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2Institute of Astronomy, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
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ABSTRACT
In this paper, we study the influence of optical scattering and thermal radiation models on
the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect. The Lambertian formulation is
compared with the scattering and emission laws and Lommel–Seeliger reflection. Although the
form of the reflectivity function strongly influences the mean torques because of scattering or
thermal radiation alone, their combined contribution to the rotation period YORP effect is not
very different from the standard Lambertian values. For higher albedo values, the differences
between the Hapke and Lambert models become significant for the YORP effect in attitude.

Key words: radiation mechanisms: thermal – methods: numerical – celestial mechanics –
minor planets, asteroids: general.

1 IN T RO D U C T I O N

Over the last decade, the importance of radiation recoil forces on
both orbital motion and the rotation of minor bodies in the So-
lar system has been widely appreciated. The Yarkovsky effect,
caused by lagged thermal radiation from the surface of a spinning
body – directly detected in the orbital motion of (6489) Golevka
(Chesley et al. 2003) and 1992 BF (Vokrouhlický, Chesley &
Matson 2008) – has been the key to a proper understanding of
asteroid long-term dynamics. Since the paper of Rubincam (2000),
the influence of torques as a result of radiation recoil has been
known as the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP)
effect, acknowledging the works of Yarkovsky (1901), Radzievskii
(1954), Paddack (1969) and O’Keefe (1976). Unlike the orbital
Yarkovsky effect, the YORP effect involves both the scattering of
incident light and its thermal reradiation, and it occurs even for
objects with zero conductivity. Direct detections of the YORP ef-
fect in the rotation of asteroids (54509) YORP (Lowry et al. 2007;
Taylor et al. 2007), (1862) Apollo (Kaasalainen et al. 2007), (1620)
Geographos (Ďurech et al. 2008b) and (3103) Eger (Ďurech et al.
2009) have proved the existence of the YORP effect. However, the
agreement between the observed and modelled values in each case
can be qualified as merely having a similar order of magnitude, and
all present YORP models are still simplified and incomplete. What
is worse, the failure to detect a theoretically predicted YORP effect
for (25143) Itokawa (Ďurech et al. 2008a) has helped us to realize
that these simplified models have an extreme sensitivity to the fine
details of shape, centre of mass location and spin axis orientation
in the body frame (Ďurech et al. 2008a; Scheeres & Gaskell 2008;
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Statler 2009; Breiter et al. 2009). On the other hand, direct radi-
ation pressure has no effect on the mean torque, regardless of the
shape, as observed by Rubincam (2000) and proved by Nesvorný
& Vokrouhlický (2008) and Rubincam & Paddack (2010).

Most of these models assume that both scattering and thermal
radiation are Lambertian (i.e. a photon can be emitted or scat-
tered with equal probability in any direction, and hence the exiting
flux is proportional to the cosine of zenith distance according to
the projected area of the radiating/scattering surface element). Al-
though Breiter et al. (2007) and Scheeres (2007) mentioned a more
general scattering model, their subsequent works on the YORP ef-
fect were actually based upon the Lambertian assumption. Statler
(2009) took a step further, using a hemispheric albedo derived from
the scattering model of Hapke (2002) instead of the usual Bond
albedo (Vokrouhlický & Bottke 2001). Moreover, the TACO model
of Statler for the first time incorporates the important observation
that photons bouncing between various surface elements do not
produce net torque until they finally exit into outer space.

The main objective of the present work is to include non-
Lambertian scattering and radiation into the recent YORP model
of Breiter, Bartczak & Czekaj (2010) and to judge the signifi-
cance of this improvement. Roughly speaking, a departure from the
Lambertian model is essentially caused by inter-reflections and oc-
clusions. Both phenomena occur at various levels of resolution and
we have to be careful about this issue. Out of the two principal scat-
tering models for asteroid surfaces developed by Lumme & Bowell
(1981) and Hapke (Hapke 1981, 1984, 1986, 2002, 2008; Hapke &
Wells 1981), we have chosen the latter. However, both models were
created to interpret photometric observations; as such, they attempt
to include phenomena occurring at various resolution levels that
merge in the final integrated brightness. In these circumstances, in
this paper we focus on accounting for the regolith grain-size-scale
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(<1 mm) phenomena described by an appropriate part of the Hapke
reflectance and emissivity models. This means ignoring the macro-
scopic roughness corrections and shape-dependent beaming factors.
Inter-reflections occurring between larger surface fragments require
a different approach and will be discussed in another paper, whereas
the large-scale occlusions (shadowing) are already incorporated in
most existing YORP models. To a large extent, the present contri-
bution has been motivated by the problem of the YORP effect on a
high albedo asteroid (3103) Eger, where only a convex shape model
is available, so larger-scale inter-reflections have to be neglected
anyway.

We have decided to present a detailed derivation of the radiation
recoil force and associated YORP torque using the terminology of
modern radiometry instead of the traditional astrophysical frame-
work dating back to Chandrasekhar (1950). In this respect, we owe
much to the collection of Max Fairbairn essays available on-line
thanks to J. B. Tatum.1

2 SC AT T E R I N G A N D R A D I AT I O N

2.1 Irradiance

Consider an infinitesimal element dS of the surface of a celestial
body without an atmosphere. Further, we call dS a physical surface,
to distinguish it from a normal surface (i.e. an infinitesimal surface
perpendicular to some specified direction of incident or emitted
radiation).

The local solar frame (LSF) is defined with the origin at the centre
of dS, with the x-axis pointing to the intersection of the meridian
passing through the Sun and the horizon plane, with the z-axis
directed along the outward normal to the physical surface (i.e. to
the local zenith) and with the y-axis completing the right-handed
orthogonal system. Then, the unit vector directed to the Sun has a
simple form

s =

⎛
⎜⎝

s�
0

μ�

⎞
⎟⎠ , (1)

depending only on the solar zenith distance through its cosine μ�
and sine

s� =
√

1 − μ2�. (2)

If the Sun is located at the distance R�, the collimated radiation
flux density (power per normal area perpendicular to s) arriving
from the point R� s is

J = J0

(
R0

R�

)2

, (3)

where the solar constant J0 ≈ 1366 W m−2 is defined for a nominal
distance R0 = 1 au. The irradiance or insolation E of an arbitrarily
oriented surface element is the ratio of the incident power flux d�i

to the physical area dS. Accounting for the area projection factor
s · n = μ�, where n is the unit vector directed to zenith, we can
write

E(s) = d�i

dS
= νJμ�. (4)

The visibility function ν is either 1, when the Sun is visible at dS,
or 0, when the Sun is occluded.

1 http://orca.phys.uvic.ca/tatum/plphot.html

2.2 Bidirectional scattering

The incident radiant power d�i = EdS is partially absorbed (con-
verted into heat) and partially reflected in various directions o

o =

⎛
⎜⎝

√
1 − μ2 cos φ√
1 − μ2 sin φ

μ

⎞
⎟⎠ , (5)

where μ is the cosine of the zenith distance and φ is the azimuth
angle in the LSF. The cosine of the phase angle between s and o is
designated as μ′, and defined as the scalar product

μ′ = s · o = s�
√

1 − μ2 cos φ + μ�μ. (6)

The power flux d2�r scattered from dS into a solid angle d� in
the direction o is described by the reflected radiance Lr

Lr(o) = d2�r

μ dS d�
, (7)

where μdS is the normal surface perpendicular to o. Writing Lr(o),
we should bear in mind an implicit dependence on the direction of
the Sun s, because the reflected power also depends on the incident
flux from the Sun. This dependence becomes more explicit when we
introduce a bidirectional reflectance distribution function (BRDF)
f r, defined as the ratio of the radiance Lr reflected in the direction o
to the irradiance E from the energy source located in the direction
s:

fr(s, o) = Lr(o)

E(s)
. (8)

Although a bidirectional reflectance (BDR) function ρ

ρ(s, o) = μ�fr(s, o), (9)

seems to be more common in planetary photometry than the BRDF,
we choose f r as a more convenient quantity offering, for example,
the reciprocity relation f r(s, o) = f r(o, s). Using equation (8) we
can express the reflected radiance as

Lr(o) = fr(s, o)E(s) = ν fr(s, o)μ�J . (10)

Recalling, for reference, a traditional, Lambertian BRDF with
albedo A

fL = A

π
, (11)

we adopt the anisotropic BRDF proposed by Hapke, namely its
version from Hapke (2002) without macroscopic roughness effects:

fr(s, o) = w

4π(μ� + μ)
[(1 + B)P + H (μ�)H (μ) − 1]. (12)

Here, the Henyey–Greenstein particle phase function is

P = (1 − g2)[1 + 2gμ′ + g2]−(3/2), (13)

and the opposition surge function B is defined as

B = B0

[
1 + 1

h

√
1 + μ′

1 − μ′

]−1

, (14)

with

B0 = S0

w

(1 + g)2

(1 − g)
. (15)

The Chandrasekhar multiple scattering function H is defined in
terms of an integral equation (Chandrasekhar 1950), but we use the
explicit second-order approximation given by Hapke (2002)

H (x) =
[

1 − wx

(
r0 + 1 − 2r0x

2
ln

1 + x

x

)]−1

, (16)
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where

r0 = 1 − √
1 − w

1 + √
1 − w

. (17)

Thus, apart from the incoming and scattered flux directions s and
o, the Hapke BRDF depends on four physical parameters of the
surface: the single scattering albedo w, the regolith compaction pa-
rameter h, the opposition surge amplitude S0 (sometimes replaced by
B0) and the asymmetry factor of the Henyey–Greenstein function g.
A more recent version of reflectance was proposed by Hapke (2008);
the modification amounts to adding the dependence on porosity as
a multiplicative factor in f r and a divisor in the argument of H.
This modification is easy to implement, but we suspend its use until
controversies concerning the dependence of the opposition effect
on porosity are resolved (Hapke 2008).

The total power flux �e emitted into the hemisphere

�+ = {(μ, φ) : 0 ≤ μ ≤ 1, 0 ≤ φ < 2π} ,

divided by the emitting physical area is called the radiant exitance
M

M = d�e

dS
. (18)

Recalling definition (7), we find for the exitance as a result of
scattering

Mr =
∫

�+

d2�r

dS d�
d� =

∫
�+

Lr(o, s)μ d�. (19)

However, according to equation (8), radiance is related to irradiance
by the BRDF f r, and hence

Mr(s) = E(s)
∫

�+
fr(s, o)μ d�, (20)

and the dependence on the Sun’s location s appears explicitly.
At this point, we can introduce the notion of hemispheric albedo

Ah as the ratio

Ah(μ�) = Mr

E(s)
. (21)

Combining equations (20) and (21), we see that

Ah(μ�) =
∫

�+
fr(s, o)μ d� =

∫ 2π

0
dφ

∫ 1

0
fr(s, o)μ dμ, (22)

and equation (20) is simplified to

Mr(s) = E(s)Ah(μ�). (23)

For a given set of Hapke parameters, the integral (22) can be
evaluated numerically on a sufficiently dense set of μ� values,
allowing us to construct an appropriate approximating function.
Using the least-squares adjustment, we construct

μ�Ah(μ�) ≈ ABμ� + α1μ�
1 − α2μ�
1 + α3μ�

, (24)

where the Bond albedo AB, defined as

AB = 1

π

∫
�+

Ah(μ�)μ� d�� = 2
∫ 1

0
Ah(μ�)μ� dμ�, (25)

is the mean slope of the product μ�Ah, and the coefficients αi of a
simple rational approximation describe the deviation from the linear
model. We focus on the properties of μ�Ah, because in the follow-
ing sections the hemispheric albedo always appears multiplied by
the cosine of the Sun’s zenith distance. Note that the adjustment
of Ah(μ�) leads to different values of αi, degrading the quality of
approximation of the product μ�Ah.

2.3 Geometric albedo

Although the geometric (or physical) albedo is not directly involved
in the computation of the radiation recoil force, we need it to select
an appropriate value of w for the Hapke model, because usually
the observations provide only the geometric albedo and the spectral
type for an asteroid.

Let us begin with the notion of intensity I. In contrast to the
previously discussed quantities, the intensity refers to the power
d� emitted from the surface of the whole body (not only from an
infinitesimal dS) in some direction q̂, divided by the solid angle d�

centred at q̂:

I (q̂) = d�

d�
. (26)

The geometric albedo p is the ratio of the observed intensity of some
presumably spherical object to the intensity of the Lambertian disc
with the same diameter as the assumed sphere – both observed in
the direction of the Sun (i.e. with a zero phase angle). This leads to
the integral definition

p = 2π

∫ 1

0
μ2�fr(s, s) dμ�. (27)

Verbiscer & Veverka (1995) provide expressions that allow us to
compute Hapke parameters h, B0 and g for various spectral types
as functions of a given geometric albedo p and the mean slope
parameter G of the International Astronomical Union (IAU) two-
parameter magnitude system (Bowell et al. 1989).

2.4 Directional thermal emission

The energy leaving a surface element dS does not consist only of
scattered radiation. If the element has temperature T > 0, it also
emits thermal radiation. Radiant exitance Mb through �+ for a
blackbody is given by the Stefan–Boltzmann law:

Mb = d�b

dS
= σT 4. (28)

Here, σ = 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann con-
stant and �b is the blackbody value of a more general thermal radi-
ation power flux �t. The point blackbody radiation is, by definition,
isotropic whereas a blackbody surface radiation is Lambertian. So,
the associated radiance Lb(o) in the direction o is obtained from the
general definition of a thermally emitted radiance Lt analogous to
equation (10)

Lt(o) = d2�t

μ dS d�
, (29)

dividing the exitance Mb by the ‘μ-averaged’ solid angle of a hemi-
sphere π:

Lb = Mb

π
. (30)

Indeed, using equation (30) and the definition of exitance, we verify
that∫

�+
Lbμ d� = Mb. (31)

The hemispheric emissivity εh is defined as the ratio of actual
thermal exitance Mt to the blackbody exitance Mb

εh = Mt

Mb
. (32)
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This global quantity should not be confused with a directional emis-
sivity ε(o), defined as the ratio of radiances

ε(o) = Lt(o)

Lb(o)
. (33)

Directional emissivity plays a role similar to that of the BRDF in
scattering, although their definitions essentially differ: the former is
the dimensionless ratio of two radiances, while the latter (with di-
mension sr−1) is the ratio of radiance to irradiance. So, the thermally
emitted radiance in the direction of o can be expressed as

Lt(o) = ε(o)Lb(o) = ε(o)

π
σT 4. (34)

In this paper, we adopt the directional emissivity function of
Hapke (Hapke 1993; Lagerros 1996)

ε(μ) = √
1 − wH (μ), (35)

where w is the Hapke single scattering albedo, and the Chan-
drasekhar function H is given by equation (16). Thus, the emitted
radiance is

Lt(o) = ε(μ)
σT 4

π
=

√
1 − w

π
H (μ)σT 4. (36)

The exitance Mt resulting from equation (36) is

Mt =
∫

�+
Lt(o)μ d�. (37)

Comparing this with the primary definition of εh (equation 32), we
can use the relation

Mt = εhσT 4. (38)

This leads to the integral expression of hemispheric emissivity

εh =
∫

�+

ε(μ)μ

π
d� = 2

∫ 1

0
ε(μ)μ dμ, (39)

evaluating to a single number for a given set of Hapke parameters.
The infrared radiation of asteroids is often related to the notion

of the beaming effect, empirically accounted for by the beaming
factor η (Lebofsky & Spencer 1989; Lagerros 1996). We do not
introduce the beaming factor in our model for a number of reasons,
as follows. (i) The part of the beaming that depends on grain-size-
scale radiation transfer should be present in the emissivity function
of Hapke. (ii) The contribution of thermal lag to the beaming factor
is present in the surface temperature model with conductivity. (iii)
The larger-scale radiation exchange contribution (Lagerros 1998)
will be included in future extensions of our model together with
optical inter-reflections.

2.5 Energy balance

The conservation of energy implies that the total power scattered,
thermally re-emitted and conducted inside the body should be equal
to the incident power flux �i. In terms of power density (per physical
surface), this means that

E(s) = Mr(s) + Mt − Q, (40)

that is, irradiance E is equal to the sum of total radiant exitance
M and of the conducted heat flux density (−Q). Given a non-zero
surface conductivity K, we have

Q = −Kn · ∇T , (41)

and then

E(s) = Ah(μ�)E(s) + εhσT 4 + Kn · ∇T , (42)

or

εhσT 4 = νμ�[1 − Ah(μ�)]J + Q. (43)

If K = 0, equation (43) directly provides the surface temperature,
generalizing the usual Lambertian Rubincam approximation of the
YORP effect to the Hapke reflectance/emissivity model. With K 	= 0,
equation (43) serves as a boundary condition for the heat conduction
problem.

3 R A D I AT I O N R E C O I L FO R C E A N D TO R QU E

3.1 Force expression

The photon flux, leaving dS in the direction o, carries energy and
momentum (energy divided by the velocity of light c), inducing
the recoil force F equal to the time derivative of momentum and
directed opposite to o. The force can be easily expressed in terms
of emitted radiance, provided we introduce a radiance vector

L(o) = L(o)o, (44)

where L is the sum of scattered Lr and thermal Lt. The definition of
radiance implies that the force density in the direction o per physical
area and solid angle is

d2 F
dS d�

= −d2(�r + �t)

dS d�

o
c

= −μ

c
L(o). (45)

Integrating over the hemisphere �+, we find the net force per phys-
ical area
dF
dS

= −1

c

∫
�+

μL(o) d�. (46)

Substituting equations (10) and (34), we have

dF
dS

= −1

c

∫
�+

μ

[
fr(s, o)E(s) + ε(μ)

π
σT 4

]
o d�, (47)

or, observing the independence of directional emissivity on azimuth,

dF
dS

= −E(s)

c

∫
�+

μfr(s, o)o d� − 2σT 4n
c

∫ 1

0
μ2ε(μ) dμ. (48)

Using the LSF, we can conveniently decompose the force density
into the sum of two perpendicular components along the axes z and
x (i.e. along the surface normal n and the unit vector m):

n =

⎛
⎜⎝

0

0

1

⎞
⎟⎠ , m =

⎛
⎜⎝

1

0

0

⎞
⎟⎠ . (49)

In an arbitrary reference frame, we can compute m as

m = (s − μ�n)s−1� , (50)

taking μ� = s · n.
Splitting the first integrand in equation (48) into a sum

μfr(s, o)o = frμ
2n + frμ

√
1 − μ2 cos φm

+ frμ
√

1 − μ2 sin φ (n × m) , (51)

and recalling that f r(s, o) is an even function of azimuth φ, and thus
the last term in equation (51) is odd and its integral over �+ does
vanish, we introduce two auxiliary functions

I1(μ�) =
∫ 2π

0
dφ

∫ 1

0
μ2fr(s, o) dμ, (52)

I2(μ�) =
∫ 2π

0
dφ

∫ 1

0
μ

√
1 − μ2 cos φfr(s, o) dμ, (53)
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as well as a coefficient

I3 = 2
∫ 1

0
μ2ε(μ) dμ. (54)

These allow us to rewrite equation (48) as

dF
dS

= −E(s)

c
[I1(μ�)n + I2(μ�)m] − I3σT 4

c
n. (55)

Substituting the boundary conditions (42) into equation (55), we
remove the explicit dependence on T4, obtaining

dF
dS

= −E(s)

c

{[
I1(μ�) + I3

1 − Ah(μ�)

εh

]
n + I2(μ�)m

}

− QI3

cεh
n. (56)

However, we prefer to rearrange the force expression into a more
comprehensive form

dF
dS

= −2

3

1 + ξ

c
[νJμ� + Q]n + νJ

c
[X1n − X2m] , (57)

where the function arguments have been omitted for the sake of
brevity.

The coefficient

ξ = 3

2

I3

εh
− 1 (58)

is a small quantity of order 10−2 or less. The two functions

X1 = μ�
(

AhI3

εh
− I1

)
, (59)

and

X2 = μ� I2, (60)

also represent a small deviation from the Lambertian model (see
Fig. 1, based upon the data from Table 1).

We believe that there is no point in producing excessively accurate
approximations of corrections to the Lambertian model, so we use
relatively simple functions, found by trial and error,

X1 ≈ ξ10μ�
1 − μ� − ξ11μ

2�
1 + 3μ� − ξ12μ

2�
, (61)

X2 ≈ ξ20μ�
(

3 − ξ21μ� + μ2�
) √

1 − μ�
1 + μ�

, (62)

with coefficients ξ i generated by the least-squares adjustment to the
results of numerical quadratures.

The limit case of the Lambertian model results from setting ξ =
X1 = X2 = 0. Then, equation (57) simplifies to

dFL

dS
= − 2

3c
(νJμ� + Q)n. (63)

Of course, this step also requires the assumption of a constant
Ah = AB in boundary conditions (42) for a heat conduction solver
providing Q.

Figure 1. Functions describing the non-Lambertian force model. The solid
line represents the remainder μ�(Ah − AB), and dashed and dotted lines
refer to X1 and X2, respectively.

3.2 Torque expression

The force defined by equation (57) generates for each surface ele-
ment a torque:2

dM =
(

r × dF
dS

)
dS = −2

3

1 + ξ

c
[νJμ� + Q] (r × dS)

+ νJ

c
[X1 (r × dS) − X2 (r × m dS)] . (64)

The two cross products in this equation differ in nature: the first,

r × dS = r × n dS, (65)

is constant over time in the body frame, whereas the second,

r × m dS = r × s − μ�r × n
s�

dS

= r × s
s�

dS − μ�
s�

(r × dS) , (66)

is time-dependent because of the solar motion on the local celestial
sphere of dS.

2 We maintain the symbol M from previous papers, hoping that it will not
be confused with exitance M appearing only in Section 2.
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Table 1. Sample Hapke parameters and
related quantities.

p = 0.6, type E p = 0.1, type S

w 0.856 0.139
h 0.044 0.049

B0 0.8576 1.5407
g −0.2459 −0.2593

AB 0.47542 0.046712
α1 0.14550 0.031021
α2 1.5880 1.6968
α3 0.9741 3.6800

ξ10 0.09590 0.01212
ξ11 −0.03374 0.3383
ξ12 2.1268 1.4786
ξ20 0.032156 0.006259
ξ21 0.42458 0.16050
ξ 0.03024 0.00255
εh 0.58832 0.96905

3.3 YORP effect computation

The total YORP torque M resulting from the force (57)

M =
∮ (

r × dF
dS

)
dS, (67)

is obtained by integration over the surface of the body. The way the
integration is handled depends on the type of body shape model:
it can be performed analytically if the surface equation is explicit
(e.g. spherical harmonics expansion) or, more often, replaced by
the sum over the flat faces of a triangulation mesh. In the Rubincam
approximation, when Q = 0, we can simply substitute equation (57)
into equation (67) to obtain the torque for a given position of the
Sun in the body frame. Most often, the resulting torque values are
then averaged with respect to rotation and orbital motion in order
to extract the secular effects in rotation rate and attitude dynamics.
This step requires assumptions about the nominal rotation model
that provides the averaging kernel and solar ephemerides.

When the heat conduction is included, the nominal rotation model
enters much earlier than in the final averaging: the surface tempera-
ture oscillations are lagged with respect to the insolation, and hence
we cannot find Q, required by the torque formula, without knowl-
edge of the rotation history. Choosing the simplest principal axis
rotation mode (known as the gyroscopic approximation), we can
easily add non-Lambertian corrections to the algorithm of Breiter
et al. (2010) based on a non-linear one-dimensional thermal model.

The one-dimensional model, where conduction is restricted to
the direction normal to the surface, allows a separate treatment of
each triangular face of the shape mesh. There, having specified the
obliquity ε (the angle between the spin axis and normal to the orbit),
we sample the mean anomaly and rotation phase, creating the vector
of absorbed radiant flux values (the first term on the right-hand
side of equation 43). Its discrete Fourier transform (DFT) serves to
compute the DFT spectrum of Q by an iterative process. Once the
spectrum of Q is known, we are able to compute the torque M. Until
this step, no essential modifications of the algorithm are required;
all we have to do is to replace the constant albedo A (understood
as the Bond albedo AB) in the boundary conditions of Breiter et al.
(2010) by the hemispheric albedo function Ah(μ�). Apart from
this point, the heat diffusion solver remains practically unchanged;
however, computing the mean torque demands further revision. The
spectrum of absorbed power flux νJμ�(1 − Ah), evaluated for the
conductivity contribution, cannot be recycled in the Rubincam part,
because the hemispheric albedo is not a constant. Thus, outside the
conductivity related block, we directly compute the mean values of
projections of the Rubincam part dM (given by equation 64 with
Q = 0) on unit vectors

e1 = sin �′ex + cos �′ey,

e2 = − cos �′ex + sin �′ey,

e3 = ez, (68)

where ex, ey and ez form the body-fixed frame basis, and �′ is
the rotation phase measured from the asteroid’s equinox (Breiter
et al. 2010; N.B.the prime is added to avoid confusion with the
solid angle � of the present paper). Then we add the mean values
resulting from the DFT spectrum of Q, obtaining the final averaged
torque projections 〈Mi〉 = 〈M · ei〉.

If ω denotes the rotation rate, the dynamics in the gyroscopic
approximation is governed by

ω̇ = M3

C
, (69)

ε̇ = M1

ωC
, (70)

�̇′ = ω − M2

ωC tan ε
, (71)

where C designates the maximum moment of inertia in the principal
axes frame.

The conclusion of Breiter et al. (2010), that all one-dimensional
thermal models imply the independence of the mean period

Figure 2. Triangulated shape models: left, (54509) YORP; right, (3103) Eger.
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Table 2. Physical and orbital data for the test bodies.

(54509) YORP (3103) Eger

Epoch JD 2452117.5 2446617.0
Semi-axis au 0.9930 1.4068
Eccentricity 0.2305 0.3548
Inclination deg 1.9971 20.939
Asc. node deg 283.835 129.972
Arg. perihelion deg 272.091 253.661

Rotation period h 0.2029 5.7102
Ecliptic pole (λ, β) deg (180, −85) (224, −72)

Effective diameter m 113 1778
Density kg m−3 2500 2800
Conductivity W m−1 K−1 0.02 0.02
Specific heat J kg−1 K−1 680 680
Max. mom. inertia kg m2 3.04 × 1012 2.80 × 1020

related component 〈M3〉 on conductivity, holds true regardless of
the scattering and emission laws.

4 EXEMPLARY RESULTS

In order to see how the improvement of scattering and emission
laws affects the simulated YORP effect, we consider two exemplary
objects out of the four known to have observationally confirmed spin
acceleration: the (54509) YORP asteroid with an irregular, radar-
determined shape model3 (Taylor et al. 2007) and (3103) Eger with
a convex shape model obtained by light-curve inversion (Ďurech
et al. 2009). Both shape models, consisting of 572 (YORP) and
1972 (Eger) triangular facets, are displayed in Fig. 2. The orbital
and physical parameters assumed in our computations are presented
in Table 2. Generally, we have tried to maintain coherence with the
data applied by Taylor et al. (2007) and Ďurech et al. (2009). The
effective diameter (the radius of a sphere with the same volume as
an object) of Eger was selected indirectly; actually, we scaled the
asteroid to have the same volume as a spheroid with semi-axes 2.3
and 1.5 km (Benner et al. 1997).

Considering (54509) YORP, we have compared two variants: a
realistic assumption that the asteroid is an S-type object with ge-
ometric albedo p = 0.1, and a ficticious case of spectral type E
with p = 0.6. The Hapke parameters are taken from Table 1. If the
Lambert model is assumed, the appropriate Bond albedo and emis-
sivity from Table 1 are applied. For the Lommel–Seeliger model,
the single scattering albedo w is computed from AB according to
equation (A3) and the emissivity follows from εh = 1 − AB. Of
course, the Lommel–Seeliger scattering is not considered for p =
0.6, which might lead to hemispheric albedo values outside the
[0, 1] interval.

Fig. 3 presents the simulation results for (54509) YORP. Al-
though its caption mentions only the Lambert and Hapke models,
the Lommel–Seeliger results for p = 0.1 are still there; these prac-
tically coincide with the Lambertian solid line. We have traced the
values of 〈Mi〉 for all possible obliquities ε, although the actual value
for (5409) YORP is ε = 173◦. The angle between the asteroid’s ver-
nal equinox and the orbital perihelion is ωo = 102◦, and we used this
value for all epsilon values in Fig. 3. The value of ωo is irrelevant

3 More precisely, we use the ‘A-Rough’ model available through the Na-
tional Aeronautics and Space Administration (NASA) Planetary Data Sys-
tem (PDS) website, http://pds.jpl.nasa.gov/.

Figure 3. Secular YORP effect components on (54509) YORP: solid line,
Lambert type S; dotted, Hapke type S (p = 0.1); dashed, Lambert type E;
dot-dashed, Hapke type E (p = 0.6).

for 〈M3〉, governing the evolution of rotation period, but essential
from the point of view of 〈M1〉 and 〈M2〉, responsible for the atti-
tude (Breiter et al. 2010). Considering 〈M3〉 values (Fig. 3, top), we
observe that, in spite of the irregular shape, the type of scattering
model at low p = 0.1 has practically no influence on the YORP
effect in the rotation period, and even at the high albedo case (p =
0.6) the difference between the Lambert and Hapke models does not
exceed 10 per cent. The situation is different for 〈M1〉 and 〈M2〉, but
there, even for the Lambert model, we have a dependence on albedo
resulting from the heat conduction. Although, for p = 0.1, there is
almost no difference between the Lambert, Lommel–Seeliger and
type S Hapke models, a high geometric albedo p = 0.6 leads to
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Table 3. Mean YORP torques for (54509) YORP at ε =
173◦ and ωo = 102◦. All values in 10−16 rad s−2.

〈M1〉 〈M2〉 〈M3〉

Lambert p = 0.1 −0.21 −0.92 35.5
Lommel–Seeliger p = 0.1 −0.18 −0.46 35.4
Hapke (type S) p = 0.1 −0.07 −0.34 34.9

Lambert p = 0.6 −5.07 −6.41 35.5
Hapke (type E) p = 0.6 −4.44 −2.82 32.9

significant differences between the Lambert approximation (dashed
line) and the E-type Hapke model (dot-dashed line). The results for
the nominal values of ε = 173◦ and ωo = 102◦ are collected in
Table 3. Comparing 〈M3〉 with the observed ω̇ = (4.7±0.5)×10−16

rad s−2 (Taylor et al. 2007), we note that the present model over-
estimates ω̇ almost 7.6 times (i.e. more than the relevant models
used in Taylor et al. 2007). However, the most significant part of
this increase is a result of the recomputed reduction to the centre
of mass and (more important) principal axes system. If the original
body fixed frame is used, we obtain a lower factor of 7.0.

In the simulations referring to (3103) Eger, we have compared
only the Lambert model and the Hapke model for spectral type
E with a high geometric albedo p = 0.6 (Fig. 4). In spite of a
convex shape, excluding all shadowing effects, the dependence of
all three 〈Mi〉 components on the scattering/emission model has
the same relative magnitude as in the case of (54509) YORP. The
values for the actual spin axis orientation of Eger are provided
in Table 4. Interestingly, our modelled values of 〈M3〉 are very
close to the observed ω̇ = (1.2 ± 0.8) × 10−18 rad s−2 reported
by Ďurech et al. (2009). Of course, this exceptional agreement
could be a lucky coincidence, recalling the inaccurate nature of the
photometric convex shape model, the roughly estimated density and
the still large error margin of the ω̇ determination.

5 C O N C L U S I O N S

As far as the photometry of Solar system bodies is concerned, the
bidirectional reflectance model elaborated by Hapke leads to signif-
icantly different results from the basic Lambertian framework. The
YORP effect in the rotation period seems to be almost insensitive
to the scattering/emission model and even at the highest observed
albedo values the difference between the two models does not in-
crease to more than 10 per cent. However, this low sensitivity should
not be interpreted as evidence of the insensitivity of the scattered
radiation torque on the reflectivity model. Actually, the situation is
quite the opposite. Even for a given Bond albedo value, the part of
the YORP torque originating from the recoil of reflected light signif-
icantly depends on the form of the BRDF. However, the conservation
of energy implies that, in the absence of conductivity, the sum of
scattered and thermally reradiated energy is always equal to the
incident energy. If the hemispheric albedo in some reflection model
is higher than the Bond albedo of the Lambert case, more power
is scattered, but also less power is thermally re-emitted, and vice
versa (see Fig. 5). Actually, the same mechanism of energy balance
is responsible for the independence of the YORP effect from the
albedo and emissivity in the traditional Rubincam approximation
with Lambertian scattering/emission. In the one-dimensional ther-
mal model considered in this paper, the 〈M3〉 component behaves
exactly as in the Rubincam approximation. So, the dependence on
reflectance is only a result of secondary effects – mostly related

Figure 4. Secular YORP effect components on (3103) Eger: solid line,
Lambert type E; dotted, Hapke type E (p = 0.6).

Table 4. Mean YORP torques for (3103) Eger at ε =
177◦ and ωo = 100◦. All values in 10−18 rad s−2.

〈M1〉 〈M2〉 〈M3〉

Lambert p = 0.6 0.002 −0.93 1.51
Hapke (type E) p = 0.6 0.015 −0.77 1.39

to the small deviation of the recoil force from the normal to the
surface.

Using a more elaborate scattering method is more important in
the part of the YORP effect responsible for the orientation of the
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Figure 5. YORP effect in ω and its components for (3103) Eger: dashed
line, scattered light; dotted line, thermal radiation; solid line, total. The
Lambert case is shown on the left, compared with the Hapke model
(right).

spin axis. In the Rubincam approximation, the situation is similar
to that of 〈M3〉. However, the Rubincam approximation itself is
definitely unrealistic for the attitude, even at moderate values of
conductivity. The influence of heat conduction is proportional to
the absorbed fraction of incident energy, and hence to the albedo.
This means that two scattering models with different dependence
of hemispheric albedo on the Sun’s zenith distance will differently
affect the balance between scattered and reradiated power. This
explains why using the Hapke BRDF instead of the Lambertian
model is more important for 〈M1〉 and 〈M2〉, than for 〈M3〉.
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Ďurech J. et al., 2008b, A&A, 489, L25
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APPENDI X A : LOMMEL– SEELI GER
APPROX IMATION

The Lommel–Seeliger scattering law (Fairbairn 2005) is defined by
the BRDF

fLS(s, o) = w

4π(μ� + μ)
, (A1)

which can be seen as a simplified Hapke model independent of the
phase angle g. Using this simple law, we find most of the expressions
in an exact, closed form, depending on the single scattering albedo
w. The hemispheric albedo is

Ah(μ�) = w

2

(
1 + μ� ln

μ�
1 + μ�

)
, (A2)

leading to the Bond albedo

AB = 2(1 − ln 2)

3
w ≈ 0.204569w, (A3)

and the geometric albedo

p = w

8
. (A4)

Note that equation (A4) leads to problems with w > 1 in the Hapke
thermal radiation expressions if we try to use it for bright objects
with p > 0.125. In these circumstances, we combine the Lommel–
Seeliger scattering with a Lambertian grey-body emission model,
imposing ξ = 0. Then,

X1(μ�) = wμ�
12

[
1 + 6μ� + 2μ�(2 + 3μ�) ln

μ�
1 + μ�

]
(A5)
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and X2 = 0. The resulting force per area

dF
dS

= − 2

3c
[νJμ� + Q]n + νJ

c
X1n (A6)

is directed along the surface normal, similarly to the Lambertian
case.

APPENDIX B: D IRECT RADIATION
PRESSURE

In the usual YORP models of a single object orbiting the Sun, the
direct radiation pressure, opposite to the Sun’s vector s, is either
a priori discarded or its effect disappears after the double (rota-
tion and orbit) averaging. However, this phenomenon may play
some role when a binary system is studied – most notably for the
BYORP effect (Ćuk & Burns 2005; McMahon & Scheeres 2010).
In such cases, the force and torque should be complemented with
the following terms:

dFd

dS
= −νJμ�

c
s = −νJμ�

c
(μ�n + s�m), (B1)

which is the addition to equation (57), and the resulting torque

dMd

dS
= r × dFd

dS
. (B2)

Note that for a binary system the visibility function ν additionally
involves occlusions by the second object.

With these complements, the complete force dFc = dF + dFd

acting on a surface element is

dFc = −2

3

1 + ξ

c
[νJμ� + Q] dS + νJ

c

×
[(

X1 − μ2�
)

dS − (X2 + μ� s�) mdS
]
, (B3)

and the complete torque is readily obtained by the cross product

dMc = r × dFc. (B4)

Equation (B1) involves an implicit statement that all photons
hitting the surface are absorbed and transfer their momentum before
being re-emitted in any form, including the one called reflection. In
a perfect specular reflection, all photons arriving from s = μ�n +
s�m, leave the surface in the symmetric direction s′ = μ�n −
s�m. So, the total effect of perfect specular reflection is

dFs = −2νJμ2�
c

dS, (B5)

with the m component cancelled. As a consequence, we can in-
terpret the occurrence of function X2 as a footprint of imperfect
specular reflection in the Hapke model, with only a part of the
power incoming from s leaving the surface along s′.
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