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Abstract

Asteroid 2012 TC4 is a small (∼10 m) near-Earth object that was observed during its Earth close approaches in
2012 and 2017. Earlier analyses of light curves revealed its excited rotation state. We collected all available
photometric data from the two apparitions to reconstruct its rotation state and convex shape model. We show that
light curves from 2012 and 2017 cannot be fitted with a single set of model parameters; the rotation and precession
periods are significantly different for these two data sets, and they must have changed between or during the two
apparitions. Nevertheless, we could fit all light curves with a dynamically self-consistent model assuming that the
spin states of 2012 TC4 in 2012 and 2017 were different. To interpret our results, we developed a numerical model
of its spin evolution in which we included two potentially relevant perturbations: (i) gravitational torque due to the
Sun and Earth and (ii) radiation torque, known as the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect.
Despite our model simplicity, we found that the role of gravitational torques is negligible. Instead, we argue that
the observed change of its spin state may be plausibly explained as a result of the YORP torque. To strengthen this
interpretation, we verify that (i) the internal energy dissipation due to material inelasticity and (ii) an impact with a
sufficiently large interplanetary particle are both highly unlikely causes of its observed spin state change. If true,
this is the first case where the YORP effect has been detected for a tumbling body.

Unified Astronomy Thesaurus concepts: Asteroids (72); Close encounters (255); Near-Earth objects (1092); Small
solar system bodies (1469)

Supporting material: data behind figures

1. Introduction

Apollo-type near-Earth asteroid 2012 TC4 was discovered in
2012 October by the Pan-STARRS1 survey, a few days before
its closest approach to Earth (having a geocentric distance of
about 95,000 km). It was observed photometrically, and its
rotation period of about 12 minutes (Odden et al. 2013;
Polishook 2013; Warner 2013; Carbognani 2014) and effective
diameter of 7–34 m (Polishook 2013) were determined. Later,
Ryan & Ryan (2017) noticed a second period in the data and
interpreted it as a manifestation of a tumbling rotation state.

The next close approach in 2017 October was at a geocentric
distance of about 50,000 km, and an even more extensive
observing campaign (including spectroscopic and radar observa-
tions) was coordinated by the NASA Planetary Defense
Coordination Office (PDCO) at that time. This campaign also
served as a planetary defense exercise, and its results were
summarized by Reddy et al. (2019). Additionally, Urakawa et al.
(2019) also conducted the observing campaign of this asteroid in
the same apparition independently and attempted to reproduce
their light curves with a model of a tumbling triaxial ellipsoid.
Besides these observing campaigns, a few photometric observa-
tions of 2012 TC4 were carried out in this apparition (Sonka et al.
2017; Warner 2018; Lin et al. 2019). All photometric data
observed in 2017 confirmed the excited rotation state of 2012 TC4
with a main period of 12.2 minutes.

Here we revisit the situation using more sophisticated methods
and tools. We reconstruct the convex shape model and spin state
of 2012 TC4 from the available light curves that include the
published data in the literature and our own new observations. We
show that the rotation state must have changed between the 2012
and 2017 apparitions, and we propose a Yarkovsky–O’Keefe–
Radzievskii–Paddack (YORP)-driven spin evolution as the most
likely explanation. The data are described in Section 2, the
physical model of the body is developed in Section 3, and the
theoretical analysis of rotation dynamics is given in Section 4.
Mathematical methods and the numerical setup of the theoretical
model are summarized in Appendix A. The best fit of our physical
model to the available light curves is shown in Appendix B.

2. Optical Photometry Data

To reconstruct the spin state of 2012 TC4, we collected its light
curves observed during both close approaches. Photometric
observations from 2012 and 2017 were made using a variety of
telescopes having apertures between 0.35 and 5m and equipped
with CCD cameras. Observational circumstances with references
to original sources are listed in Table 1. Apart from previously
published light curves, our data set also includes several new
observations (indicated by coauthor names in the last column). In
particular, we obtained four light curves using the Pistoiese 0.6m
telescope (MPC code: 104)with the CCD Apogee U6, which has a
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¢ ´ ¢35 35 field of view corresponding to a pixel scale of
2″ pixel−1 in both apparitions. The raw frames were processed
for the dark and flat-field correction, and the light curves of this
observatory were constructed using Canopus software (Warner
2006). The preprocessing and photometry of the light curve
observed at Wildberg Observatory (MPC code: 198) using a
0.35m telescope equipped with an SXVF-H16 2048× 2048 CCD
camera were conducted using Astrometrica version 4.10.2.433
(Raab 2012). In the preprocess for these data, both dark and flat-
field corrections were carried out. All photometric data were
calibrated by referring to the PPMXL Catalog. (Roeser et al. 2010).

The Panchromatic Robotic Optical Monitoring and Polarimetry
Telescopes (PROMPT), located at the Cerro Tololo Inter-
American Observatory (CTIO) in Chile, consist of six 0.41m
reflectors equipped with the Apogee Alta U47+E2V camera. The
field of view is ¢ ´ ¢10 10 with 0 59 pixel−1. All raw image
frames were processed (master dark, master flat, bad-pixel
correction) using the software package MIRA. Aperture photo-
metry was then performed on the asteroid and three comparison
stars. A master image frame was created to identify any faint stars
in the path of the asteroid. Data from images with background
contamination stars in the asteroid’s path were then eliminated.

Table 1
Observation Details (New Data Denoted by Name of a Coauthor)

Telescope Date (UT) Filter References

2012
OAVdA 0.81 m (Italy) 2012 10 09.9 C Carbognani (2014)
Pistoiese 0.6 m (Italy) 2012 10 09.9 R Bacci
Pistoiese 0.6 m (Italy) 2012 10 10.0 R Bacci
MRO 2.4 m (USA) 2012 10 10.2 V Ryan & Ryan (2017)
Wise Observatory 0.72 m (Israel) 2012 10 10.8 V Polishook (2013)
OAVdA 0.81 m (Italy) 2012 10 10.8 C Carbognani (2014)
PROMPT1 0.41 m (Chile) 2012 10 11.1 Lum Pollock
MRO 2.4 m (USA) 2012 10 11.1 V Ryan & Ryan (2017)
PDO 0.35 m (USA)a 2012 10 11.2 V Warner (2013)

2017
Kitt Peak Mayall 4 m (USA) 2017 09 13.2 R Reddy et al. (2019)
Kitt Peak Mayall 4 m (USA) 2017 09 14.1 R Reddy et al. (2019)
Palomar Hale 5 m (USA) 2017 09 17.4 SR Reddy et al. (2019)
Palomar Hale 5 m (USA) 2017 09 20.2 SR Warner (2018)
SOAR 4.1 m (Chile) 2017 10 06.2 SR Reddy et al. (2019)
PDO 0.35 m (USA) 2017 10 09.2 V Warner (2018)
MRO 2.4 m (USA) 2017 10 09.2 V Reddy et al. (2019)
Kiso 1.05 m (Japan) 2017 10 09.5 SG Urakawa et al. (2019)
Wise Observatory 0.72 m (Israel) 2017 10 09.8 V Reddy et al. (2019)
LCO-C 1 m (Chile) 2017 10 10.1 SR, SI Reddy et al. (2019)
LCO-A 1 m (Chile) 2017 10 10.1 SR Reddy et al. (2019)
PDO 0.35 m (USA) 2017 10 10.2 V Warner (2018)
Nayoro 0.4 m (Japan) 2017 10 10.4 V Urakawa et al. (2019)
BSGC 1 m (Japan) 2017 10 10.6 SG, SR, SI, SZ Urakawa et al. (2019)
Lulin 1 m (Taiwan)b 2017 10 10.6 BVRI (diff.) Lin et al. (2019)
Kiso 1.05 m (Japan) 2017 10 10.5 SG Urakawa et al. (2019)
Wise Observatory 0.72 m (Israel) 2017 10 10.8 V Reddy et al. (2019)
Pistoiese 0.6 m (Italy) 2017 10 10.9 R Bacci
KMTNet 1.6 m (South Africa) 2017 10 10.9 V Reddy et al. (2019)
Pistoiese 0.6 m (Italy) 2017 10 11.0 R Bacci
USNA 0.51 m (USA) 2017 10 11.0 V Reddy et al. (2019)
MRO 2.4 m (USA) 2017 10 11.1 R Reddy et al. (2019)
PDO 0.35 m (USA) 2017 10 11.2 V Warner (2018)
Kiso 1.05 m (Japan)c 2017 10 11.5 SG Urakawa et al. (2019)
Lulin 1 m (Taiwan)b 2017 10 11.6 BVRI (diff.) Lin et al. (2019)
Anan Science Center 1.13 m (Japan)c 2017 10 11.6 V Urakawa et al. (2019)
Wise Observatory 0.72 m (Israel) 2017 10 11.8 V Reddy et al. (2019)
AIRA 0.38 m (Romania) 2017 10 11.8 V Sonka et al. (2017)
Wildberg Observatory 0.35 m (Germany)d 2017 10 11.8 Apitzsch
KMTNet 1.6 m (South Africa) 2017 10 11.9 V Reddy et al. (2019)
MRO 2.4 m (USA) 2017 10 12.1 R Reddy et al. (2019)

Notes. OAVdA: Astronomical Observatory of the Autonomous Region of the Aosta Valley; MRO: Magdalena Ridge Observatory; PROMPT1: Panchromatic Robotic
Optical Monitoring and Polarimetry Telescopes; PDO: Palmer Divide Observatory; SOAR: Southern Astrophysical Research; LCO: Las Cumbres Observatory;
BSGC: Bisei Spaceguard Center; KMTNet: Korea Microlensing Telescope Network (Kim et al. 2016); USNA: United States Naval Observatory; AIRA: Astronomical
Institute of the Romanian Academy.
a Split into six parts, each using different comparison stars.
b These data were estimated by subtracting the average magnitudes of the comparison stars.
c Split into two parts because we noted a possible calibration issue.
d Split into two parts, each using different comparison stars.
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A part of the published light curves was obtained from the
Asteroid Lightcurve Data Exchange Format database (ALCDEF10;
Warner et al. 2011). We also acquired the light curve
published by Reddy et al. (2019) from the International
Asteroid Warning Network (IAWN) 2012 TC4 Observing
Campaign homepage.11

Since the corrected light curves were observed using various
filters and include both the relative and the absolutely
calibrated observations, they have a magnitude offset between
each other. As a result, the whole data set is primarily treated as
an ensemble of relative light curves.

2.1. Two-period Fourier Series Analysis

In the first step, we analyzed the photometry data from 2012
and 2017 using the two-period Fourier series method (Pravec
et al. 2005, 2014). Concerning the 2012 observations, we used
all but one photometric light-curve series taken from 2012
October 9.9 to 2012 October 11.2 (see Table 1). In particular,
we excluded the data taken on 2012 October 10.7 by Polishook
(2013), where we found a possible timing problem.12

Concerning the 2017 observations, we used a selected subset
of the data taken between 2017 October 9.1 and 2017 October
11.1. This choice was motivated by noting that the observing
geometry during this time interval in 2017 was very similar
(due to the fortuitous resonant return of the asteroid to Earth
after 5 yr) to the geometry of the time interval of the 2012
observations. This choice minimizes the possible (but anyway
small) systematic effects due to changes in observing geometry

when comparing the results of our analysis of the data from the
two apparitions (see below).
We reduced the data to the unit geo- and heliocentric

distances and a consistent solar phase using the H–G phase
relation assuming G= 0.24, converted them to flux units, and
fitted them with the fourth-order two-period Fourier series. A
search for periods quickly converged, and we found the
two main periods P1= 12.2183± 0.0002 and P2= 8.4944±
0.0002 minutes in 2012 and P1= 12.2492± 0.0001 and
P2= 8.4752± 0.0001 minutes in 2017. The phased data and
best-fit Fourier series, together with the postfit residuals, are
plotted in Figure 1. We note that the smaller formal errors of
the periods determined from the 2017 data were due to the
higher quality of the 2017 observations (the best-fit rms
residuals were 0.081 and 0.065 mag for the 2012 and 2017
data, respectively; see also the postfit residuals plotted in the
bottom part of Figure 1). As for possible systematic errors of
the determined periods, the largest could be due to the so-called
synodic effect. It is caused by the change of position of a
studied asteroid with respect to the Earth and Sun in the inertial
frame during the observational time interval. An estimate of the
magnitude of the synodic effect can be obtained using the phase-
angle-bisector approximation, for which we used Equation (4)
from Pravec et al. (1996). Using this approach, we estimate the
systematic errors of the determined periods ΔP1= 0.0005 and
0.0002minutes and ΔP2= 0.0002 and 0.0001minutes in 2012
and 2017, respectively. These systematic errors are only slightly
larger than the formal errors given above. A caveat is that the
formula of Equation (4) in Pravec et al. (1996) was determined for
the case of a principal-axis rotator. An exact estimate of the
systematic period uncertainties due to the synodic effect for a
tumbling asteroid would require an analysis of its actual non-
principal-axis rotation in a given observing geometry, but we did
not pursue it here, as the effect was naturally surmounted by the
physical modeling presented in the next section.

Figure 1. The blue open circles are the photometric data of 2012 TC4 taken from 2012 October 9.9 to 2012 October 11.2 (left) and from 2017 October 9.1 to 2017
October 11.1 (right) reduced to the unit geo- and heliocentric distances and a consistent solar phase (see text for details), folded with the respective main periods P1.
The red curve is the best-fit fourth-order Fourier series with the two periods. The black plus signs are the postfit residuals (see the right ordinates).

10 http://alcdef.org/
11 https://2012tc4.astro.umd.edu/Lightcurve/supplement/2012TC4_
Lightcurve_Observations_Summary.html
12 Indeed, D. Polishook (2020, personal communication) checked his data
upon our request and confirmed that there was an issue with the times in his
2012 observations. We then used the corrected data for physical model
reconstruction in Section 3.
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As will be shown in the next section, the strongest observed
frequency in the light curve, -P1

1, is actually a difference
between the precession and the rotation frequency of the
tumbler: = -f y

- - -P P P1
1 1 1. The second-strongest frequency,

-P2
1, is then the precession frequency, f

-P 1. This is a
characteristic feature of the light curve of a tumbling asteroid
in short-axis mode (SAM; see below). We note that the same
behavior was observed for (99942) Apophis and (5247)
Krylov, which are also in SAM (Pravec et al. 2014; Lee
et al. 2020).

The principal light-curve periods P1 and P2 determined from
the 2012 and 2017 observations differ at a high level of
significance, formally on the order of about 100σ. While the
systematic errors due to the synodic effect could decrease the
formal significance by a factor of a few, the significance of the
observed period changes would still remain large, on the order
of several tens of σ. To interpret these findings in more depth,
we turned to construct a physical model of 2012 TC4 as a
tumbling object in the next section.

3. Physical Model

3.1. Model from 2017 Data

The light-curve data set from 2017 is much richer than that
from 2012, so we started with the inversion of the 2017 data. We
investigated possible frequency combinations based on the fact
that the main frequencies f1 and f2 of a tumbling asteroid light
curve are usually found at 2ff and 2( ff± fψ) or low harmonics
and combination, where ff is the precession and fψ is the rotation
frequency, respectively, and the plus sign is for long-axis mode
(LAM) and the minus sign for SAM (Kaasalainen 2001). Using
the values f1= 4.898 and f2= 7.079 hr−1 from the previous
section, we found eight possible frequency combinations: f1= ff,
f2= 2( ff− fψ) (SAM1); f1= 2( ff− fψ), f2= 2ff (SAM2);
f1= 2( ff− fψ), f2= ff (SAM3); f1= ff− fψ, f2= ff (SAM4);
f1= 2ff, f2= 2( ff+ fψ) (LAM1); f1= 2ff, f2= ff+ fψ (LAM2);
f1= ff, f2= ( ff+ fψ) (LAM3); and f1= ff+ fψ, f2= ff (LAM4).
Then we conducted the shape and spin optimization for these
combinations in the same way as in Lee et al. (2020). It was found
that only the SAM4 solution provided an acceptable fit to the data
and was physically self-consistent.

We used 34 light curves from 2017 October. Four light curves
from 2017 September were very noisy and did not further
constrain the model, so we did not include them in our analysis.
We inverted the light curves with the method and code
developed by Kaasalainen (2001) combined with Hapke’s
light-scattering model (Hapke 1993). According to Reddy
et al. (2019), the colors of TC4 are consistent with the C or X
complex; also, its spectrum is X type, with Xc type being the
best match. The X complex contains low- and high-albedo
objects, but the E type seems most likely because the high
circular polarization ratio suggests that TC4 is optically bright
(Reddy et al. 2019). This is in agreement with Urakawa et al.
(2019), who also reported X-type colors. As a result, we used
Hapke’s model with parameters derived for E-type asteroid
(2867) Šteins (Spjuth et al. 2012): ϖ= 0.57, g=− 0.30,
h= 0.062, B0= 0.6, and q̄ = 28 . Because our data did not
cover low solar phase angles, the h and B0 parameters for the
opposition surge and also roughness q̄ were fixed. We optimized
the ϖ and g parameters, and they converged to values of
ϖ= 0.69, g=− 0.20, which gave a geometric albedo of 0.34.
An alternative solution with fixed values ϖ= 0.57, g=− 0.30

provided an only marginally worse fit, and the kinematic
parameters were not affected. In general, the solution of our
inverse problem was not sensitive to Hapke’s parameters like in
previous studies (e.g., Scheirich et al. 2010; Pravec et al. 2014;
Lee et al. 2020).
The rotation and precession periods had the following values:

Pψ= 27.5070± 0.002 and Pf= 8.47512± 0.0002minutes,
respectively. The 1σ uncertainties were estimated from the increase
of χ2 when varying the solved-for parameters; given a number
of measurements of about 8600, the 3σ uncertainty interval
corresponds to an about 5% increase in χ2 (e.g., Vokrouhlický
et al. 2017). The direction of the angular momentum vector in
ecliptic coordinates was λ= 92°, β=− 89.6°, practically oriented
toward the south ecliptic pole. Normalized moments of inertia were
I1= 0.41, I2= 0.81, but the model was not too sensitive to their
particular values. The inertia moments computed from the 3D
shape (assuming constant density) were I1= 0.435, I2= 0.831,
indicating consistency with the kinematic parameters above.
The dark facet, which is always introduced into a convex

shape model to regularize the solution (Kaasalainen & Torppa
2001), represented about a few percent of the total surface area,
and forcing it to smaller values led to a worse fit. This might
mean that there is some albedo variation on the surface of TC4
or that its real shape is highly nonconvex and a convex-shape
approximation has its limits.

3.2. Model from 2012 Data

For this model, we used 14 light curves from 2012. The
rotation and precession periods were now Pψ= 27.873± 0.005
and Pf= 8.4945± 0.0003minutes, respectively. The 1σ uncer-
tainties were estimated in the same way as for the 2017 model,
namely, from the increase of χ2. The direction of the angular
momentum vector was λ= 89°, β=− 90°, with moments of
inertia I1= 0.43, I2= 0.80. The 3D shape model was similar to
that reconstructed from 2017 data, and the direction of the angular
momentum vector was practically the same.
In spite of consistency in all other solved-for parameters, we

thus observed that the periods Pf and Pψ for the two
apparitions were significantly different. Attempts to use the
2017 values to fit the 2012 data, or vice versa, led to a
dramatically worse fit. We scanned the period parameter space
around the best-fit values and plotted the relative χ2 values; see
Figure 2. The minima in χ2 for the 2012 and 2017 periods are
clearly separated.

3.3. Model from 2012 and 2017 Data

The 3D models reconstructed from the two apparitions
independently have similar global shapes, but their details are
different (Figure 3). If we take the shape reconstructed from the
2017 data and use it to fit the 2012 data, it gives a satisfactory
fit to the light curves. However, a better way to use all data
together is not to treat them separately but to instead invert both
apparitions together with a common shape model that would
differ only in kinematic parameters. Therefore, we modified the
original inversion code of Kaasalainen (2001) to enable
including two independent light-curve sets. We assumed that
the only parameters that were different for the two apparitions
were the rotation and precession periods Pψ, Pf and initial
Euler angles f0, ψ0. The parameters describing the shape and
the direction of the angular momentum vector were the same.
So the full set of kinematic parameters for a two-apparition
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model was (λ, β, ( )f0
1 , ( )f0

2 , ( )y0
1 , ( )y0

2 , ( )
yP 1 , ( )

yP 2 , ( )
fP 1 , )( )

fP I I, ,2
1 2 ,

where the superscript (1) is for the 2012 apparition and (2) is
for the 2017 apparition. The two light-curve data sets were
independent in the sense that the integration of kinematic
equations (Equation (A.3) in Kaasalainen 2001) was done
separately for 2012 and 2017 data; the two epochs were not
directly connected. The final model shape is almost identical to
that reconstructed from only 2017 data shown in Figure 3. The
fit of the final model to individual light curves is shown in
Appendix B. Rotation and precession periods converged to
practically the same values as with the independent treatment
of each of the two apparitions. The best-fit parameters for the
2012 and 2017 apparitions are listed in Table 2. The physical
models of 2012 TC4 from 2012 and 2017 and the light-curve

data set used to reconstruct these models are available from the
DAMIT database13 (Ďurech et al. 2010).

3.4. Bootstrap

To estimate the uncertainties of physical periods and further
robustly demonstrate that their change between 2012 and 2017 is
significant, we created bootstrapped data samples and repeated the
light-curve inversion for them. From both the 2012 and 2017 data
sets, we created 1000 bootstrap samples by randomly selecting the
same number of light curves from the original data set. For the
2017 October bootstrap, 279 final shape models had a clearly

Figure 2. Period scan for data from 2017 (October only) and 2012. Each point represents one trial model that converged to given Pf, Pψ, and χ2 values. Minima for
the 2012 and 2017 data are clearly separated. The relative χ2 was normalized to have a minimum value of 1.

Figure 3. Shape models reconstructed independently from 2012 (top) and 2017 (bottom) light curves. The 2017 model is almost identical to that reconstructed from
joint inversion of 2012 and 2017 data.

13 https://astro.troja.mff.cuni.cz/projects/damit/
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wrong inertia tensor that was not consistent with the kinematic I1,
I2 parameters, so we removed them from the analysis. For all
remaining bootstrap models, we plot histograms of Pf and Pψ
distribution in Figure 4. The standard deviations of the precession
period Pf are 0.0005 and 0.00009 minutes for the 2012 and 2017
data, respectively, which are similar to the uncertainty values
derived in Sections 3.1 and 3.2. For the rotation period Pψ, these
standard deviations are 0.0008 and 0.0002minutes, which is
significantly smaller than our χ2-based estimate. Nevertheless, the

difference between periods determined from the 2012 and 2017
apparitions is much larger than their uncertainty intervals, and we
are not aware of any random or model errors that could cause such
a difference. Our conclusion is that the spin state of TC4 has
changed from 2012 to 2017, and the rotation and precession
periods have decreased. In what follows, we try to interpret this
change using a theoretical model of TC4 spin evolution with the
relevant torques.

4. Theory

4.1. Orbital Dynamics

The unique observational opportunities of 2012 TC4 are directly
related to its exceptional orbit. The asteroid had a deep encounter
with Earth on 2012 October 12, during which the closest distance
to the geocenter was approximately 95,000 km (Figure 5).
However, the more unusual circumstance was that the 2012 close
encounter resulted in a change of 2012 TC4ʼs orbital semimajor
axis that placed it nearly exactly at the 5:3 resonance with Earth’s
heliocentric motion. As a result, 5 yr after the first close encounter,
i.e., on 2017 October 12, the relative configuration of the asteroid
and Earth nearly exactly repeated, again placing it in a deep
encounter configuration. This time, the closest approach to the
geocenter had an even closer distance of 50,200 km. Astrometric
observations during the two close approaches, including Arecibo
and Green Bank radar data taken in 2017, allowed a very accurate
orbital solution over the 5 yr period of time in between 2012 and
2017. In the context of this paper, we note that it also provided
interesting information about the nongravitational effects that need
to be empirically included in orbit determination. Adopting a
methodology from cometary motion (e.g., Marsden et al. 1973 and
Farnocchia et al. 2013 or Mommert et al. 2014 for the asteroidal
context), we note the following values of radial A1 and transverse
A2 accelerations: (i) A1= (2.17± 0.80)× 10−11 au day−2, or
(4.35± 1.60)× 10−10 m s−2, and (ii) A2=− (2.73± 0.65)×
10−13 au day−2 (both assume∝ r−2 heliocentric decrease; see the
JPL/Horizons webpage, https://ssd.jpl.nasa.gov/sbdb.cgi). At
first sight, these values appear very reasonable (compare with, e.g.,
A1 and A2 fits for the ;4m body 2009 BD; Mommert et al. 2014;
Vokrouhlický et al. 2015a).

Table 2
Parameters of the Model in Figure 3 Reconstructed from 2012 and 2017 Light

Curves

2012 2017

Pψ (minutes) 27.8720 ± 0.0007 27.5070 ± 0.0002
Pf (minutes) 8.4944 ± 0.0005 8.47511 ± 0.00008
f0 (deg) 322 ± 8 74 ± 9
ψ0 (deg) 198 ± 0.02 180 ± 0.2
JD0 2,456,210.00 2,458,032.69

λ (deg) 103 ± 78
β (deg) −88.5 ± 0.7
I1 0.42
I2 0.81
w 0.67
g −0.20
h 0.062
B0 0.6
q̄ (deg) 28
δL/L 0.00078 ± 0.00006
δE/E −0.0035 ± 0.0001

Note. The reported errors correspond to standard deviations of parameters
computed from bootstrap models. Parameters without errors were fixed
(Hapke’s parameters) or did not change (I1 and I2). The formally small
uncertainty of ψ0 means that this initial orientation angle is correlated with the
shape and does not change significantly with different bootstrap data sets.
Parameter λ is practically unconstrained because the angular momentum
direction is very close to β = − 90°. Values δL/L and δE/E are relative
changes of angular momentum L and energy E between 2012 and 2017, i.e.,
δL/L = (L2017 − L2012)/L2017 and δE/E = (E2017 − E2012)/E2017.

Figure 4. Distribution of periods Pf (left) and Pψ (right) for bootstrapped light curves.
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If we were to interpret both components as a result of radiation
forces, we might further obtain useful information about the body.
The radial component would represent the direct solar radiation
pressure. In a simple model, where we assume a spherical body of
size D and bulk density ρ, we have A1; 3CRF0/(2ρDc), with CR

the radiation pressure coefficient (dependent on sunlight scattering
properties on the surface), F0; 1367 Wm−2 the solar constant,
and c the light velocity. Adopting CR; 1.2 and D; 10 m, we
obtain a very reasonable bulk density ρ; (1.9± 0.7) g cm−3. The
transverse component of nongravitational orbital effects makes
sense when interpreted as the Yarkovsky effect (e.g., Vokrouhlický
et al. 2015a). Note that the abovementioned value of A2 translates
to a secular change of the semimajor axis da/dt=−(110±
26)× 10−4 auMyr−1 (see, e.g., Farnocchia et al. 2013). Given the
near extreme obliquity of the rotational angular momentum, we
may safely restrict to the diurnal component of the Yarkovsky
effect. The negative value of A2, or da/dt, corresponds well to the
retrograde sense of 2012 TC4 rotation (implied by the direction of
the rotational angular momentum vector; Section 3). Next,
borrowing the simple model for a spherical body from
Vokrouhlický (1998) and fixing the size D= 10 m, the inferred
bulk density ρ; 1.9 g cm−3, and the surface thermal conductivity
K= 0.05 Wm−1 K−1, we estimate that the corresponding surface

thermal inertia is G -
+490 250

270 in SI units (though we note that
there is also a lower-inertia solution possible, like in Mommert
et al. 2014). This is a very adequate value too (e.g., Delbó et al.
2015). Obviously, due to the many frozen parameters in the model
(and its simplicity), the realistic uncertainty in Γ would be larger.
However, it is not our intention to fully solve this problem. We
satisfy ourselves with the observation that the needed empirical
nongravitational accelerations in the orbital fit may be very
satisfactorily interpreted as radiation-related effects. In the next
sections, we show that the change in the rotation state between the
2012 and 2017 observation epochs may be very well explained by
the radiation torque known as the YORP effect (e.g., Vokrouhlický
et al. 2015a).

4.2. Rotational Dynamics

Our methods and mathematical approach used to describe the
evolution of the rotation state of 2012 TC4 are presented in
Appendix A; therefore, here we provide just a general outline. We
numerically integrated Euler Equations (A2) and (A4) describing
the spin state evolution of 2012 TC4 in between the observation
runs in 2012 and 2017. The kinematical part, describing the
transformation between the inertial frame and the body frame
defined by the principal axes of the tensor of inertia, was
parameterized by the Rodrigues–Hamilton parameters λ= (λ0, λ1,
λ2, λ3) (see, e.g., Whittaker 1917). This choice helps to remove
problems related to coordinate singularity given by the zero value
of the nutation angle. The dynamical part is represented by the
evolution of the angular velocity ω in the body frame. Note that in
most cases of asteroid light-curve interpretation, a simplified model
of a free top would be sufficient (also used in Section 3 to fit the
2012 and 2017 data separately). However, the evidence of the
change of the rotation state of 2012 TC4 in between the 2012 and
2017 epochs, discussed above, requires appropriate torques to be
included in the model. We addressed two effects:

1. gravitational torques due to the Sun and Earth and
2. radiation torques due to the sunlight scattered by the

surface and thermally reradiated (the YORP effect; e.g.,
Bottke et al. 2006; Vokrouhlický et al. 2015a).

The tidal gravitational fields of the Sun and the Earth were
represented in the body frame using the quadrupole approx-
imation (Equation (A7); e.g., Fitzpatrick 1970; Takahashi et al.
2013). The nature of the perturbation is different for the Sun
and Earth. In the solar case, the gravitational torque results in a
small tilt of less than 1′ describing a small segment on the
precession cone. The effect of the Earth-induced gravitational
torques manifests as an impulsive effect only during close
encounters. Our main goal was to verify that, due to the fast
rotation of 2012 TC4, the effect averages out and cannot
contribute to the observed change in rotational frequencies.
Indeed, Figure 6 shows the change of the osculating rotational
(intrinsic) angular momentum and energy during the 2012 close
encounter with Earth (only about six times larger effects are
observed during the closer encounter in 2017, but this is not
relevant for our analysis anyway, because the observations
preceded this approach). The initial data of the simulation were
taken from the observations fit in 2012, namely, before the
encounter. Recall that the characteristic timescale of the
encounter is about half a day (determined, for instance, as a
width of the characteristic Earth relative velocity increase in the
bottom panel of Figure 5 at an;6.8 km s−1 level, half the value
between the asymptotic and peak velocities). In comparison,

Figure 5. Geocentric distance (top) and relative velocity (bottom) of 2012 TC4
during its close encounter with Earth on 2012 October 12 (nominal minimum
configuration at MJD 56,212.229; gray vertical line); the abscissa shows the time
in days with respect to MJD 56,212. The dashed horizontal line in the top panel
shows the minimum distance of;95,000 km. The asymptotic value of the relative
velocity with respect to Earth, ;6.5 km s−1, increases to more than 7.1 km s−1 by
Earth’s gravity.

7

The Astronomical Journal, 161:112 (23pp), 2021 March Lee et al.



the characteristic rotational periods Pψ and Pf are of the order
of minutes, i.e., much shorter. As a result, the effect of Earth’s
gravitational torque efficiently averages out during each of the
rotation cycles (a significant effect may be expected only for
very slowly rotating bodies and sufficiently deep encounters,
such as seen for 4179 Toutatis during its 2004 close encounter
with Earth; e.g., Takahashi et al. 2013). Therefore, we may
conclude that the gravitational torques cannot explain the
observed change in the rotation state of 2012 TC4 in between
the 2012 and 2017 epochs. Still, we keep them in our model for
the sake of completeness.

The radiation torques are of a quite different importance. It is
well known that the YORP effect is able to secularly change the
rotational frequency and tilt the rotational angular momentum in
space. While mostly studied in the limit of a rotation about the
shortest axis of the inertial tensor, generalizations to the tumbling
situation were also developed. Both numerical (Vokrouhlický et al.
2007) and analytical (Cicalò & Scheeres 2010; Breiter et al. 2011)
studies confirmed that the YORP effect is able to change rotational
angular momentum, and its orientation, in both the inertial space
and bodyframe in an appreciable manner. As usual, the effect is
more important on small bodies. Here we included the simple,

zero-inertia limit developed in Rubincam (2000) and Vokrouhlický
& Čapek (2002); see Equation (A8). A first look into the
importance of the radiation torques may be obtained by taking the
nominal solution of the rotation state from the 2017 observations,
including the appropriate shape model, and propagating it
backward in time to early 2012 October (the epoch of the first
set of observations). We use the more accurate 2017 model as a
reference, rather than the one constructed from the poorer 2012
observations. The length scale of the model was adjusted to
correspond to an equivalent sphere of diameter D= 10 m, and the
density was ρ= 1.4 g cm−3. We verified that the results have the
expected invariance to rescaling of both ρ and D such that
ρD2= const. Our nominal choice of the 1.4 g cm−3 bulk density,
albeit conflicting with the suggested E-type spectral classification
of TC4, is therefore linked to the assumed equivalent size of 10m,
but it might be redefined according to the rescaling principle. This
combination of parameters provides a very nice match of the Pf
period change due to our YORP model (see Section 4.3).
Figure 7 provides information about the secular change in

the rotational angular momentum L (top) and energy E
(bottom) in that simulation. Here we see a long-term change

Figure 6. Effect of Earth’s gravitational torque in quadrupole approximation on
the rotation state parameters of 2012 TC4 during its close encounter on 2012
October 12 (the gray line denotes the nominal minimum distance configura-
tion). The abscissa shows the time in days with respect to MJD 56,212 (as in
Figure 5). The upper panel shows a fractional change of the rotational angular
momentum δL = L − L0, normalized by the initial value L0, and the bottom
panel panel shows a fractional change of the rotational energy δE = E − E0,
normalized by the initial value E0 (note that both ordinate scales are in 10−6).
The resulting change of both parameters after the encounter is �5 × 10−9.

Figure 7. Effect of the radiation (YORP) torque on the rotation state parameters of
2012 TC4 in the time interval between the two recent close encounters with Earth
(i.e., 2012 October 12 and 2017 October 12). The nominal model is used here to
obtain a first insight into the expected order of magnitude of the perturbation. The
abscissa shows time in years. The upper panel shows a fractional change of the
rotational angular momentum δL= L− L0 normalized by the initial value L0, and
the bottom panel shows a fractional change of the rotational energy δE= E− E0
normalized by the initial value E0 (note that both ordinate scales are in 10

−3). Both
reference values were taken at MJD 58,032.19, the mean epoch of the 2017
observations, and the asteroid’s rotation state was propagated backward in time to
2012 October.
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in both quantities. The wavy pattern is due to the eccentricity of
the 2012 TC4 orbit and a stronger YORP torque at perihelion.
The accumulated fractional change in both L and E is a few
times 10−3. This is promising because the observed change in
these quantities is of the same order of magnitude (see Table 2)
and makes us believe that the change in the directly observable
Pψ and Pf periods will also be as needed. Nevertheless, we also
note a difference. The simulation results shown in Figure 7
indicate that both angular momentum and energy increased
from 2012 to 2017. Such behavior is perhaps expected in the
first place (for instance, in the case of a body in a principal-
rotation state, YORP would necessarily affect both E and L in
the same way). However, rotation state solutions from
observations in 2012 and 2017 tell us something else (see
Table 2): the rotational angular momentum L increased
between 2012 and 2017, while the energy E decreased. Before
commenting more on this difference, we first provide a more
detailed analysis of the radiation torque effects for 2012 TC4 in
our modeling, this time using the whole suite of acceptable
initial data and shape models (all compatible with the
observations; Section 3.4). This will allow a statistical
assessment of the predicted values.

4.3. Results

An ideal procedure of proving that the observed changes in
tumbling-state periods Pf and Pψ are due to the radiation
(YORP) torques would require a highly reliable theoretical
model (numerical propagation of 2012 TC4ʼs rotation state
with appropriate torques included) employed to fit all available
observations (in our case, data from 2012 and 2017 October).
Obviously, the only “comfort” of this analysis would be to
possibly adjust some free (unknown) parameters. Unfortu-
nately, such a plan is presently too ambitious; thus, we resort to
a simpler way.

Recall the much easier situation when the YORP effect has
been searched (and detected) for asteroids rotating in the
lowest-energy mode, namely, about the shortest principal axis
of the inertia tensor. In this case, YORP results in a secular
change of the unique rotation period P (as in Pf and Pψ, when
the body tumbles). The measurements are rarely precise
enough, and the effect strong enough, to directly reveal the
change in the period P (see, though, an exception for 54509
YORP; Lowry et al. 2007). More often, one uses the fact that
the linear-in-time change in P produces a quadratic-in-time
effect in the rotation phase. Properly linking the asteroid
rotation phase over many observation sessions with an
empirical quadratic term helps to characterize changes of P
that are individually too small to be determined from one-
apparition observations (see, e.g., Vokrouhlický et al. 2015a).
This approach adopts an empirical magnitude of the quadratic
term in the rotation phase and simply solves it as a free
parameter (not combining it with a theoretical model at that
stage). Interpretation in terms of the YORP effect is done only
a posteriori, when the fitted amplitude of the phase-quadratic
term is compared with a prediction from the YORP model. And
even then, the comparison is often not simple, because the
model prediction for YORP is known to depend on unresolved
small-scale irregularities of the body shape. On several
occasions, one has to be satisfied with a factor of a few
difference accounting for the model inaccuracy.

Things are quite a bit more complex when the body tumbles.
First of all, it is not clear how to set the empirical approach from

above and apply it in this situation. At the same time, the direct
modeling approach is probably even less accurate than in the case
of rotation about the principal axis of the inertia tensor. Not only
does the worry about the role of unresolved small-scale
irregularities remain, but the present YORP model is restricted
to the zero thermal conductivity limit (see, e.g., Vokrouhlický
et al. 2007 for the numerical approach and Cicalò & Scheeres 2010
and Breiter et al. 2011 for analytical studies). The Yarkovsky
acceleration for tumblers was evaluated with thermal models (e.g.,
Vokrouhlický et al. 2005, 2015b), but in these cases, Pf and Pψ
were slightly tweaked to make them resonant (an approach we
cannot afford here). In this situation, we adopted the following
simple procedure.

4.3.1. Model Based on 2017 Data

We start with a set of models uniquely based on the most
reliable and accurate observations from the 2017 apparition. In
particular, we constructed 687 variants of the 2012 TC4
physical model (Section 3.1). They are all very similar because
they sample tight parameter variations, all resulting in
acceptable fits of the data. These represent (i) slightly modified
initial rotation parameters (Euler angles and their derivatives, as
well as the inertial space direction of the rotational angular
momentum vector) and (ii) slight shape variants of the body.
The initial epoch MJD 58,032.19 was common to all variant
models. Using these initial data and shape models, we
propagated all 687 clone realizations of 2012 TC4 backward
in time to the epoch MJD 56,209.88, characteristic of the 2012
October observations. We used our numerical approach
described above with both gravitational and radiation (YORP)
torques included. For the latter, we assumed an effective size
D= 10 m (corresponding to a sphere of the same volume of the
models) and bulk density ρ= 1.4 g cm−3. The abovementioned
rescaling rule, namely, invariance to ρD2, may allow us to
transform our results to other combinations of D and ρ values.
The evolutionary tracks of angular momentum L and energy E

secular changes due to the YORP torques mostly resemble those
from Figure 7. For some model variants, which were more
different from the nominal one, the slope of the overall secular
change in L and/or E was shallower or steeper. At the initial and
final epochs of our simulations, we determined Pf and Pψ periods
from a short numerical simulation of a free-top model. We also
verified that the Pψ values correspond exactly to those provided
by the analytical formula (Equation (A5)). Figure 8 shows our
results. The blue histograms are for the initial data, i.e., the 2017
October rotation state. Because the observations were numerous
and of good quality, the model variants differ only slightly, and
the Pf and Pψ distributions are tight (they also match those from
Figure 4). The red histograms in Figure 8 were determined from
the last epoch of our numerical runs and correspond to the
predicted rotation state of 2012 TC4 in 2012 October. We note
that both periods appreciably changed, as already anticipated from
the preliminary simulation shown in Figure 7. These Pf and Pψ
distributions are obviously less tight than the initial ones,
reflecting the different evolutionary tracks of the individual clone
variants. Our prime interest is to compare the red distribution in
Figure 8 (from simulations) to the red distributions in Figure 4
(from the 2012 observations; also highlighted with a dashed line
for the Pf period). First, we note that the match of the Pf periods
is surprisingly good. The mean value of 8.495minutes of the
observations corresponds rather well to the mean value of
8.497minutes of the simulated data, which have a comfortably
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large dispersion of 0.003minutes to overlap with the observed
data; in fact, the shift in Pf is even larger than required.
Interestingly, the comparison is not as good in the Pψ period. The
model-predicted value of 27.59± 0.02minutes (formal uncer-
tainty) is short to explain the observations, which provide, on
average, 27.87minutes. Still, the model indicates a significant
shift from the initial value of 27.5070± 0.0002minutes. Never-
theless, to reach the value from the 2012 observations, the shift
would need to be about 3.7 times larger. We do not know the
reason for this difference; in all likelihood, it is related to the
misbehavior in the rotational energy evolution (see above). We
suspect that the overly simple modeling of the YORP effect, such
as the surface thermal inertia and/or the unresolved small-scale
shape irregularities, plays an important role here (note that a factor
of 3 between the observations and model prediction was also seen
in the cases where YORP was detected for asteroids rotating about
the principal axis of the inertia tensor). The fact that some deeper
aspects of the model are not characterized well, as witnessed by
the opposite sign of the energy evolution, implies that our results
cannot be easily reconciled with the observations by a simple
rescaling of size D and bulk density ρ. We have verified that the
accumulated shifts in both the Pf and Pψ periods are proportional
to ρD2. Thus, the Pψ mismatch could be explained by assuming
that 2012 TC4ʼs size is;5.2 m, but this would produce a factor of
;3.7 inconsistency in the Pf period (making the modeled value
larger than observed). Instead, we believe that some missing
details of the YORP modeling, which result in different effects on
Pf and Pψ, are responsible for the difference.

4.3.2. Model Based on a Combination of 2012 and 2017 Data

For the sake of comparison, we also repeated our analysis
using models based on a combination of the observations in
2012 and 2017 (Section 3.3). Obviously, at each of these epochs,
we considered different parameters of the rotation state, but now
we enforce that the same shape model is used for both data sets.
This solution gives us an opportunity to consider two sets of

initial conditions for our simulation, in both 2012 and 2017, and
analyzes the predictions in the complementary epoch (integrating
the rotation model once backward in time and once forward
in time). Obviously, in all cases, our model includes the
gravitational and radiation torques, D= 10 m effective size, and
ρ= 1.4 g cm−3 bulk density, as before (needed for the
evaluation of the radiation torques).
We start with the case of the initial data in 2017 October and

backward-in-time integration. This is directly comparable with
the results above, when only observations in 2017 were used.
However, the models are slightly different in all aspects (initial
conditions and shape) because now the 2012 observations play
a role in their construction. The results are shown in Figure 9.
While slightly different than in Figure 8, the principal outcome
is the same: (i) a fairly satisfactory prediction for the Pf period
and (ii) a too-small change in the Pψ period.
We next consider the opposite case, namely, the initial

condition in 2012 October and model propagation forward in
time to 2017 October. The results are shown in Figure 10.
Obviously, here the red histograms (from the initial data in
2012 October) are more constrained than the blue histograms
(resulting from rotation state vectors propagated using our
model to 2017 October). The latter are more dispersed than the
red histograms in Figure 9 because the less numerous and
accurate observations in 2012 constrain the models with lower
accuracy. Nevertheless, the principal features of the solution
are still present: (i) the Pf period changed adequately for the
majority of cases, while (ii) the Pψ period changed too little.

4.3.3. In Summary

So, while we are not able to provide exact proof that the change
in Pf and Pψ periods between the 2012 and 2017 apparitions of
2012 TC4 is due to the YORP effect, we consider that the
difference between the observations and model predictions can be
accounted for by the model inaccuracy.

Figure 8. Distribution of periods Pf (left) and Pψ (right) for 687 models of 2012 TC4 from our numerical simulation containing both gravitational and radiation
(YORP) torques. The individual models sample the possible initial orientation of the angular momentum vector L in the inertial space, the orientation of the body
frame in the inertial space, and slight shape variants of the body. All models were constructed using the 2017 October observations; therefore, they are referred to the
common epoch MJD 58,032.19. Blue histograms are computed from these initial data, and they are identical to those in Figure 4. The red histograms correspond to the
rotation state of 2012 TC4 at MJD 56,209.88, the nominal epoch of the 2012 October observations (the mean Pf value from the observations is shown with a vertical
dashed line). Unlike in Figure 4, the 2012 data here were computed from the spin state vectors obtained from our numerical propagation of the 2012 TC4 rotation
starting in 2017 October.
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5. Discussion

In the previous section, we demonstrated that the observed
change of the rotation state of 2012 TC4 between the two
apparitions in 2012 and 2017 may possibly be explained as a
result of the YORP effect. We also showed that the effect of the
close encounter in 2012 October 12 on the rotation state was
minimal, at least in a rigid-body approximation. However, since
the YORP model—for the reasons explained—did not provide an
exact match of the observations, and even left unresolved the issue
of the observed energy change versus the model prediction, it is
both useful and necessary to also briefly analyze possible
alternative explanations. Here we discuss in some detail two
plausible processes. We leave aside a third possibility, notably a
mass loss from the surface of 2014 TC4 sometime in the period
between the two observation campaigns (or during the 2012 Earth
encounter). At first sight, this may look like an attractive
explanation because the fast rotation of this body implies formally

negative gravitational attraction at the surface. Therefore, it takes
only the effect of breaking cohesive bonds near the surface to
make part of the body escape. This event would have an influence
on rotational energy and angular momentum, both directly by the
quanta carried away by escaping mass and by a change of TC4ʼs
tensor of inertia. While possible, the caveats of this model are
twofold: (i) first, the observational data do not have the resolution
to provide conclusive information about a shape change of the
body (which may not be large for the effect to work at the one-
per-mile level), and, (ii) more importantly, in most scenarios, the
process would lead to a decrease of the rotational angular
momentum of TC4. Unlike in the two processes discussed below,
we are not able to simply estimate the likelihood of this process.

5.1. Internal Energy Dissipation Effects

The individual solutions of 2012 TC4ʼs rotation parameters
in 2012 and 2017 indicate that periods Pψ and Pf decreased in

Figure 9. Same as Figure 8 but for nearly 1000 variant shape models of 2012 TC4 constructed from a combination of the 2012 and 2017 data. Data at the initial epoch
MJD 58,032.19 (2017 October) are in blue. They have been propagated using our dynamical model to MJD 56,209.88 (2012 October), and the end states of these runs
served to compute Pf and Pψ, shown by the red histograms.

Figure 10. Same as Figure 9 (shape models constrained by both 2012 and 2017 observations), but now propagation was performed from the MJD 56,209.5 epoch in
2012 (red) to MJD 58,032.19 in 2017 (blue). The 2012 data constrain the rotation state solution less accurately and thus result in a larger scatter of the predicted
periods Pf and Pψ in 2017. The vertical dashed line shows the mean value of the Pf period from the 2017 October observations.

11

The Astronomical Journal, 161:112 (23pp), 2021 March Lee et al.



the latter epoch (Figure 4). In terms of an osculating
approximation with a free-top model, it implies that the
wobbling motion of the angular momentum vector L in the
body-fixed frame moved toward the fundamental mode of its
direction along the shortest axis of the inertia tensor. Note that
the trajectory of L in the body-fixed frame is uniquely
parameterized with p= 2BE/L2 (see, e.g., Appendix A and
Landau & Lifshitz 1969). In quantitative terms, the change
from the 2012 to 2017 state is expressed by δp;− 6.2× 10−3

(Table 2). The average rate over a δt; 5 yr interval would thus
be δp/δt;−3.9× 10−11 s−1.

In the YORP model presented above, the change in p was a
composition of changes in both the energy E and angular
momentum L. In fact, both E and L increased from 2012 to 2017
(Figure 7), but the composite effect was a decrease in p, in this
case, δp;− 4.6× 10−3, a similar value to that directly determined
from osculating L and E above. Other processes may lead to
approximately the same results by producing a different combina-
tion of energy and angular momentum changes. For instance, the
effects of material inelasticity directly result in energy dissipation
while preserving angular momentum. In this case, both E and p
decrease with the direct relation δE; (L2/2B)δp.

In order to explore whether the observed effect of
2012 TC4ʼs spin change could even be plausibly matched by
internal energy dissipation, we used the model presented by
Breiter et al. (2012). These authors assumed a fully triaxial
geometry of the body but restricted their analysis of energy
dissipation to the empirical description with a quality factor Q
(see an alternative model of Frouard & Efroimsky 2017, where
the authors described the energy dissipation using a Maxwell
viscous liquid but allowed only a biaxial shape of the body).
With these assumptions, they expressed the secular (i.e.,
wobbling cycle–averaged) rate of energy change in the
following form:
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where a is the semimajor axis of the body’s triaxial approx-
imation, ρ is its density, m is its mass, Ω= L/C, and Ψ is a rather
complicated factor depending on the nutation angle θnut (i.e., the
tilt between L and the shortest body axis; we find that θnut
oscillates between;16° and;46°, with a mean of;30°), body
axis ratios, and Lamé coefficients (see Breiter et al. 2012,
Section 4.3). Finally, μ is the Lamé shear modulus (rigidity) and
Q is the quality factor, empirically expressing the energy
dissipation per wobbling cycle. The product μQ has been
characteristic of studies involving energy dissipation in planetary
science since the pioneering work of Burns & Safronov (1973;
see, however, Prendergast 1958). While highly uncertain, the
typical values of this parameter for asteroids range between 1011

and 5× 1012 Pa (e.g., Harris 1994). Using δE/δt; (L2/2B)δp/δt
with the abovementioned δp/δt value, we can now use
Equation (1) to infer what values of μQ would be needed to
explain the change in 2012 TC4ʼs tumbling state in between the
2012 and 2017 close approaches. The remaining unknown
parameter is Ψ, which we estimate to be;(1−5)× 10−3.
Plugging this value into Equation (1), we find μQ ranging from
4× 105 to 4× 106 Pa. Remarkably, such values are 4–5 orders of
magnitude smaller than the usually adopted estimates. Therefore,
unless the energy dissipation by internal friction is extraordinarily

high (and thus the μQ value is very small), this process cannot
explain the observed rotation change of 2012 TC4. Note,
additionally, that we considered the derivation of the needed
μQ value within the energy dissipation model as a useful exercise
to match the energy change. Such a model, however, would not
explain the observed angular momentum change.

5.2. Impact by an Interplanetary Particle

Another alternative process to the radiation torques is that of an
impact by an interplanetary meteoroid. However, in the following,
we provide an argument that the likelihood of this happening at
the level needed to explain the 2012 TC4 data is again very small.
To that end, we used information from Bottke et al. (2020). They
determined the meteoroid flux on a small asteroid, (101955)
Bennu, using the state-of-the-art model MEM-3, allowing them to
predict the parameters of meteoroids impacting a target body
orbiting between Mercury and the asteroid belt (e.g., Moorhead
et al. 2020). Note that the orbit of Bennu is similar to 2012 TC4,
and we shall neglect the small flux differences that could result
from a small orbital dissimilarity of these two objects (if anything,
the flux would be slightly larger on Bennu because of its closer
orbit to the Sun). In their Figure 2, Bottke et al. (2020) showed
that 5mg interplanetary particles, approximately 2mm in size,
strike Bennu with a frequency of;60 yr–1 with a median impact
velocity of a little less than;30 km s−1. For 2012 TC4, we only
need to rescale this number to account for a much smaller size;
Bennu is an;500 m asteroid, while the characteristic size of
2012 TC4 is only;10 m. Therefore, the 5mg flux on 2012 TC4
is about;2.4× 10−2 yr–1. The chances of being hit by such a
particle in 5 yr is therefore merely;0.12. However, even if it had
happened, the dynamical effect would be minimum. Estimating
the change in rotational angular momentum L plainly by
δL/L; (m/M)(vimp/Rω), where m and M are the masses of the
particle and 2012 TC4, vimp is the impact velocity, and R and ω
are 2012 TC4ʼs characteristic radius and rotational frequency, we
would obtain δL/L; 2× 10−7. At least a 10,000 times larger
effect would be needed to approach the level observed for
2012 TC4, and this would require an impacting particle at least 20
times larger, i.e., 5 cm or more. Because MEM-3 incorporates the
flux dependence on mass from Grün et al. (1985), thus∝m−4/3,
the chances that 2012 TC4 was hit by a 5 cm meteoroid between
2012 and 2017 is only;6× 10−7. We thus conclude that the
chances that the observed effect was produced by an impact of an
interplanetary particle are negligibly small and may be discarded.

6. Conclusions

The photometric data of 2012 TC4 collected during its two
close approaches to Earth in 2012 and 2017 clearly show that
this asteroid is in an excited rotation state. Fourier analysis of
the 2012 and 2017 data sets finds two unique periods in the
signal, and these two periods are significantly different, which
means that the rotation state of TC4 must have changed slowly
between 2012 and 2017 or suddenly during the 2012 flyby (the
2017 flyby was after the photometric observations). This
detection of period change is robust and not model-dependent.
The periods detected by Fourier analysis were used to constrain

the physical rotation and precession periods of the tumbling
rotation state. We found only one physically acceptable solution
that fits the photometric data, namely, the free-tumbling situation
about the shortest axis of the inertia tensor (SAM mode). When
modeling light-curve sets from 2012 and 2017 separately, the
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shape models are similar, with about the same direction of the
angular momentum vector, but the rotation and precession periods
are significantly different, and there is no combination of
parameters that would provide an acceptable fit to the whole data
set. The change of the physical periods of tumbling is consistent
with the change revealed by Fourier analysis. Including this period
change in our model, we were able to fit all available photometry
from both apparitions. The difference in periods for the 2012 and
2017 apparitions is much larger than any possible random or
model error, so this model-based detection of period change is
significant and robust.

Having detected the period change and created a physical
model of TC4, we looked for a possible explanation for this
change. First, we show that the effect of the close encounter in
2012 on the rotation state was negligibly small compared to the
detected change of the rotation state. Second, we show that a
plausible explanation is the YORP effect; the numerical
simulation of the rotation dynamics based on our shape model
of TC4 gives a general agreement with the observed period
change. Although the match is not ideal, we believe that the
discrepancy is caused by simplification in our YORP model
and uncertainties in the shape model and other parameters. We
also show that the other two possible mechanisms that could
affect the rotation state—namely, the internal energy dissipa-
tion and impacts of interplanetary particles—are too small to
cause the measured effect, so YORP remains the only plausible
explanation of the observed change of the rotation state of
2012 TC4. Accepting this explanation, this is the first detection
of YORP acting on a tumbling asteroid.
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Appendix A
Rotational Dynamics of 2012 TC4

In this appendix, we summarize the variables and mathe-
matical approach used for propagation of the 2012 TC4 rotation
state between the 2012 and 2017 epochs (Section 4). This is
obviously a classical piece of mechanics that can be found in
many textbooks (e.g., Landau & Lifshitz 1969; Goldstein
1980). For that reason, we keep our description to a very
minimum.

The kinematical part of the problem describes the orientation of
the asteroid in the inertial frame. For simplicity, we assume the
asteroid is a rigid body, allowing us to unambiguously define a
proper body-fixed frame. The easiest choice has (i) an origin in the
asteroid’s center of mass and (ii) axes coinciding with the principal
axes of the inertia tensor I (therefore, I= diag(A, B, C), with
A� B� C). The transformation between the inertial and body-
fixed frames is conventionally parameterized by a set of Euler
angles, most often the 3–1–3 sequence of the precession angle f,
nutation angle θ, and angle of proper rotation ψ. However, instead
of the three Euler angles (f, θ, ψ), here we use the Rodrigues–
Hamilton parameters λ= (λ0, λ1, λ2, λ3) (e.g., Whittaker
1917). Their relation to the Euler angles is given by (i)⎡⎣ ⎤⎦( )l l y f+ = +qı cos exp ı

0 3 2 2
and (ii) l l+ = qı ı sin2 1 2⎡⎣ ⎤⎦( )y f-exp ı

2
(ı is a complex unit). One can easily verify a

constraint: l l l l+ + + = 10
2

1
2

2
2

3
2 (in our numerical runs,

satisfied with�10−13 accuracy). The sacrifice of using four instead
of three parameters pays off with at least two advantages. First, the
parameterization by Euler angles is unstable when in or near the

q =sin 0 state. No such problem occurs when using the
Rodrigues–Hamilton parameters, which provide a uniformly
nonsingular description of the rotation. Second, Euler-angle
parameterization necessarily requires the use of trigonometric
functions. Instead, manipulation with the Rodrigues–Hamilton
parameters is limited to simple algebraic functions, in fact,
quadratic at maximum, as shown below in Equations (A1) and
(A2). For that reason, the use of the four Rodrigues–Hamilton
parameters does not even slow down the computations in a
noticeable way.
The rotation matrix A needed for the vector transformation

from the inertial frame to the body-fixed frame is a simple
quadratic form of λ, namely,

The inverse transformation is represented by a transposed
matrix AT. The asteroid’s rotation is represented with the
angular velocity vector ω, whose components in the body-fixed
frame are (ω1, ω2, ω3). Their relation to the time derivatives of
the Rodrigues–Hamilton parameters is simply

· ( )l
= lP

d

dt

1

2
, A2

where

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

w w w
w w w
w w w
w w w

=

- - -
-

-
-

P

0 , , ,
, 0 , ,
, , 0 ,
, , , 0

. A3

1 2 3

1 3 2

2 3 1

3 2 1

This explicitly linear differential equation for λ cannot be
solved in a trivial way because ( )w=P P , and the angular
momentum vector is a time-dependent variable. The anti-
symmetry of P implies conservation of the abovementioned
quadratic constraint of λ.

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

( ) ( )
( ) ( )
( ) ( )

( )
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A
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0
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2
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2

2
2

1
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3
2
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2

3
2

1
2
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2
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The dynamical part of the problem expresses Newton’s
principle that a change of the rotational (intrinsic) angular
momentum L= I · ω is given by the applied torque M. The
tradition is to state this rule in the body-fixed frame, where I is
constant and even diagonal in our choice of axes, such that

( )+ w ´ =
L

L M
d

dt
. A4

Equations (A2) and (A4) define the problem of the asteroid’s
rotation in our set of seven parameters (λ, ω). Once the torques
M are specified, we numerically integrate this system of
differential equations with the initial data determined from the
set of observations (either forward in time, if the 2012 data are
used, or backward in time, if the 2017 data are used). We use
the Burlish–Stoer integration scheme with tightly controlled
accuracy. We also note another useful quantity, namely, the
energy of rotational motion about the center given by

·w= LE 1

2
. In the classical problem of a free top (i.e.,

M= 0), both E and L in the inertial frame are conserved. In the
body-fixed frame, only L= |L| is constant. Nevertheless,
conservation of E and L (together with the principal values
of the inertia tensor A, B, and C) uniquely determines the
wobbling trajectory of L in the body-fixed frame (e.g., Landau
& Lifshitz 1969; Deprit & Elipe 1993). There are two options
for this motion: (i) SAM, when L circulates about the +z or−z
body axis, or (ii) LAM, when L circulates about the +x or−x
body axis. A useful discriminator of the two is yet another
conserved and nondimensional quantity in the free-top
problem, namely, p= 2BE/L2: (i) SAM is characterized by
p values in between β= B/C and 1, while (ii) LAM is
characterized by p values in between 1 and α= B/A. Note that
Δ= B/p plays an important role in the description of the free-
top problem using Hamiltonian tools (e.g., Deprit & Elipe 1993;
Breiter et al. 2011). The free-top motion of L in the body-fixed
frame is easily integrable using Jacobi elliptic functions. When
plugged into the kinematical Equation (A3), one can also
obtain a solution for λ or the Euler angles (f, θ, ψ) (e.g.,
Landau & Lifshitz 1969). Those of ψ and θ are strictly periodic
with a period of (SAM relevant for 2012 TC4 assumed here)

( )
( )( )

( )b
b b a

=
- -

yP
C

L

K k

p

4

1
, A5

where K(k) is a complete elliptic integral of the first kind, with
the modulus k given by

( )( )
( )( )

( )b a b
b b a

=
- -

- -
k

p

p

1

1
A62

(the motion of θ has a periodicity of Pψ/2). The motion of the
precession angle f is not periodic. Nevertheless, a fully
analytical solution still exists and is composed of two parts, the
first of which has periodicity Pψ, and the second has another
periodicity, generally incommensurable with Pψ (e.g., Landau
& Lifshitz 1969). Yet it is both practical and conventional
to define an approximate periodicity Pf of f. We use the
definition of Kaasalainen (2001, Equation (A.11)), namely,
numerically determining an advance in the f angle over the Pψ

period (this, in principle, averages out the contribution of the
Pψ periodic part in the f solution). When weak torques are

applied, the free-top solution still represents a very useful
(osculating) template with all above-discussed variables, such
as E, L, p, Pψ, or Pf, adiabatically changing in time.
Finally, we discuss the torques used in our analysis. The first

class is due to the gravitational tidal fields of the Sun and Earth.
Assume a point-mass source M specified in the body-fixed
frame of the asteroid with a position vector R. Using the
quadrupole part of the exterior perturber tidal field, we have
(e.g., Fitzpatrick 1970; Takahashi et al. 2013)

( · ) ( )= ´M R I R
GM

R

3
. A7grav 5

We neglect the formally dipole part of the tidal field, which
could only occur if the true center of mass of the asteroid is
slightly displaced from the assumed location (determined by
using the assumption of homogeneous density; see, e.g.,
Takahashi et al. 2013). Note that the position of all bodies, the
asteroid, the Sun, and the Earth, are primarily determined using
the numerical integration of the orbital problem in the inertial
frame (or, actually, the displaced heliocentric frame). In our case,
we numerically integrated planetary orbits, including Earth, and
2012 TC4 in the heliocentric system by taking the initial data
from the NEODyS website (https://newton.spacedys.com/
neodys/). We output the necessary positions every 170 s,
enough for the purpose of the 2012 TC4ʼs rotation dynamics.
We also compared our solution with that available at the JPL
Horizons system (http://ssd.jpl.nasa.gov/?horizons) and found
a very good correspondence with tiny differences, not mean-
ingful for our application. The relative position R in
Equation (A7) is determined by (i) the difference of the
corresponding bodies in our orbital solution and (ii) transforma-
tion to the body-fixed frame. As a result, ( )l=M M t,grav grav .
The steep dependence Mgrav∝ R−3 implies that the Earth effect
is nonnegligible only during the close encounters with this planet
(e.g., Figure 5).
Our analysis also includes the radiation torque known as the

YORP effect (e.g., Bottke et al. 2006; Vokrouhlický et al.
2015a). Because of the tumbling rotation state of 2012 TC4, we
resort to the simplest variant, namely, a limit of zero thermal
inertia (the effects of finite thermal inertia were studied only for
objects rotating about the shortest axis of the inertia tensor so
far; e.g., Čapek & Vokrouhlický 2004; Golubov & Krugly
2012). In this approximation, the radiation torque is given by
(e.g., Rubincam 2000; Vokrouhlický & Čapek 2002)

[ · ]( · ) ( )ò= - ´M n n n n r S
F

c
H d

2

3
, A8YORP 0 0

where F is the solar radiation flux at the location of the asteroid,
and c is the light velocity. The integral in Equation (A8) is
performed over the surface of the body characterized by an
ensemble of outward-oriented surface elements dS= n dS,
where n is the normal to the surface, and r is the position of the
surface element with respect to the origin of the body-fixed
frame. The unit vector of the solar position in the body-fixed
frame is denoted with n0, and H[x] is the Heaviside step
function (its presence in the integrand of Equation (A8) implies
that a nonzero contribution to the radiation torque is provided
by surface units for which the Sun is above local horizon). In
fact, our code includes an even more complex feature of self-
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shadowing of surface units, but this is not active in the case of
2012 TC4, whose resolved shape is convex. The factor 2/3 on
the right-hand side of Equation (A8) is due to the assumption of
Lambertian reradiation from the surface. More complicated
assumptions about the directionality of the thermally emitted
radiation from the surface, such as the beaming effects (e.g.,
Rozitis & Green 2012), are presently not implemented in the
code. The light-curve inversion obviously allows only a finite
accuracy in the shape determination of the body, typically a
convex polyhedron with little more than 1000 surface facets. It
is already known that this fact is an obstacle to an accurate
evaluation of the YORP torque, which may sensitively depend
on smaller-scale surface irregularities not resolved by our shape
model. The formal integration in Equation (A8) is therefore
represented with a summation over the surface units of the

resolved shape model. We use algebra from Dobrovolskis
(1996) to determine all necessary variables. This also means we
assume a constant density distribution in the body.

Appendix B
Light-curve Fits

Here we show how the model fits the data. In all plots below
(Figures B1–B7), blue dots are individual photometric
measurements, and the red light curve is what the best-fit
model from Section 3.3 predicts. The relative brightness on the
vertical axis is scaled to have a mean value of 1. The ticks on
the horizontal axis are 10 minutes apart, and the scale is the
same for all plots. More information about light curves can be
found in Table 1.

15

The Astronomical Journal, 161:112 (23pp), 2021 March Lee et al.



Figure B1. Light-curve fits for data in 2012. The photometric light-curve data shown in this figure are available as “data behind the figure.”

(The data used to create this figure are available.)
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Figure B2. Light-curve fits for data in 2012. The photometric light-curve data shown in this figure are available as “data behind the figure.”

(The data used to create this figure are available.)
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Figure B3. Light-curve fits for data in 2017. The photometric light-curve data shown in this figure are available as “data behind the figure.”

(The data used to create this figure are available.)
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Figure B4. Light-curve fits for data in 2017. The photometric light-curve data shown in this figure are available as “data behind the figure.”

(The data used to create this figure are available.)
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Figure B5. Light-curve fits for data in 2017. The photometric light-curve data shown in this figure are available as “data behind the figure.”

(The data used to create this figure are available.)
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Figure B6. Light-curve fits for data in 2017. The photometric light-curve data shown in this figure are available as “data behind the figure.”

(The data used to create this figure are available.)
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