specular reflection of the neutral atmosphere molecules in the theory of
the atmospheric drag. Of course any, but very particular cases, deviation from the
spherical shape or from the isotropy of the specular reflection coefficient p would
lead to a nonzero result.

As for the third term (diffusively scattered radiation from the satellite surface),
we have

26R2
= = d dvd .N
D 3cm S(py0) ,Ud(p /R(v,qﬁ) v ¢ (l’l(l/, ¢) (/1” (P)) N(/L, QO) I(l/, ¢)
O(v, ¢ 1, )
_ 28R%
T 3em R(v,d) dl/d¢ I(V’ ¢) '/‘;(N#’) dlld(p (n(l/7 ¢) : N(,u’v Cp)) N(/J‘a (P)
O(v, 3 1, ©)
— 26R2t 1 27T )
= Fem s dvdpI(v, d)n(v, @) /uzo o dudou
464,
= Sem e dvdgI(n(v, $))n(v, ¢) . @)

Here note one subtle point — the arguments of the vectorial quantity have
changed proceeding from the second line to the third. This is also luckily due to
the spherical symmetry of the satellite surface (roughly speaking, this means that
the integral of the normal vectors to the sphere over one hemisphere is parallel to
its axis). In the case of nonspherical shapes, the result would thus be different.

The resulting perturbing acceleration is a = a4 + ar + ap, hence in total

a— AL (1 + ga) /R 1 dn(, )L (n(,9)) = % (1 4 ga> F

mc

satellite some coefficient characterizing the inte —
Cross section raction of light with the satellite surface

radiative flux, i.e. energy transferred velocity ~1 7 satellite _(15)
through the perpendiculararea unit of light mass

The second and third lines give a clear “physical interpretation” of the relevant
terms (notice that the product of the two terms in third line yields the momentum
flux, namely the amount of linear momentum transferred through a perpendicular
unit area). This result of course is not new; see e.g. Aksenov, 1977, Milani et al.,
1987 (pp. 74-75), Borderies and Longaretti, 1990 (where one has to substitute
v — %6); here it is just an example of the application of the more general Eq. (1).

The result given by Eq. (5) in general still holds for nearly—spherical satellites
with the quasi—isotropic surface optical properties. This — admittedly, somewhat
vague — notion is inspired by LAGEOS-type satellites, whose surface is covered
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by a large number of retroreflectors. We call the surface of a nearly—spherical
satellite to be quasi—isotropic, if, roughly speaking, “it looks the same from all
the directions to a high accuracy”. For instance, let us imagine a parallel beam of
radiation impinging on LAGEOQOS. Obviously, if the satellite is illuminated along
the axis of any retroreflector the radiative force will be somewhat different with
respect to the case of irradiation out of the retroreflector axis. But the difference
will be very small, provided the retroreflector has a small size compared with the
satellite. The quasi—isotropy assumption just neglects this small difference. More
precisely, we have to assume that the results of the satellite surface integration along
the different rays of the radiative field (as explained in the paragraph following
Eq. (2)) in the formulae (3), (4) and (5) are the same, or at least that the differences
are negligible.

Notice that the peculiar optical behaviour of the retroreflectors — perfect back-
scattering of the impinging radiation — causes their contribution to the momentum
transfer equation to be just twice that of the absorption term (2), so that for anearly—
spherical and quasi—isotropic satellite whose surface is covered by retroreflectors

for a fraction f of the total area, the factor (1 + gd) in Eq. (5) needs just to be

replaced by [1 + f+ %6 1-f )] For LAGEOS, the effective value of f is much
lower than the “geometrical” one (~ 0.4), because the corner—cube retroreflectors
backscatter light only within some restricted incidence cone about their axis. More

in general, the classical factor (1 + g& ) will be replaced by a coefficient Cr(p, §),

where the assumption of quasi-isotropy assures that Cr(p, 6) is a function of the
surface coefficients p, 4 only and not e.g. of the orientation of the satellite rotation
axis. The acceleration is thus simply rescaled if, for instance, the optical parameters
are not constant in time. For LAGEOS, Cr has been treated as a constant solve—for
parameter in the orbit determination process, and its value has been found to be
about 1.2.

Of course, if the quasi—isotropy assumption fails by a significant amount, the
perturbative acceleration will be given by an expression more complicated than (5).
Interestingly, the possibility of a sizeable difference between the optical properties
of two different hemispheres of LAGEOS has been recently proposed by Scharroo
et al. (1991) as a way of explaining some unmodelled peaks in LAGEOS’ residual
along—track acceleration. In the present context, however, we shall stick to the
quasi—isotropy assumption.

Finally, note that the character of the radiative field is not limited in any way in
the previous discussion. It may be either the nearly parallel direct solar radiation
or the geometrically more complex radiative field coming from the Earth’s surface
and atmosphere. In what follows, we shall apply Eq. (5) to the latter case. In the
next section we shall describe a model of this radiative field as well as its (v, ¢)
parameterization in Eq. (5).
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3. Models of the Earth’s Radiative Field

We shall now apply the preceding formulae to the particular case when the radiative
field is originated by the reflection/diffusion of the sunlight from the Earth — the
so—called albedo effect.

The Earth is assumed to be spherical. No general a priori assumption is made
on the optical characteristics of the Earth surface, but they are just subject to a
set of different model assumptions, with the aim of studying their influence on the
resulting orbital perturbations of LAGEOS. In particular, we are going to consider
the specific role of the scattering of light from the cloud coverage. Actually, one
should always speak about the reflection/diffusion from the Earth—atmosphere
system rather than from the Earth surface only.

Also, we assume that the Earth—scattered radiation does not interact with any
exoatmospheric near-Earth medium, so that the intensity of the radiation is constant
along the photon rays out of the atmosphere (Mihalas, 1978). This assumption is
essential to obtain a geometrical link between the Earth’s optical models (treated
basically in the Earth surface/upper atmosphere local frames) and the radiative
field which appears in the satellite acceleration formulae (1) or (5). Recall that in
the previous Section we considered processes occurring in a satellite—fixed local
frame, while throughout this section we will formulate the Earth’s optical models
in the Earth surface/atmosphere local frames. The previous assumption bridges the
gap between them.

Similarly to Vokrouhlicky and Sehnal (1992b), we will consider three different
modes of reflection/diffusion from the Earth’s surface/atmosphere. They are :

— diffusion of light from the continents, which will be assumed to occur in
a simple isotropic way (Lambert diffusion) with a multiplying albedo value
developed in spherical harmonics of the geographical latitude and longitude
(as given by Sehnal, 1979);

— reflection/diffusion from the oceans : here together with a diffusive behaviour
part of the light is assumed to be reflected in a specular way;

—  scattering of light from compact atmosphere formations (which we will simply
name clouds), treated according to Chandrasekhar’s solutions of the radiative
transfer equations for a planar atmosphere. The detailed assumptions will be
specified in what follows.

We introduce the spherical angles ¥, ¢ (and also p = cos %) in the local Earth
surface/atmosphere frame (these angles should not be confused with those used
in the previous section). The z—axis of this local frame coincides with the outer
normal of the surface element. The orientation of the other two axes does not appear
in the formulae and consequently it is irrelevant. We reserve p, ¢ for the Solar
direction, while 2, ¢ specify the satellite direction in this system (see Fig. 1).

Using these notations, one can write the intensity of the isotropically diffused
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Fig. 1. The spherical coordinate system centered at an Earth surface element. The angle ¥
is measures the distance from the zenith direction of the chosen element. The origin of the
¢ coordinate is irrelevant in our models.

radiation according to Lambert’s law as :
I(cont) _ 1 P
df = 0ALe , 6)

where @y is the flux (W/ m2) of the incoming solar radiation and A is the albedo
coefficient. The p factor is just due to geometrical reasons, namely is proportional
to the cross—section with respect to the solar rays. Some criticisms to this purely
geometrical approach can be found as early as in Levin, 1962, whose arguments
were explicitly quoted by Vokrouhlicky and Sehnal (1992b). Later on, the devia-
tions from linearity with respect to i were referred to as dependence of the albedo
Aon pg (see e.g. Lila et al., 1978; Rubincam et al., 1987; Knocke, 1989; and from
an observational point of view Stephens et al., 1981). We feel that in spite of these
studies, which usually empirically fit some sets of observed data, the theoretical
understanding of this phenomenon is not satisfactory. Both light scattering in the
atmosphere and details of the diffusion mechanisms on the Earth’s solid surface
(e.g., small-scale mutual shadowing) are plausible causes for a u; dependence
of the albedo, and more in general for a dependence on all the involved angular
parameters (i, ©e ; 4, ). But little is known about the separate importance of
each of these effects and their detailed physics. In view of this, we have decided
just to use the normal albedo model as given by Sehnal (1979). The albedo A is
here a general function of the geographical latitude and longitude (expanded in
spherical harmonics), but is constant with respect to the solar zenith angle pg. In
fact, it may be understood as an averaged value over p.

As for the oceans, we assume that besides Lambertian diffusion their surface
can cause specular reflection of light. Following Barlier et al. (1986), we then
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decompose the intensity of the scattered radiation in two parts :

oc 1
157 = —DoAuo(1- R(no)),

L) = ®oAR (1o e 110)6(1 — po)8(¢ — do + ), )
where
_ o? sin Yo cos Vg
VselPo, ) = sin 8 (2 cos(29g — B) — acos Vg) ®)

a = R@ / r,
r being the current satellite geocentric distance and the angle S fulfills the equation
a sindg = sin(29g — B) .

Note that, in agreement with the definition of .4 as a fraction of incident sunlight
which is not absorbed, but either diffused or reflected, the factor .A appears also in
the intensity of the specularly reflected component. Barlier et al. (1986; see their
Eq. (10))on the contrary included .A only in the intensity of the diffused component,
thus implicitly adopting a different definition of albedo and amplifying the effects
of radiation pressure from specularly reflected sunlight when compared with the
present work.

For the derivation of Eq. (8) see Barlier et al., 1986, where this factor is denoted
as J(6) (it actually simulates the divergence of the reflected radiation field due to
the fact that the assumed mirror surface is spherical). The ¢ function in Eq. (7) is
an obvious consequence of the specular reflection assumption. Of course, this is a
somewhat idealized model : small scale wave phenomena on the ocean surfaces will
actually cause some more divergence of the reflected light (as with the “sword of
the sun” observed from a beach at sunset). A phenomenological model of this beam
divergence can be found in Rubincam et al., 1987, who instead of the ¢ function
adopt an exponential behaviour, and in Lucchesi and Farinella, 1992, who assume
that the light intensity is uniformly distributed inside a narrow cone centered at
i = pe. The latter paper did show that the resulting perturbations depend weakly
on the aperture of the reflection cone (or the corresponding exponential decay
coefficient) provided it is less than several degrees. Therefore, here we shall stick
to the simpler specular reflection assumption.

The “partitioning function” R in Eq. (7) is derived from the Fresnel reflection
law (see Barlier et al., 1986). The implicit assumptions here include a sufficiently
short wavelength of the radiation and a negligible polarization (for a detailed
treatment consult e.g. Jackson, 1975, and Ditchburmn, 1976). Note that the Fresnel
function R fulfills the following relation

(1 = R(1o)) 1o = Ho + O(u3)
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which results into a rapid increasing importance of the specularly reflected part of
radiation with respect to the diffusively reflected part when the satellite is close to

the Earth shadow’s boundary, namely it “sees’ a narrow Earth crescent. This is due

to the fact that when pg ~ 0, I(glf °) x u® but Is(&cc) & pe only. The corresponding

sudden “kick” due to the specularly reflected radiation is in a way the result of
extreme assumption, as the decomposition of the scattered radiation in the two parts
is not unique (see Vokrouhlicky and Sehnal, 1992b) and not all such decompositions
give this feature. It should be noted that in accepting this model we just follow
another common argument made in recent literature on LAGEOS perturbations :
that of testing the effects of extreme assumptions whenever a reliable physical
understanding is missing. In Sec. 4 we shall comment on some consequences of
this assumption when describing the results of our model.

As for the scattering of light from the clouds, we shall use the model developed
by Chandrasekhar (see e.g. Chandrasekhar, 1950; van de Hulst, 1980). The intensity
of the scattered radiation is given by

7 _ 1 wopePo
scat T
T QT+ pe

24/(1 = 12)(1 — po?) HO(: w0, 2) H (s wo, ) cos(p — 00))

©)

(H (3 wo, o) H (po; wo, 2)¥(p, po; wo, ¢) —

where
¥(p, pos wo, z) = 1 — c(wo)(p + ko) — (1 — wo)upe -

These formulae solve the radiative transfer problem in a planar atmosphere with
infinite optical thickness and scattering centers characterized by the phase function

p(@®)=wo(l+2cos®), 0<wp<1l, -1<z<1, (10)

where H(p) and H(1)(p) are the Chandrasekhar H-functions and the associated u—
moments. They are defined as solutions of integral equations, but several numerical
techniques for their evaluation are known (van de Hulst, 1980). © is the angle
between the incident and the scattered ray at one scattering center in the atmosphere,
and the phase function p(©) weighs the scattering probability at this angle.
The solution (9) is two—parametric, with the parameters wp and z controlling
phys1ca]ly different effects :
wo can just be interpreted as the albedo of the scattering centers in the atmo-
sphere (not to be confused with the global atmospheric albedo Ay ; their
relation is discussed in Vokrouhlicky and Sehnal, 1992b, e.g. in the case
r = 0 one gets Acpy = (—1%;—)7, while in the case z # 0 no such simple
relation exists),
— the parameter z is related to the asymmetry of the light scattering from separate
centers in the atmosphere : = 0 implies symmetry, whilez = land z = —1
correspond to the extreme forward— and back—scattering cases (see Eq. (10)).
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Since we are interested in testing models with local asymmetry of the cloud
scattering behaviour (as it will be explained later), we will often put z = 1
(note however, that due to simplicity of the phase function (10), we cannot
reach “the extreme asymmetry” as described by the asymmetry parameter
g defined e.g in van de Hulst, 1980; for a review of more realistic phase
functions sec the brilliant book van de Hulst, 1980 and references in).

As with many theoretical models, that given by Eq. (9) suffers from several over-
simplifications when compared to reality, e.g. :

— infinite optical thickness of the atmosphere (i.e., clouds);
— simplified phase function;
— both vertical and horizontal homogeneity of the atmosphere.

These simplifying assumptions are shortly commented in Vokrouhlicky and
Sehnal, 1992b, while more detailed discussions can be found in the specialized
literature (Chandrasekhar, 1950; Irvine, 1975; van de Hulst, 1980). Here we are not
going to include possible generalizations according any of the items listed above.
But we stress that, as far as the first two items are concemned, these generalizations
can be introduced if the comparison with the data shows that they are necessary to
obtain a better fit.

We also note that all the modes of the light scattering/diffusion/reflection lead to
formulae for the resulting radiative intensity depending only on the angle ¢ — ¢
and noton ¢, ¢ independently (this property justifies the choice not to define the
orientation of the local z—, y—axes, as noted earlier). This is well understandable,
since the (z, y) local plane was chosen as tangent to the Earth’s surface/atmosphere.
We do not have any reason to distinguish symmetric directions with respect to the
incident solar radiation. As far as we know, also all the models inferred from
empirical data (e.g. Taylor and Stowe, 1984; Rubincam et al., 1987) have the same
property.

We now turn to description of the geographical features of the Earth’s surfa-
ce/atmosphere that we have used in the computation of the integrals in Eq.(5). In all
our models, we used a realistic distribution of the continents, modelled by a 2° x 2°
grid in latitude and longitude. Then the final Earth mask giving the morphology
of the different optical modes is created by covering the continental grid with an
atmospheric grid, which gives the assumed cloud distribution. Of course, the latter
is rapidly variable, and a realistic description could only be derived a posteriori
from the available knowledge of global meteorological processes. This is well
beyond the scopes of this work. Here we shall just distinguish among several
possible idealized cases :

— the atmospheric grid is empty (we shall refer to this model as the no cloud
model);
— the atmospheric grid is full (full cloud model);

— the atmospheric grid is empty on the Southern hemisphere and full on the
Northern one (hemisphere model);
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— the atmospheric grid is full in a belt surrounding the equator up to £10° in
geographical latitude and empty elsewhere (cloud belt model);

— 60% of the atmospheric grid has been filled at random (stochastic cloud
model).

4. Albedo Perturbations on LAGEQOS

In this section we will discuss the perturbative accelerations resulting from the
different models introduced earlier, and how they vary along one satellite revolution
around the Earth. For the sake of simplicity we shall use a simplified orbit geometry,
as already done by Rubincam et al. (1987) and Lucchesi and Farinella (1992) :
LAGEOS’ orbit is assumed to be polar (I = 90°; the real orbit has an inclination
of about 110°) and the Sun lies in the LAGEOS orbit ascending node. We keep the
true LAGEOS eccentricity (e = 0.00444) and longitude of perigee at epoch May
15, 1976 (w = 235.35° see Barlier et al., 1986), which determines the origin of
anomalies. This configuration will allow us to estimate the maximum amplitude of
the components of the albedo effect perturbative accelerations in the radial (.5) and
in—plane transverse (') directions. These two components are important because
they can be used to derive both the short— and the long—term perturbations on
semimajor axis and mean anomaly; notice, however, that the assumed geometry
minimizes the out—of-plane component W, which is important if one aims at
estimating the inclination and node perturbations.

The most time—consuming part of the numerical treatment of the problem is the
integration over the radiative field contributing to the radiative flux at the satellite.
In order not to lose the detailed information on the Earth’s surface/atmosphere
optical behaviour, for each satellite position along the orbit we divided the visible
Earth cap into a grid of 3025 surface elements, chosen in such a way as to be
of equal area. This latter requirement implies that the grid is somewhat denser
near the edge of the visible cap, and this may be important to properly model the
acceleration when the satellite is close to the Earth’s shadow boundary and just
“sees” a thin illuminated Earth crescent. A similar method was used by Lucchesi
and Farinella (1992), who showed that at least ~ 100 surface elements are required
for an accurate calculation; in our case the presence of specular reflection makes
this requirement even more stringent. Similar accuracy problems have been taken
into account in choosing the step size along the orbit; we have used 360 steps per
revolution, i.e. 1° mean anomaly steps.

The results of several models are presented in Fig. 2, where the transverse
component 7' is given as function of the mean anomaly M (whose origin is taken
in such a way that at the subsolar point M = 100°). The curve(s) labeled 1
correspond to the no cloud model. More precisely, the solid curve 1a corresponds
to the no cloud model as described in the Sec. 3, which takes into account the
real distribution of continents, while the dashed curves 1b and 1c “ignore” the
distribution of the continents : curve 1b corresponds to the ideal case when the
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Fictitious Lageos
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3.1415 6.283

M

Fig. 2. The transverse component 7" of the albedo acceleration as a function of the mean
anomaly M over one LAGEOS revolution, for the orbit geometry described in the text.
Different no cloud models have been used to derive curves 1 : the (1a) model includes
the real distribution of the continents on the Earth surface, the (1b) model considers an
idealized Earth totally covered by the oceans, and the (1c¢) model assumes only diffusive
(continental) reflection from the whole Earth surface. Note the essential role of the specular
reflection effects when the satellite is close to the boundaries of the Earth’s shadow. The
dotted curves 2 bound the results of 50 different runs of the stochastic cloud model. Curves
3 correspond to the full cloud model. the adopted cloud parameters in both cases are :

wOZI,.’B:l.

7107 m/s% )

-0.5

Fictitious Lageos

3.1415 6.283

Fig. 3. The same as in Fig. 2, but comparing results of the no cloud model (curve 1), the
hemisphere model (curve 2), and the full cloud model (curve 3). Cloud model parameters

arckeptas follows:wp =1, z = 1.
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whole Earth is covered by an ocean with the optical behaviour described in Sec. 3,
and curve 1a corresponds to the ideal case when the whole Earth surface is covered
by a continent with diffusive reflection. As expected, the largest differences occur
near the satellite entry to/exit from the Earth shadow. Curve 1c shows there a
smooth decrease, while curve 1b exhibits clearly the specular reflection “flash”,
as discussed earlier. The no cloud model 1a, combining 1b and 1c¢ according to
the actual distribution of the continents, shows sudden jumps due to interchanging
of the two “pure” modes of reflection (due to the chosen orbit geometry, in the
enlarged window in Fig. 2 the zone of the Earth possibly relevant for reflection is the
Arctic). Such structures have a significant influence on the averaged value < T >
over an entire orbit, which is important to yield long—term perturbations. Such a
potentially important role of specular reflection from relatively small zones of the
Earth’s surface was already pointed out by Barlier et al. (1986). It may be noted
that our assumption that the Arctic polar cap behaves as an ocean is somewhat
artificial; however, according to the data reported by Taylor and Stowe (1984),
snow—covered surfaces do generate some specular reflection features, albeit less
marked than liquid water, and thus may be seen as “intermediate” between the
oceans and the continents.

Curve 3 corresponds to the full cloud model with parameters (wp = 1, z = 1).
As no specular reflection occurs in this case, the curve is smooth. Actually, as
noted already by Vokrouhlicky and Sehnal (1992b), this case closely resembles the
simple one with just a diffusion with a constant effective albedo A = 1 (see
Lucchesi and Farinella, 1992, Fig. 5a, where the value A.fs = 0.2 was used);
only the anisotropy of the local scattering behaviour slightly disturbs the diffusion
pattern. The amplitude of curve 1 is thus consistent with an average value of the
albedo for the Earth’s surface of approximately 0.3.

The region bounded by the dotted curves 2 corresponds to the stochastic cloud
model; in this case, there is no unique curve, because the filling of the atmosphere
grid is made at random. Therefore, we performed 50 runs of the program computing
50 different cloud distributions (always with a filling fraction of 60%), and then
plotted the maximum and minimum values of the along-track accelerations. The
typical difference of 10~1! m /s gives an idea of the consequences of the variability
in the real cloud distribution (note in particular that the occurrence of the “Arctic
reflection flash” is subject to the local cloud coverage). A similar method was
used the case of the lower—altitude satellite ERS—1 by Vokrouhlicky and Sehnal
(1992b). An interesting observation can be done by comparing the ERS-1 results
with those in Fig. 2 — the three curves 1-3 in Fig. 2 are well separated, as the
region between the dotted curves 2 does not span the whole “gap” between curves
1 and 3, while the opposite was true for ERS-1. The reason has to do both with the
simpler satellite geometry and with the higher orbit of LAGEOS.

In Fig. 3 we have replotted the mean anomaly dependence of the T’ acceleration
component in the case of the no cloud model (curve 1), and the full cloud model
(dashed curve 2), but we have added the curve (3) corresponding to the hemisphere
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model. As expected, the hemisphere model signal coincides with either one of the
two previous cases when the satellite is over the poles (as its “visible cap” of the
Earth behaves according to only one mode of reflection), while differs from them-
in the transient region, when the satellite is over the equator.

Curves 3 in Fig. 4 compare with the no cloud (curve 1) and full cloud (curve
2) models the results of the cloud belt model. The dashed and dotted curves allow
an estimate of the effects of changing the z isotropy parameter : dashed curves
correspond to the z = 1 choice, dotted curves to the = 0 one. No qualitative new
feature appears, though there is a significant quantitative difference. However, this
is not a general result, due to the assumed symmetrical orientation of the orbital
plane with respect to the Sun. Curves 3a—c also show the dependence of the results
on the effective cloud albedo : 3a corresponds to Acs; = 1,3bto A.r; = 0.8, and
3cto Acrs = 0.6. A decreasing effective albedo of the clouds clearly diminishes
their role.

Other remarks follow from the inspection of the radial component of the per-
turbative acceleration. Its dependence on the mean anomaly is shown in Fig. 5
in the case for the some models discussed in the previous paragraphs. Curve 1
corresponds to the no cloud model, curves 2 to the full cloud model (with different
values of z) and curves 3 to the cloud belt model (with different values of both
x and Acsy). Similar graphs can be plotted for the other models. The observed
differences are clearly of the order of several times 1071° m /2. As the real cloud
distribution is highly variable and indeed unknown when analyzing the real track-
ing data (unless a special effort is made to recover global meteorological data), one
can expect an intrinsic uncertainty on the magnitude of the instantaneous albedo
acceleration for LAGEOS of the order of 10~1° m /s%. The corresponding error in
LAGEOS’ position predictions (or determinations) over a fraction of one orbital
period (= 4 hr) is of the order of some mm. This is not much less than the current
satellite laser—tracking capabilities, thus providing some motivation for modelling
the albedo effect even when short orbital arcs are analyzed (see e.g. Milani et al.,
1992).

We do not discuss in detail here the < T > values arising from averaging the
resulting values of T over one orbital revolution, contrary to Rubincam et al., 1987
and Farinella and Lucchesi, 1992. Although these < T > values may provide
some rough estimates of the long—term effects associated with the different models
(see some remarks on this in Sec. 5), in most cases they sensitively depend on the
assumed orientation of the satellite orbit, the Sun and Greenwich meridian. In view
of this, we believe that using just one particular choice of the above parameters
may mislead the interpretation. Consider for instance the dominant effect of spec-
ular reflection from the oceans when the satellite is close to the Earth’s shadow
boundaries. As it was pointed out earlier, any asymmetry caused in these zones by
the actual occurrence of continents and/or clouds (not reflecting specularly) versus
oceans may become a strong contributor to a nonzero < 7' > value. Moreover,
the albedo distribution model shows a significant longitude dependence with the
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Fictitious Lageos

T (107" m/s% )

-0.5

0 3.1415 6.283

Fig. 4. Here the results of the no cloud model (solid curve 1) and of the full cloud models
(curves 2) are compared with those of the cloud belt model (curves 3). Dashed curves
correspond to strongly anisotropic light scattering from the atmosphere centers (z = 1),
dotted curves to symmetric scattering (z = 0). The dependence on the effective cloud
albedo is tested as well : curves (3a) correspond to A.;; = 1, curves (3b) to A.;; = 0.8,

andcurves (3¢) t0 Aeyy = 06. L. ious Lageos

Fig. 5. The same as in Fig. 4, but for the radial component S of the albedo acceleration.
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presence of localized structures (see Sehnal, 1979, Figs. 1 and 2), whose position
could also somewhat affect the shape of the 7" curves. Thus the real value of < T' >
may change in a substantial way even in successive revolutions. As a consequence,
a reliable estimate of the long—term albedo effects requires a long time span inte-
gration (many thousands of revolutions) of the perturbation equations, followed by
a Fourier transform analysis to point out periodicities.

It is also important to note that the previous discussion applies only to the
intervals when LAGEOS’ orbit crosses the Earth’s shadow. Out of these periods
the significant “kicks” caused by specularly reflected radiation are suppressed,
since the Fresnel function R(x) undergoes a rapid decrease to very small values
for non—tangential illumination of the reflecting surface elements. Actually, the
LAGEOS orbital residuals show sharp peaks and dips correlated with the Earth’s
shadow crossing periods. While other effects may be responsible for this correlation
(Afonso et al., 1989; Scharroo et al., 1991), we plan to carry out a detailed study
of the long—term albedo effects in a forthcoming paper.

5. Conclusions

The main results obtained in this paper can be summarized as follows.

1. We have provided general integral formulae (1), similar to the ones appearing in
the context of radiative transfer theory, that express the perturbing acceleration
due to radiation pressure for a satellite of arbitrary shape moving in an arbitrary
radiation field. We have then shown that they can applied in a straightforward
way to the simple case of a nearly spherical, quasi—isotropic satellite such as
LAGEOS.

2. In order to study the albedo orbital perturbations on LAGEQOS, we have dis-
cussed in some detail the available models for the optical behaviour of the
Earth’s surface, including reflection from the oceans and possibly anisotropic
scattering from clouds.

3. The Gauss components 7' and S vs. mean anomaly have been numerically
computed for a simple orbital geometry (90° inclination, Sun at an equinox
and in the orbital plane) and for different models of the cloud geographical
distribution and optical properties. A sensitive dependence has been found for
both components, with significant along—track perturbations possibly arising
from oceanic specular reflection when the satellite is close to the Earth’s
shadow boundaries. This may contribute to the observed eclipse—correlated
spikes in the unmodelled 7" acceleration residuals found from LAGEOS orbital
determination.

4. The radial S component shows differences of the order of several times
10719 1/ s? when different cloud models are used, implying short—term errors
(when arcs of a fraction of an orbital period are considered) in LAGEOS’
position predictions/determinations of the order of some mm.
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5. In spite of the caveats mentioned in Sec. 4, it can be noted that the difference
in the orbit-averaged < T > values between the no cloud model and the
hemisphere model is of the order 1012 m/s2. This is consistent with the
findings of Lucchesi and Farinella (1992), who used somewhat different optical
models and another numerical algorithm. As discussed by these authors, such
a small along-track acceleration may cause on the long term comparatively
large errors in LAGEOS’ orbital predictions (or determinations). Moreover, this
value is of just the same order of magnitude as those corresponding to other
non—gravitational perturbations, including both drag-like forces and radiative
effects (see the papers referred in Sec. 1). All these effects are intrinsically
complex and uncertain, and the resulting long—term perturbations are probably
mixed up in the observed acceleration residuals. As a consequence, we feel that
it is dangerous to try to fit these residuals by semi—empirical models including
a number of different mechanisms at the same time, as the modeling errors
can cause large biases and/or aliasing effects. Our plan is thus to further study
the albedo effect, investigating the long—term perturbations associated with the
different models introduced in this paper.
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