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ABSTRACT

Context. The motion of small particles in planetary rings is affected in the long-term by radiation forces. While the Poynting-
Robertson effect has been extensively discussed and applied to the dynamics of micron-sized ring particles, studies of thermal self-
acceleration of particles are only in their infancy.
Aims. We extend the pioneering work of Rubincam (2006, Icarus 184, 532) by a more thorough analytical formulation of both plane-
tary and solar thermal forces on ring particles.
Methods. Within a sparse disk model we analytically compute both seasonal and diurnal variants of the thermal forces and we
demonstrate that the diurnal effect components vanish for a sample of rapidly rotating particles with randomly oriented spin axes. For
sufficiently slowly rotating ring particles, though, these diurnal components might significantly modify the expected planetocentric
secular drift rates of their orbits. We also take into account the orbital effects of Poynting-Robertson drag that begin to dominate the
thermal forces for particles with sizes ≤5 mm. Our formulation of the Poynting-Robertson drag is the first to account properly for the
influence of the planetary shadow.
Results. We critically review the previous suggestion that Saturn’s A and B ring boundaries might correlate with radiative null-torque
orbits of small particles. Using the best estimates of optical and thermal parameters of Saturn’s ring particles, we show that the mil-
limetre to several centimetre size particles mostly drift inward to the planet with a characteristic radial speed νr ∼ 3 × 10−6 cm/s,
corresponding to drift across the whole main ring system in ∼(1−5)× 108 years if the effects of inter-particle collisions are neglected.
The radial speed is comparable to, or even larger than, the effective radial drift rate of small particles due to redistribution of colli-
sional ejecta from micrometeoroid impacts. Therefore, radiation forces may be important for estimating the evolution timescales of
Saturn’s rings as derived from the ballistic transport theory. We propose that, in addition to collisional coagulation, radiation forces
may efficiently remove centimetre-sized particles and thus help explain the observed paucity of these particles in Saturn’s rings. A
population of particles with spin axes aligned with normal to the disk plane, if it exists, would experience a net outward drift provided
their rotation rate is larger than their orbital frequency.
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1. Introduction

Analysis of dynamical consequences of thermal radiation, aris-
ing as a total recoil force and torque on translational and ro-
tational motion, is currently attracting large interest in aster-
oidal science and meteoritics (for reviews see Bottke et al. 2002,
2006). For example, it helps to explain how meteorites and small
asteroids are transported onto unstable orbits, asteroid families
grow in time and/or orientation of asteroid spin axes are dis-
tributed in space and their rotation frequencies modified. Since
ring particles in the main Saturnian system have sizes compara-
ble (or slightly smaller) to meteorites (e.g., Cuzzi et al. 1984;
Esposito et al. 1984), a question arises whether similar ther-
mal effects could play some role in their dynamics. Despite the
size correspondence, analysis of the dynamical consequences of
thermal effects for planetary rings is vastly more complicated

� This work is dedicated to late Paolo Farinella (1953–2000) who was
prompting one of us (D.V.) to analyse orbital effects of thermal forces
on ring particles back in 1998. Flooded with many other ideas, Paolo
never came to analyse this problem in detail.
�� Appendices are only available in electronic form at
http://www.aanda.org

because ring particles are not isolated but live in dense popula-
tions. Effects of mutual light reflection and shadowing in optical
wavelengths, and heating in thermal wavelengths, are consid-
ered important especially for the optically and thermally thick A
and B rings. Moreover, solar incoming radiation is modulated
by passages of ring particles through the planet’s shadow, phe-
nomenon without a counterpart in asteroidal applications. As far
as this issue is concerned, though, lessons from space geodesy
are in order, since artificial satellites (in spite of their vastly dif-
ferent composition) are susceptible to the same effects too (e.g.,
Rubincam 1987; Afonso et al. 1989).

A number of models for Saturn’s rings radiation in mid-
infrared has been developed, and compared to observations,
since 1970s (e.g., Kawata & Irvine 1975; Froidevaux 1981;
Kawata 1983). While taking into account inter-particle effects
(shadowing and/or mutual irradiation in optical and thermal) at
some approximation, many of these older models are based on
the time-averaged energy balance only. Starting from the work
of Aumann & Kieffer (1973), several more detailed models ac-
counted also for the ring shadowing by Saturn and thus resolved
time dependence of the particles’ changing temperature as they
revolve about the planet (especially when observations with the
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fine resolution became available in 1990s; e.g., Ferrari et al.
2005; Ferrari & Leyrat 2006). All these models, though, share
the same approximation: they solve local-energy balance only
without detailed analysis of temperature variation on the parti-
cles’ surface (at best empirical factors are introduced to compare
models of fast/slow rotating particles). In the notation and termi-
nology used below this amounts to solving the monopole level of
the particles’ surface temperature distribution. However, the or-
bital thermal effects necessarily need to analyse the dipole level
of particles’ surface temperature distribution (e.g., Vokrouhlický
1998, 1999; Vokrouhlický & Farinella 1999). Thus the avail-
able thermal ring models do not provide enough information
about the related orbital perturbations. Grasping the necessary
more detailed information though brings difficulties and hence
requires approximations, such that simpler models are analysed
before resorting to more complex (and perhaps fully numerical)
ones.

The first initiative toward application of the thermal effects
for the ring particle dynamics has been taken by Rubincam
(2004, 2006) who correctly identified the principal thermal ef-
fects at work. In particular, he showed that the different sources
of the absorbed radiation by the ring particle – the planet and
the Sun – produce two different versions of thermal drags when
averaged over long periods of time. Interestingly, these two ef-
fects have opposite signs and their parametric-dependent compo-
sition could make ring particles migrate either inward or outward
with respect to the planet. While developing similar approach the
goal of our paper is twofold: (i) present somewhat more compact
and general formulation of the thermal effects that allows us to
proceed with analytical work beyond Rubincam’s results, and
(ii) discuss implications of the thermal forces for rings structure
and their long term evolution. Our conclusions differ from that
of Rubincam mainly because of different choice of parameters.

Ground based and Hubble space telescope observations, re-
visions of Voyager and new Cassini space-borne data are fill-
ing voids since 1990s, yet some uncertainties still persist. This
is partially because the observations do not cover all neces-
sary viewing geometries and do not span necessary spectral
ranges (this is especially true in mid-infrared where we have
much fewer observations available so far than in the optical
band). Moreover, and possibly even more important, both op-
tical and thermal data are difficult to interpret because an ap-
propriately complete radiative transfer theory is not available.
Different authors use different approximations and this may lead
to comparable but not identical results. Inferences from our
work (Sect. 6) are thus somewhat uncertain, and different from
those in Rubincam (2004, 2006). However, we believe that the
forthcoming data will hopefully constrain the prime parameters
enough to make our work useful. In the same time, future work
should make our model more complete, mainly as regards to
inter-particle effects included and characterization of the ring
particle rotation state.

In Sect. 2 we introduce our method for the approximate so-
lution of the heat diffusion problem and determination of the
thermal force on ring particles. In Sects. 3 and 4 two variants
of thermal effects, relevant for a long-term orbital evolution of
ring particles, namely the Yarkovsky effect and the Yarkovsky-
Schach effect, are discussed. In both cases we analyse the orbital
effects of the full thermal-force vector and we do not restrict to
the spin-projected component only. We obtain analytic formulæ
for the mean secular drift of the semimajor axis for circular or-
bits due to these thermal effects assuming a sample of particles
with random orientation of spin axes. In Sect. 5 we estimate the
typical drift rates of millimetre to decimetre ring particles and

determine their dependence on principal unknown parameters.
Importantly enough, we include in our analysis the effect of the
Poynting-Robertson drag that is derived in Appendix B (note
the Appendices are available in the on-line version of the paper).
Probable implications from our work on long-term dynamics of
rings are discussed in Sect. 6.

2. The heat diffusion problem for ring particles

Determination of a thermal force on particles orbiting a planet
is a difficult enough problem to require a number of approxima-
tions if we want to deal with it analytically. The most important
approximations are: (i) linearization of the boundary condition
(Eq. (2)), (ii) constant thermal parameters, (iii) spherical shape
of the particle, and (iv) circular orbit about the planet. In this
paper we also adopt a model of a sparsely populated ring where
different particles do not influence thermal state of each other,
either by mutual eclipsing and/or mutual thermal radiation. This
is an acceptable approximation when the ring thickness in op-
tical or infrared bands is significantly less then unity. However,
here we formally apply our results even to the Saturn’s most opti-
cally thick ring, the B ring, relegating a much more complicated
analysis of thermally interacting particles to a future work. We
also assume that during one revolution about the planet the spin
axis s of the ring particle is fixed in space. However, the final
results are averaged over random orientations of s, making our
results representative for a sample of particles with randomly
oriented axes. Here we adopt an assumption that mutual colli-
sions of ring particles produce enough random re-orientations of
their spin axis on a long-term, so that the sample-average of any
quantity (such as the evolution of orbital elements) corresponds
to a long-term time average for each of the particles. A simple
model for a sample of particles with s aligned with normal to the
disk-plane is discussed in Appendix D.

2.1. Heat diffusion equation and its scaling

Distribution of temperature T , determining thermal state of the
ring particle, is obtained by solution of the heat diffusion equa-
tion (e.g., Landau & Lifshitz 1986)

ρbC
∂T
∂t
= K ∇2T, (1)

where ρb is the mean bulk density, C is the specific heat capacity
and K is the thermal conductivity of the particle. The unique-
ness of the solution stems from selecting appropriate boundary
conditions. In the space domain this means regularity of T at the
centre of the particle and energy conservation at the surface. The
latter condition reads

εσT 4 + K

(
n · ∂T

∂r

)
= S (2)

for each of the infinitesimal surface elements with an outward
directed unit vector n. The first term here is the thermal energy
radiated per unit of time by the particle to space and the second
terms is the energy conducted per unit of time inside to the parti-
cle. Thermal emissivity ε is for simplicity taken unity throughout
this paper (see also Spilker et al. 2003; Ferrari et al. 2005; Flasar
et al. 2005). The effective boundary condition in the time domain
is set by an assumption of periodicity of T in one revolution of
the particle about the planet.

The source function S on the right hand side of Eq. (2) gives
the amount of radiative energy impinging on a given surface ele-
ment per unit of time. Since the local radiative field is principally
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compounded of the solar contribution at optical wavelengths,
and the planet’s contribution at thermal wavelengths, we write
S = αV EV + αI EI. Here αV and αI are absorptivity coefficients
of the particle in visible and infrared bands, while EV and EI are
the respective optical and thermal radiative fluxes from the Sun
and Saturn1. We neglect in this work two other radiation sources:
(i) solar radiation reflected by Saturn in optical, and (ii) the op-
tical and infrared radiation of the neighboring particles in the
ring. While conceptually simpler, the first effect presents diffi-
culties for our analytic approach and that is the principal reason
why we dropped its analysis. Rubincam (2006) showed that its
contribution might be approximated as a few to about ten per-
cent increase in strength of the seasonal Yarkovsky drag of the
ring particles. The latter effect, radiation of other ring particles,
is conceptually much more complicated. We, however, note that
in the roughest approximation the irradiation might be seen as
a time-variable but isotropic field when the particle is fully em-
bedded in the ring. Then it only affects the effective tempera-
ture of the particles but does not have a long-term dynamical
effect. The ring particles nevertheless would have a shielding ef-
fect that effectively diminishes the values of αV and αI to an
extent that is also not modeled in this paper (this caveat mostly
affects implications of our work for the A and B rings of Saturn).
Similarly, dynamical models with particles of a spectrum of sizes
predict smaller ones be dispersed over larger heights above the
ring-plane, leaving large particles set in the mid-plane (e.g., Salo
1992; Salo & Karjalainen 2003). The small out-of-plane par-
ticles will thus experience an anisotropic local radiative field
from other particles. We present another very rough model in
Appendix C to show that the orbital effect would average out
when isotropy of spin particles is assumed, but none of these
effects is modeled in detail here.

Because we assume the ring particles are spherical it appears
most natural to use spherical coordinates (r, θ, φ), with the origin
r = 0 at the centre of the particle and colatitude θ measured from
its spin axis s. The origin of the longitude φ is not relevant for
our work. To simplify the solution we chose the following set
of the non-dimensional quantities (see also Vokrouhlický 1998,
1999):

– any quantity with spatial dimension will be scaled by the
thermal length (the only exception is the planetocentric dis-
tance ρ scaled by the planet’s radius)


s =

√
K

ρbCn
, (3)

where n is the particle’s mean motion about Saturn; in par-
ticular the radial coordinate r will have the scaled value
r′ = r/
s;

– the time t will be replaced by a complex variable ζ reading

ζ = exp (int) (4)

1 The absorptivities α are assumed here to be the effective values,
spectrally integrated about the peak of the source emissivity. In the opti-
cal, the ring particle albedo increases toward larger wavelengths becom-
ing then flat enough up to ∼1.5µm (e.g., Poulet & Cuzzi 2002; Porco
et al. 2005) so that αV is about the value in the green filter. The situa-
tion is much less known in the mid-infrared where Saturn’s emissivity
is maximum. Measurements of optical parameters for polluted ices by
Hudgins et al. (1993) in the relevant temperature and spectral range
reveal several absorption features. Generally, though the mid-infrared
absorptivity αI is assumed to be close to unity for the inferred composi-
tion (e.g., Irvine & Pollack 1968; Kawata & Irvine 1975; Hudgins et al.
1993; Poulet & Cuzzi 2002; Poulet et al. 2003).

(here i =
√−1 is the imaginary unit; the time origin t = 0

will be chosen below and may be different for each of the
variants of the thermal effects discussed in Sects. 3 and 4);

– the temperature T will be scaled by an auxiliary value T�
defined by

εσT 4
� = S� = αVEV

� + αIEI
�, (5)

where EV
� � 15.05 W/m2 is the mean solar radiation flux at

Saturn, and EI
�0 � αVSξ EV

�/4 � 4.41 W/m2 is the mean in-
frared flux from the surface of the planet. Here αVS � 0.658
is the mean absorptivity of Saturn in the optical (αVS =
1 − AVS, where AVS is the Bond albedo) and ξ � 1.78 is
the radiation excess of Saturn in the thermal (e.g., de Pater
& Lissauer 2001). At the distance ρ from the planet the
mean energy flux EI

� through a spherical particle is atten-
uated for simple geometric reasons. In Appendix A we find
that EI

� = EI
�0 ψ(ρ), where

ψ(ρ) = 2

⎛⎜⎜⎜⎜⎜⎜⎝1 −
√

1 − 1
ρ2

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

and ρ is measured in Saturn’s radii. The resulting non-
dimensional variable will be denoted by T ′ = T/T�, and
similarly we define ∆T ′ = ∆T/T�;

– the energy source term S in the right hand side of (2) will be
scaled by S�, thus we introduce S′ = S/S�.

With the scaling introduced, the fundamental Eqs. (1) and (2)
now take the following form:

iζ
∂T ′

∂ζ
= ∇′2T ′, (7)

and

T ′4 + Θ
(
n · ∂T ′

∂r′

)
= S′. (8)

∇′2 is the usual Laplace operator where coordinates have been
replaced with their scaled values. As a result of the scaling,
the system (7) and (8) contains a single and fundamental non-
dimensional parameterΘ =

√
KρbC

√
n/(εσT 3

�) often called the
“thermal parameter”; we also note that

√
KρbC in its numerator

is the thermal inertia of the particle.

2.2. Linearized approximation

A major obstacle of an analytic solution of the heat diffusion
is the non-linear term (∝T 4 and ∝T ′4) in the surface boundary
conditions (2) or (8). A standard procedure to handle this prob-
lem is to split T into a suitably chosen mean value Tav and some
small increment ∆T : T = Tav + ∆T with ∆T 	 Tav becoming
the solved-for function instead of T . The difficult quartic term in
the boundary condition is then approximated using linearization
T 4 ≈ T 4

av + 4T 3
av∆T + . . . with higher order terms in ∆T being

neglected. The most natural choice of Tav is from

εσT 4
av = S = αVEV + αIEI, (9)

where the over-bar means an average value of the corresponding
quantity over (i) particle’s revolution about Saturn, and (ii) all
surface elements. As a result Tav � T�.

One easily shows that EI = EI
�/4; this is because the spher-

ical particle in equilibrium absorbs radiation through its cross-
section, while it re-radiates it through the whole surface (see
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Fig. 1. Ring geometry, parameters of the particle orbit about Saturn
and other quantities introduced in the text: n0 is the unitary vector
toward the Sun, tilt from the Saturn spin axis by θ0, s is the unitary spin
axis of the particle and ρ radius of its planetocentric orbit. The shaded
zone on the ring plane indicates shadow cast by the planet. For given ρ
and θ0, the angular width ∆ of the shadow along the orbit is given by
Eq. (10).

Appendix A). The determination of EV is a little more compli-
cated. Except the very outer part of the A ring and when the
tilt of ring plane from the solar direction is maximum, the ring
particles always enter the Saturn shadow during their revolution
about the planet. The shadow is modeled here with a step func-
tion Γ(ζ) whose value is zero in the shadow and unity outside
(we neglect the penumbra phase). Let us denote ∆ the angular
width of the shadow along the orbit at a planetocentric distance ρ
and we fix the arbitrary origin of time t to the middle point
of the shadow. This is an appropriate choice in the case of the
Yarkovsky-Schach effect, where Saturn’s shadow plays essential
role (Sect. 4). We also denote the angular tilt of solar direction
from Saturn’s spin axis by θ0, which spans an interval of values
π/2 ± ε, where ε � 26.73◦ is Saturnian obliquity (see Fig. 1 for
the planet-particle-Sun parameters introduced in the text). One
easily shows that for ρ ≤ ρ� = 1/ cos θ0 we have ∆ ≥ 0, namely

tan
∆

2
=

√
1 − ρ2 cos2 θ0

ρ2 − 1
· (10)

The shadow function is expanded using

Γ(ζ) =
∑

ck ζ
k, (11)

with coefficients ck given by

c0 = 1 − ∆
2π
, (12)

ck = − sin (k∆/2)
kπ

, (13)

where the second row applies when k � 0 (see, e.g.,
Ferraz-Mello 1972). Of particular interest is c0 since it corre-
sponds to the mean value of Γ over one revolution of the particle
about the planet. Obviously, for ρ ≥ ρ� we have ∆ = 0 and thus
Γ = 1 (c0 = 1, ck = 0 for k � 0). It is interesting to note that the
minimum value of ρ� during Saturn’s revolution about the Sun is
1/ sin ε � 2.223 which nearly coincides with the outer radius of
the A ring (at �2.270). In other words, ring particles always enter
the planetary shadow during their orbit about Saturn (an excep-
tion is the outer ∼19% strip of the A ring that, for a short period
of time, resides fully outside Saturn’s shadow). This fact, unre-
lated to any gravitational effects, attracted attention of Rubincam
(2004, 2006) who considered it an important clue for a possi-
ble role of thermal forces on ring particles. Below, however, we
challenge this conclusion suggesting it is a mere coincidence.

With the Fourier expansion (11) of the shadow function we
can now write: EV = c0 EV

�/4 (the factor 4 is here for the same
reason as in the infrared flux). Combining Eqs. (5) and (9) we
thus obtain

T ′4av ≡
ω

4
=

1
4

αVc0EV
� + αIEI

�

αVEV
� + αIEI

�

=
1
4

4αVc0 + αIαVSξψ(ρ)
4αV + αIαVSξψ(ρ)

· (14)

When the particle orbit does not intercept the planet’s shadow,
we have ω = 1; generally though ω < 1 as can be easily seen in
Eq. (14). Moreover, since c0 is a function of the time-dependent
solar tilt angle θ0 from Saturn’s spin axis, the mean tempera-
ture Tav for the particle is constant during its revolution about
the planet but variable as Saturn revolves about the Sun.

With the scaled variables introduced and with the mean tem-
perature defined in Eq. (14), the heat diffusion problem (7)
and (8) now becomes

iζ
∂

∂ζ
∆T ′(r′; θ, φ; ζ) = (15)

1
r′2

{
∂

∂r′

(
r′2

∂

∂r′

)
+ Λ (θ, φ)

}
∆T ′(r′; θ, φ; ζ),

with the operator Λ(θ, φ) given by

Λ (θ, φ) =
1

sin θ

[
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin θ

∂2

∂φ2

]
, (16)

and the linearized boundary condition (2) reads

√
2ω3/4∆T ′ + Θ

(
∂∆T ′

∂r′

)
R′
= ∆S′. (17)

Here we denoted the particle radius with R and its scaled value
R′ = R/
s, and ∆S′ = S′ − S′.

2.3. Solution of the linear heat diffusion problem

Given the assumed spherical geometry of the particle, it is natu-
ral to represent ∆T ′ in multipole series:

∆T ′(r′; θ, φ; ζ) =
∑
n≥1

n∑
k=−n

t′nk(r′; ζ) Ynk(θ, φ), (18)

with Ynk(θ, φ) denoting spherical functions. Inserting this expan-
sion in Eq. (15) we find that the radial- and time-dependent am-
plitudes t′nk fulfill a system of decoupled equations

iζ
∂

∂ζ
t′nk(r′; ζ) =

1
r′2

{
∂

∂r′

(
r′2

∂

∂r′

)
− n (n + 1)

}
t′nk(r′; ζ), (19)

and at the surface r′ = R′ must satisfy

√
2ω3/4t′nk(R′; ζ) + Θ

(
∂t′nk

∂r′

)
(R′;ζ)

= snk(ζ). (20)

The time dependent right hand sides snk(ζ) of (20) are co-
efficients of the radiation source expansion ∆S′(ζ; θ, φ) =∑

n≥1
∑n

k=−n snk(ζ) Ynk(θ, φ). We summarize explicit expressions
of snk(ζ) necessary for our work in Appendix A.

Assuming now a particular Fourier mode in the time devel-
opment of snk(ζ), namely snk(ζ) = sb

nk ζ
b (with b integer and

nonzero), Eqs. (19) and (20) admit solution t′nk(r′; ζ) = t′bnk(r′) ζb

with

t′bnk(r′) =
sb

nk√
2ω3/4

jn(z)
jn(Z)

1

1 + χ Z
jn(Z)

d jn(Z)
dZ

, (21)
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which is regular at r′ = 0. Here we denoted z =
√−ib r′, Z =√−ib R′ and

χ =
Θ√

2ω3/4 R′
· (22)

jn(z) is a spherical Bessel function of the degree n of complex ar-
gument z (e.g., Abramowitz & Stegun 1970). Note while both Θ
and R′ depend on mean motion (or any other frequency they
would be related to), χ becomes independent of it. A special
attention is to be paid to the degree one coefficients with n = 1.
In this case, we have (recall j1(z) = (sin z − z cos z)/z2)

t′b1k(r′) =
sb

1k√
2ω3/4

j1(z)
j1(Z)

1

1 + χ Z
j1(Z)

d j1(Z)
dZ

=
sb

1k√
2ω3/4 (1 + χ)

j1(z)
j1(Z)

A(xb) + iB(xb)
C(xb) + iD(xb)

(23)

=
sb

1k√
2ω3/4 (1 + χ)

j1(z)
j1(Z)

E(xb) exp [iδ (xb)] ,

where xb =
√

2b R′. The auxiliary functions A(x), B(x), C(x),
D(x) are given, e.g., in Vokrouhlický (1998, 1999). It turns
suitable to express the complex number (A + iB)/(C + iD) in
amplitude-phase representation E exp(iδ) as it has been used
in the last row of (23). The angle δ < 0 plays the role of
a thermal lag. For b < 0 though, it is more convenient to
write xb =

√
2|b|R′ and E exp(iδ) becomes complex conju-

gate, namely E exp (−iδ). These modes describe thermal advance
rather than thermal lag. In Appendix D we note this case is ap-
propriate for ring particles whose rotation rate is slower than
their mean motion about the planet.

2.4. Thermal force computation

With the aim to compute the thermal recoil acceleration f on the
particle we show now that only a very limited number of am-
plitude terms t′nk is needed, a property which greatly simplifies
analytical solution. In agreement with previous work we assume
thermal radiation of the particle’s surface isotropic (Lambert’s
law). Integrating over all contributions from infinitesimal ori-
ented surface elements dS = R2 dΩ n, where dΩ = sin θ dθdφ,
we have (e.g., Milani et al. 1987; Bottke et al. 2002)

f (ζ) = −
∫

R2dΩ
2
3
εσT 4

mc
n. (24)

Here we denoted particle’s mass with m and the light velocity
with c; the minus sign indicates thermal radiation recoils on the
body. Using again linearization of the T 4 term and introducing
scaled quantities from our solution above, we obtain

f (ζ) = −2
√

2
3π

ω3/4Φ

∫
dΩ∆T ′(R′; θ, φ; ζ) n, (25)

with Φ = (S�πR2/mc) the characteristic radiation force fac-
tor. It is now important to recall that components of the uni-
tary vector n can be expressed using a linear combination of

spherical function of degree 1, namely nX ± i nY = ∓ 2
√

2π
3 Y1±1

and nZ = 2
√

π
3 Y10. With these relations, and orthogonality prop-

erty of spherical functions, we easily find that the thermal ac-
celeration components ( fX , fY , fZ) in an arbitrary frame whose

axis Z is that of the particle’s spin s read

fX (ζ) ± i fY (ζ) = ∓ 8

3
√

3π
ω3/4Φ t′1∓1(R′; ζ), (26)

fZ(ζ) = −4
3

√
2

3π
ω3/4Φ t′10(R′; ζ). (27)

We conclude, that only dipole coefficients t′1k are needed to
compute thermal acceleration in the linearized theory (e.g.,
Rubincam 1998; Vokrouhlický 1998, 1999). For that reason, we
omit computation of other coefficients below.

2.5. Orbital averaging of the thermal force

The second important simplification stems from our goal to de-
termine the long-term effect of the thermal forces on the plan-
etocentric orbital semimajor axis a. With zero eccentricity, we
have

da
dt
=

2
n

fτ, (28)

where fτ = f ·τ is a transverse component of the thermal acceler-
ation. The unitary vector τ transverse to the orbit, and expressed
in the planetocentric orbital frame, reads: τx =

i
2 (ζ − ζ−1),

τy =
1
2 (ζ + ζ−1), τz = 0. Secular perturbations arose as orbit-

averages of the right hand sides of Gauss perturbation equations
such as (28) for semimajor axis. Since τ depends on the first
powers of ζ only, we need to identify the appropriate terms in
the planetocentric frame development of f . However, the solu-
tion of the heat diffusion problem becomes more natural in the
ring-particle-fixed frame, so we undertake the other possible ap-
proach and transform τ to this latter frame. Its algebraic form
becomes different for the effects due to the Z-axis force compo-
nent (often called the seasonal component) parallel to the par-
ticle spin axis direction s and the XY-plane force components
(often called the diurnal components) in the particle’s equatorial
plane. We thus analyse the two cases separately in the following
two sections.

2.5.1. Seasonal component

Assume t′10(R′; ζ) in the particle-fixed frame developed in
Fourier series

t′10(R′; ζ) = ϕ+ζ + ϕ−ζ−1 + . . . (29)

Since the transformation of the orbit transverse vector τ to the
particle-fixed frame yields

fτ =
i fZ
2

(
s−ζ − s+ζ

−1
)
, (30)

we note only the highlighted ∝ζ±1 terms in development
of t′10(R′; ζ) in (29) give nonzero long-term orbital effects (af-
ter averaging over ζ). In Eq. (30) we also introduced a notation
s± = s1 ± is2, where s1 and s2 are projection of the particle’s
spin vector s onto x- and y-axes of a planetocentric reference
frame whose xy-plane coincides with the ring plane, x-axis is
the origin of time for the orbital motion (thus ζ = 1). The choice
of x-direction in the ring-plane is arbitrary and should make the
analytic computation easier. This is why this choice is different
for the Yarkovsky and the Yarkovsky-Schach effects and will be
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introduced in Sects. 3 and 4. After averaging over particle’s mo-
tion about the planet, that will be denoted with square brackets
with index 1, we have the mean transverse acceleration2

[
fτ
]
1 = −

4
3

√
2

3π
ω3/4Φ� (

s+ϕ
+) , (31)

where �(z) denote the imaginary part of a complex number z.

2.5.2. Diurnal component

For the diurnal components computation we shall follow the
general approach of Vokrouhlický (1999). To confine the prob-
lem periodic, we shall assume the ratio of rotation frequency Ω
to the planetocentric revolution frequency n is an integer param-
eter m = Ω/n (it is however easy to generalize the results for an
arbitrary real value of m). In this case, we highlight the following
Fourier components in the development of t′11(R′; ζ):

t′11(R′; ζ) = τ+ζm+1 + τ−ζm−1 + . . . (32)

After transforming τ into the particle-fixed frame we obtain the
orbit-averaged transverse thermal acceleration due to the diurnal
force components

[
fτ
]
1 = −

8

3
√

3π

ω3/4Φ

sin γ
�

(
cos2 γ

2
τ−s− + sin2 γ

2
τ+s+

)
, (33)

where�(z) denote the real part of a complex number z and γ is
the obliquity of s (i.e. the angle between s and the planet’s spin
axis direction perpendicular to the ring-plane).

3. Planetary Yarkovsky effect

Having outlined the general scheme, we shall now apply it to the
two possible heating sources for the ring particles: (i) thermal
radiation of the planet (this section), and (ii) the optical radia-
tion of the Sun (Sect. 4). We always split the computation of the
seasonal- and diurnal-force components into separate sections,
starting with the seasonal part.

3.1. Seasonal component

The seasonal variant of the Yarkovsky effect has been intro-
duced in orbital mechanics by Rubincam (1987) who studied
the secular decrease of semimajor axis of the Earth-bound ar-
tificial satellite Lageos. The “cartoon-based” illustration of the
seasonal thermal effect has been repeated many times in the lit-
erature (e.g., Rubincam 1987, 1995, 1998; Bottke et al. 2002).
It has to do with time lag in thermal radiation of northern and
southern hemispheres of a body as it revolves about the radiating
center (a star or a planet). For low-eccentricity orbits it always
leads to orbital decay toward the centre.

The seasonal thermal force is produced, technically speak-
ing, by choosing the planet’s thermal radiation as a radiative
source and the along-spin component fZ of the thermal force
(Sect. 2). The most suitable choice of time origin t = 0 along the
orbital motion of ring particle is when the spin axis is perpen-
dicular to the planetocentric position vector. With γ being the
particle’s spin axis obliquity, this choice of the planetocentric

2 This is a part of a more general formula giving orbital mean val-
ues of both the radial fr and transverse fτ acceleration components:[
fr + i fτ

]
1 = − 4

3

√
2

3π ω
3/4Φ s+ϕ+.

reference frame implies s1 = 0, s2 = sin γ and s3 = cos γ, such
that s+ = i sin γ. One can show that the dipole source term reads

s10(R′; ζ) =
i
2

√
π

3

αIEI
�0

ρ2 S� sin γ
(
ζ − ζ−1

)
. (34)

With the aid of Eq. (23) we obtain

ϕ+ =
i
2

√
π

6

αIEI
�0

ρ2 S�
sin γ

ω3/4(1 + χ)
E(x) exp [iδ (x)] , (35)

with x =
√

2 R′; for simplicity we shorten E(x) exp [iδ (x)] =
E exp(iδ) in the following text. Combining the expression for s+
with the source coefficient ϕ+ from Eqs. (35) and (31) we finally
obtain

[
fτ
]
1 =

2
9
Φ
αIEI

�0

ρ2 S�
E sin δ
1 + χ

sin2 γ (36)

=
2
9
Φ1

E sin δ
1 + χ

sin2 γ,

for the orbit-averaged transverse component of the seasonal ther-
mal acceleration. Here we introduced

Φ1 =
αIEI

�0

ρ2

πR2

mc
· (37)

Equation (28) yields the secular change of the planetocen-
tric semimajor axis (e.g., Vokrouhlický & Farinella 1999;
Vokrouhlický 1999)[
da
dt

]
1

=
4

9n
Φ1

E sin δ
1 + χ

sin2 γ. (38)

Since δ < 0, both
[
fτ
]
1 and [da/dt]1 are always negative.

Put in other words, the seasonal Yarkovsky effect permanently
drains angular momentum from the particle’s orbital motion at a
rate (ma

[
fτ
]
1).

A characteristic timescale of the ring particles’ revolution
about Saturn is of the order of a few hours. This is much shorter
than any scale that might interest as far as the long-term ring
fate is concerned. To bring our result closer to the relevant
level we must now average previous results for the mean trans-
verse force (36) or semimajor axis drift (38) over two longer
timescales:

– Saturn’s motion about the Sun (�years), and
– a characteristic timescale over which the spin axis s orienta-

tion in space of the particles evolves.

To make our formalism clear, we shall denote the result of
the second averaging (over Saturn’s motion about the Sun)
with [. . .]2 and the result of the third averaging (over particle
spin axis evolution) with [. . .]3. When the first (orbit revolution)
and second averaging are done, the result will be denoted [. . .]12,
etc.

The second averaging is conceptually simple and it only
means that the geometry of the planet’s shadow cast on the ring-
plane changes over Saturn’ revolution about the Sun (this is be-
cause of its significant obliquity). Neglecting the eccentricity of
Saturn’s orbit about the Sun and denoting its longitude in orbit
with λ we have

cos θ0 = sin ε cosλ. (39)

Recall θ0 is the angular tilt of direction toward the Sun from
Saturn’s spin axis whose obliquity is denoted ε. We arbitrarily
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chose λ = 0◦ when θ0 is minimum (i.e. maximum angular ele-
vation of the Sun above the ring-plane). Recall the ω function
in Eq. (14) depends on θ0 via the mean shadow function coeffi-
cient c0. In the same time, the χ parameter in Eq. (22) depends
on ω and thus also on Saturn’s revolution phase about the Sun.
We thus write

[
fτ
]
12 =

2
9
Φ1

[
E sin δ
1 + χ

]
2

sin2 γ, (40)

where[
E sin δ
1 + χ

]
2

=
1

2π

∫ 2π

0
dλ

E sin δ
1 + χ

· (41)

This averaging can only be performed numerically. In the
most rough approximation, we might neglect λ-dependence of
ω adopting its value for λ = 90◦ (thus θ0 = 90◦).

The third averaging, related to the ring particles’ spin axis
evolution, is much more complicated and the least certain issue
in our solution. We adopt only a very crude approach in this
paper, but most of the formalism and results in Sect. 2 are ready
for adopting different schemes about ring particle rotation states.
Here we assume that particle collisions eventually lead to ran-
domization of s (see Appendix D for an alternative model of par-
ticles with s aligned with the disk-plane normal). The timescale
on which this happens, if it does really happen, is not known
exactly but we always assume the second and third averaging
steps are decoupled. Assuming thus a sample of many particles
with randomly oriented spin axis in space, we easily determine
that [sin2 γ]3 = 2/3. As a result, the long-term mean seasonal
thermal acceleration reads

[
fτ
]
123 =

[
fτ
]
132 =

4
27
Φ1

[
E sin δ
1 + χ

]
2

· (42)

The same value is adopted for a long-term average of the trans-
verse thermal acceleration for a single ring particle in orbit about
Saturn whose spin axis undergoes collisions capable of random
re-orientations of its spin axis.

3.2. Diurnal component

The diurnal component of the Yarkovsky effect is related to the
equatorial force components fX and fY given by Eq. (26). It
represents the original version of the Yarkovsky effect analysed
by Öpik (1951). For low-enough surface thermal conductivity,
it typically dominates in strength the effects of the previously
discussed seasonal variant, but for a sample of bodies with an
isotropic distribution of spin axes it typically produces a null av-
erage orbital displacement. For that reason it has been thought to
have a negligible long-term effect (see, e.g., discussion in Burns
et al. 1979), and thus was dropped by Rubincam (2006) from his
initial analysis of the thermal forces acting on ring particles.

Here, however, we decided to include the diurnal variants
of both Yarkovsky and Yarkovsky-Schach effects in our analy-
sis and comment on their potential importance for two reasons.
First, while usually producing zero net orbital change for a sam-
ple of objects with an isotropic spin-axis distribution, the di-
urnal Yarkovsky effect can still produce a net semimajor axis
dispersion growing with time (such as a random walk process).
This may result in leaking the objects if the sample is brack-
eted by some boundary (e.g., the case of near-Earth asteroids
leaking from the main belt reservoir through the adjacent res-
onances; e.g., Morbidelli & Vokrouhlický 2003). Second, the
general result of a null mean orbital effect due to the diurnal

Yarkovsky forces is only true for very fast spinning bodies (such
as asteroids or meteoroids). As first studied by Vokrouhlický
(1999), when the rotation period of the bodies becomes com-
parable to the revolution period, so that m is not much larger
than unity in Sect. 2.5.2, the diurnal effect can result in a net
secular change of orbits even for a sample of bodies with spin-
axis isotropy. The works of Richardson (1994), and lately Salo
& Karjalainen (2003), Ohtsuki & Toyama (2005), Morishima
& Salo (2006) and Ohtsuki (2006), indicate that the small ring
particles most appropriate for our work acquire collisional equi-
librium with a mean rotation rate about one or two orders of
magnitude higher than the orbital rate. The obliquity distribution
is nearly isotropic, with only a small preference to retrograde
spins. By itself, the m ∼ 10 ratio is small enough to motivate a
check of the diurnal Yarkovsky effect’s importance even for the
ring particles (though we do not study here in detail the orbit-
diffusion aspect of the diurnal Yarkovsky forces). Moreover, the
largest particles in the rings rotate typically very slowly. Their
appropriate m is even smaller than unity, with minimum values
of m ∼ 0.3. Their spin axis tends to be preferentially aligned
with the normal of ring-plane. For this population of ring parti-
cles the diurnal components of the thermal effects are definitely
important and we shall discuss this special case in Appendix D.

After transforming the source (planet) position into the
particle-fixed frame we obtain

s11(R′; ζ) =

√
π

6

αIEI
�0

ρ2 S�
(
sin2 γ

2
ζm+1 + cos2 γ

2
ζm−1

)
(43)

for the appropriate term needed in the boundary condition (20).
Using the general scheme for the linearized heat diffusion solu-
tion, Eqs. (23) and (32), we obtain

τ+ =
1
2

√
π

3

αIEI
�0

ρ2 S�
sin2 γ

2

ω3/4(1 + χ)
E(x+) exp [iδ (x+)] , (44)

τ− =
1
2

√
π

3

αIEI
�0

ρ2 S�
cos2 γ

2

ω3/4(1 + χ)
E(x−) exp [iδ (x−)] , (45)

with x± =
√

2 (m ± 1) R′; to shorten notation we further use
E(x±) exp [iδ(x±)] = E± exp [iδ±]. The general formula (33) then
straightforwardly results in

[
fτ
]
1 =

4
9
Φ1

(
sin4 γ

2
E+ sin δ+

1 + χ
− cos4 γ

2
E− sin δ−

1 + χ

)
, (46)

which gives the orbit-averaged Yarkovsky acceleration due to
the diurnal effect on a body with an obliquity γ. The second-
level time-averaging over the planet’s motion about the Sun is
straightforward as in the previous Section (and will again be de-
noted by a [. . .]2 symbol). Averaging over an isotropic distribu-
tion of spin axes then only requires [sin4 γ/2]3 = [cos4 γ/2]3 =
1/3, giving thus our final form for the diurnal Yarkovsky
acceleration:

[
fτ
]
123 =

4
27
Φ1

([
E+ sin δ+

1 + χ

]
2

−
[

E− sin δ−
1 + χ

]
2

)
· (47)

As anticipated above, when m � 1, x+ � x− such that
E+ sin δ+ � E− sin δ− and the net diurnal effect vanishes. When
m is not large, and surface conductivity low, the resulting effect
is a slight net outward drift of the orbits. In the extreme case
m < 1 we have x− =

√
2 (1 − m) R′ and the sign in E− sin δ−

should be changed.
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4. Yarkovsky-Schach effect

Like the seasonal thermal drag, this variant of the thermal
thrust has been discovered when analyzing tiny orbit decay of
the Lageos satellite. Rubincam (1982) describes it as “tilted
shadow effect”, while a more detailed quantitative analysis has
been developed by Afonso et al. (1989) and others. Recently,
Vokrouhlický et al. (2005) discuss how this variant of the ther-
mal effects could affect the relative motion of binary asteroids,
and Rubincam (2006) pointed out its possible importance for the
ring particle motion.

Unlike in the case of the seasonal Yarkovsky effect in Sect. 3,
the radiation source is now the Sun in the visible band. If there
were no interruptions due to entries into the planet’s shadow, the
corresponding thermal force on the particle would be approx-
imately constant in space (it would only slowly change as the
planet revolves about the Sun). With that, the average semimajor
axis change would be zero. However, when the planetocentric
orbit of the particle is intercepted by shadow periods the par-
ticle cools in the shadow and heats in the sunlight. These two
processes do not exactly compensate and a net transverse accel-
eration is produced. This is the essence of the Yarkovsky-Schach
thermal thrust.

The Yarkovsky-Schach effect has been mostly studied in the
limit of a fast particle rotation (m � 1), the case of an initial
orbital-evolution phase of Lageos. Motivated by this spacecraft
fast despinning, Farinella & Vokrouhlický (1996) attempted to
develop a theory of the diurnal Yarkovsky-Schach effect, but
their theory remained approximate. In Sect. 4.2 we give a first
fully consistent approach to the diurnal Yarkovsky-Schach effect
for a spherical body.

4.1. Seasonal component

The most suitable planetocentric reference frame to study the
Yarkovsky-Schach effect derives from the symmetry of the plan-
etary shadow. The ring-plane axis x coincides with the symme-
try axis of the shadow. Time origin, t = 0, thus ζ = 1, is when
the ring particle crosses this axis. As always in our paper the
z-axis is along Saturn’s spin axis. In this frame the solar direc-
tion unitary vector has components (− sin θ0, 0, cos θ0)T and the
particle’s spin axis is set at an arbitrary s = (s1, s2, s3)T .

With that choice of reference frames, the transformation of
the solar direction in the particle-fixed frame yields the zonal
dipole source coefficient:

s10(R′; ζ) = −
√
π

3

αVEV
�

S� (s1 sin θ0 − s3 cos θ0) Γ(ζ). (48)

Since the Sun is assumed fixed in space over the timescale of
particle revolution about the planet, the time dependence of s10
in (48) arises entirely from the shadow function Γ(ζ) =

∑
ck ζ

k

(see Sect. 2.2). Sorting out the necessary Fourier terms from its
development, we obtain

ϕ+ = −αVEV
�

S�

√
π

6
(s1 sin θ0 − s3 cos θ0) c1

E exp (iδ)
ω3/4 (1 + χ)

· (49)

This is the amplitude of the Fourier term proportional to ζ in de-
velopment of the temperature zonal dipole coefficient (Eq. (29)).
The first degree coefficient of the shadow function Γ(ζ) reads
(Eqs. (10) and (13))

c1 = − sin (∆/2)
π

= −
√

1 − ρ2 cos2 θ0

πρ sin θ0
· (50)

The orbit-averaged transverse acceleration is easily accom-
plished using Eq. (31) with the result

[
fτ
]
1 =

4
9
Φ2

c1E
1 + χ

(s1 sin θ0 − s3 cos θ0) (s1 sin δ + s2 cos δ) ,

(51)

where

Φ2 = αVEV
�

πR2

mc
· (52)

At the second step we aim to compute the average over a
timescale of the planet’s motion about the Sun. This is a suffi-
cient interval for cos θ0 to have a zero mean (Eq. (39)), such that
we obtain

[
fτ
]
12 =

4
9
Φ2

[
c1 sin θ0

s1 E (s1 sin δ + s2 cos δ)
1 + χ

]
2

· (53)

As above, thanks to enough-complicated functional form of the
arguments the [. . .]2-averaging should be performed numeri-
cally. Interestingly, the s3 projection of s entirely dropped from
this expression.

Finally, adopting the model of random re-orientations of the
spin axis for ring particles we note that [s2

1]3 = 1/3 while
[s1 s2]3 = 0. Thus the overall mean of the thermal transverse
component due to the seasonal component of the Yarkovsky-
Schach effect reads

[
fτ
]
123 =

[
fτ
]
132 = −

4
27π
Φ2

⎡⎢⎢⎢⎢⎢⎣E sin δ
1 + χ

√
1 − ρ2 cos2 θ0

ρ

⎤⎥⎥⎥⎥⎥⎦
2

(54)

(here we inserted c1 from Eq. (50)). It has been pointed out by
Rubincam (2006) that

[
fτ
]
123 in (54) is always positive because

the thermal-lag angle δ is negative. Unlike the seasonal thermal
drag, the Yarkovsky-Schach effect thus on average supplies an-
gular momentum to the orbital motion of ring particles on a long
term.

4.2. Diurnal component

With the same planetocentric reference system we now obtain
the tesseral dipole coefficients of the particle insolation

s11(R′; ζ) =

√
π

6

αVEV
�

S� σ−
ζm Γ(ζ)

sin γ
, (55)

where we introduced

σ± = s2 sin θ0 ± i
(
s1 cos γ sin θ0 + sin2 γ cos θ0

)
. (56)

Equation (23) then provides the corresponding amplitude of the
Fourier terms proportional to ζm±1 in tesseral dipole coefficient
of the temperature development

τ+ =
1
2

√
π

3

αVEV
�

S�
σ− c1

sin γ
E+ exp (iδ+)
ω3/4 (1 + χ)

, (57)

τ− =
1
2

√
π

3

αVEV
�

S�
σ− c1

sin γ
E− exp (iδ−)
ω3/4 (1 + χ)

· (58)

We keep the same notation as in (44) and (45), namely x± =√
2 (m ± 1) R′. While straightforward, the averaging over differ-

ent timescales and the isotropic distribution of spin axes gives a
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rather busy formula. We just give the final result after all algebra
is completed

[
fτ
]
123 = −

4
27π
Φ2

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣E+ sin δ+

1 + χ

√
1 − ρ2 cos2 θ0

ρ

⎤⎥⎥⎥⎥⎥⎦
2

−
⎡⎢⎢⎢⎢⎢⎣E− sin δ−

1 + χ

√
1 − ρ2 cos2 θ0

ρ

⎤⎥⎥⎥⎥⎥⎦
2

⎞⎟⎟⎟⎟⎟⎠· (59)

As in the case of diurnal planetary Yarkovsky effect (Eq. (47)),
the net orbital effect of the diurnal force components of the
Yarkovsky-Schach perturbation is zero for rapidly rotating par-
ticles (m � 1 and x+ � x−). For a slowly-enough rotating sam-
ple of particles, the net diurnal effect (59) might again become
non-zero and we shall test different assumptions below. In the
extreme case m < 1 we again have x− =

√
2 (1 − m) R′ and the

sign in E− sin δ− should be changed.

5. Null-torque orbits and estimated drift rates
of ring particles

For the sake of simplicity, we first consider the seasonal compo-
nents of the thermal effects as in Rubincam (2004, 2006). The
effects of the diurnal components are introduced in Sect. 5.3.

5.1. Low contrast in optical and infrared absorptivities

Rubincam (2004, 2006) proposed that boundaries of the two
main Saturn’s rings are related to thermal drifts of their con-
stituents. Namely, he associated them with the null-torque orbits
[ fτ]123 = 0 (we analyze location of these orbits in Appendix E
and show they can be reasonably determined using simple an-
alytic formulae). Here, however, we bring several arguments to
critically review this scenario.

First we point out a large sensitivity of the critical no-torque
distance to the obliquity ε of Saturn. Figure 2 shows the long-
term average transverse acceleration due to the combined sea-
sonal Yarkovsky and Yarkovsky-Schach effects. We assumed
an icy particle with size D = 1 cm, ρb = 0.5 g/cm3 and
C = 820 J/kg/K and the thermal conductivity K = 10−4 W/m/K.
We also set αV = 0.5 and αI = 0.665 in this particular case,
such that all our parameters are identical to those in Rubincam
(2006). The four curves correspond to obliquity values 24◦, 25◦,
26.73◦ (the current value) and 28◦. We note that small changes
in Saturn’s obliquity produce significant modifications of the re-
sults, especially (i) displacement of the outer critical orbit for
smaller ε values, and (ii) produces no solution for larger ε val-
ues. Obviously, this is mainly because the Yarkovsky-Schach ef-
fect is strongly sensitive to the minimum extension of Saturn’s
shadow. The same behavior is observed in Fig. 3 where we plot
the position of the no-torque orbits in the plane defined by the
ratio of infrared and optical absorptivities αI/αV and distance
from Saturn ρ.

It is interesting to note that a model by Ward & Hamilton
(2004) and Hamilton & Ward (2004), provides a natural arena
for such small but significant changes in Saturn’s obliquity. In
their view, Saturn’s spin axis is presently trapped in a secular
spin-orbit resonance s8, librating with a large amplitude about
Cassini state 2. If true, this resonance forces Saturn’s obliquity
to undergo variations that make it change in between maximum
limits of �24◦ to �30◦ (Hamilton & Ward 2004). The corre-
sponding libration period is ∼100 My. The Cassini mission may
provide more accurate data about Saturn’s spin axis direction
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Fig. 2. Long-term mean thermal transverse acceleration (in pm/s2) for
D = 1 cm ring particles as a function of the planetocentric distance ρ (in
planet’s radii). We assume bulk density ρb = 0.5 g/cm3, specific thermal
capacity C = 820 J/kg/K and thermal conductivity K = 10−4 W/m/K.
Optical and thermal absorptivities are αV = 0.5 and αI = 0.665. Four
different curves are for different assumptions about Saturn’s obliquity ε:
(i) 24◦ (label 1), (ii) 25◦ (label 2), (iii) 26.73◦ (the current value; thick
line), and (iv) 28◦ (label 3).
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Fig. 3. Distance from Saturn where zero mean thermal torque [ fτ]123 =
0 applies on the orbital motion of ring particles as a function of ratio
between their absorptivity in thermal αI and optical αV bands. We as-
sume particles of diameter D = 1 cm, bulk density ρb = 0.5 g/cm3,
specific thermal capacity C = 820 J/kg/K and thermal conductivity
K = 10−4 W/m/K. Current position of the A and B rings is shown by the
shaded zones. The three curves are for three possible values of Saturn’s
obliquity ε: (i) 24◦ (label 1), (ii) 26◦ (label 2), and (iii) 28◦ (label 3).

and precession rate (moments of inertia), which may modify the
quantitative results in Hamilton & Ward (2004). In this situation
we consider their model as a likely possibility and investigate
its implications for the ring particle migration by the thermal ef-
fects. For instance, if the A and B ring boundaries were indeed
strictly linked to the null-torque orbits, the rings would – for con-
stant optical and thermal parameters – hardly survive one obliq-
uity cycle since when the obliquity achieves its minimum value
they disappear. Obviously, such considerations concern small-
enough particles only.

More importantly, though, the previous results change sig-
nificantly when Poynting-Robertson (P-R; see Appendix B)
drag is added into our analysis. Figure 4 shows isolines of
mean transverse acceleration [ fτ]123 due to combined radiative



726 D. Vokrouhlický et al.: Thermal forces on planetary ring particles

lo
g(

D
 [c

m
])

ρ

-1

-0.5

 0

 0.5

 1

 1.4  1.6  1.8  2  2.2  2.4  2.6

B ring A ring ε = 24 deg

lo
g(

D
 [c

m
])

ρ

-1

-0.5

 0

 0.5

 1

 1.4  1.6  1.8  2  2.2  2.4  2.6

B ring A ring ε = 26 deg

lo
g(

D
 [c

m
])

ρ

-1

-0.5

 0

 0.5

 1

 1.4  1.6  1.8  2  2.2  2.4  2.6

B ring A ring ε = 26.73 deg

lo
g(

D
 [c

m
])

ρ

-1

-0.5

 0

 0.5

 1

 1.4  1.6  1.8  2  2.2  2.4  2.6

B ring A ring ε = 28 deg

Fig. 4. Isolines of positive (solid) and negative (dashed) values of the mean transverse acceleration [ fτ]123 resulting from composition of thermal
and P-R effects in the plane of distance from Saturn (ρ in planetary radii) and size of the ring particle (D in cm). The four plots correspond to
four possible values of Saturn’s obliquity: (i) ε = 24◦ (left and top), (ii) ε = 26◦ (right and top), (iii) ε = 26.73◦ (left and bottom; current value),
and (iii) ε = 28◦ (right and bottom). The level curve distance is 0.25 pm/s2 for positive values, and −1 pm/s2 for negative values. In the two top
figures the thick solid isoline is where [ fτ]123 = 0 pm/s2, while in the bottom two figures (where no positive [ fτ]123 occur) the thick dashed line
is for [ fτ]123 = −1 pm/s2. The ring particles are assumed to have the following thermal parameters: bulk density ρb = 0.5 g/cm3, specific heat
capacity C = 820 J/kg/K, thermal conductivity K = 10−4 W/m/K and ratio of thermal and optical absorptivity αI/αV = 1.33 and αV = 0.5. Shaded
zones indicate position of the main B and A rings.

effects (both the P-R and the seasonal thermal forces). We as-
sumed the same thermal parameters as before: bulk density ρb =
0.5 g/cm3, specific thermal capacity C = 820 J/kg/K, thermal
conductivity K = 10−4 W/m/K and ratio of thermal and opti-
cal absorptivity αI/αV = 1.33 which holds for values αV = 0.5
and αI = 0.665 suggested by Rubincam (2004, 2006). We again
show results for different values of Saturn’s obliquity ε = 24◦,
26◦, ε = 26.73◦ (current value) and 28◦.

We note that for particles smaller than �3 mm in size, the
P-R drag becomes dominant and makes all ring particle orbits
decay toward the planet with an increasing rate for smaller sizes
(approximately as ∝1/D). For low enough obliquities, ε ≤ 26◦
in our examples, the Yarkovsky-Schach effect overcomes both
inward drifts (seasonal Yarkovsky and P-R effects) in some dis-
tance range from the planet. This distance range is weakly de-
pendent on the size of the particles, as expected from the discus-
sion in Appendix E (obviously though, the outward drift values
become very small for larger particles). For the present value of
Saturn’s obliquity, and larger values, no particles migrate out-
ward from the planet and the thermal effects result only in an
anomalous increase of the inward drag roughly in the A ring
zone.

5.2. High contrast in optical and infrared absorptivities

Perhaps the most serious caveat of the previous results is that
the assumed mid-infrared albedo value AI = 0.335 (giving thus
αI = 0.665) is too high. In spite of a large uncertainty in its value,
previous evidence points toward a much lower value AI ∼ 0.1
(e.g., Irvine & Pollack 1968; Kawata & Irvine 1975; Hudgins
et al. 1993). This means that relatively more Saturn’s infrared
radiation gets absorbed by the ring particles (αI ∼ 0.9) and this
increases the strength of the planetary Yarkovsky effect.

Bringing together our best estimates of Bond albedo in the
optical for different ring-zones we shall re-derive our best esti-
mates of radiative drift rates for particles with typical sizes of
a few centimetres. Data from Porco et al. (2005) confirm, with
much higher resolution then available before, the following val-
ues for the optical albedo: (i) AV � 0.25 for the C ring, (ii) AV �
0.6 for the B ring (especially its outer part), (iii) AV � 0.4 for
particles in the Cassini division, and (iv) AV � 0.5 for the A ring
(consistent values have been obtained in the previous literature,
e.g., Dones et al. 1993, or Esposito et al. 1984, and references
therein). There are certainly variations across the rings exten-
sion but in the first approximation we adopt these characteristic
values. In all cases we consider our nominal value of the Bond
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Fig. 5. The same as in Fig. 4 but now for different ratios of the absorptivity coefficients in optical αV and infrared αI: (i) left and top figure
corresponds to αV = 0.4 and αI/αV = 2.25 (a guess for the B ring particle values), (ii) right and top figure corresponds to αV = 0.5 and
αI/αV = 1.8 (a guess for the A ring particle values), (iii) left and bottom figure corresponds to αV = 0.75 and αI/αV = 1.2 (a guess for the
C ring particle values), and (iv) right and bottom figure corresponds to αV = 0.6 and αI/αV = 1.5 (a guess for the Cassini division particle
values). Nominal value ε = 26.73◦ of Saturn’s obliquity and low conductivity K = 10−4 W/m/K are assumed here. Dashed are isolines of negative
[ fτ]123 values with constant step −3 pm/s2 (the bold dashed curves correspond to [ fτ]123 = −3 pm/s2). Solid are isolines of positive [ fτ]123 values
with constant step +1 pm/s2 (the bold solid curve on the left and bottom panel is [ fτ]123 = 0 pm/s2).

albedo in the mid-infrared3 AI = 0.1. Except for the C ring
particle parameters, the ratio αI/αV absorptivities in infrared
and optical is larger than the critical value ∼1.37 (Fig. E.1)
and the resulting thermal effects are expected to make the parti-
cles migrate inward. Saturn’s obliquity is given its current value
ε = 26.73◦ and thermal parameters are as before. To proceed
in clear conceptual steps, we keep the seasonal thermal forces
in the analysis, postponing discussion of the possible role of the
diurnal components to the next section.

Figure 5 shows the results. We note that in all cases the ring
particles drift inward; this holds true also for the C ring zone.
The thermal effects increase the migration rate of centimetre to
decimetre size particles in the B and A rings by nearly two orders
of magnitude as compared to their (small) drift rates by the P-R
drag. This appears to be a significant modification. Neglecting
other dynamical effects, such as viscosity and gravitational per-
turbations by satellites, we may estimate the timescale τ to

3 Cassini observations reported by Spilker et al. (2005) provide em-
piric values of ring emissivities. While no detailed attempt to translate
these values into the Bond albedo of the individual particles was done
using a radiative transfer theory, we may consider them to provide an
upper bound on AI, namely: (i) AI ≤ 0.14 for the B ring, (ii) AI ≤ 0.19
for the A ring, and (iii) AI ≤ 0.25 for the C ring. We re-ran simula-
tions presented in the main text with these upper bound values of AI

and found no significant change in results.

migrate radial distance δρ at ρ when the net transverse accel-
eration is fτ. Adopting planetary radii as units of δρ and ρ, and
pm/s2 for fτ we obtain

τ � 400

[
δρ

ρ3/2 fτ

]
[My]. (60)

Results in Fig. 5 show that �(0.5−5) cm size ring particles have
τ � 30−50 My to move a fair fraction δρ ∼ 0.5 of the whole
main ring system. This τ value is comparable or shorter than the
expected obliquity cycle. Even if Ψ ∼ 0.01 (see Appendix F)
the timescale of sweeping small particles from the B and A ring
zone would be smaller than the solar system age. The same size
rocky pebbles, with higher thermal conductivity K and bulk den-
sity ρb, are much less sensitive to the thermal effects and they
would evolve on a timescale which is about an order of magni-
tude longer. The same applies to larger icy ring particles up to
about 50 cm in size.

Of particular interest is to estimate the timescale of migra-
tion through the Cassini division from its outer to the inner edge.
This is a region with optical depth (∼0.075; e.g., Collins et al.
1984) such that the assumptions of our model meet reality more
closely than, for instance, in the denser B ring. We also note
that Porco et al. (2005) report, from analysis of the damping
length of Atlas’ 5:4 and Pan’s 7:6 density waves, a character-
istic particle size in the Cassini division to be �0.4−0.6 m, an
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Fig. 6. The same as in Fig. 5 but now the results include effects of the diurnal variants of the thermal forces. All particles are assumed to have a
rotation period five times shorter than the revolution period (i.e. m = 5). The four panels are again appropriate for Saturn’s B ring (top left), A
ring (top right), C ring (bottom left) and Cassini division (bottom right). Nominal value ε = 26.73◦ of Saturn’s obliquity and low conductivity
K = 10−4 W/m/K are assumed here. Dashed are isolines of negative [ fτ]123 values with constant step −3 pm/s2 (the bold dashed curves correspond
to [ fτ]123 = −3 pm/s2). Solid are isolines of positive [ fτ]123 values with constant step +10 pm/s2 (the bold solid curve on the left and bottom panel
is [ fτ]123 = 0 pm/s2) with the exception of the bottom left panel where the step is +1 pm/s2 only.

order of magnitude smaller than in the B and A rings (see also
French & Nicholson 2000; and Tiscareno et al. 2007) and closer
to the size range susceptible to radiative perturbations. A typi-
cal timescale of a centimetre to decimetre size particle to drift
across the Cassini division is surprisingly short from our work
�3−10 My only. Either viscous effects make a strong obstacle
to this drift, which seems unlikely (we would assume Ψ close
to unity in this case, see Appendix F), or small particles of the
relevant composition are permanently leaking from the bottom
ramp of the A ring toward the Cassini division. It has been pre-
viously determined that the ramp is built by the ballistic transport
from the innermost part of the A ring (e.g., Durisen et al. 1989,
1992, 1996). The putative fast effacement of the particles from
the Cassini division by the radiative drags would require the bal-
listic transport to be perhaps more efficient than expected so far
or the rings to be younger. In any case, our findings put stronger
constraints on sustaining the Cassini division population of par-
ticles on a long term.

5.3. Effect of the particle rotation rate

So far we have been analyzing effects of the seasonal variants of
the Yarkovsky and Yarkovsky-Schach forces. As such the results
were entirely independent from the rotation rate of the ring par-
ticles. Here we shall include the diurnal variants of the thermal
forces and find this dependence on the particles rotation rate.

Our theoretical analysis from Sects. 3.2 and 4.2 indicates that
for rapidly rotating particles their role is negligible (we numeri-
cally verified this conclusion holds true for m >∼ 10), but as the
parameter m = Ω/n becomes smaller the diurnal components
could modify previous results by an unknown extent. We shortly
explore their potential role.

Keeping the same physical parameters for each of the ring
sections we repeated our estimation of the long-term drifts of
small particles now with the diurnal components of the thermal
effects included. For definiteness we assigned m = 5 for particles
of each size. Figure 6 indicates that our results do not change for
large particles (D >∼ 5 mm, say) but get significantly modified for
small ones (D <∼ 5 mm). For large enough AV values, as in the
case of the A and B rings and particles in the Cassini division,
the diurnal component of the planetary Yarkovsky effect (46)
becomes positive and dominates the seasonal component for a
limited range of m ≤ 10. We note a large gradient of the drift
rates for ∼1 mm size particles across the B to A ring zones.

While theoretically interesting, we would like to draw a cau-
tion here. First, our thermal model assumes spherical and homo-
geneous particles. At millimetre and smaller sizes, though, the
particles are likely to have an irregular shape with enough poros-
ity to invalidate the assumptions of our solution. Moreover, colli-
sional models (e.g., Richardson 1994; Salo & Karjalainen 2003;
Ohtsuki & Toyama 2005; Morishima & Salo 2006; Ohtsuki
2006) predict that small ring particles will rotate fast (m >∼ 10).
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These works indicate m ∝ 1/D, with m ∼ 1 or less for the largest
particles in the population, as a rule of thumb. Nevertheless,
our understanding of the small ring particle rotation state is still
somewhat puzzling due to several contradictory hints (e.g., in-
accurate constraints on the size distribution of the ring parti-
cles that prevent us from determining whether large or small
particles dominate the cross-section, a population that might be
rotating slowly; e.g., Ferrari et al. 2005; Flasar et al. 2005) and
possibly missing physical effects in the theoretical models (such
as radiation torques on the small particles; Rubincam 2000;
Vokrouhlický & Čapek 2002; Čapek & Vokrouhlický 2004).
Since the collisional evolution of the ring particles is coupled
with their orbital and spin state, we cannot rule out peculiar ro-
tation rates for small particles in the population yet.

5.4. Effect of the particle thermal conductivity

We note that previous results would significantly change if much
higher thermal conductivity K was assumed. For instance with
K ∼ 6 W/m/K, appropriate for pure, non-porous crystalline ice
(e.g., Ross et al. 1977), we find that semimajor axis drift rates
due to thermal effects drop below the value of the P-R drag. This
is because efficient thermal conduction across the particles make
them basically isothermal and this will render the thermal ef-
fects much less important for the particle dynamics. Whether
there exists a subpopulation of ring particles with these proper-
ties (e.g., compacted by micrometeoroid impacts) remains hy-
pothetical, but observations of disk temperature profiles in the
planetary shadow rather support the very low value of K used
above (e.g., Spilker et al. 2003, 2006; Flasar et al. 2004; Ferrari
et al. 2005).

6. Implications and conclusions
In spite of many approximations, and a need of further substan-
tiation of our model, we believe our results might be pointing
toward important implications.

First, all previous studies based on observations from
optical to radar range suggest the rings are devoid of small
particles. For instance French & Nicholson (2000) give a
lower cut-off for a single power-law fit of the B ring and
the inner A ring population size distribution at ∼30 cm,
while about 0.1−1 cm for the C ring, Cassini division
and the outer A ring. Recent Cassini radar observations (e.g.,
http://photojournal.jpl.nasa.gov/catalog/PIA07875
and Thomson et al. 2005) also suggest rings are depleted of
small particles, placing the lower cut-off at centimetre to
decimetre range. Moreover, they also confirm a gradient toward
a larger value of the size-distribution lower cut-off at smaller
distances from Saturn. A standard explanation is that particle
agglomeration during soft-velocity collisions might drive small
particles to build larger ones (Borderies et al. 1984; Longaretti
1992; Karjalainen & Salo 2004; Albers & Spahn 2006). Smaller
sizes at the very outer part of the A ring was also suggested to
be due to energetic collisions with small particles in the E ring
(Dones et al. 1993, and references therein). But these models
have uncertainties in physical parameters. Here we propose that
small particles might be additionally swept from Saturn’s rings
by radiation forces both size- and saturnocentric-dependent
(Fig. 5). By contrast with Rubincam (2006), we find that for
plausible parameter values, particles drift inward at locations
throughout the ring system.

It is also yet to be seen whether the thermal drifts com-
puted above are important enough to modify the conclusions of
the standard theory for the ballistic transport in the rings (e.g.,

Durisen et al. 1989, 1992, 1996; Cuzzi & Estrada 1998). Note,
for instance, that centimetre to decimetre size particles in the
Cassini division are expected to migrate inward due to radiative
effects with a radial speed vr ∼ 3×10−6 cm/s. This may be larger
than the estimated drift rates resulting from transport of angu-
lar momentum by the ballistic transport itself and viscosity (e.g.,
Durisen et al. 1989, 1996). However, numerical models of ring
evolution are needed in order to determine the long-term effects
on the structure of the ring system. We plan to construct such
models in future work.
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Appendix A: Radiation source term S for surface
of a spherical body

In what follows we compute necessary coefficients of the multi-
pole series

S′ =
∑
n≥0

n∑
k=−n

snk Ynk(θ, φ) (A.1)

for radiation source termsS′ that are relevant for our work. They
are determined through

snk =

∫
dΩS′Y∗nk(θ, φ), (A.2)

where the star upper index means complex conjugation.

A.1. Impinging plane wave

The simplest source of radiation is a plane wave. We denote
the associated radiation flux EV

� and characterize direction of
its propagation by −npw. Radiation flux through an infinitesimal
surface element dS = ndS of a sphere is given by

S′ = EV
� (n · npw) for (n · npw) > 0, (A.3)

= 0 for (n · npw) ≤ 0. (A.4)

Obviously, the scalar product (n · npw) determines whether dS is
illuminated from the npw or not. In an arbitrary local reference
system of the spherical body, such that the Z-axis is oriented
along the spin vector as used in the main text, we can write

npw =

⎡⎢⎢⎢⎢⎢⎢⎣ sin θS cosφS
sin θS sin φS

cos θS

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.5)

so that θS and φS are the local colatitude and longitude of the
radiation source.

Inserting (A.3) and (A.4) into Eq. (A.2) we readily obtain
(recall scaling of the source term with S�; Sect. 2)

s00 =

√
π

2

αVEV
�

S� (A.6)

for the monopole coefficient. With Y00 = 1/(2
√
π) we directly

obtain s00Y00 = αVEV
�/(4S�). This is the factor 4 from the

“cross-section vs surface” argument in definition of the mean
radiation terms EV and EI used in Sect. 1.

With the same algebra we obtain (also Vokrouhlický 1999)

s10 =

√
π

3
cos θS

αVEV
�

S� , (A.7)

s1±1 = ∓
√
π

6
sin θS exp(∓iφS)

αVEV
�

S� (A.8)

for the dipole coefficients. We could have continued to compute
higher multipole coefficients, but the discussion in Sect. 2 indi-
cates this is not needed for our work.

A.2. Spherical source

Next we examine a spherical source of radiation such as a planet.
For simplicity, we assume each surface element of the planet
emits thermal radiation isotropically and all surface elements are
identical (no latitudinal thermal variations). Radiation intensity

at the thermal wavelengths is denoted I, so that the radiation tem-
perature Trad of the planet reads EI

�0 = σT 4
rad = πI (for Saturn

we have Trad � 95 K; e.g., de Pater & Lissauer 2001; Bertotti
et al. 2003). Since we are interested in ring particles of metre-
size at maximum, we shall neglect their characteristic size with
regards to the size of the planet and the particle planetocentric
distance ρ. With that approximation, we may assume each of the
planetary surface elements visible from the particle contributes
to its illumination with a plane wave propagating along their mu-
tual direction. The carried radiation intensity is still I, that of the
source.

Since we model the radiation impinging on the ring particle
with a composition of plane waves from different surface ele-
ments on the planet, the coefficients of the multipole expansion
of S′ are now obtained by integration of (A.6)−(A.8) over the
source. In particular for the monopole term we obtain

s00 = ψ(ρ)

√
π

2

αIEI
�0

S� , (A.9)

where ψ(ρ) is given by Eq. (6). Obviously at ρ → ∞ we have
the expected quadratic falloff ψ(ρ) ∝ 1/ρ2. On the other hand,
for ρ → 1 we obtain ψ(1) = 2 where our approximation of
plane wave illumination ceases to be valid. However, for any ρ
relevant in the Saturnian ring system our results apply (note the
inner edge of the C ring is at ρ � 1.236).

With the same approach we obtain in the case of dipole co-
efficients:

s10 =
1
ρ2

√
π

3
cos θS

αIEI
�0

S� , (A.10)

s1±1 = ∓ 1
ρ2

√
π

6
sin θS exp(∓iφS)

αIEI
�0

S� · (A.11)

Interestingly, here the 1/ρ2 flux falloff is recovered exactly.

Appendix B: Poynting-Robertson drag on ring
particles

Here we briefly review the Poynting-Robertson (P-R) drag, a
velocity-dependent correction of the radiation pressure for parti-
cles moving with respect to the radiation source (e.g., Burns et al.
1979, 2001; Bertotti et al. 2003). As in the case of the thermal
forces, we have two variants corresponding to the two possible
radiation sources: the Sun and the Saturn.

The orbital decay due to a radiation source at the force center
has been studied by Wyatt & Whipple (1950). We only adopt
here a generalization to an extended spherical source of radiation
developed by Guess (1962). The latter author showed that the
transverse (P-R) force acting on a perfectly absorbing particle of
radius R is given by

fτ = −1
3

πR2EI
�0

mc
v

c

⎡⎢⎢⎢⎢⎢⎢⎣8 −
(
8 +

1
ρ2

) √
1 − 1

ρ2

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.1)

where the notation is similar to the main text and v is the plane-
tocentric orbital velocity. Since v may be as large as �20 km s−1

at the inner edge of the B ring, we have v/c ≤ 10−4 or smaller in
the A and B rings.

The solar radiation can be modeled at Saturn’s distance with
a plane wave approximation. Surprisingly, we have not found the
general result for the P-R solar component in the literature and
we believe it is given here for the first time. For that reason, we
pay some attention to its derivation.
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The general formula for the P-R acceleration is given by
(e.g., Burns et al. 1979, 2001; Bertotti et al. 2003)

f = −πR2EV
�0

mc2
[Vs + (Vs · Ns) Ns] , (B.2)

where Ns is the unit position vector of the ring particle with re-
spect to the radiation source (Sun) and Vs is their relative veloc-
ity. The latter decomposes into the planet’s relative velocity V
with respect to the Sun and the particle relative velocity u with
respect to the planet: Vs = V + u (see also Mignard 1984). We
neglect the angular distance of the particle from the planet as
seen from the Sun and set Ns = N, where N is the planet’s posi-
tion vector with respect to the Sun. Assuming zero eccentricity
of the planet’s orbit about the Sun, and referring its longitude in
orbit λ to the instant when the Sun is at extreme latitude above
the ring-plane, we have

N = (Nx,Ny,Nz)T =

⎡⎢⎢⎢⎢⎢⎢⎣
− cos ε cosλ
− sin λ

sin ε cosλ

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.3)

and

V = (Vx,Vy,Vz)T = V

⎡⎢⎢⎢⎢⎢⎢⎣
− cos ε sin λ

cosλ
sin ε sin λ

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.4)

with ε the obliquity of the planet’s rotation axis and V �
9.7 km s−1 is the mean orbital velocity of Saturn. The N and
V components in Eqs. (B.3) and (B.4) are given in the planetary
reference system with the z axis along the planet’s rotation axis
and the xy plane that of the ring-plane. The Sun at its maximum
position above the ring-plane is located in the xz plane.

Assuming the shadow function Γ(ζ) is given in terms of
Fourier series (11) we have altogether

f = −πR2EV
�0

mc2
[u + V + (u · N) N] Γ(ζ). (B.5)

Note the complex orbital parameter ζ from (4) is unity at the cen-
ter of the planet’s shadow, which constrains the shadow-function
coefficients (12) and (13). Denoting the longitude of the shadow
axis in the ring-plane by ϕ0, we have

exp(±iϕ0) = − N±
sin θ0

, (B.6)

where we introduced N± = Nx ± iNy and the solar angular dis-
tance from the planet’s rotation axis θ0 given by (39); for further
use we also define V± = Vx ± iVy. The ring particle velocity u,
given in the (xyz) reference system, reads

u =
v

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
i
(
ζ exp (iϕ0) − ζ−1 exp (−iϕ0)

)
ζ exp (iϕ0) + ζ−1 exp (−iϕ0)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (B.7)

The semimajor axis drift derives from the transverse compo-
nent fτ of the perturbing acceleration (e.g., Eq. (28))

fτ = −
πR2EV

�0

mc
v

c

[
1 +
u · V
v2
+

(u · N)2

v2

]
Γ(ζ). (B.8)

Averaging over a particle revolution about the planet, denoted by
[. . .]1 in the main text, is straightforward when using

u · V = − i v
2 sin θ0

(
V−N+ζ − V+N−ζ−1

)
, (B.9)

u · N = − i v
2

sin θ0

(
ζ − ζ−1

)
. (B.10)

Inserting these formulae in (B.8), and dropping all ζ-dependent
terms, we finally obtain

[
fτ
]
1 = −

πR2EV
�

mc
v

c

[
c0 +

V
v

cos ε
sin θ0

c1 +
1
2

sin2 θ0 (c0 − c2)
]
.

(B.11)

Recall (c0, c1, c2) are the the first three coefficients of the shadow
function Γ(ζ). It is not straightforward to average (B.11) over
the planet’s revolution cycle about the Sun analytically, but it is
always possible to be done numerically. The only obvious ex-
ception is when the particles avoid visiting the planet shadow
(ρ ≥ ρ� = 1/ cos θ0) such that c0 = 1, c1 = c2 = 0. In this
case we obtain (see, e.g., Goldreich & Tremaine 1982; Mignard
1984)

[
fτ
]
12 = −

1
4

πR2EV
�

mc
v

c

(
5 + cos2 ε

)
. (B.12)

The formulæ (B.1) through (B.12), which are both of the same
order of magnitude, are used here mainly to find a parameter
threshold for which the P-R drags would dominate the thermal
effects (see Fig. 4).

Appendix C: A simplified model
for the disk-radiation effects

Dropping the optical or thermal radiation of the neighboring par-
ticles in the ring was one of the major approximations in this pa-
per. A full analysis of its role for altering the dipole anisotropy
of the particle temperature, relevant for the orbital effects, lies
beyond the scope of our work. Here we only argue that a very
simple model can be developed using the results developed in
Sects. 2 to 4.

Assume a small ring particle on a slightly inclined orbit
toward a large, infinitesimally thin disk of radiating particles.
During half of the revolution about the planet, namely along the
arc extending from ascending to descending nodes, the particle
is irradiated roughly along direction of the z-axis, while in the
opposite direction along the complementary part of the orbit. We
shall assume that the radiation flux is roughly constant, but the
results hold true also when the flux is an arbitrary function of
the vertical distance from the disk. These assumptions amount
to the following formal parameters in the previous theory of
the Yarkovsky-Schach effect: (i) fictitious “shadow function”
Γ(ζ) = ∓1 above/below the ring-plane, and (ii) radiation source
along the z axis, thus θ0 = 0◦ (the time origin t = 0, and orienta-
tion of the x axis in the ring-plane is set equal to the ascending
node of the particle orbit). With only these two simple modi-
fications we can now use the previous theory to show that the
corresponding dipole source coefficients of the seasonal/diurnal
effects read:

s10 =

√
π

3
cosγ Γ(ζ), (C.1)

s11 = −i

√
π

3
sin γ ζm Γ(ζ). (C.2)

The Fourier-series development of the shadow function now
reads Γ =

∑
ckζ

k with ck =
2i
kπ sin2(kπ/2).

Without giving unnecessary details we note that the orbit-
averaged thermal accelerations [ fτ]1 for both the seasonal and
diurnal variants are linear functions of s±. Since one eas-
ily shows that for an arbitrary function of obliquity Φ(γ) we
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Fig. D.1. The same as in Fig. 6 but now the results assume a population of particles with zero obliquity (such that their spin axes are aligned with
the normal to the disk plane). Two values of particle rotation rate are investigated: (i) m = 2 (left), and (ii) m = 0.3 (right). Thermal and optical
parameters of icy particles of appropriate to the A ring assumed and the nominal value ε = 26.73◦ of Saturn’s obliquity. Particles with m > 1 at any
planetocentric distance migrate outward since the diurnal variant of the planetary Yarkovsky effect is stronger than the corresponding component
of the Yarkovsky-Schach effect. However, the situation reverses for the extreme case m < 1. We plot isolines of [ fτ]12 with a constant step 1 pm/s2

(starting with the bold curve corresponding to [ fτ]12 = 1 pm/s2 in the left panel and [ fτ]12 = −1 pm/s2 in the right panel). Solid/dashed curves
apply to positive/negative [ fτ]12 values.

have [Φ(γ) s±]3 = 0, the mean transverse acceleration averaged
over a sample of bodies with isotropically distributed spin axes
vanishes. From this toy model we preliminarily conclude that the
orbital effect of ring particle radiation is small compared to the
effects discussed in the main text above.

Appendix D: The case of spin axes aligned
with normal to the disk-plane

So far we have investigated the long-term averaged Yarkovsky
drift for a sample of particles with an isotropic distribution of
spin axes. This is likely justified for small particles, but observa-
tions tend to indicate that large particles might rotate slowly and
their spin axis might be aligned with the direction of their orbital
angular momentum. Here we briefly analyse this case.

As a toy model assume all particles have zero obliquity
(γ = 0◦). With the analysis in Sects. 2 and 3 we than easily
determine the mean orbital acceleration of these particles due to
planetary Yarkovsky and the Yarkovsky-Schach effects (notation
as above):

[
fτ
]
12 = −

4
9
Φ1

[
E− sin δ−

1 + χ

]
2

+
4

9π
Φ2

⎡⎢⎢⎢⎢⎢⎣E− sin δ−
1 + χ

√
1 − ρ2 cos2 θ0

ρ

⎤⎥⎥⎥⎥⎥⎦
2

· (D.1)

We note the seasonal components of the thermal effects have
been dropped, while the only remaining contribution is due to
the diurnal components. This is an important circumstance since
with low surface conductivity the diurnal variant of the thermal
effect typically provides faster orbital drifts (e.g., Bottke et al.
2002, 2006). For particles whose rotation rate equals that of the
mean motion about the planet (m = 1) the total effect would
vanish because E− sin δ−(m = 1) = 0. When m < 1, the sign in
the right hand side of Eq. (D.1) should be changed as discussed
in Sects. 2.3, 3.2 and 4.2.

Figure D.1 shows expected values of the mean transverse ac-
celeration

[
fτ
]
12 from (D.1) for a population of slowly rotating

icy particles whose physical parameters are those of the A ring
(in particular we have K = 10−4 W/m/K, AV = 0.5, AI = 0.1,

C = 820 J/kg/K and ρb = 0.5 g/cm3). In the left panel we as-
sumed m = 2 and thus particles of all sizes and at any planeto-
centric distance migrate outward, since their high optical albedo
makes the Yarkovsky-Schach effect be smaller than the plane-
tary Yarkovsky effect. Because of the postulated zero obliquity,
the latter now makes particles migrate from the planet. Particles
up to a half metre size can have

[
fτ
]
12 ∼ 1 pm/s2. Using Eq. (60)

we estimate they can drift across the whole width of the Cassini
division in ∼50 My. As mentioned above, however, when m→ 1
(particles rotating synchronously with their revolution period
around the planet)

[
fτ
]
12 → 0 and this timescale would diverge.

A population of particles rotating more slowly than revolving
about the planet, e.g., m = 0.3 in the right panel, would migrate
toward the planet. This is because for them then hotter (“after-
noon”) side leads rather than trails the trajectory as usual for
fast rotating objects (we thank D.P. Rubincam for pointing this
situation to us). The dominant diurnal variant of the planetary
Yarkovsky force thus produces a net drag on the particle motion.
The drift rates are comparable to the case of m = 2 particles.

We speculate that inward/outward thermal drift of larger ring
particles with spin axes normal to the disk-plane might have con-
tributed to the formation of the Cassini division (see Goldreich
& Tremaine 1978, for a standard theory). This is because out-
ward migration of the icy particles with m ∼ (1−10) would be
halted at the location of the 2/1 mean motion resonance with
Mimas (inner edge of the Cassini division). In course of time a
gap would be opened this way and the width of the Cassini divi-
sion would be constrained by the age of the main A and B rings
and the relevant thermal drift rate of the dominating population
of ring particles. It is however yet to be understood by detailed
modelling if this scenario is a viable possibility.

For the sake of completeness we note that for γ = 180◦ obliq-
uity we would have obtained

[
fτ
]
12 =

4
9
Φ1

[
E+ sin δ+

1 + χ

]
2

− 4
9π
Φ2

⎡⎢⎢⎢⎢⎢⎣E+ sin δ+
1 + χ

√
1 − ρ2 cos2 θ0

ρ

⎤⎥⎥⎥⎥⎥⎦
2

· (D.2)

In this case all particles migrate toward the planet.
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Fig. E.1. Distance from Saturn where the total thermal torque on the or-
bital motion of ring particles is zero as a function of ratio between its ab-
sorptivity in thermal αI and optical αV bands. Seasonal components of
the Yarkovsky and Yarkovsky-Schach effects were taken into account.
For sake of illustration we assume particle of diameter D = 1 cm, bulk
density ρb = 0.5 g/cm3 and specific thermal capacity C = 820 J/kg/K.
The light curves correspond to three values of thermal conductivity:
(i) K = 10−4 W/m/K (label 1), (ii) K = 10−2 W/m/K (label 2), and
(iii) K = 1 W/m/K (label 3). The bold curve was calculated from ap-
proximate conditions (E.2) and (E.3). Position of the A and B rings is
shown by the shaded zones. For large enough αI/αV ratio the approx-
imate method provides a very good means to compute the no-torque
orbits independently on the ring particle thermal parameters and size.
When αI/αV ≤ 1 (physically unlikely case) all ring orbits would gain
orbital momentum.

Appendix E: Null-torque orbits

Rubincam (2006) suggested that some of the ring boundaries,
namely the outer edge of the A ring and the inner edge of the
B ring, might correlate with the saturnocentric distance where
the long-term mean thermal torques produced by the seasonal
Yarkovsky and Yarkovsky-Schach effects vanish. Pursuing this
idea we investigate where such zero-torque orbits are located
in our model. For the sake of simplicity, though, we consider
seasonal-effect torques in this section only.

No acceleration, thus null-torque, orbits [ fτ]123 = 0 are de-
termined by

Φ1

[
E sin δ
1 + χ

]
2

=
1
π
Φ2

⎡⎢⎢⎢⎢⎢⎣E sin δ
1 + χ

√
1 − ρ2 cos2 θ0

ρ

⎤⎥⎥⎥⎥⎥⎦
2

· (E.1)

In full accuracy, the square brackets [. . .]2 are to be determined
numerically using integration over Saturn’s longitude in orbit λ
from (39). We find interesting that the factor E sin δ/(1 + χ)
changes little during Saturn’s revolution about the Sun (except
in the unlikely case αI 	 αV). Neglecting its variations we thus,
in a rough but surprisingly satisfactory approximation, can drop
this term from both sides in Eq. (E.1). In that case, the depen-
dence of the condition (E.1) on thermal parameters and size of
the ring particle entirely disappears. Moreover, the second aver-
aging can be performed analytically and the condition Eq. (E.1)
acquires a simplified form. We only need to distinguish two
cases. First, when ρ sin ε ≤ 1 the planetocentric orbit is always
shadowed and we have

αI

αV
=
EV
�

EI
�0

2ρ
π2

E (ρ sin ε) , (E.2)

where E(x) is the complete elliptic integral of the second kind.
When ρ sin ε > 1, the orbit is entirely illuminated during part of

the solar revolution cycle. In that case we obtain

αI

αV
=
EV
�

EI
�0

2ρ
π2

[
ρ sin ε E

(
1

ρ sin ε

)
− ρ

2 sin2 ε − 1
ρ sin ε

K

(
1

ρ sin ε

)]
,

(E.3)

where K(x) is the complete elliptic integral of the first kind. In
fact, Eq. (E.3) can be obtained from (E.2) by an appropriate
Gauss transformation (e.g., Abramowitz & Stegun 1970; Byrd
& Friedman 1971).

To check applicability of our simplified method we numer-
ically determined roots in ρ from Eqs. (E.1) for an icy parti-
cle with size D = 1 cm, ρb = 0.5 g/cm3 and C = 820 J/kg/K
and three different values of the thermal conductivity K = 10−4,
10−2 and 1 W/m/K (with the lowest value here appropriate for
particles composed of or covered with fluffy amorphous aggre-
gates of ice; e.g., Froidevaux et al. 1981; Kouchi et al. 1992;
Spilker et al. 2003; Flasar et al. 2004; Ferrari et al. 2005). The
roots were determined for different values of the ratio αI/αV of
the thermal and optical absorptivities of the particle. The re-
sult, shown in Fig. E.1, has been compared to the solution of
Eqs. (E.2) and (E.3), in this case independent of the thermal pa-
rameters and the size of the particle. We note that in a fair range
of the αI/αV values the approximate method gives a very accu-
rate position of the no-torque orbits. We find this result interest-
ing because of the above mentioned independence on thermal
parameters and size of the ring particle. Obviously, at very small
(sub-mm) sizes the Poynting-Robertson drag modifies this result
causing orbital decay to the planet (Figs. 4 and 5).

Appendix F: Collective motion of ring particles

The results given in this paper describe the motion of a single
ring particle. The dense packing of particles in rings such as A
and B around Saturn affects not only illumination by shadowing
and mutual irradiation effects, but it also affects orbital motion
by mutual collisions. While a complete solution of the problem
is left for future numerical work, here we give an upper limit on
modification of the single-particle thermal drift [da/dt]123 from
Eq. (28) by collective effects. This method has been developed
by Rubincam (2006). Here we slightly generalize it for any size
distribution of the ring particles and, mainly, give heuristic result
for a rarefied medium such as in the Cassini division (Sect. F.1).

Assume an infinitesimal ringlet of zero eccentricity particles
with semimajor axis a. The particles have sizes D in the range
D1 ≤ D ≤ D2 and the population is described with a size dis-
tribution function Σ(D): dN/dD = Σ(D) such that there are dN
particles in the size interval (D,D + dD). An extreme opposite
assumption to free particle motion is a complete locking of the
particle system as a unit via tight collisions. In this approxima-
tion, the ringlet would migrate as a whole, not letting the small-
est particles escape first. The collective migration of the ringlet
is obtained by relating the total (long-term) torque T produced
by thermal forces

T =
π

6
ρa

∫ D2

D1

dD D3 Σ(D) [ fτ]123(D) (F.1)

to the change of the ringlet angular momentum L = M na2

(here M is the mass of the ringlet):[
dL
dt

]
123

=
M na

2

[
da
dt

]
123

= T. (F.2)
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As a result we obtain

[
da
dt

]
123

=
2
n

∫ D2

D1
dD D3 Σ(D) [ fτ]123(D)∫ D2

D1
dD D3 Σ(D)

· (F.3)

Obviously, this equation could be also understood as a “mass-
weighted” form of Eq. (28).

Assume now that we are interested in migration of the small-
est particles with size D1 in the system. In the large-size regime,
that applies for particles size ≥1 cm roughly, the long-term aver-
age thermal acceleration [ fτ]123 scales inversely proportionally
with the size of the particle. In this limit, Eq. (F.3) takes the fol-
lowing form[
da
dt

]
123

� 2
n

[ fτ]123(D1)Ψ. (F.4)

We intentionally pulled out the single-particle accelera-
tion [ fτ]123(D1) of the smallest members in the population on
the right hand side of (F.4) so that the effective ringlet migra-
tion speed is compared to the migration speed of the smallest
particles. This leaves us with the reduction factor Ψ that reads

Ψ =
D1

∫ D2

D1
dD D2 Σ(D)∫ D2

D1
dD D3 Σ(D)

· (F.5)

The size distribution function Σ(D) is not known exactly, but
previous works set some limits. French & Nicholson (2000) fit
a single-power law Σ(D) = Σ0 D−γ, and also derive D1 and D2
limits, in various parts of the Saturn’s ring system using 1989
occultation data of 28 Sgr. Their value of γ is close to 3, being
slightly shallower ∼2.75 in the B ring, Cassini division and the
inner part of the A ring while slightly steeper ∼3.1 in the C ring.
We may consider the case γ = 3, see also Rubincam’s (2006)
β-factor, and obtain Ψ � −Λ lnΛ with Λ = D1/D2. With D1 �
30 cm and D2 � 20 m in the B ring, we have Ψ � 0.06; with
D1 � 1 cm reported for the C ring and outer part of the A ring
we would have Ψ � 0.007. For a generic power-law distribution
Σ(D) = Σ0 D−γ (with γ � 3) and sufficiently large Λ, we obtain:
(i) Ψ = [(4− γ)/(3− γ)]Λ (1−Λ3−γ)/(1−Λ4−γ) � [(4− γ)/(3−
γ)]Λ when γ < 3, and (ii) Ψ = [(4 − γ)/(γ − 3)]Λ4−γ (1 −
Λγ−3)/(1 − Λ4−γ) � [(4 − γ)/(γ − 3)]Λ4−γ when 3 < γ < 4.

As expected, the values of Ψ range in between a few parts
in 10−3 to few parts in 10−2, suggesting that the migration due to
thermal torques becomes hindered in the approximation where
all particles are tightly collisionally locked. This is because for
shallow size distribution functions Σ(D), such as appropriate for
the ring system, the mass of the system is dominated by the
largest particles. Since these have very small thermal migration
rates, they effectively drag the motion of small particles too. The
dependence becomes a little relaxed for γ > 3, where at least
small particles begin to dominate cross-section of the population
and for that reason the Ψ dependence on Λ becomes less. It dis-
appears only for γ ≥ 4 when the smallest particles in the system
start dominating also the total mass of the ringlet. Such steep
Σ-distributions are, however, inadequate for the ring systems,
partly also because thermal effects might help deplete small par-
ticles (see below).

F.1. The role of collisions in a rarefied medium

The reality, that can be tested only through direct numerical
modelling of the ring particle collisional system with thermal

forces included, should perhaps reside somewhere in between
the two simplified models: the single-particle and tight-locking
systems. We may hypothesize, that Eq. (F.3) would still apply for
migration of the smallest particles in the system, but now the Ψ-
factor should get modified to account for the exact collisional
coupling in between the particles. Since the latter is roughly
characterized with the optical thickness τ of the ring, we may
imagine a modification such as

Ψ(Λ)→ g(τ)Ψ(Λ)
1 + g(τ)Ψ(Λ)

, (F.6)

where g is some function of the optical thickness and other pa-
rameters. We expect g→ ∞ for τ→ 0 and g→ 1 for τ→ ∞. A
proof, however, remains beyond the scope of this paper. We only
give a hint of how important the collision effects might be in the
limit of very small τ. This is relevant for the rarefied C ring and
Cassini division, where τ ∼ 0.1 except for narrow ringlets. In a
numerical example we focus on the environment in the Cassini
division.

Assume a rarefied portion of the ring with low τ. Drift of the
smallest particles with size D1 in the population is a steady mi-
gration with the single-particle rate [ fτ]123(D1) from (28) over a
collisional timescale Tcoll � π/(nτ) (e.g., Goldreich & Tremaine
1982). After this characteristic timescale has elapsed, the parti-
cle typically undergoes a collision in which it obtains a veloc-
ity kick ∼nD2 triggering a change in semimajor axis ∼2D2. The
role of collisions after time T is seen by comparing the steady
accumulated semimajor axis change �[da/dt]123(D1) T and the
characteristic diffusion length acquired by the collisions

σ2
coll ∼

T
Tcoll

4D2
2. (F.7)

For instance, considering typical conditions in the Cassini divi-
sion, τ ∼ 0.1, [ fτ]123(D1) ∼ 3×10−12 m/s2 (see below), D2 ∼ 5 m
and T ∼ 5 My, we obtain

σcoll

|[da/dt]123(D1) T | ∼ 0.05. (F.8)

This choice of T corresponds to our estimated single-particle
drift time of D1 ∼ 1 cm size particles across the Cassini di-
vision (Sect. 5.2). The small value of the right hand side of
Eq. (F.8) seemingly suggests that the role of mutual collisions
in the Cassini division does not significantly hinder the drift of
the smallest particles, thus making g in Eq. (F.6) effectively very
large.

In the main text we shall use the single particle drift rates for
the sake of discussion. Their attenuation by the Ψ factor should
be remembered when appropriate.


