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ABSTRACT

Context. Precise observations and long orbital arcs make determining the orbit of small near-Earth asteroids a task of ever increasing
difficulty. Subtle perturbations, such as relativistic terms or radiation forces, must be taken into account.
Aims. Vokrouhlický & Milani (2000) studied the orbital effects of radiation pressure on those spherical bodies with north-south
asymmetry in taking the optical surface albedo value. However, their analysis omitted the complementary effect of recoil due to
thermal radiation. Here we determine this component and study the degree of compensation between these two effects.
Methods. We use an analytic approach that requires linearization of the heat-diffusion boundary condition on the surface of the body
and weakly eccentric orbits. We determine both diurnal and seasonal components of the thermal force due to albedo asymmetry, and
we compute the related orbit-averaged change of the semimajor axis, eccentricity, and inclination.
Results. Within the limits of our approximation and with a plausible value of thermal parameters for small near-Earth asteroids,
we show that the orbit-perturbation due to anisotropic reflection in the optical waveband is largely compensated by the anisotropic
reflection in the thermal waveband. The resulting effect amounts to ∼25% of the effect in the optical at maximum.

Key words. radiation mechanisms: thermal

1. Introduction

Our ability to accurately track the motion of small, near-Earth
asteroids has significantly increased over the past few decades
thanks to ground-based radar and interferometric techniques and
also thanks to spacecraft visits. The observations of many aster-
oids extend over a longer timespan (half a century or more for a
number them) and large telescopes allow detection of very small
objects (only tens of metres in size). This strengthens the re-
quirements on the orbit determination model, both by the need
for a careful definition of reference systems, and transformations
between them, and also by using a force model that is accurate
enough. For instance, relativistic terms are an unsurprising part
of orbital mechanics today (e.g., Soffel et al. 2003). Another step
of extending the orbit determination model beyond the classical
frame of Newtonian dynamics has been paved by Vokrouhlický
et al. (2000) who argued that the recoil force of thermal radi-
ation (the Yarkovsky effect) needs to be included in the force
model for the most precise orbits. Indeed, Chesley et al. (2003)
followed that paper by actual detection of this tiny force in the
motion of (6489) Golevka, and Vokrouhlický et al. (2005a,b) ar-
gue that several more detections should be possible soon for both
solitary asteroids and binary systems.

Vokrouhlický & Milani (2000) extended the analysis of
Vokrouhlický et al. (2000) and considered the importance of
other radiation-pressure dynamical effects in the motion of small
asteroids. Among others, they pointed out that a long-term sec-
ular change of the orbital semimajor axis could be produced by
variations in albedo on the body’s surface. Their simple model
accounted for a body with a spherical shape and north-south dif-
ference in the albedo value. The simplest model thus assumes
the albedo reads A(θ) = a0 + a1 cos θ, where a0 and a1 are pa-
rameters and θ is colatitude measured from the north pole on the

asteroid. With that assumption, Vokrouhlický & Milani (2000)
showed that the orbital semimajor axis a undergoes a secular
change1

[
da
dt

]
opt

= −Φa

2n
a1sQ

e
1 − e2

· (1)

Here n is the mean orbital motion, Φa = (EaπR2/mc) with R
the radius of the body, m its mass, c the light velocity, and
Ea � 1367/a2 W/m2 is the mean solar radiation flux at the he-
liocentric distance equal to the semimajor axis of the orbit. For s
a unit vector directed along the asteroids rotation pole, we also
have sQ = s · Q with Q being a unit vector in the orbital plane
and perpendicular to the pericentre direction P. With k along the
orbital angular momentum, the (P,Q, k) form a right-handed,
orbit-tied frame. Vokrouhlický & Milani (2000) also showed
that this effect might raise a non-negligible orbit displacement
in some specific cases and, perhaps, a reasonable value of a1.
For instance, their example considered motion of (1566) Icarus
and a1 = 0.01; with those parameters, the optical reflectivity
anisotropy effect has been found to displace this asteroid orbit
by as much as ∼15 km during its close approach in June 2015.
This value is less than the orbit uncertainty by that time, but
significantly more than the observation accuracy. Thus, on the
long term, it should become important in the orbit determination
analysis.

However, a possible caveat of the analysis by Vokrouhlický
& Milani (2000) is that these authors did not consider the related
modification of the thermal component of the radiative pressure,

1 Figures 1 and 3 in Vokrouhlický & Milani (2000) describe in quali-
tative way the reason why sunlight reflection of a body with asymmetric
albedo produces a secular change of the orbital semimajor axis.
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when the albedo value varies over the asteroid’s surface (note
the classical models of the Yarkovsky effect assume a constant
albedo value). In the limit of a very small surface thermal con-
ductivity, the thermal forces mimic those produced by the op-
tical radiation reflection. We might thus expect that the effect
described by Vokrouhlický & Milani (2000) would receive an
opposite-behaving counterpart in the thermal band that would
just compensate for it; note that the incoming sunlight is either
reflected in the optical band or re-radiated in the thermal band
according to the local value of the surface albedo. The result-
ing net orbital perturbation, combining recoil effects in optical
and thermal wavebands, could be much smaller than predicted
by Vokrouhlický & Milani (2000).

In this paper we develop a detailed linear model of the
Yarkovsky forces on a spherical body with the dipole anisotropy
of the albedo coefficient given above. By computing the secular
part of the semimajor axis perturbation, we then analyse the case
of a possible compensation for the orbital perturbation in the op-
tical band discussed by Vokrouhlický & Milani (2000). The less
important effects on eccentricity and inclination are analysed in
the Appendix.

2. The heat diffusion problem

The analytic approach below closely follows previous works
by Vokrouhlický (1998, 1999). While using the same notation
and techniques, we basically generalise results in Vokrouhlický
(1999) by assuming the surface albedo coefficient A(θ) = a0 +
a1 cos θ. To keep it simple, however, the thermal parameters are
assumed constant. The body is assumed spherical. In the next
six sections, we give a concise step-by-step version of a lin-
earized heat-diffusion solution, compute the recoil force due to
the thermal radiation, and determine the major secular orbital
perturbation of the semimajor axis. On contrast to the work of
Vokrouhlický & Milani (2000), we restrict our analysis of the or-
bit perturbation to the lowest eccentricity terms. This is because
the solution of the heat diffusion problem, even in its linearized
version, would be fairly complicated for all eccentricity terms
included. We thus restrict terms in eccentricity only to the first
power2, which are necessary for the comparison with the optical
effect (see Eq. (1)).

2.1. Formulation and scaling

Distribution of temperature T , determining the thermal state of
the body, is obtained by solution of the heat diffusion equation
(often called the Fourier equation; e.g. Landau & Lifchitz 1986)

ρbC
∂T
∂t
= K ∇2T, (2)

where ρb is the mean bulk density, C the specific heat capacity,
and K the thermal conductivity of the particle. The uniqueness
of the solution stems from selecting appropriate boundary con-
ditions. In the space domain, this means regularity of T at the
centre of the particle and energy conservation at the surface. The
latter condition reads

εσT 4 + K

(
n · ∂T
∂r

)
= S (3)

2 As a by-product of our work we also determine that there are no lin-
ear ∝e1 terms in the secular semimajor axis drift due to the Yarkovsky
forces when the surface albedo is constant. A more extended work
for the seasonal variant of the Yarkovsky effect is in the Appendix of
Vokrouhlický & Farinella (1999).

for each of the infinitesimal surface elements with an outward
directed unit vector n. The first term here is the thermal energy
radiated per unit of time by the particle to the space, and the
second term is the energy conducted per unit of time inside to
the particle. Thermal emissivity ε is for simplicity taken to be
unity throughout this paper. The second term in (3) is the energy
conducted to the body and S on the right hand side is the radia-
tive flux absorbed by the surface element. The effective bound-
ary condition in the time domain is set by an assumption of the
periodicity of T in one revolution of the body about the centre
(Sun).

To describe the solution in detail we use spherical coordi-
nates (r, θ, φ) with the origin r = 0 at the centre of the body and
colatitude θ measured from its spin axis s. The origin of the lon-
gitude φ is not relevant for our work. In order to simplify the so-
lution we chose the following set of the non-dimensional quan-
tities (see also Spencer et al. 1989; Vokrouhlický 1998, 1999).

– The spatial dimension will be scaled by the thermal length

�s =

√
K
ρbCn

, (4)

where n is the body’s mean motion about the centre; in par-
ticular the radial coordinate r will have the scaled value
r′ = r/�s. Note that �s is also called the penetration depth
of the seasonal thermal wave since it describes the e-fold
damping of the temperature in the body with frequency n.

– The time t will be replaced by a complex variable ζ reading

ζ = exp(ınt) (5)

(here ı =
√−1 is the imaginary unit; the time origin t = 0 is

arbitrary and is chosen to be the pericentre passage).
– Temperature T will be scaled by an auxiliary value T


defined by

εσT 4

 = S
 = (1 − a0)Ea. (6)

Recall that Ea is a solar radiation flux at the distance a of
the orbital semimajor axis. Note the dipole coefficient a1 is
not included in Eq. (6). The resulting non-dimensional vari-
able will be denoted by T ′ = T/T
, and similarly we define
∆T ′ = ∆T/T
.

– The energy source term S on the right hand side of (3) will
be scaled by S
, thus introducing S′ = S/S
.

With the scaling introduced, the fundamental Eqs. (2) and (3)
now take the following form:

ıζ
∂T ′

∂ζ
= ∇′2T ′, (7)

and

T ′4 + Θ
(
n · ∂T

′

∂r′

)
= S′. (8)

Here, ∇′ is the usual operator where coordinates have been
replaced with their scaled values. As a result of the scaling,
the system (7) and (8) contains a single and fundamental non-
dimensional parameter

Θ =

√
KρbC

√
n

εσT 3



, (9)

often called the “thermal parameter”; we also note that Γ =√
KρbC in its numerator is the thermal inertia of the body.
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2.2. Linearized approximation

A major obstacle to an analytic solution of the heat diffusion is
the non-linear term (∝T 4) in the surface boundary conditions (3)
or (8). A standard procedure for handling this problem is to
split T into a suitably chosen mean value Tav and some small
increment ∆T : T = Tav + ∆T with ∆T � Tav becoming the
solved-for function instead of T . The difficult quartic term in
the boundary condition is then approximated using linearization
T 4 ≈ T 4

av + 4T 3
av∆T + . . . with higher order-terms in ∆T being

neglected. The most natural choice of Tav is from

εσT 4
av = S =

1
4

(1 − a0)Ea, (10)

where the over-bar means an average value of the corresponding
quantity over (i) the body’s revolution about the centre and (ii)
all surface elements. As a result, Tav = T
/

√
2. Note that only

the constant part a0 of the albedo value contributes to Tav.
With the scaled variables introduced and with the mean tem-

perature defined in Eq. (10), the heat diffusion problem (7) and
(8) now reads

ıζ
∂

∂ζ
∆T ′(r′; θ, φ; ζ) (11)

=
1

r′2

{
∂

∂r′

(
r′2
∂

∂r′

)
+ Λ (θ, φ)

}
∆T ′(r′; θ, φ; ζ),

with the operator Λ(θ, φ) given by

Λ (θ, φ) =
1

sin θ

[
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin θ

∂2

∂φ2

]
, (12)

and the linearized boundary condition (3) reads

√
2∆T ′ + Θ

(
∂∆T ′

∂r′

)
R′
= ∆S′. (13)

Here we denote the particle radius with R and its scaled value
R′ = R/�s and ∆S′ = S′ − S′.

2.3. Source term

If the body would have a constant albedo value (a1 = 0), one eas-
ily shows (e.g., Vokrouhlický 1998, 1999) that the source term
S′ corresponding to an impinging radiation plane wave from the
body-fixed direction (θ0, φ0) could be decomposed in spherical
harmonics development S′ = ∑

n≥1
∑n

k=−n εnk(θ0, φ0) Ynk(θ, φ)
with coefficients

εnk = Jn ∆
(n)
0k (θ0) exp (−ıkφ0) . (14)

Here

Jn = 2π
∫ 1

0
dµ µYn0 (µ) (15)

are auxiliary coefficients, with µ = cos θ, and ∆(n)
0k are Wigner’s

(2n+ 1)× (2n+ 1) matrixes (e.g. Wigner 1959; in the context of
orbital dynamics ∆(n)

0k are related to the inclination functions, see
Šidlichovský 1978, 1983, 1987). In the following work, we only
need the lowest-degree εnk:

ε00 =

√
π

2
, (16)

ε10 =

√
π

3
cos θ0, (17)

ε1±1 = ∓
√
π

6
sin θ0 exp (∓ıφ0) , (18)

ε20 =

√
5 π

16

(
3 cos2 θ0 − 1

)
, (19)

ε2±1 = ∓
√

30 π
16

cos θ0 sin θ0 exp(∓ıφ0). (20)

In the general case of a body with a dipole albedo variation and
residing on an eccentric orbit, such that the impinging solar
radiation flux varies inversely proportionally to the square of
heliocentric distance d, we still have

S′ =
∑
n≥1

n∑
k=−n

σnk(ζ) Ynk(θ, φ), (21)

but the amplitudes σnk(ζ) get modified; we also now consider
time ζ to be an argument of σnk since the direction to the Sun in
the body-fixed frame changes as the body rotates and revolves
about the centre. After a brief bit of algebra, one obtains

σ00 =

√
π

2

(a
d

)2
(
1 − 2

3
α1 cos θ0

)
, (22)

σ10 =

√
π

3

(a
d

)2
[
cos θ0 − 3

8
α1

(
1 + cos2 θ0

)]
, (23)

σ1±1 = ∓
√
π

6

(a
d

)2
(
1 − 3

8
α1 cos θ0

)
sin θ0 exp(∓ıφ0), (24)

while higher-degree coefficients are not needed in this work. In
Eqs. (22)–(24) we introduced

α1 =
a1

1 − a0
· (25)

We also recall that the orbit-averaged, mean insolation of the
spherical body is S′ = 1/4. This is because the orbit-averaged
value, denoted by square brackets, of [σ00] =

√
π/2 and thus

[σ00] Y00 = 1/4 (note we work to the first powers of the eccen-
tricity expansions only). To obtain an explicit dependence of σnk
on ζ, one needs to develop [a/d, cosθ0, sin θ0 exp(±ıφ0)] using
elliptic expansions. As it is a standard tool in orbital dynamics
(e.g. Brouwer & Clemence 1961), we do not explain intermedi-
ate calculations in detail but quote only the final results.

2.4. Solution of the linear heat diffusion problem

Given the assumed spherical geometry of the particle, it is natu-
ral to represent ∆T ′ in the multipole series:

∆T ′(r′; θ, φ; ζ) =
∑
n≥1

n∑
k=−n

t′nk(r′; ζ) Ynk(θ, φ), (26)

with Ynk(θ, φ) denoting spherical functions. Inserting this expan-
sion into Eq. (11), we find that the radial- and time-dependent
amplitudes t′nk fulfill a system of decoupled equations

ıζ
∂

∂ζ
t′nk(r′; ζ) =

1
r′2

{
∂

∂r′

(
r′2
∂

∂r′

)
− n (n + 1)

}
t′nk(r′; ζ), (27)

and at the surface r′ = R′ must satisfy

√
2 t′nk(R′; ζ) + Θ

(
∂t′nk

∂r′

)
(R′;ζ)
= σnk(ζ). (28)
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The time-dependent right-hand sides σnk(ζ) of (28) are the
source-term amplitudes from Eq. (21).

Assuming now a particular Fourier mode in the time devel-
opment of σnk(ζ), namely σnk(ζ) = σb

nk ζ
b (with b integer and

nonzero), Eqs. (27) and (28) admit solution t′nk(r′; ζ) = t′bnk(r′) ζb

with

t′bnk(r′) =
σb

nk√
2

jn(z)
jn(Z)

1

1 + χ Z
jn(Z)

d jn(Z)
dZ

, (29)

which is regular at r′ = 0. Here we denoted z =
√−ıb r′, Z =√−ıb R′, and

χ =
Θ√
2 R′
· (30)

Here, jn(z) is a spherical Bessel function of the degree n of com-
plex argument z (e.g., Abramowitz & Stegun 1970). Note that
while both Θ and R′ depend on mean motion (or any other fre-
quency they would be related to), χ becomes independent of
it. Special attention needs to be payed to the degree-one coef-
ficients with n = 1. In this case, we have (see also notation in
Vokrouhlický 1998, 1999)

t′b1k(r′) =
σb

1k√
2

j1(z)
j1(Z)

1

1 + χ Z
j1(Z)

d j1(Z)
dZ

=
σb

1k√
2 (1 + χ)

j1(z)
j1(Z)

A(xb) + ıB(xb)
C(xb) + ıD(xb)

(31)

=
σb

1k√
2 (1 + χ)

j1(z)
j1(Z)

E(xb) exp [ıδ (xb)] ,

where xb =
√

2b R′. The auxiliary functions A(x), B(x), C(x),
D(x) read

A(x) = − (x + 2) − ex [(x − 2) cos x − x sin x] , (32)

B(x) = −x − ex [x cos x + (x − 2) sin x] , (33)

C(x) = A(x) +
χ

1 + χ
(34)

× {3 (x + 2) + ex [3 (x − 2) cos x + x (x − 3) sin x]} ,
D(x) = B(x) +

χ

1 + χ
(35)

× {x (x + 3) − ex [x (x − 3) cos x − 3 (x − 2) sin x]} .
It then becomes suitable to express the complex number (A +
ıB)/(C+ ıD) in amplitude-phase representation E exp(ıδ) as was
used in the last row of (31). We also keep track of the parameter b
in the argument xb by denoting Eb exp(ıδb) = E(xb) exp(ıδ(xb)).
The angle δ < 0 plays the role of a thermal lag. At the limit of
zero thermal conductivity we have χ → 0 and thus E → 1 and
δ→ 0.

2.5. Thermal force computation

With the aim of computing the thermal recoil acceleration f
on the particle, we now show that only a very limited num-
ber of amplitude terms t′nk are needed, a property which greatly
simplifies the analytical solution. In agreement with previous
work, we assume thermal radiation of the particle’s surface
isotropic (Lambert’s law). Integrating over all contributions from
infinitesimal and oriented surface elements dS = R2 dΩ n, where

dΩ = sin θ dθdφ, we have (e.g. Milani et al. 1987; Bottke et al.
2002)

f (ζ) = −
∫

R2dΩ
2
3
εσT 4

mc
n. (36)

Here we denote particle’s mass with m and the light velocity
with c; the minus sign indicates thermal radiation recoils on the
body. Again using linearization of the T 4 term and introducing
scaled quantities from our solution above, we obtain

f (ζ) = −2
√

2
3π
Φ

∫
dΩ∆T ′(R′; θ, φ; ζ) n, (37)

withΦ = (S
πR2/mc) the typical radiation force factor. It is now
important to recall that components of the unitary vector n can
be expressed using a linear combination of spherical function of
degree 1, namely

n =

√
2π
3

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Y1−1 − Y11
ı (Y1−1 + Y11)√

2 Y10

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (38)

A complex notation again yields the more comfortable expres-

sions nX± ı nY = ∓ 2
√

2π
3 Y1±1 and nZ = 2

√
π
3 Y10. With these re-

lations and the orthogonality property of spherical functions, we
easily find that the thermal acceleration components ( fX , fY , fZ)
in an arbitrary frame, whose axis Z is that of the particle’s spin s,
read

fX (ζ) ± ı fY (ζ) = ∓ 8

3
√

3π
Φ t′1∓1(R′; ζ), (39)

fZ(ζ) = −4
3

√
2

3π
Φ t′10(R′; ζ). (40)

We conclude that only dipole coefficients t′1k are needed to com-
pute thermal acceleration in the linearized theory (e.g. Rubincam
1998; Vokrouhlický 1998, 1999). For that reason, we may omit
computation of other coefficients below.

2.6. Orbital averaging of the thermal force

The second important simplification stems from our goal of de-
termining the long-term effect of the thermal forces on the orbital
semimajor axis a. To the first power in eccentricity e, we have

da
dt
=

2
n

(
fτ + e fQ

)
, (41)

where fτ = f · τ is a transverse component of the thermal accel-
eration, and fQ = f · Q is the in-plane component perpendicular
to the pericentre direction. The auxiliary vector 2 (τ + e Q) from
the right hand side of Eq. (41) reads (again only terms up to ∝e1

are retained here)

2 (τ + e Q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ı (ζ − ζ−1)
ζ + ζ−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + e

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ı (ζ2 − ζ−2)
ζ2 + ζ−2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (42)

The vector components are given here in the (P,Q, k) inertial
frame, very suitable to describing the orbital motion of the body
(recall that P is the unit vector pointing to the pericentre of the
orbit, k is a unit vector directed along the orbital angular mo-
mentum and Q = k× P). The body’s spin axis s has components
(sP, sQ, sk)T in this frame. We note sk = cosγ, where γ is the
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obliquity, and we also define a complex factors s± = sP ± ısQ for
more compact expressions.

Secular perturbations arise as orbit-averages on the right
hand sides of Gauss perturbation equations such as (41) for the
semimajor axis. Since 2 (τ + e Q) only depends on the first and
second powers of ζ, we need to identify the terms of the same
power in ζ in the inertial-frame development of f . However, the
solution of the heat diffusion problem, as described above, is
more natural in the body-fixed frame. We thus undertake the
other possible approach and transform 2 (τ + e Q) to this later
frame. Its algebraic form becomes different for the effects due
to the Z-axis force component (often called the seasonal com-
ponent) parallel to the particle spin axis direction s and the
XY-plane force components (often called the diurnal compo-
nents) in the particle’s equatorial plane. We thus analyse the two
cases separately in the next two sections.

2.6.1. Seasonal component

The seasonal variant of the Yarkovsky perturbation is due to the
along-spin force component fZ (Eq. (40)). Assume t′10(R′; ζ) in
the body-fixed frame developed in Fourier series

t′10(R′; ζ) =
∑
ϕn ζ

n. (43)

Then appropriately transforming 2 (τ + e Q) into the body-fixed
frame and averaging over heliocentric motion results in the fol-
lowing secular drift of the orbital semimajor axis[
da
dt

]
th1

= −8
3

√
2

3π
Φ

n
 (s+ϕ+) , (44)

where (z) denotes the imaginary part of a complex number z,
square brackets denote the ζ-averaging as before, and

ϕ+ = ϕ1 + eϕ2. (45)

The amplitudes ϕ1 and ϕ2 could be obtained using Eq. (31)
and the appropriate Fourier terms from elliptic expansion of σ10
in (23). We thus straightforwardly obtain

ϕ1 = −1
2

√
π

6

[
s−

(
1 − 3

4
eα1 sP +

3
16

eα1s−
)

+
3
4

eα1

(
1 + sin2 γ

)] E1 exp(ıδ1)
1 + χ

, (46)

ϕ2 = − 3
32

√
π

6
α1 s2

−
E2 exp(ıδ2)

1 + χ
· (47)

With those results included in Eq. (44), we finally get the
seasonal-variant contribution to the secular drift of the semima-
jor axis[
da
dt

]
th1

=
Φ

3n
eα1

1 + χ

[
E1

(
sP sin δ1 + sQ cos δ1

)
(48)

+
E1

4
sin2 γ

(
sP sin δ1 + 3 sQ cos δ1

)
+

E2

4
sin2 γ

(
sP sin δ2 − sQ cos δ2

)]
.

For convenience, we note here only terms∝α1, dropping the fun-
damental seasonal Yarkovsky term (e.g. Vokrouhlický 1999)[
da
dt

]
=

4Φ
9n

E1 sin δ1

1 + χ
sin2 γ. (49)

Our work suggests there is no ∝e correction here, which agrees
with the results in Vokrouhlický & Farinella (1999).

We also note the zero thermal conductivity limit of Eq. (48)[
da
dt

]
th1,K=0

=
Φ

3n
eα1 sQ

(
1 +

1
2

sin2 γ

)
. (50)

2.6.2. Diurnal component

For computing the diurnal components we follow the general
approach of Vokrouhlický (1999). To impose the periodicity of
the problem, we assume that the ratio of rotation frequency Ω
to the mean motion n is an integer parameter m = Ω/n (it is,
however, easy to generalise the results for an arbitrary real value
of m). In this case, we highlight the Fourier series of t′11(R′; ζ) in
the following form:

t′11(R′; ζ) = ζm
∑
τn ζ

n. (51)

With this notation introduced, we finally obtain the diurnal con-
tribution to the secular change of the semimajor axis given by[
da
dt

]
th2

= − 16

3
√

3π

Φ

n sin γ
�

(
cos2 γ

2
τ−s− + sin2 γ

2
τ+s+

)
,

(52)

where�(z) denotes the real part of a complex number z, and

τ± = τ±1 + e τ±2. (53)

After some complicated algebra Eqs. (31) and (24) yield

τ1 =
ı

2

√
π

3
Em+1 exp(ıδm+1)

sin γ (1 + χ)
(54)

×
{

s−
[
sin2 γ

2
+

3
16

eα1
(
sP cos γ + ısQ

)]

− 3
16

eα1 sin2 γ
(
cosγ + cos2 γ

2

)}
, (55)

τ2 =
3 ı
32

√
π

3
Em+2 exp(ıδm+2)

sin γ (1 + χ)
α1 sin2 γ

2
s2
−, (56)

τ−1 =
ı

2

√
π

3
Em−1 exp(ıδm−1)

sin γ (1 + χ)
(57)

×
{

s+

[
cos2 γ

2
− 3

16
eα1

(
sP cosγ + ısQ

)]

+
3
16

eα1 sin2 γ
(
cosγ − cos2 γ

2

)}
, (58)

τ−2 = −3 ı
32

√
π

3
Em−2 exp(ıδm−2)

sin γ (1 + χ)
α1 cos2 γ

2
s2
+. (59)

These must be included in (52) to obtain the secular semimajor
axis drift. In order to make the final result simpler, we assume
m � 1; i.e. the rotation frequency Ω is much higher than the
mean motion n (generally satisfied for asteroids and meteoroids).
In this limit we may write m ∼ m ± 1 ∼ m ± 2 so we finally have[
da
dt

]
th2

= − Φ
6n

eα1 cosγ
1 + χ

Em
(
sP sin δm − sQ cos γ cos δm

)
,

(60)

where again we dropped the fundamental diurnal drift rate (e.g.
Vokrouhlický 1998, 1999)[
da
dt

]
= −8Φ

9n
Em sin δm

1 + χ
cos γ. (61)
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Fig. 1. Residual signal strength Da in percent (see Eq. (64)) as a function of spin vector components (sP, sQ) in the orbital plane. Left panel for
obliquity γ smaller than 90◦ (sk ≥ 0), right panel for obliquity larger than 90◦ (sk ≤ 0). Orbital semimajor axis and physical parameters as of the
asteroid (1566) Icarus: a ∼ 1.09 AU, K ∼ 0.05 W/m/K, C = 800 K/kg/K, ρb = 2.5 g/cm3, P = 2.27 hr and R � 635 m. The best estimated position
of Icarus’ spin axis orientation is shown with full circle on the right plot (sP ∼ −0.095, sQ ∼ 0.967; De Angelis 1995). D = 0 isoline is shown
by the thick solid line; dashed isolines are for negative values of Da with an increment of 1%, such that the solid dashed isolines show values
Da = −5% and Da = −10%.

In the limit of zero thermal conductivity, Eq. (60) becomes[
da
dt

]
th2,K=0

=
Φ

6n
eα1 sQ cos2 γ. (62)

Together with the seasonal effect contribution, Eq. (50), we thus
have[
da
dt

]
th,K=0

=

[
da
dt

]
th1,K=0

+

[
da
dt

]
th2,K=0

=
Φ

2n
eα1sQ. (63)

Unsurprisingly, the value of the semimajor axis drift compen-
sates for the perturbation (1) due to the reflection of sunlight
in the optical exactly (Vokrouhlický & Milani 2000). However,
when a non-zero thermal conductivity is taken into account,
compensation of the two effects is not exact. In the next section
we investigate the magnitude of the residual effect for conduc-
tivity values appropriate for small asteroids.

3. Discussion and conclusions

In order to make our work quantitative, we introduce the residual
signal strength

Da =
[da/dt]th1 + [da/dt]th2 + [da/dt]opt

[da/dt]opt
, (64)

which gives the total albedo-asymmetry effect expressed as a
fraction of the drift [da/dt]opt due to the anisotropically reflected
sunlight in the optical as previously analysed by Vokrouhlický
& Milani (2000). As mentioned before, we have Da → 0 when
K → 0, but Da is non-zero for finite values of K; likewise, Da is
a function of the spin axis direction s and m = Ω/n.

Following results in Vokrouhlický & Milani (2000), we
chose (1566) Icarus as an exemplary case. Figure 1 shows iso-
lines of D(sP, sQ) for obliquities both smaller (left) and larger
(right) than 90◦. We used the best estimate of the orbital and
physical parameters of this asteroid, in particular a moderately
high thermal inertia as suggested by analysis of Harris (1998).
Such a value is, however, not surprising for kilometre-sized near-
Earth asteroids (e.g., Delbó et al. 2006). The actual value of sQ
is close to unity (symbol in the right panel of Fig. 1), which ex-
plains the large orbital effect of the putative albedo asymmetry

predicted by Vokrouhlický & Milani (2000). We note that Da is
typically negative and amounts to 16% at maximum, and for a
little less than half of the phase space of the spin-axis orientation
is larger than 5%. We checked that the maximum of Da increases
to nearly 25% for higher thermal conductivity K = 1 W/m/K. We
also checked that Da is not sensitive to m, provided the rotation
period of the asteroid is varied within reasonable limits. For in-
stance, a ten times longer rotation period for Icarus would not
change our result in any significant way.

If the D ∼ 5% derived from linearized eccentricity theory is
correct, the ∼15 km orbit displacement of the Icarus’ orbit with
respect to the Earth during the 2015 close approach reported by
Vokrouhlický & Milani (2000) might shrink to ∼750 m only. If
so, the suspected compensation for the albedo anisotropy effects
in the optical and thermal bands is large enough to make the
orbital perturbation currently negligible.

Obviously, our analysis only accounts for the first-order ec-
centricity effect. In addition to large sQ, the large orbital eccen-
tricity is also responsible for the large orbital effect of a putative
albedo variation in the Icarus case: note the (1 − e2) term in the
denominator of Eq. (1) that increases the effect by about a fac-
tor 3. While the analytic analysis in this paper does not allow
us to compute the role of higher-eccentricity terms that could be
determined only with a complete numerical model, we hypothe-
size that the Da-fraction of the total orbital effect might remain
roughly the same as seen in Fig. 1. This conjecture, however,
remains to be proved by a detailed numerical analysis with the
goal of including not only the full orbital effects but possibly
also differences in optical and thermal waveband directional re-
flectancies (for the infrared band see, e.g., Lagerros 1996, 1998;
or Emery et al. 1998).

The previous example of (1566) Icarus indicates that the or-
bital effect of the putative surface albedo variation is generally
negligible, about an order of magnitude smaller than predicted
by Vokrouhlický & Milani (2000). A special class of Aten as-
teroids with a low value of semimajor axis and very high ec-
centricity might be an exception. Due to their proximity to the
Sun and their typically small size, their surfaces are expected
to have high thermal conductivity. Interest in this group of about
20−30 asteroids was recently shown by Margot (2003), who sug-
gested their precise orbital tracking might offer a valuable test of
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the general relativity theory. This task strengthens requirements
on the accuracy of their orbital determination so that radiative ef-
fects should be carefully analysed both in the optical and infrared
wavebands. Their uncertainty, for instance from limits on albedo
variations over the surface studied here, might contribute to the
uncertainty budget with which the relativistic post-Newtonian
parameters could be derived from their orbit determination.
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first version of this paper. Part of this work was supported by the Czech Grant
Agency through grant GAČR 205/05/2737.

Appendix A: Secular drifts of eccentricity
and inclination

So far, we have been dealing with the semimajor axis perturba-
tion. This is because, for orbits of moderately large eccentricity,
this term strongly dominates the orbital displacement, eventually
observable using precise astrometry. For orbits of low-enough
eccentricity, though, the secular perturbation of the eccentricity
might produce effects comparable to or larger than the perturba-
tion of the semimajor axis. In this limit, however, both effects
are smaller and perhaps of little importance. For this reason, we
give just a concise overview of the principal eccentricity and in-
clination effects here.

The Gauss equation for the change of osculating eccentricity
reads (e.g., Bertotti et al. 2003)

de
dt
=

1
2 na

[
3 fQ − 

(
ζ2 f−

)]
, (A.1)

where we retained the zero eccentricity terms on the right hand
side and used the notation as in the main text of the paper (addi-
tionally defining f± = fP ± ı fQ). Vokrouhlický & Milani (2000)
showed that the north-south asymmetry in optical albedo results
in a secular drift of orbital eccentricity[
de
dt

]
opt

= − Φa

3 na
a1sQ , (A.2)

but for sake of our discussion we kept the zero eccentricity terms,
while Vokrouhlický & Milani (2000) give secular [de/dt]opt for
any eccentricity value. For reasons discussed in Sect. 1, though,
this effect should be about compensated for by the corresponding
change in the Yarkovsky orbital perturbation when K → 0. In
what follows, we analyse the degree of this compensation for an
arbitrary surface conductivity value by computing the zero-order
eccentricity perturbation by the thermal force on a body with an
asymmetric albedo value.

As in the case of the semimajor axis, we consider sepa-
rately the orbital effects of the spin-aligned thermal force com-
ponent fZ and the equatorial thermal force components ( fX , fY )
(Sect. 2.5). The relevant perturbations are seasonal[
de
dt

]
th1

= −2
3

√
2

3π
Φ

na
[
3 sQ ϕ0 +  (s+ϕ2)

]
(A.3)

and diurnal[
de
dt

]
th2

= − 4

3
√

3π

Φ

na sinγ
�

[
3τ0

(
sP − ısQ cosγ

)
(A.4)

+ cos2 γ

2
τ−2s− + sin2 γ

2
τ+2 s+

]

contributions to the total de/dt value. In these expressions we
eliminated periodic parts and only kept the secular perturbation.

The amplitudes ϕ2 and τ±2 of the seasonal and diurnal force
components from Eqs. (43) and (51) have been explicitly given
in Eqs. (47), (56), and (59). Here we need to complement them
by determining ϕ0 and τ0, which were not necessary for the
semimajor axis effects. A straightforward computation yields

ϕ0 = − 3
16

√
π

6
α1

2 + sin2 γ

1 + χ
(A.5)

and

τ0 = − 3
64

√
π

3
α1 sin 2γ

ıEm exp(ıδm)
1 + χ

· (A.6)

Inserting all these terms into (A.3) and (A.4), we obtain explicit
expressions[
de
dt

]
th1

=
Φ

8 na
α1

1 + χ

[
sQ

(
2 + sin2 γ

)
(A.7)

−1
6

E2 sin2 γ
(
sQ cos δ2 − sP sin δ2

)]
,

for the seasonal part, and[
de
dt

]
th2

= − Φ
12 na

α1Em

1 + χ

[
sP sin δm cos γ (A.8)

−sQ cos δm

(
1 − 5

4
sin2 γ

)]
,

for the diurnal part in de/dt. We easily check that for K → 0 the
total thermal-force effect reads[
de
dt

]
th,K=0

=
Φ

3 na
α1 sQ. (A.9)

This exactly compensates for (A.2) due to reflected sunlight in
the optical band. For K � 0, though, the total thermal perturba-
tion [de/dt]th1 + [de/dt]th2 is not canceled by [de/dt]opt, and

De =
[de/dt]th1 + [de/dt]th2 + [de/dt]opt

[de/dt]opt
(A.10)

is a measure of the residual perturbation (see Eq. (64) for the
semimajor axis). We computed De for different orientation of the
spin axis and the orbital and thermal parameters corresponding
to (1566) Icarus (Sect. 3). We found the maximum De value was
about twice as high as the maximum Da value, thus reaching
some 40%.

Finally, we only outline the even less important inclination
perturbation. We start from (see, e.g., Bertotti et al. 2003)

dI
dt
=

fk
na
�

[
ξ

(
ζ +

e
2
ζ2 − 3e

2

)]
, (A.11)

given here to the first power in eccentricity, and with ξ = exp(ıω)
(ω being the argument of pericentre) and fk = f · k. Using the
necessary transformations of the orbit normal k into the body-
fixed system, we obtain[
dI
dt

]
th1

= −4
3

√
2

3π
Φ

na
cosγ�

[
ξ−1

(
ϕ1 +

e
2
ϕ2 − 3e

2
ϕ0

)]
(A.12)

for the seasonal part, and[
dI
dt

]
th2

=
4

3
√

3π

Φ

na
sin γ

[
ξ

(
τ−1 +

e
2
τ−2 − 3e

2
τ0

)
(A.13)

+ξ−1

(
τ1 +

e
2
τ2 − 3e

2
τ0

)]
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for the diurnal part in secular dI/dt. All coefficients in these two
equations have been given above.
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