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Abstract. Radiation pressure from sunlight reflected by the
Earth’s surface and atmosphere affects in a detectable way the
orbit of laser—tracked Earth satellites or spacecraft carrying mi-
croaccelerometric devices. In particular, long—term perturba-
tions arise as a consequence of radiation specularly reflected
from oceans. Most previous models of this effect modelled the
ocean surface as a perfectly smooth spherical mirror, such that
the reflected light beam is seen at the satellite as collimated
and coming from a specific point of the Earth’s surface. We
now improve on these simplified models, taking into account
that the wavy geometry of the water surface results into a finite
aperture of the reflected light beam and into an extended (and
non-uniform) image of the Sun seen on the surface itself from
the satellite’s position. First we use geometrical optics and a sta-
tistical description of the orientation of small-scale reflecting
surface elements to define an averaged Fresnel-type reflection
coefficient giving the amount of reflected radiation as a function
of incidence angle. Then we compare the results of two possible
methods to derive the local radiative field at the satellite: (i) us-
ing this averaged reflection coefficient but assuming again a per-
fectly spherical surface; (ii) analyzing in detail the distribution
of ray geometries from the whole region which contributes re-
flected sunlight, with the method outlined in Vokrouhlicky et al.
(1993c¢). The results show that the mirror-like model somewhat
overestimates the perturbative effects of reflected sunlight for
LAGEOS-type satellites. The extent of this overestimate may
range up to about 40%, depending on the assumed statistical
properties of the ocean surface geometry, and increases when
the effective aperture of the “reflection lobe” is larger.
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1. Introduction

At high levels of accuracy, spacecraft dynamics is complicated
by a number of non—gravitational forces which are much more
difficult to model than the gravitational ones, and frequently
cause subtle long—term effects (Milani et al. 1987; Mignard
et al. 1990; Vilhena de Moraes 1994). Among them, we have
recently studied in some detail the so—called albedo effect, that
is radiation pressure caused by sunlight reflected/diffused from
the Earth’s surface and atmosphere (Lucchesi & Farinella 1992;
Vokrouhlicky & Sehnal 1993; Vokrouhlicky et al. 1993a,b and
1994). A reliable assessment of this force is required by the
centimetric accuracy of orbital tracking attained in the late 80’s
for satellites used in space geodesy and geodynamics, such as
LAGEOS.

Actually, some investigators had already been developing
complex analytical models for the diffusive part of the Earth—
reflected solar radiation, accounting for a distribution of the
albedo coefficient on the Earth’s surface (Rubincam & Weiss
1986; Borderies & Longaretti 1990). At the same time, how-
ever, the need was perceived to generalize such approaches to
different physical mechanisms of sunlight reflection, related to
the optical properties of the involved surfaces and resulting into
an anisotropic distribution of the intensity of light emerging
from the Earth surface elements (Anselmo et al. 1983; Barlier
et al. 1986; Rubincam et al. 1987; Vokrouhlicky et al. 1993a,b).
Indeed, Barlier et al. (1986) explicitly proved a theorem stating
that the orbit-averaged along—track component of the albedo
effect perturbation (resulting into long—term semimajor axis
changes) is of the first order in the satellite’s orbital eccentricity,
provided one accounts only for isotropically reflected (namely,
diffused) radiation. However, these authors also showed that
the long—term semimajor axis effects of the albedo force —
important to assess the origin of the observed orbital residu-
als in the case of the laser—tracked LAGEOS satellite — are
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significantly increased when the non—isotropic or specular part
of reflection is taken into account. This was shown by mod-
elling the oceans as simple mirror-like surfaces, partially cov-
ered by a variable distribution of diffusive clouds. Later on,
similar conclusions were derived from more complex models
of non-isotropic reflection from the oceans and/or the clouds
(Rubincam et al. 1987; Lucchesi & Farinella 1992; Vokrouh-
licky & Sehnal 1993; Vokrouhlicky et al. 1993a,b). Also, we
have recently investigated atmospheric refraction and absorp-
tion of sunlight at a global level (i.e., neglecting cloud coverage
effects; Vokrouhlicky et al. 1994), and have showed that such
effects can be modelled to a high accuracy in a fairly simple
way.

In this paper, we intend to address an aspect of sunlight re-
flection by the Earth’s oceans that has been neglected so far.
To explain our motivations, we recall that the earliest models
of the albedo effect (e.g. Levin 1962) did not neglect the spec-
ular reflection mode. However, Wyatt (1963) put into question
its importance, arguing that favourable conditions for it being
significant (sufficiently smooth water surfaces) may exist only
on continental lakes. We quote from him:

“Although the oceans cover 71 percent of the globe, it is only
very rarely that a patch of ocean is perfectly calm. Nearly always
itis wavy and rippled, and the solar image is seen to be smeared
out over a rather large angular area. Pure specular reflection is
more likely to be experienced over small bodies of water that are
less disturbed by the wind. ... However, the increased efficiency
of small lakes is offset by the small fraction of the Earth’s surface
that they occupy. It appears very likely that the secular effect of
specular radiation pressure is small.”

When specularly reflected radiation was discussed again, start-
ing in the 80’s, in connection with the analysis of LAGEOS’
orbital residuals (Anselmo et al. 1983; Barlier et al. 1986;
Vokrouhlicky et al. 1993a,b), these studies did not address Wy-
att’s objection, since they assumed for the sake of simplicity
a mirror-like model of oceanic specular reflection. Thus, the
quantitative results obtained in those papers can be seen as ques-
tionable. This problem was called to our attention by Slabinski
(1993, personal communication).

The basic issue may be stated as follows. According to pre-
vious modelling work (Barlier et al. 1986; Vokrouhlicky et al.
1993a,b), the importance of specularly reflected sunlight in-
creases for large incidence zenith angles, owing to the rela-
tionship between reflection coefficient and incidence angle pre-
dicted by Fresnel’s law [see Eq. (2) later]. Therefore, one would
expect that the perturbation due to specularly reflected sunlight
has sharp peaks near the configurations where the satellite “sees”
a narrow Earth crescent, and lies near the horizon as viewed
from the reflecting Earth surface (Vokrouhlicky et al. 1993a,b).
However, it is exactly at such configurations that the “rough-
ness” of the oceanic surface should mostly affect the efficiency
of reflection, smearing out the region of Earth surface from
which nearly—grazing light rays are reflected toward the satel-
lite, and at the same time causing complex multiple reflections
between wave crests and troughs. Thus, it could be expected
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that the occurrence of small-scale waves and ripples may sig-
nificantly affect the magnitude of the perturbations caused by
nearly—tangential reflection of sunlight, and that these pertur-
bations were not estimated in a realistic fashion in the previous
studies mentioned earlier.

Our purpose in this paper is that of deriving a quantitative es-
timate of the effects due to the wavy geometry of ocean surfaces.
Basically, we will use just geometrical optics. This is justified by
the fact that we deal with the reflection of short—wave (visible)
radiation (note, however, that a similar problem has been also
discussed for radiation in the radio band, by employing tech-
niques based on the electrodynamics of wave propagation; see
Bass & Fuks 1979). First, we shall show that the largest effects
of specularly reflected radiation actually do not occur when the
satellite is in the part of its orbit just before entry to or after exit
from the Earth’s shadow, as we assumed in the previous discus-
sion. This is mainly due to the global curvature of the Earth’s
surface, and also to atmospheric extinction (these mechanisms
are discussed in detail in Vokrouhlicky et al. 1994). The peaks
of the radiation pressure force due to specularly reflected light
are thus shifted to solar zenith angles of about 60° or 70°, and
in such configurations the influence of surface waves is much
decreased.

Then, we shall use some detailed statistical models for the
orientation of very small surface elements on the ocean surface,
to show that the finite aperture of the “reflection lobe” due to
the small-scale surface roughness does indeed result into some
decrease of the radiation force caused by specularly reflected
sunlight, with respect to the models assuming a collimated,
mirror-like reflection. Although the detailed results depend on
the adopted model for the sea surface roughness, we shall con-
firm the finding of Lucchesi & Farinella (1992) that the magni-
tude of the specular reflection force is not very sensitive to the
aperture angle of the reflection lobe, provided this stays small
enough. In a forthcoming paper, we shall study in detail how
much the more realistic models of oceanic specular reflection
developed here may affect the magnitude of long—term pertur-
bations on the orbit of LAGEOS—type satellites, and we shall
compare the results with those of Rubincam et al. (1987 later
revisited by Lucchesi & Farinella 1992), whose phenomenolog-
ical approach was based on photometric data obtained by the
Nimbus 7 satellite (Taylor & Stowe 1984).

Apart from assessing the reliability of previous models of the
albedo effect in the context of LAGEOS orbit analysis, there are
other reasons for elaborating new models of specular reflection
from ocean surfaces, taking into account their wavy structureina
realistic way. First, data analysis for future microaccelerometric
space projects (see e.g. Pefesty & Sehnal 1992) will possibly re-
quire such models. Second, the lack of a theoretical understand-
ing of oceanic specular reflection has resulted into inconsistent
assessments of this effect in developing the software packages
currently used for satellite orbit determination and analysis: for
instance, radiation pressure from oceanic reflection has been
taken into account by Klinkrad et al. (1990, for the ERS—1 mis-
sion) and neglected by Fliegel et al. (1992, for the GPS satellites)
and Antreasian (1992, for the TOPEX/POSEIDON mission).
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The remainder of this paper is organized as follows. In
Sect. 2 we describe our statistical models for the specular re-
flection from a wavy water surface which on the large scale is
on average planar (zero curvature), and discuss a possible way
of generalizing the Fresnel reflection law to such a surface. In
Sect. 3 we consider specular reflection from the Earth’s surface
taking into account its finite global curvature, and applying the
results obtained in Sect. 2 to a collection of local surface ele-
ments of size much smaller than the Earth’s radius. In Sect. 4 we
apply the results of these models to several specific examples,
and in Sect. 5 we summarize the main conclusions of this work.

2. Statistical model for the reflection from a “rough”
surface element

In this section we consider specular reflection of a homogeneous
radiative field from a “rough” Earth surface element. Our de-
scription of the “roughness” property is a statistical one, as fol-
lows (see Fig. 1). First, we consider a surface element AS(IV),
with normal unit vector IV, which is planar on the large scale,
but on the small scale consists of a large number of infinitesi-
mal subelements dS(«, 3), having normal unit vectors n(c, 3),
where (a, 3) are spherical angles in the local coordinate sys-
tem defined by the direction of N [i.e., cosa = N - n(a, B),
the origin of the azimuthal angle (3 being irrelevant]. Then, we
assume that the orientation of the different infinitesimal sur-
faces follows a probability distribution p(cr), which is a func-
tion of the angle « that gives the tilt of the n direction to
the “average local vertical” IN and is independent of 3. Thus,
p(a) sinca dadf = p(a) dadf gives the probability of n be-
ing directed in the intervals (a, @ + da) and (3, 8 + d). The
normalization of p(a) and p(c) is provided by the relationship:

/ dadf sinap(a) = / dadf p(a) =1 (1

(note the geometrical factor sin & providing a kind of weight to
the different values of o). We use three different models for the
probability distribution p(c):

(i) a uniform distribution function sin o p(x) = constant, up to
a higher cutoff at a = a, a, being an input parameter (this
will be referred to as model 1);

(ii) an exponentially damped distribution function sin a p(a) =
c1 exp(—cyav), assumed to hold up to a cutoff a, = 45°
[#(c) = 0 for & > a ], with ¢; providing the normalization
constant and ¢, being an input parameter related to the width
of the distribution (this will be referred to as model 2);

(iii)a simplified version of the Gram—Charlier distribution law
derived by Cox & Munk (1954) from aerial photographic
data of the sun’s glitter on the sea surface (model 3):

i (@) 1 sina . tan’ o
inap(a) = ——=———exp | —
P ol cosia P 202 )’
where the parameter ¢ (assumed to be equal to both o, and
0w, iIn Cox and Munk’s notations, in such a way that no
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dependence on § is introduced) is derived from Cox and

Munk’s formulae for a “clean” sea surface by assuming an

average wind speed of about 7 m/s (Wentz et al. 1984),

so that the distribution has a maximum for o = 7°.5 (and

then rapidly drops off). We have also introduced a cutoff at

o, = 25°, consistent with the data quoted by Cox and Munk.

Note that we have neglected all but the first (Gaussian—like)

term in the Gram—Charlier series, namely we have set to

zero all the corresponding “skewness” and “peakedness” co-
efficients, which is reasonable in view of the data. Similar
simplifications have also been used in some recent oceano-

graphic studies (e.g. Hennings et al. 1994).

In all the three cases, (3 is assumed to take all possible values
in the interval (0, 27). The distribution function p(c) plays the
role of a phenomenological input into our theory. The motiva-
tions for our three model choices are as follows: model 1 is just
the simplest conceivable one; model 2 bears some similarity to
the phenomenological reflection law used by Rubincam et al.
(1987) and Lucchesi & Farinella (1992); and model 3 is derived
from empirical data, albeit through a number of simplifying
assumptions. Comparing the results of the three models will
provide information about the sensitivity of the results to the
assumptions regarding the statistical properties of sea surface
“roughness”.

In principle these three models could well be replaced by
different ones, based either on new real data on oceanic sur-
face waves or on some hydrodynamical theory of the air—water
interactions. Another possibility would be to replace our proba-
bilistic models of the geometrical properties of the ocean surface
with some more specific mathematical description —e.g., two—
dimensional sine waves, or some other function with a a given
Fourier transform. This would allow one to treat in a determinis-
tic way the reflection of light rays from the surface, and possibly
also the multiple reflection phenomena. However, in our opin-
ion, our simple models are more suited to the current needs of
satellite orbital analysis and determination. Even though they
cannot account in an accurate way for multiple reflections and
mutual shadowing of waves, we will show at the end of this
Section that our method allows us to easily obtain a quantitative
estimate of the importance of these effects. Anyway, as we men-
tioned in Sect. 1, they are most important for a surface-grazing
orientation of the light rays, and in this case the perturbing force
is much decreased by the global curvature of the ocean surface
(see Sects. 3 and 4).

The reflectivity function (fraction of the incident energy flux
associated with specularly reflected radiation) for a plane wave
of unpolarized incident radiation at the planar boundary between
two unmagnetized optical media (air and water in our case) is
given by the Fresnel coefficient .28(¥):

1 sin®(¥y — 9,) cos?(V + 19*)]

F8(%0) = 2 sin(J, + ) cos2 (g — V,)

(see e.g. Stratton 1941; Jackson 1962). Here ¥, is the zenith
angle of the incident rays measured from the normal to the con-
sidered surface element, and ¥, is defined by g sin ¥y = sin ¥,
where the constant g depends on the refractive indexes of the

(@)
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AS

Fig. 1. Polar angles (19, ¢) specifying the direction of a ray reflected by
a tilted subelement dS(c, 3) of an ocean surface element AS(IV ). 9o
is the angle between the direction of the incident ray and N

two media; o = 0.7446 for an air/water boundary. As we are
dealing with a plane wave coming from a given direction (spec-
ified by ¥), the Fresnel function also directly determines the
ratio between reflected and incident radiative intensities (for the
concept of radiative intensity in the current context see Vokrouh-
licky et al. 1993c).

In our model we assume that ideal specular reflection con-
sistent with Eq. (2) does not apply to the entire surface element
AS(IN), but to the different separate infinitesimal subelements
dS(a, ). The global reflection from AS(IN) can thus be seen
as the superposition of individual reflections from all the subele-
ments S(c, 3), giving rise to a finite lobe pattern of the specular
reflection from AS(IN) instead of a sharp unidirectional beam.
It is worth noting that the axial symmetry we assumed for the
orientations of the infinitesimal subelements [p(cv) does not de-
pend on (3] does not entail the consequence that the radiation
intensity distribution in the reflection lobe is always symmetri-
cal around its axis (as specified by the ideal specular reflection
from AS, obtained by assuming o = 0). Although the lobe is
symmetrical when 99 = 0, for large incidence zenith angles
the reflection lobe is significantly elongated in the “vertical”
sense (i.e., along ). This property is in qualitative agreement
with the satellite data discussed by Taylor & Stowe (1984) and
consequently also with the model of Rubincam et al. (1987).

We are now going to provide the mathematical formulation
of the ideas described above. Together with g, the zenith angle
of the incident radiation with respect to IN, we will often use the
parameter (o = cos 9y. We arbitrarily identify the direction of
the incident beam with the negative y—axis of the local system
attached to the surface element AS(N) (i.e., ¢y = —%). The
polar angles (¥, o) give the direction of the beam specularly
reflected by the infinitesimal subelement d.S(c, 3) (see Fig. 1).
One easily finds the following relationships between the various

angular parameters:

cos ¥ = 2cos ((a, B; o) cos a — g Ba)
sim?singo=2005C(a,,6;,u0)sinasinﬂ+\/1 —,u% , (3b)
sind cos ¢ = 2 cos {(a, B; po) sin acos 3 , €9

where ((a, B3; o) is the incidence zenith angle measured from
the local normal n(c, 3), given by

COSC=Nocosa—,/1—,u(z)sinozsinﬂ. 4)

For small tilt angles «v it is easy to verify that the reflected beams
are close to the “ideal” reflection direction, that is

Y — ¥y =2sinasin 8 + @(d?) ,
T 20

o= ———
2 1o

It is important to note than not all the values of (o, B) (ie.,
not all the orientations of the subelements) can contribute to
the reflected radiation. A necessary condition is that the incom-
ing radiation arrives from above the surface dS(a, ), implying
cos ((a, B; o) > 0. However, it is easy to see that a sufficient
condition is provided by the requirement that the reflected beam
lies above the local “average horizon”, that is cos > 0. Of
course, these restrictions on the values of (a, 8) apply mainly
for large zenith angles of the incident sunlight (uo = 0). We
shall denote by Q4 the set of parameters («, 3) which con-
tribute to the reflection lobe; Eqgs. (3) imply that the inequality

Mo
V1=K

specifies this allowed region Q4. It is also useful to define
{lap as the set of parameters fulfilling the necessary but not the
sufficient condition stated above, that is the relationship

Ho Ho

———=cot(2a) < sin f < ————cot(q) . ©6)
V-1 V1 - H

This just means that the subelements with normals belonging to
Qo p are illuminated by incident sunlight but reflect it below the
local “average horizon”. The corresponding reflected radiation
will undergo further reflections from other subelements, and
thus can be seen as providing additional incident light with a
changed incidence zenith angle:

sin a((cos 8 — sin B) + @(a?) .

sin 3 < cot(2a) 5)

fo — p = o — 2.cos {(a, B o) cos a . o)

The contribution of this secondary reflection process will be
discussed later in this Section.

The Fresnel coefficient .72(d) as given by Eq. (2) deter-
mines the ratio between the reflected and incident radiative
fluxes in the ideal case of a smooth, mirror-like surface. We
shall now try to find out a reasonable generalization (an “ef-
fective Fresnel coefficient”) in the case of the finite reflective
lobe discussed earlier. Essentially, we shall just average .78(99)
over the ensemble of infinitesimal subelements d.S(c, 3), with
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a given distribution p(a). Thinking in terms of the energy flux,
one might also introduce an “effective solid angle” spanned
by the reflective lobe. We thus propose the following opera-
tional definition of the effective (or averaged) Fresnel coefficient

(72)(Wo):
(F2)(%0) _(_energy passing through the reflection lobe )
0"~ (effective solid angle of the reflection lobe )
1
(incident energy ) ’

which is equivalent to

Jors .y dlcos D)dp FRIC (9, 9)] pla @, ¢)) | Fexl)

311

1.00 T y T T T T T T

e

3

(o
T

R (resp. (R))

025 r

(:28) (o) =

Joxs ) dcos D)dep pla (@, )] | gemsll|

- f d(cos )dB R1C (o Bi o)l p(@) ,  (8)
Qe,B)

where (19, ) is the set of spherical angles (9, ) characterizing
the subelements contributing to the specular reflection lobe. The
denominator of the right-hand side of the upper line of Eq. (8)
is just equal to unity due to the normalization (1). Note the
Jacobian of the transformation (¢, ) < («, B) in the integrands
of Eq. (8) (upper line), which appears because the probability
distribution p(«) is defined in the (a, 3) space, while in the
integrands we need the probability distribution for reflection
into the infinitesimal solid angle d(cos ) de.

It is easy to show that our definition of the effective Fresnel
coefficient coincides with .78(1y) as given by Eq. (2) in the limit
of a quasi—smooth surface (i.e., very narrow reflective lobes):

lim (.92)(do) = .78(00) ©)
and that this is the case for all model choices of p(a).

In Figs. 2 we have plotted the effective Fresnel coefficient
(28) vs. the incidence zenith angle ¥ computed in a number
of different ways, and compared to the ideal Fresnel function
72 (longer—dashed line). For the sake of comparison, besides
the curves derived with the three models for p(«) (and differ-
ent parameter choices, labelled 1 and 2), we have also plotted
a running average of the ideal Fresnel curve Z2(tg) over an
interval tuned to the parameter choices of the various models
(shorter—dashed curve). Note that in both Fig. 2a and 2b the dot-
ted lines labelled 3 represent the results from the “empirical”
model 3.

Of course, there are little differences among the various
curves for small incidence zenith angles, up to ¥ ~ 50°. On the
contrary, significant differences are apparent between the effec-
tive Fresnel coefficient defined by Eq. (8) and the ideal Fresnel
function %2 (and its running averages) for nearly—tangential re-
flection directions (g close to 90°), where the ideal Fresnel
function approaches unity. In general, we can see that this lim-
iting behaviour does really overestimate the real reflectivity of a
“rough” reflecting surface, and that the running—average method
does not yield a good match to the more physical results from
Eq.(8). On the other hand, the differences between the results
of the different statistical models for p(c) are small, and more

0.00 . :
0.0 0.4

1.00

o

3

o
T

R (resp. (R))

025 r

0.00 T

0.0 0.4 1.6

b

Fig.2a and b. Effective Fresnel coefficient as defined in the text vs.
the zenith angle 9 (in radians) of the incident sunlight. Parts a and
b correspond to different models (1,3 and 2,3, respectively), for the
distribution function $(c) of the orientation of the infinitesimal sur-
face subelements. The longer—dashed curves show the ideal Fresnel
function (for the mirror-like reflection case). The solid curves show
the effective Fresnel coefficients defined by Eq. (8) for two different
parameter choices: curves 1 correspond to o, = 5° (model 1) and
In2/c; = 5° [model 2; this implies that p(c) decreases by a factor 2
between a = 0 and o = 5°]; curves 2 correspond to similar choices but
with 20° instead of 5° in both cases. The shorter-dashed curves were
derived by a running average of .78(%) over an interval of 9y values
of width 2, (model 1) or 21n2/c; (model 2). The dotted curves 3
(in Fig. 2b, almost superimposed to solid curve 2) were derived by
model 3

important than the detailed shape of the distribution function
appears to be (in models 1 and 2) the value of the parameters
a, and ¢, which specify the average tilt of the small-scale
subelements with respect to the local vertical. Note that curve
3, derived from Cox & Munk’s (1954) data, is closer to curves 2,
corresponding to a higher average roughness of the sea surface.
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We shall now use the method outlined above to derive an ap-
proximate estimate of the importance of secondary reflections
and mutual shadowing phenomena on the wavy ocean surface.
As explained earlier, the rays hitting the infinitesimal subele-
ments with normal directions characterized by (o, 3) values
in the domain Qag [see Eq. (6)], after the first reflection are
still oriented toward the surface element AS(IN). Therefore,
we shall suppose that they are submitted to a second reflection,
with incidence angle given by Eq. (7). Integrating over all the
subelements belonging to the {5 domain, we can estimate the
contribution of light rays undergoing secondary reflections to
the effective Fresnel coefficient as

§D(R)(0,) = / d(cos a)df

opB

(fe:;:action > { (o) F[C (e, B; po)]

result of the
second reflection

) { (Z2) [arccos i (@, B; ,uo)] ,(10)

where (.%2) in the integrand is given by Eq. (8).

We have computed the relative importance of §(.%2) with
respect to (42) from Eqs. (8) and (10), and then we have plot-
ted the results in Figs. 3 for the three models of the distribution
(). As expected, all the curves show peaks for 1 approach-
ing 90°, and the peaks are much sharper when the distribution
of a is narrower. Note that model 1, which is characterized by
a uniform distribution of subelement orientations in the range
(0, o), shows a somewhat larger contribution from secondary
reflection than model 2 (exponential decay for increasing o val-
ues), whereas the “empirical” model 3 provides intermediate
results. However, in no case the magnitude of §)(.%2) exceeds
7% of (Z2). Although very approximate, this estimate shows
that in the present context a detailed treatment of secondary (and
multiple) reflections is not needed. Hereinafter, we are thus go-
ing to neglect these phenomena.

3. Reflection from the spherical Earth’s surface

In this section, we shall develop a detailed algorithm to compute
the radiative force due to specularly reflected solar radiation
from the oceans, accounting both for the wave effects and for the
global curvature of the Earth’s surface, which will be assumed
to be spherical.

Let us start with a methodological comment. A possibility
for applying in a simple way the approach discussed in Sect. 2
would be that of replacing the “ideal” Fresnel coefficient .72
[Eq. (2)] with its averaged version (.22) [Eq. (8)] in the formu-
lae for the radiation pressure force due to specularly reflected
sunlight [e.g. Barlier et al. 1986, Eq. (10); Vokrouhlicky et al.
1993b, Eq. (7)]. However, this approach would account only in
part for the phenomena caused by the wavy ocean surface, as
one would still assume that specularly reflected light comes to
the satellite in a collimated beam from one specific point on the
Earth’s surface. Therefore, in what follows we will develop a
more complex algorithm, based essentially on the geometrical

7.5
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Fig.3a and b. The ratio §’(.%2) (in percent) between the contribu-
tion of secondary reflections to the Fresnel coefficient and the single—
reflection value (78), plotted vs. the zenith angle of incident sunlight
Yo (in radians). As in Fig. 2, parts a and b correspond to models 1,3
and 2,3, respectively, for the p(c) distribution. Curves labelled 1 and
2 correspond to choosing 5° and 20°, respectively, for the values of
the parameters appearing in f(a) (models 1 and 2), as explained in the
caption of Figs. 2. Curves with label 3 are derived from model 3

optics technique we applied in our previous papers to a vari-
ety of related problems (Vokrouhlicky et al. 1993c, 1994). The
reader is referred to those papers for a full description of our
technique; here, we shall just provide a short summary of it.
The method consists of a detailed calculation of the radiative
field that gives rise to radiation pressure on the satellite at its
own position. Once this radiative field has been derived, one can
compute the radiative flux vector, which in the case of a spheri-
cal satellite is directly related to the radiation pressure force (see
discussion in Vokrouhlicky et al. 1993a). The radiative field is
characterized by the angular distribution of the radiative inten-
sity 1. We associate with each local direction a given light ray,
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@.¢)

Satellite

Fig. 4. Reference frames and geometric variables used in the text

and work out how the radiative intensity is “transported” along
the rays. Since in the current context we are going to neglect
the presence of the Earth’s atmosphere (hence of refraction and
absorption effects), in general light rays are just represented by
straight lines, and the radiative intensity is conserved along any
specific ray. Of course, the only exception to this occurs at the
point of specular reflection on the ocean surface, where both the
ray direction and the radiative intensity are changed discontin-
uously. Our treatment in the following will thus be devoted to
carrying out two tasks: (i) finding out the geometry of the re-
flected rays in a suitably chosen local reference frame centered
at the satellite; (ii) evaluating the radiative intensity for each of
the rays contributing to the local radiative field.

3.1. Reference frames

First we define a geocentric satellite—oriented reference frame
(z, vy, 2), such that the z—axis is directed to the satellite and the
Sun lies in the zz—plane (the singular case when the Sun and
the satellite are aligned does not cause any problem here). We
also call w the geocentric angular distance between the satellite
and the Sun. The position of the satellite is thus specified by
the unit vector nl, = (0,0, 1) and its geocentric distance 7. In
a similar way, the direction of the Sun is specified by nl =
(sinw, 0, cosw) and its distance is assumed to be infinite. We
thus neglect the angular dimensions of the Sun and approximate
its radiation by a homogeneous field with constant intensity I
(i.e., by a Dirac delta distribution with respect to the angular
variables); this approximation will be discussed later on. We
also introduce a system of spherical coordinates (¢, ) in the
(z,y, z) frame in the usual way.

We assume that the Earth’s surface is spherical, with radius
Rg. For the sake of simplicity, we also assume in this Section
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that the Earth’s surface is entirely covered by oceans, although
this assumption can be easily removed if a realistic model of
the ocean/continent distribution is needed (as in Vokrouhlicky
etal. 1993a,b). Each Earth surface element (R% sin ¥ dddy) is
assumed to have the properties described in Sect. 2, namely it is
assumed to be “rough” or “wavy” according to some statistical
distribution p(c). The incident solar radiation is thus specularly
reflected into a finite—lobe reflection pattern, rather than in a
single direction. As a consequence, there exists in general a
finite region % on the Earth’s surface which contributes to the
specularly-reflected radiative field at the satellite location (see
Fig. 4 for clarifying the geometry). A satellite—centered local
frame is obtained from the geocentric satellite—oriented frame
by a simple translation along the z-axis, such that the origin
coincides with the satellite’s position.

Next, we introduce a reference frame attached to the chosen
Earth’s surface element, characterized by the direction vector
n(J, ¢) and the polar angles (4, ). It corresponds to the similar
reference frame used in Sect. 2, with the z—axis directed along
n(¥, @) and the negative y—axis directed along the projection
of the solar direction on the (z,y) plane, normal to n(?d, v).
The rotation matrix between the geocentric satellite—oriented
frame and the frame attached to the Earth surface element is
then easily found. Expressing the unit vector of the satellite’s
position with respect to the considered Earth surface element
both in the geocentric satellite—oriented frame and in the frame
attached to the surface element [see Egs. (3) and (4)] and relating
these expressions through the rotation matrix, we obtain the
fundamental set of equations

2cos((a, By po)cosa — po = — & o =Y, (11a)
2cos ((av, B; po) sinavsin B+4/1 — p2 =

B =, (116)

V11—
; 1— 2 _.2
2cos ((a, B; o) sinacos B = — iied P o=,
1 -
(11¢)

with
1
0= ————— |
V1+E -2

where the parameters (u, v) are related to the position of the
Earth surface element by i1 = cos? and v = sin ¥ cos ; the
incidence angle of the solar rays with respect to the local zenith
direction g is given by

Ho = LCOSw + Vsinw ;

12)

and € = Rg /7. Usually there exists a unique infinitesimal sur-
face subelement, with normal (c, 3), which provides the corre-
sponding reflection. Equations (11) thus describe the geometry
of the infinitesimal specular reflection undergone by a particu-
lar ray belonging to the radiative field at the satellite’s position.
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(However, as we shall see later on, more complicated situations
may also happen.)

It is easy to check that in the case o, = max(a) = 0 (ideal
specular reflection from a smooth surface, with no finite—lobe
phenomena), Eqgs. (11) degenerate to v = p (or ¢ = 0) and

V1 —p2sinw+pcosw = (u — &o (13)

which may compared for instance with the fourth—degree Eq.
(9) in Barlier et al. (1986).

It is useful to solve explicitly Egs. (11) for the (o, B) param-
eters, as follows: :

cosa = Vit o , (140)
\/2 <1+,u0¢1 - l—ﬂg%)
sinacos 8 = vs , (14b)
\/2 (1+ ot = /1 - 1idva)
— 1= u?
sinasin 8 = v il (14c)

\/2 (1+um/)1 - 1~N%¢2) .

Equations (14) can be combined to express the angle 3 as

(1 — pd)o ! +cosw — ppo
sinwy/1 — p? — 12 '

The cosine of the incidence angle py can be derived from
Egs. (11) as well:

tan g3 = (15)

o = (cos avx — p,+§sin2 a) o, (16)
where we have defined
A=¢[2p—¢(1+sin’a)] +2(1 +ocosw)o 2. )

3.2. Characterization of the specularly reflecting domain on
the Earth’s surface

Here we shall carry out the first step mentioned earlier, namely
we shall characterize the geometry of the region where the radia-
tive field does not vanish in the satellite—centered local reference
frame. We introduce a system of polar coordinates (6, ¢) in the
satellite—centered system, with 17 = cos 8. One easily finds the
relationship between the parameters (7, ¢), specifying a given
light ray in the satellite—centered system, and the parameters
(u, ) of the Earth surface element from which the light ray is
reflected. Besides the trivial relation ¢ = ¢, we find

1—¢p

" ire o
p=g 1= envPre=1].

Through Egs. (18), the characterization of the radiative field in
the satellite—centered frame is equivalent to the characterization

(18)
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of the specularly reflecting domain 7% on the Earth’s surface.
We shall summarize the algorithm for the determination of its
boundary (0.9%), because its image essentially specifies the fi-
nite region within which the radiative field does not vanish in the
satellite—centered frame. Most of the material of this subsection
is based on simple geometrical considerations, plus the use of
Eqgs. (11). Therefore we just give the results, and the reader is
encouraged to verify herself/himself the following equations.

First, note that there are three possibilities concerning the
relative position of the domain 7, the subsatellite point on the
Earth’s surface (the pole 6 = 0) and the terminator of the region
visible from the satellite (given by p = &):

1. w < 2a: in this case the domain . contains the subsatel-
lite point; actually, we can also distinguish between subcase
(1a), when the subsolar point also lies in the F# domain, cor-
responding to w < 2, — arcsin [¢ sin (2¢,)], and subcase
(1b), when this is not the case, i.e. 2a, — arcsin [€ sin (2a,)]
<w < 20.

2. 2a, < w < [arccos(—+/1 — £€2) — 2a,] (provided this is
possible, see below): the domain % neither includes the
subsatellite point nor intersects the terminator of visibility;

3. [arccos(—+/1 — &%) —2a,] < w < arccos(—4/1 — £2): the

domain .7 intersects the terminator of visibility.

We shall assume that all the three cases may actually occur. This
of course depends on the actual values of the parameters o, and
£ (recall that o, can be changed within model 1 for the p(c)
probability distribution, whereas it is fixed to 45° in model 2).
For the orbit of the LAGEOS satellite, mentioned in Sect. 1 and
further discussed in Sect. 4, the requirement is that o, < 22°.5,
a fairly reasonable assumption. However, it should be noted that
the situation when case (2) is not possible (that is, the domain
F# still contains the subsatellite point and already intersects the
terminator of visibility), occurring for larger values of the o,
parameter, is only a trivial variation of what will be obtained in
the following, thus we shall skip a detailed discussion of it.

In case (1), all the ¢ values are allowed for the points be-
longing to the 0.7% boundary. Once the angle ¢ is chosen, one
can determine the corresponding p parameter (or equivalently
9) from Eq. (14a), by fixing a = a... The resulting equation has
to be solved iteratively. It can be proven that there are just two
roots in the relevant interval p € (¢, 1), corresponding to the
two points with parameters ¢ and ¢ + 7.

In case (2), the same procedure can be used again for finding
w once the coordinate ¢ is given. However, it is evident that now
 is limited to some interval {—@max, Pmax), and the two p roots
are to be interpreted as two roots on the same “p—slice”. One
easily finds that the pmx—slice tangent to the .7 domain can
be identified by solving the equation

2 Opo(p; o)
(1w =5, =

where Egs. (16) — (17) are used to obtain yg as a function of
1, which plays the role of parameter for the points of the 0.74
boundary. This equation cannot be reduced to a low—degree
polynomial equation and has to be solved iteratively for fimax.

=CcosSw — [uflg , (19)
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The corresponding angle @, is then easily determined from
Eq. (12).

In case (3), one has to determine the intersection with the
visibility terminator. This provides the value of 1 such that pic, =
&. Using Eq. (14a), one can find the corresponding value of o,
at the terminator crossing (simultaneously fixing a = ay,).

Note that all the points of the . domain should satisfy
the condition of being illuminated by the Sun (i.e., their angular
distance from the Sun should be < 90°). This condition does not
involve any restriction on the construction of the 8.7% boundary
in the first two cases discussed above. It can however be shown
that for

T .
w > 3 + arccos <§ cos? oy, + sin a,y/1 — €2 cos? oz*)

a portion of the 8. 7% boundary exceeds this maximum angular
distance from the Sun. This completes what is needed to de-
termine the boundary of the domain 9% in all the considered
cases.

(20)

3.3. Determination of the radiative intensity carried by a
specified light ray

We shall now outline our method for the determination of the
radiative intensity carried by a light ray in the radiative field
characterized in Sect. 3.2. Let us consider a light ray, locally
identified by its spherical coordinates (7, ¢), which is reflected
at some point of the domain .74 First, we can easily find the lo-
cation of the reflecting point by using ¢ = ¢ and one of Egs. (18).
Once we have found the (9, ¢) [or equivalently (u, v)] param-
eters of the reflecting point, we can use Egs. (14) and/or (15)
to determine the parameters (c, (3). The zenith incidence angle
¢ with respect to the reflecting surface subelement [character-
ized by the spherical coordinates (ca, 3) of its normal vector in
the local frame attached to the Earth surface element] is easily
obtained by Eq. (4). In the formula for the radiative intensity
transported along the chosen light ray, we expect to find the
intensity at the source Iy multiplied times the non-averaged
Fresnel function Z2(1¥), giving the fraction of the incident light
reflected by the subelement (we use the non—averaged Fresnel
function here because we suppose that ideal specular reflection
occurs at the subelement). Then, when the integration is carried
out over all the subelements forming a given surface element,
the weight function p(a)) must be used to account for the prob-
ability of the orientation of the subelements.

Before going on, it must be emphasized that only a part of
the effect of the curvature of the Earth’s surface has been taken
into account so far. On the one hand, we have partially included
it by deriving the ray geometry. However, Vokrouhlicky et al.
(1994) have shown that only a more complete model with the
Sun treated as an extended source of radiation can account in a
correct way for the effects of the Earth’s surface curvature on the
reflected sunlight. Roughly speaking, the reason is that a spher-
ical mirror causes a “dilution” of the energy flux coming from
an extended source when it is reflected from its surface and then
impinges on an external object (in our case, the satellite). But we
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have used here a simple homogeneous model for the solar radia-
tive field. To correct the corresponding error, which may become
quite significant, Wyatt (1963) and independently Barlier et al.
(1986) introduced a suitable “dilution factor”, whose accuracy
has been verified in detail by Vokrouhlicky et al. (1994). Thus,
we have to introduce in the radiative intensity this additional
“dilution factor” ¥({,£,) [J(6) in the terminology of Barlier
et al.], which can be expressed as

) sin { cos
V) = La sinp[2cos (2 — p) — €xcos p] ’ b
where we have defined
p =2¢ — arcsin ({, sin () ,
ba=b—rmes 22)

Actually, we generalized the expressions of the dilution factor
derived by Wyatt and Barlier et al. to include the case of subele-
ments with a # 0, which are not geometrically tangent to the
globally spherical surface of the planet.

The expression for the radiative intensity I(n, ¢) carried
along the considered light ray is thus:

I(n, ¢) = Lo A(OY(, &) (23)

and the perturbing acceleration on the satellite due to Earth—
reflected radiation pressure is given by:

|9, B)
dnde I(n, _—
/(W) 1 11,8900 | 58

(see e.g. Vokrouhlicky et al. 1993a). Here n(n, ¢) is a unit vec-
tor with components n(n, $)* = (sin 6 cos ¢, sin 8 sin ¢, cos 6),
and the constant appearing before the integral contains the radius
(Rsqt) and mass (m) of the satellite, assumed to be spherical,
the velocity of light (¢) and the dimensionless coefficient %5,
depending on the properties of the satellite’s surface. The inte-
gration in Eq. (24) is performed over the set of directions for
which the radiative field in the satellite—centered frame does not
vanish. This coincides with the image “seen” by the satellite of
the domain 7%, as discussed in Sect. 3.2. Note the appearance
of the Jacobian of the transformation («, 8) < (), ¢) in the inte-
grand of Eq. (24), that comes from the fact that p(c) is the prob-
ability distribution in the (¢, ) space, while the integration is
performed in the local frame coordinates (7, ¢). The evaluation
of this Jacobian is a straightforward but cumbersome exercise,
where Eqgs. (11) and (14) have to be exploited. We shall skip
the explicit calculations here. Note, however, that singularities
in the Jacobian may cause numerical problems in evaluating the
integral appearing in Eq. (24), although of course the integral
is always convergent. On the other hand, as we already men-
tioned (see also Sect. 4), when the geocentric position vector of
the satellite approaches the sun’s direction, the transformation
(o, B) S (n, ¢) is no more one—to—one, and as a consequence
the model yields a spurious decrease of the perturbing acceler-
ation.

2
oz TR CR

mc

n(n,¢) (24)
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It might be argued that the y—component of the satellite ac-
celeration (24), when expressed in the satellite—centered frame,
should vanish for symmetry reasons (the Sun lies by definition
in the zz—plane). However, this is not true any more when one
takes into account the real ocean/continent distribution on the
Earth’s surface. Actually, in Sect. 3.2 we studied the domain
F# from the geometrical point of view only. In a realistic simu-
lation, one should check whether all the points belonging to the
geometrically derived domain 7% correspond to ocean surfaces,
and if not take into account the real coastal lines.

4. Applications

In this section we shall apply our specular reflection theory to the
case of the LAGEOS satellite. This choice is motivated by the
long—standing effort to understand the long—term orbital resid-
uals of LAGEOS (see Sect. 1) and by our desire to assess how
much our previous results on this problem have been affected
by the fact of neglecting the wavy geometry of ocean surfaces.
In fact, previous studies (Barlier et al. 1986; Vokrouhlicky et al.
1993b) have addressed the role of Earth-reflected radiation in
generating significant long—term perturbations on LAGEOS, but
adopted idealized (mirror-like) specular reflection models for
the oceans. Here we shall investigate the behaviour of our more
realistic models of oceanic reflection for varying geometries
along one revolution of the satellite, whereas a forthcoming
paper will be devoted to reinvestigating the long—term effects.
Although our examples will thus be restricted to LAGEOS—type
orbits, we stress that the same study may be performed for any
other satellite orbit (see e.g. the feasibility study for the low—
orbiting microaccelerometric experiment MACEK prepared at
the Ondiejov Observatory, Vokrouhlicky 1994).

In our examples we are not going to use the real LAGEOS or-
bit, but we will modify the angular orbital elements (the inclina-
tion, longitude of the ascending node and argument of perigee)
so that extremal configurations are reached, in which the mag-
nitude of the resulting perturbations is maximized. This method
has been widely used in previous work on similar issues (e.g.
Rubincam et al. 1987; Lucchesi & Farinella 1992), in order to
obtain a simple assessment of whether a given source of per-
turbation is significant with respect to the observed residuals.
Also, this allows one to analyse the perturbative effects freed of
additional geometrical imprints. ‘

As a first example, we assume that the Sun lies on the equa-
tor, the satellite’s orbit is equatorial (zero inclination), and the
perigee direction (from which the mean anomaly used in the fol-
lowing figures is measured) coincides with that of the subsolar
point. Moreover, we assume that the Earth’s surface is entirely
covered by oceans (a realistic distribution of the continents will
be used in the forthcoming study of long—term effects). Note
that for a uniform Earth surface the symmetry of the assumed
Earth—Sun—orbit configuration implies that the behaviour of the
perturbing force along the orbit is in fact independent of in-
clination, so in this particular case the results apply as well to
LAGEOS’ real inclination (about 110°).
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Fig. 5 displays a sequence of solar image boundaries 0.7%
for different Sun—satellite angular distances w, as seen from the
satellite’s position (these plots can be obtained by simple trans-
formation formulae from the results of the procedure explained
in Sect. 3.2). We have chosen o, = 5° here. The first solar
image a) corresponds to the perigee position, with w = 0, and
of course it is circular. Its angular radius 6,;,,, measured in the
satellite—centered reference frame, can be determined through
the system of transcendent equations

sin 2a, — 29) =& sin Qa, — ) ,
1 —£&cos?
1+ —2¢cosV |

For a, = 5°, one gets 6;ijm = 3°.5. The small asterisks in the
images show the position of the point from which mirror-like
specular reflection would be expected to come for a perfectly
smooth ocean surface (as used in the previous studies on the
subject). As w is increased [images b) to f)], the the shape of
the reflected solar image is deformed and becomes smaller and
smaller. There is a factor 2.7 in scale between images a-b) and
c-d) and a factor 5 between images a-b) and e-f). This strong
apparent shrinking of the solar image is due to two different
effects: along 6, the major role is played by the global convex
shape of the Earth (namely, it is a geometrical optics effect re-
sulting from reflection into a spherical mirror), whereas along
¢ the reflection lobe would be compressed even for a (roughly)
plane reflecting surface, as discussed in Sect. 2. The last two im-
ages e—f) correspond to case (3) according to the classification
of Sect. 3.2, with the boundary 0.7% intersecting the horizon of
visibility (dashed lines in Fig. 5). In case f), moreover, the solar
image is partially “cut” as a consequence of the solar illumi-
nation requirement, also discussed in Sect. 3.2. We stress that
Fig. 5 just shows the 0.7% boundaries of the solar image, but
does not provide information about the brightness distribution
inside it; in general, the brightness is not uniform, but increases
toward the centre of the image itself.

Figs. 6 and 7 show the variation of the radial (S) and trans-
verse (1) components of the radiative force due to specularly
reflected radiation along half of the portion of the satellite’s
orbit lying outside the Earth’s shadow (the other half is sym-
metrical). A number of different models and parameter choices
have been used to derive the different curves. As in Figs. 2 and
3, parts a) and b) compare models 1,3 and 2,3, respectively,
for the p(a) distribution (see Sect. 2); curves labelled 1 and 2
correspond to different parameter choices (a, = 5° and 20°, re-
spectively, in model 1 and the same values for In 2/¢; in model
2), whereas the dotted curve labelled 3 has been derived with the
“empirical” model 3. In all plots, the longer—dashed curve was
derived from the simple approach used in previous studies, that
is assuming mirror—type reflection from a smooth ocean surface
and the “ideal” Fresnel coefficient Z2(y) given by Eq. (2) —
this should be compared e.g. with Fig. 6a in Vokrouhlicky et al.
(1994). On the other hand, the shorter—dashed curves correspond
to a similar method, but replacing the ideal Fresnel function co-
efficient .78(1¥y) with the averaged version of it, (.72)(1), as

0rim = arccos [ 25)
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e) f)

Fig. Sa—f. Different phases of the solar image boundary 8.9% seen from
the satellite on the ocean surface. The Sun—satellite angular distance w
is changed along the sequence. The asterisks inside the images mark
the points yielding mirror-like specular reflection on an ideally smooth
ocean surface. The dashed lines show the position of the Earth’s hori-
zon as seen from the satellite. The circular image a corresponds to
w = 0, and in the following images w increases as follows: w = 90°
for b; 124°.1 for ¢; 134°.9 for d; 138°.5 for e; 142°.1 for f. The last
value is close to the limit value wim = arccos [—(1 — €3)'/2] = 146°.5,
characterizing the sunset as seen from the satellite. As shown by the
1° horizontal bars in b, d and f, the scale is increased by a fac-
tor 2.7 passing from images a-b) to c-d) and by a factor 5 passing
from a-b to e-f

derived in Sect. 2. Note that in this way we still keep the same
geometry of the reflected beam as in the smooth—ocean case,
and just change the intensity of it. Of course, the two methods
give results closer to each other when the probability distribu-
tion is narrow (curves 1) than when a broader range of tilts of
the surface subelements is allowed for (curves 2).

Finally, the solid and dotted curves have been derived from
our more detailed model taking into account the geometry of
reflected rays, as developed in Sect. 3 (labels 1 and 2 still re-
fer to different parameter choices for o, and c¢;, while label 3
is attached to curves derived with Cox’ and Munk’s empirical
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Fig.6a and b. Radial component S of the radiation pressure accel-
eration due to specular reflection from the oceans vs. orbital mean
anomaly M (in radians, measured from the subsolar point). The cho-
sen orbital configuration is explained in the text. Parts a and b of the
figure correspond to different models (1,3 and 2,3, respectively) for
the ocean roughness probability distribution p(c). The longer—dashed
curves correspond to a smooth—ocean model yielding mirror-like re-
flection, while the shorter—dashed curves were derived with the simple
approach of using just the effective (averaged) Fresnel coefficient (8)
instead of the smooth—water one (2). The solid and dotted curves were
derived from the full theory developed in Sect. 3. Curves labelled 1 and
2 correspond to the values 5° and 20°, respectively, for the parameters
appearing in P(c), as explained in the caption to Figs. 2; the dotted
curve 3 in both a and b has been derived by model 3

model 3). The most remarkable feature is that both the S and the
T curves from the detailed model show a significant decrease
in the region near their peak (some 25% in model 1 and 40% in
model 2) with respect to curves from the averaged—%2 models,
and the difference reaches up to a factor ~ 2 with respect to the
mirror-like reflection model. The empirical model 3 behaves
in a way similar to models 1 and 2, and it actually closest to
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Fig. 7a and 7b. The same as in Figs. 6 but for the transverse component
T of the radiation pressure acceleration due to specular reflection from
the oceans

the exponential model 2, with the narrower distribution for o
(curves 1 in parts (b) of Figs. 6 and 7).

The marked decrease in the height of the peaks near sunset
(or sunrise) is due to the fact that surface subelements corre-
sponding to lower values of 1 than the mirror—like value g typ-
ically contribute more to the reflected radiation flux than those
with ¥ > 9, both because lower than mirror-like values of the
Fresnel coefficient are preferentially sampled in our statistical
model of the reflection geometry, and because the curvature of
the Earth’s surface results into a solar image in which surface el-
ements with lower than mirror-like reflectivity are the majority
(note the shifting position of the mirror-like reflecting point in
the solar images shown in Fig. 5). Moreover, when the peak cor-
responds to case (3), according to the classification of Sect. 3.2,
a part of the reflecting 7% domain is cut by the terminator of
the Earth’s cap visible from the satellite. Mathematically, this
has the consequence that not all the combinations of the («, B)
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parameters in their definition ranges can actually contribute to
the reflective radiative field, so that the integral of the proba-
bility distribution p(c) over the radiative field becomes smaller
than 1 (see discussion in Sect. 4).

On the other hand, it is important to note that near their
peaks the instantaneous magnitudes of both the perturbing ac-
celeration components are fairly sensitive to the choice of the
P(a) model and the parameter values adopted in it, implying that
more statistical information on the geometry of ocean surfaces
would be needed to build a quantitatively accurate model of this
perturbation. As for long—term perturbations, they depend on
the orbit-averaged values of the force components, and these
are likely to be somewhat less sensitive to the reflection mod-
els and parameters, since the differences between the various
curves are smaller along the rest of the orbit than in the peak
regions.

Fig. 6 also shows that the more detailed model produces
an artifact in the calculation of the S component near M = 0,
namely when the satellite’s geocentric position vector becomes
nearly aligned with the direction of the incoming solar rays.
This is due to the fact that the transformation between the (7, ¢)
and the («, B) angles is no more one—to—one when the domain
% contains the subsatellite point and also the subsolar point
[case (1a) described in Sect. 3.2], and becomes really “patho-
logical” when the subsatellite and subsolar points coincide: in
this extreme case (w = 0, occurring at M = 0 in our orbital
configuration), all the points in the reflecting 7 domain have
B = —90°, and since our probability distribution p(c) is always
uniform withrespectto 3, the integral in Eq. (24) vanishes. More
in general, the average over the ranges of the (7, ¢) variables for
which the radiative field is not zero of the Jacobian appearing
in the same integral, weighed with p(a), that is

d(a, B)

Plw)= 2, ¢ |’

dndg p(c) | 6)

,9)

becomes smaller than unity when the subsatellite and the sub-
solar points both lie in F# (and vanishes for w = 0), so that the
value of the integral in Eq. (24) is artificially decreased. Thus,
in the part of the orbit where this kind of degeneracy occurs,
the averaged—72 models provide a more realistic description of
the behaviour of the radial force component than the detailed
approach based on Eq. (24). On the other hand, note that near
M = 0 the T' component of the perturbing acceleration anyway
tends to zero for obvious symmetry reasons, and the compari-
son between the different models (Fig. 7) shows that no problem
arises in this case.

A possible way to remove the “pathological” behaviour de-
scribed above is simply that of dividing the right-hand side of
Eq. (24) by the quantity P(w) [Eq. (26)] whenever we are in
case (la) as defined in Sect. 3.2. Since P(w) is always equal
to unity in cases (1b) and (2), as all combinations of the («, 5)
parameters exist in the % domain and the coordinate trans-
formation (7, ¢) < (a, §) is a one—to—one mapping, in these
cases our modified version for Eq. (24) would just coincide with
the previous one. Note that in case (3) P(w) becomes again
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Fig. 8a and 8b. Comparison between the two possible definitions of the
reflected—sunlight perturbing acceleration (S component): according
to Eq. (24) (dashed curves), and dividing Eq. (24) by the P(w) quantity
[Eq. (26)] in case (1a), as explained in the text (solid curves). As usual,
parts a and b correspond to models 1,3 and 2,3 for p(a), respectively,
labels 1 and 2 to different values (5° and 20°) for the input parameters
appearing in p(c) (models 1 and 2), label 3 in both a and b to model 3

smaller than unity, but for a different reason: the transforma-
tion (1, ¢) = (a, B) in this case is still a one—to—one mapping,
but the 7% domain is cut by the terminator of the Earth’s cap
visible from the satellite or by the terminator of the illuminated
portion of the Earth’s surface (see Fig. 5), so the decrease of
P(w) in case (3) is not an artifact of the statistical method, but
just reflects a smaller reflecting domain 7%

Figs. 8 show a comparison between the behaviour of the ra-
dial S component as predicted by Eq. (24) (dashed curves) and
including an additional 1/ P(w) factor (solid curves). It is appar-
ent that the “pathological” drop of S near M = 0 disappears in
the latter case, and that the corresponding curves become very
close to those shown in Figs. 6 for the simpler averaged— 72
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models. Of course, this way of correcting Eq. (24) in case (1a)
is just a heuristic one, and the problem of freeing from “patho-
logical” behaviours statistical models of reflection from a wavy
surface such as that discussed in Sect. 3 deserves further study.
It is worth mentioning that the models for the 7' component in-
cluding the 1/ P(w) factor do not provide any significant changes
with respect to the curves shown in Figs. 7, in agreement with
our previous remark on this point.

As for the third force component, the binormal one (W,
perpendicular to the orbital plane), we recall that its behaviour
affects the perturbations on the satellite’s orbital inclination and
nodal longitude. Therefore estimating its magnitude is impor-
tant to assess the accuracy achievable in relativistic experiments
involving the nodal longitudes of LAGEOS~-type satellites (see
e.g. Ciufolini 1986, 1987; Ciufolini et al. 1993). As an example,
we have derived the W vs. M curve by keeping the same (equa-
torial) orbit of the satellite, but assuming that the oceans cover
only the Southern hemisphere of the Earth, so that no specu-
lar reflection occurs from the Northern hemisphere. Thus our
hypothetical LAGEOS-type satellite always flies exactly above
the ocean/continent boundary. With this configuration, both the
simpler approaches discussed earlier (ideal mirror-like reflec-
tion or averaged— 72 coefficient) would yield a zero binormal
component, since a point-like solar image is assumed in them.
However, this is not the case for our more detailed model of
finite—lobe reflection, as the reflecting part of the ocean in this
case is asymmetrical with respect to the (equatorial) plane con-
taining the sun and the orbit.

Fig. 9 shows the resulting values of W vs. M. Here the
dashed curves correspond to model 2 for p(a), the solid curves
to model 1. As usual, labels 1 and 2 correspond to different
parameter choices in models 1 and 2, and label 3 to model 3.
Note that, as expected, W generally increases for larger aperture
angles of the reflection lobe. Also, model 2 yields remarkably
higher values of W than model 1, with model 3 in between. This
is due to the fact that “misaligned” reflecting elements (with
comparatively large o values) contribute most to the binormal
component in the peculiar Earth/orbit configuration described
above. More general (and realistic) configurations will be ex-
plored in a forthcoming study on the long—term perturbations
due to reflected sunlight. As in the case of the S component, the
drop of all the curves when the “singular” M = 0O configura-
tion is approached is a spurious result of our probabilistic algo-
rithm, which could be removed simply by multiplying Eq. (24)
by 1/P(w) in case (1a), as discussed above.

In our last application, we shall test the results reported by
Lucchesi & Farinella (1992) concerning the dependence of the
orbit-averaged values of the 1" component (resulting into long—
term semimajor axis variations) on the aperture of the reflection
lobe. Using a simple reflection model for the finite—cone pattern
(a truly axisymmetric cone, whose axis coincides with the ideal
specular reflection direction) and an isotropic distribution of
the radiation flux inside it, these authors concluded that the
dependence on the cone aperture is weak, provided the solid
angle spanned by the cone itself is reasonably small (aperture
smaller than about 15°). However, in the case of a flux profile
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Fig. 9. The binormal component W of the perturbing acceleration due
to specular reflection from a Southern-hemisphere ocean vs. mean
anomaly M (in radians) for an equatorial LAGEOS-like orbit. The
solid and short—-dashed curves correspond to models 1 and 2 for p(a),
respectively, with labels 1 corresponding to ., = 5° orIn2/¢; = 5°,
labels 2 to the value 20° for the same parameters. The long-dashed
curve with label 3 corresponds to model 3. The fact that all curves tend
to zero when M approaches zero is a spurious result due to the “patho-
logical” behaviour of the probabilistic models, as discussed earlier in
the text

decaying exponentially away from the axis of the cone, they
found a more pronounced dependence of the results on the cone
aperture.

Assessing the extent of this dependence is important, as the
“true” aperture of the reflection lobe pattern (or, more plausi-
bly, the typical value of this parameter) is poorly known, and our
related parameter choices in models 1 and 2, corresponding to
the 5° to 20° range, is just a reasonable guess. Note, however,
that none of our models corresponds exactly to the isotropic,
axisymmetrical cone pattern of Lucchesi & Farinella, because
even in our model 1 the reflection lobe is not symmetrical and
the radiative flux inside it is not isotropical (see Sect. 2). Al-
though in line of principle one could search for a probability
distribution p(c, B), necessarily depending also on the ( az-
imuthal angle, such that an isotropic flux distribution would
be generated inside a symmetrical reflection cone, this would
be anyway a very artificial model. Similar remarks apply to the
comparison between our model 2 and the the exponential model
of Lucchesi & Farinella, which are similar to each other only in
a qualitative way. Therefore, we have chosen just to use models
1 and 2 developed in this paper, by exploiting their parameter
dependence to vary in a continuous way the effective aperture
of the correponding reflection lobes and compute the resulting
orbit-averaged 7' components.

For these tests we have used the same satellite orbit de-
scribed earlier and the whole—ocean Earth model; then we have
computed the average of the transverse perturbative acceleration
component
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T@=- / dM T [M; ()] @
0

over the half the orbit (for symmetry reasons, this is the same as
the average over the whole orbit), using both models 1 and 2 and
changing the parameters specifying the effective aperture of the
reflection pattern. Consistently with our previous applications,
the argument & of .7~ coincides with a, for model 1, whereas for
model 2 we define & = In 2/c,, which characterizes the decay
rate of the exponential probability distribution as a function of
a. In a semi—quantitative way, & is thus related to the aperture
of the reflection cone adopted by Lucchesi & Farinella (1992).
Note that .7 (&) just corresponds to the integral of the curves
represented in Figs. 7 for some specific parameter choices, and
that the limiting value of .7~ for & approaching zero provides
the resulting averaged 7' component for the ideal mirror-like
reflection case, with no finite—lobe pattern.

Fig. 10 shows the behaviour of .77 (&) vs. &. Curves 1 and
2 correspond to models 1 and 2 for the probability distribution
P(a), respectively. In both cases we observe a decrease of the
resulting value of .7~ when @& increases. For small values of
& this dependence is weaker for model 1 than for model 2, in
agreement with the results of Lucchesi & Farinella. However,
the opposite is true for & larger than about 10°. The range of &~
values — from about 2 to 3.3 x 10~!2 m/s> — is also close to
that estimated in previous studies, with a maximum excursion
of the order of 40% between the results of different models and
parameter choices. Note that with a more realistic model for the
Earth’s surface (partially covered by continents and clouds) the
resulting value of .7~ would be decreased by a further factor
of the order of 2. Thus it appears likely that this perturbation
provides a significant but not dominant contribution to the ob-
served long—periodic variations of LAGEOS’ semimajor axis,
which correspond to orbit-averaged along—track accelerations
of & 3 x 10712 m/s?. We shall address this problem in more
detail in a forthcoming paper.

5. Conclusions

The main results of this paper can be summarized as follows:

1. We have developed a realistic theory of specular reflection
from a wavy ocean surface, taking into account the finite—
lobe effects through a statistical model for the orientation
of the small-scale surface elements. Two different mod-
elling methods have been tested: (i) that of keeping the ideal,
mirror-like reflection geometry from a single point on the
surface, but replacing the ideal Fresnel reflection coefficient
for an air/water boundary with an “effective” coefficient, av-
eraged over all the possible orientations of the infinitesimal
reflecting surfaces (Sect. 2); (ii) a more detailed treatment of
the reflection geometry for different light rays coming from
an extended region of the Earth’s surface. We have derived
the corresponding expressions for the radiation pressure per-
turbative acceleration, and carried out some comparisons
changing the position of a fictitious LAGEOS-type satellite
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Fig. 10. The orbit-averaged transverse component .7 vs. the effective
aperture & (in degrees) of the reflection lobe pattern for models 1 and
2 of p(c) (the curve labels indicate the corresponding models)

along its orbit. The results clearly show that significant dif-
ferences are caused by different modelling choices. A forth-
coming study will be devoted to study the corresponding
long—term perturbations and the optimal modelling strate-
gies for the analysis of real tracking data [note that the sim-
pler method (i) entails much shorter computing times than
the more realistic method (ii)].

2. We confirm that finite-lobe phenomena may have caused
some inaccuracy in the results of previous studies on the
albedo effect on LAGEOS (as suggested to us by V. Slabin-
ski, 1993, personal communication). This probably entails
an overestimate of the perturbing force (and of its orbit—
averaged transverse force component) ranging from =~ 10%
to 40%, depending on the details of the adopted model for
the statistical distribution of the orientation of the small—
scale reflecting surface elements. A model based on aerial
photographic data of the sun’s glitter from the sea surface
(Cox & Munk 1954) gives results qualitatively similar to
those of simpler mathematical models, and corresponding
to moderate values of the parameters describing the typi-
cal sea surface “roughness”. In general, the orbit—averaged
T component somewhat decreases when this “roughness”
and the corresponding aperture of the reflection lobe are
assumed to grow.

3. An estimate based on the results shown in Fig. 9 would lead
to conclude that the LAGEOS/LAGEOS3 combined nodal
motion due to the out—of—plane perturbing acceleration W
from oceanic specular reflection (and its finite—lobe pattern)
is small enough not to compete with the general-relativistic
orbit precession whose measurement is the main purpose of
this planned mission. If the amplitude of the average out—
of-plane acceleration is of the order 10~'2m/ s2, this cor-
responds to a nodal precession rate the order of 1073 arcsec
per year, that is just a few percent of the Lense-Thirring
effect. However, our assumed ocean/continent distribution
and orbit geometry are very artificial, so more realistic mod-
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els are needed to obtain better estimates of this effect. It
appears likely that such models will lead to even smaller
values of the orbit-averaged W component, since the real
orbit seldom overflies a coastal line, and even when it does,
configurations resulting into W contributions with opposite
signs are about equally lileky during each revolution.

4. We have checked the results reported by Lucchesi &
Farinella (1992) on the dependence of the orbit-averaged
transverse component of the reflected—sunlight perturbing
acceleration on the aperture of the reflection cone pattern.
For all our model choices, we have observed a moderate de-
pendence of the results on this parameter, somewhat more
pronounced for model 2 [exponential decrease of the proba-
bility distribution p(cv)], in close similarity to the results re-
ported by Lucchesi & Farinella. In a forthcoming paper, we
will try to assess in a quantitative way the role of specularly
reflected radiation in generating the LAGEOS semimajor
axis residuals.
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