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Abstract

Modified Newtonian dynamics (MOND), which postulates a breakdown of Newton's laws of gravity/dynamics
below some critical acceleration threshold, can explain many otherwise puzzling observational phenomena on
galactic scales. MOND competes with the hypothesis of dark matter, which successfully explains the cosmic
microwave background and large-scale structure. Here we provide the first solar system test of MOND that probes
the subcritical acceleration regime. Using the Bekenstein–Milgrom “aquadratic Lagrangian” (or AQUAL)
formulation, we simulate the evolution of myriads of test particles (planetesimals or comets) born in the trans-
Neptunian region and scattered by the giant planets over the lifetime of the Sun to heliocentric distances of
102–105 au. We include the effects of the Galactic tidal field and passing stars. While Newtonian simulations
reproduce the distribution of binding energies of long-period and Oort-cloud comets detectable from Earth,
MOND-based simulations do not. This conclusion is robust to plausible changes in the migration history of the
planets, the migration history of the Sun, the MOND transition function, effects of the Sun's birth cluster, and the
fading properties of long-period comets. For the most popular version of AQUAL, characterized by a gradual
transition between the Newtonian and MOND regimes, our MOND-based simulations also fail to reproduce the
orbital distribution of trans-Neptunian objects in the detached disk (perihelion q> 38 au). Our results do not rule
out some MOND theories more elaborate than AQUAL, in which non-Newtonian effects are screened on small
spatial scales, at small masses, or in external gravitational fields comparable in strength to the critical acceleration.

Unified Astronomy Thesaurus concepts: Gravitation (661); Non-standard theories of gravity (1118); Modified
Newtonian dynamics (1069); Trans-Neptunian objects (1705); Detached objects (376); Oort cloud (1157); Comet
dynamics (2213)

1. Introduction

It has been forty years since the modified Newtonian
dynamics (MOND) paradigm was introduced by Milgrom
(1983a).5 MOND was primarily developed as an alternative to
the dark matter hypothesis in galactic and extragalactic
astronomy (see, e.g., reviews by Famaey & McGaugh 2012
and Banik & Zhao 2022). At the same time, it is generally
accepted in physics that the validity of any theory stems in part
from its universality. For this reason, astronomers have sought
to test MOND on smaller scales, and in particular in the solar
system, where dark matter is absent, observations can be done
with much higher accuracy, and the circumstances are often
more controlled than in galaxies. However, this task is not
straightforward since the modifications of Newtonian dynamics
(with appropriate relativistic corrections; e.g., Will 2014)
originating from MOND arise in the regime of very small
accelerations (�10−10 m s−2). These are much smaller than the
accelerations in most parts of the solar system that are directly
accessible to observations (for comparison, the heliocentric
acceleration of the Earth is 6× 10−3 m s−2).

A promising option for testing MOND in the solar system is
to look at the remote trans-Neptunian region, beyond a
heliocentric distance of several thousand au, where MOND
predicts an order-unity breakdown of the Newtonian descrip-
tion.6 Unfortunately, there are no solar system objects that can
currently be detected at these distances, and there is little hope
of improvement even from the next-generation sky surveys
scheduled for the next decade. Fortunately, there is also the
possibility of testing MOND in the solar system through
observations of long-period comets (LPCs) and distant trans-
Neptunian objects (TNOs). For sake of simplicity, we follow
common practice and define LPCs as all comets with
heliocentric orbital periods longer than 200 yr, though we shall
be primarily interested in the subclass with much longer
periods (Sections 3.5 and 4.2). For the distant TNOs, objects
orbiting beyond Neptune, we specify our adopted criteria in
Sections 3.5 and 4.1.
LPCs are believed to be planetesimals that were formed

mainly in a massive disk just exterior to the planet Neptune at
the birth of the solar system 4.5 Gyr ago (a smaller fraction of
them may also originate from the zone between the orbits
of the giant planets). Following Neptune’s outward radial
migration early in the history of the solar system (e.g.,
Nesvorný 2018), most of the primordial trans-Neptunian disk
was ejected from the solar system. However, a small fraction
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5 For historical and philosophical perspectives, see Sanders (2015), Milgrom
(2020), and Duerr & Wolf (2023).

6 For the sake of completeness, we mention the work of Bekenstein &
Magueijo (2006), who discuss the emergence of MOND effects in spatially
limited regions of the inner solar system near saddle points of the gravitational
potential (see also Milgrom 2012; Penner 2020a).

1

https://orcid.org/0000-0002-6034-5452
https://orcid.org/0000-0002-6034-5452
https://orcid.org/0000-0002-6034-5452
https://orcid.org/0000-0002-4547-4301
https://orcid.org/0000-0002-4547-4301
https://orcid.org/0000-0002-4547-4301
https://orcid.org/0000-0002-0278-7180
https://orcid.org/0000-0002-0278-7180
https://orcid.org/0000-0002-0278-7180
mailto:vokrouhl@cesnet.cz
http://astrothesaurus.org/uat/661
http://astrothesaurus.org/uat/1118
http://astrothesaurus.org/uat/1069
http://astrothesaurus.org/uat/1069
http://astrothesaurus.org/uat/1705
http://astrothesaurus.org/uat/376
http://astrothesaurus.org/uat/1157
http://astrothesaurus.org/uat/2213
http://astrothesaurus.org/uat/2213
https://doi.org/10.3847/1538-4357/ad40a3
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad40a3&domain=pdf&date_stamp=2024-06-10
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad40a3&domain=pdf&date_stamp=2024-06-10
http://creativecommons.org/licenses/by/4.0/


was gradually transported to orbits at very large heliocentric
distances by the combined effects of gravitational scattering by
the outer planets, the smooth Galactic tidal field, and direct
gravitational tugs from stars passing through the solar system
neighborhood (see, e.g., Vokrouhlický et al. 2019). This
reservoir of planetesimals is stable but leaky on billion-year
timescales, and the leak produces the population of LPCs
observed today, which set off on their deadly journey to visit
the inner parts of the solar system a few million years ago. The
LPCs that visit the inner solar system directly from this
reservoir retain evidence of their original heliocentric distance
in their orbits. In particular, the distribution of their binding
energies, inversely proportional to the orbital semimajor axis
before they enter the region of the giant planets, shows a
striking peak in the range 0 to ;0.75× 10−4 au−1 (e.g.,
Królikowska & Dybczyński 2020). This is the so-called Oort
peak, whose discovery and interpretation by Oort (1950) was
one of the landmarks in cometary science in the past century.
LPCs may return to the inner parts of the solar system a few
more times before they are ejected from the solar system by
planetary encounters or fade to invisibility, producing a distinct
tail in their energy distribution at semimajor axes smaller than
those in the Oort peak.

Seventy years ago only a handful of LPCs had accurate
orbits, just enough to allow Oort to formulate his hypothesis,
but the situation has changed dramatically over the intervening
decades. Hundreds of LPCs with well-determined orbits are
known today. Matching the distribution of LPC orbits is
therefore a challenging task for any theory that aims at a
description of their dynamical evolution. Because LPCs spend
most of their lifetime roaming in the weak-field regime at the
outskirts of the solar system, they are promising candidates to
look for MONDian effects. While this insight is not new, it has
not been properly explored. This is because it requires a
significant effort to accurately model MONDian dynamics
within a properly formulated simulation of the orbital evolution
of LPCs on billion-year timescales. The primary goal of this
paper is to carry out this modeling. Our methodology enables
any combination of MONDian parameters to be tested through
confrontation with the LPC orbital data. It can also be used to
test any variant of MOND, although we restrict our attention in
this paper to the “aquadratic Lagrangian” (AQUAL) formula-
tion of the theory (Bekenstein & Milgrom 1984).

A second method for testing MOND is based on the
distribution of orbits of TNOs. This is because some planetesimals
that were born in the trans-Neptunian disk could have been
transferred by the nonspherical components of the MOND
potential to stable orbits with semimajor axes of a few hundred
au and perihelion distances >38 au (well outside Neptune’s orbit
at 30 au, where the orbits are unaffected by gravitational
interactions with Neptune and the other planets). A significant
number of objects have been found on such orbits (e.g.,
Bernardinelli et al. 2022), with many more promised by upcoming
survey programs; this population is known as the detached disk
(e.g., Gladman et al. 2008; Paučo & Klačka 2016; Paučo 2017).
While there are other possibilities for populating the detached disk
(e.g., Brasser et al. 2006; Gladman & Chan 2006; Kaib &
Quinn 2008; Kaib et al. 2011; Silsbee & Tremaine 2018; Batygin
et al. 2019), our simulations can be used to test whether MOND
already over-populates the detached disk compared to the
currently available data (Section 4.1).

Before we set out on these tasks, we briefly overview
previous studies that had a similar goal in mind.
Attempts to test the weak-acceleration domain of MOND in

the solar system. The pioneering work of Milgrom (1983a),
while primarily oriented toward galactic applications of the
MOND hypothesis, mentions LPC dynamics as a test arena for
MOND. The author suggests that comets that appear to come
from the Oort cloud (semimajor axis ∼30,000 au) actually
come from the MOND characteristic distance rM; 7000 au
(Equation (3)). This brief discussion seeded the idea of LPCs as
an important population for testing MOND.
In MONDian dynamics, in contrast to Newtonian dynamics,

the solar system’s acceleration in the gravitational field of the
Milky Way affects the gravitational potential (i.e., the strong
equivalence principle is violated). This is the so-called external
field effect (EFE), briefly mentioned already in Milgrom
(1983a), rigorously described by Bekenstein & Milgrom
(1984), and applied to the inner solar system by Milgrom
(2009). The latter work mostly considers the imprint of the
EFE on the motion of the planets, but the author returns to his
call for testing MOND with comet dynamics in the last
paragraph of Section 7.
Iorio (2010) computed the MOND acceleration field in the

Oort cloud region and integrated several typical comet orbits.
He found that the orbits were quite different from Newtonian
orbits and suggested that further investigations might reveal
changes in the structure of the Oort cloud, a suggestion that is
confirmed by the present paper.
Maquet & Pierret (2015) used a quadrupole approximation for

the gravitational potential due to MOND (see Equation (29)),
which is valid for sufficiently small heliocentric distances, and
computed its effects on the orbits of three comets with
semimajor axes 50 au. They concluded that the effects of
MOND could rival those of nongravitational effects due to
outgassing. However, no significant test of the validity of
MOND could be made with this analysis, mostly because the
semimajor axes of the comets considered are much smaller than
the MOND characteristic radius rM.
Paučo & Klačka (2016) discussed the structure of the Oort

cloud in MONDian dynamics (see also a similar work by
Penner 2020b). They considered a group of observed LPCs and
integrated them numerically backward in time for couple of
heliocentric revolutions (tens of millions of years at maximum)
to infer the parameters of the MONDian Oort cloud from which
they came. We have several comments. (i) This is a much more
limited investigation than the one in the present paper, in which
we follow comets that are initially formed in a heliocentric
disk, scattered by giant planets into the forming Oort cloud, and
subsequently returned back to the inner parts of the solar
system. (ii) Paučo & Klačka (2016) mostly used a MOND
transition function (Equation (1)) that is in conflict with
planetary ephemerides (Equation (8) with 1

2
a = and Figure 1;

see Hees et al. 2016, who argue that α� 2 is required). Upon
choosing a transition function that meets the planetary
constraints, they concluded that the structure of the Oort cloud
would be similar to that produced by the Newtonian model (our
more detailed analysis, however, allows us to identify
significant differences; see Section 4.2). (iii) However, Paučo
& Klačka (2016) pointed out an interesting and novel aspect of
MOND, namely the possibility that the nonspherical comp-
onent of the MONDian potential arising from the EFE could
decouple objects from the Neptunian scattered disk (SD) onto
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detached orbits; that is, orbits with perihelia q> 38 au that are
large enough to be immune to planetary perturbations. The
ability of MOND to store objects in this way was further
described in Paučo (2017). This effect is the basis for one of
our tests of MOND, and several results drawn from these
papers agree with ours (see Section 4.1).

We also note a recent paper by Brown & Mathur (2023),
who describe in more detail how MOND can populate the
detached disk from the SD. In particular, they promote the idea
that MOND not only injects planetesimals to the detached
population but at the same time makes many of these orbits
apsidally aligned with the direction to the Galactic center.
Previously, this nonaxisymmetry of the orbital architecture of
distant TNOs has been taken as a sign of an unknown distant
planet (see the review by Batygin et al. 2019). We believe that
this interesting and novel evidence of MOND is flawed, and
that the conclusions of Brown & Mathur (2023) are incorrect,
for several reasons. (i) The transition function these authors use
is too slow to be consistent with constraints from planetary
ephemerides, falling between the μ1 and μ2 cases in
Equation (4). While admitting this fact, Brown & Mathur
(2023) argue that their general conclusions will still hold for
sharper transition functions that satisfy solar system con-
straints. However, they do not support this claim by any
numerical experiments, relying instead on an incomplete
analysis of the secular quadrupole model. The secular
timescales become very long for sharp transition functions,
such that the comparably slow motion of the solar system about
the Galactic center would erase the desired orbital confinement.
(ii) The conclusions of Brown & Mathur (2023) are based on
the existence of fixed points in the secular Hamiltonian. With
the lack of an obvious dissipation mechanism, a fixed point
(even if surrounded by a macroscopic stable region) would not
attract the majority of orbits. (iii) Apsidal alignment was not
present in our numerical simulations of TNOs (Section 4.1).

Migaszewski (2023) considers a similar problem to Brown &
Mathur (2023), but calculates the MONDian potential with

more care. Instead of using the quadrupole potential, he finds
the MONDian potential (using the QUMOND formulation; see
Section 2.2) on a large heliocentric grid. The external Galactic
field is modeled simply as that of a point mass at the Galactic
center. He demonstrates by backward integrations that the EFE
can populate the detached disk. However, his conclusions are
compromised somewhat by his choice of a gradual transition
function (n= 2 in Equation (4)), which is inconsistent with
planetary ephemerides (see Section 2.2.2). Also, his backward
integration of the orbits of a few distant TNOs does not
illuminate the fundamental result we obtain from our forward
modeling of a large statistical sample of orbits (Section 4.1): If
this variant of MOND were correct, current sky surveys would
have detected too many TNOs with the wrong distribution of
orbital elements.
The strong-acceleration domain tests of MOND in the solar

system. The properties of MOND—or more precisely the nature
of the transition function between the strong- and weak-field
regimes in MOND—can be quantitatively constrained using
planetary ephemerides, even though all of the planets have
accelerations at least 5× 104 times larger than the MOND
acceleration scale a0 (Equation (2)). This is because the EFE
can penetrate deep into the strong-field regime. This possibility
was first pointed out by Milgrom (2009), who realized that the
EFE can induce a significant contribution to the precession rate
of the longitude of perihelion of the planets. Thanks to radar
ranging and a multitude of spacecraft missions, planetary
ephemerides have become extremely accurate over the past
several decades. Thus, the analyses of Blanchet & Novak
(2011), Hees et al. (2014), and Fienga et al. (2018), whose
results will be reviewed in Section 2.1, have strongly
constrained the behavior of the transition function in the
strong-field regime.
The paper is organized as follows. In Section 2, we

summarize our description of MOND and the EFE, paying
particular attention to its dependence on the choice of the
transition function and the magnitude of the external

Figure 1. Left panel: the family of MOND transition functions μn(x) (Equation (4)) with n = 1, n = 2 (blue curves), and n = 8, n = 12, and n = 20 (red curves); the
abscissa is the Newtonian acceleration gN in units of a0, the ordinate is μn(g/a0) = 1/νn(gN/a0) (see Equation (5)). The upper abscissa translates the Newtonian
acceleration into heliocentric distance r in au; the vertical dashed line marks the MOND scale where gN = a0 for the nominal value of a0 = 1.2 × 10−10 m s−2, the
gray rectangle shows the uncertainty of a0 based on values obtained in Hees et al. (2016). The arrows indicate the location of the outer Oort cloud (15,000–100,000 au)
and the inner Oort cloud (2000–15,000 au). Right panel: difference between the MOND and Newtonian accelerations δg = g − gN scaled by a0, as a function of gN/
a0. The red curves are for five examples of the μn(x) family of MOND transition functions: n = 1, n = 2, n = 5, n = 10, and n = 20 (see the labels). The blue dotted
lines are for an alternative class of transition functions y y y1 exp 1 1 2 exp1 2( ) [ ( )] ( ) ( )n a= - - + - -a

a a a- with α = 1/2 and α = 1,K,4 (blue labels); the
relation between ν(y) and μ(x) is given by Equation (5). The cases α � 2 were found by Hees et al. (2016) to satisfy observational tests from galactic rotation curves
and planetary ephemerides. The black line is gN/a0 itself for reference. The upper abscissa translates gN/a0 into heliocentric distance r in au. Beyond ;20,000 au, the
non-Newtonian acceleration δg exceeds gN by at least a factor of 2 for all transition functions shown.
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acceleration. Our main focus is on a thorough description of the
gravitational field experienced by LPCs, but we also develop an
approximate model for the tidal field of the Galaxy as seen in
the solar system. In Section 3, we describe our numerical model
for the orbital evolution of planetesimals that are born in the
trans-Neptunian region and scattered by the giant planets onto
extreme heliocentric orbits, some of which return to the inner
solar system as LPCs. We also describe the observational data
on LPCs that will be used to test the model. In Section 4, we
report the results of our simulations and compare them with
observations of both TNOs and LPCs. Conclusions from our
work are presented in Section 5.

2. Theory

We review the basic concepts of MOND in Section 2.1. In
this paper, following most of its up-to-date models applied to
astronomical systems, we adopt the modified gravity approach
to MOND (see, e.g., Bekenstein & Milgrom 1984; Famaey &
McGaugh 2012; and Section 5 for further discussion). This
leaves aside the modified-inertia variant of MOND. In
Section 2.2, we use the Bekenstein–Milgrom AQUAL
approach to model the EFE on the dynamics of planetesimals
scattered by the giant planets to semimajor axes far beyond
Neptune.

2.1. Phenomenological Origins of MOND

In a nonrelativistic MOND scheme, the radial heliocentric
acceleration gN=GM/r2 of an isolated, spherically symmetric
source like the Sun is replaced with its effective or actual value,
g, determined by the relation (e.g., Milgrom 1983a; Bekenstein
& Milgrom 1984)

g a g g . 10 N( ) ( )m =

The theory does not provide a hint of what should be (i) the
fundamental acceleration scale a0, and (ii) the shape of the
transition function μ(x). One only knows that in the strong-field
(large acceleration) limit x? 1, μ(x)→ 1 is required to restore
the well-tested Newtonian description. If in the weak-field
(small acceleration) limit x= 1, we have μ(x)→ x+O(x) (as is
usually assumed), one opens the interesting door to explain the
flat rotation curves of galaxies without any need for dark
matter. This is because for μ(x)= x we have g g aN 0= , and
thus the Keplerian circular velocity v about a center with
Gaussian constant GM is v GMa0

1 4( )= , independent of
distance r, thereby explaining the asymptotically flat rotation
curves of disk galaxies. At the same time, the correlation
v4∝M between the asymptotic constant rotation velocity v in
galaxies and their baryonic mass content M explains the
empirically established Tully–Fisher law for disk galaxies. The
observed normalization of the Tully–Fisher law dictates the
acceleration scale a0, resulting in

a 1.2 10 m s 20
10 2 ( ) ´ - -

(e.g., Milgrom 1983b, 1983c; Famaey & McGaugh 2012), the
value we shall use throughout this paper. There is a possible
connection to cosmology since this value of a0 of the same order
of magnitude as cH= 6.80× 10−10 ms−2 (H/70 km s−1Mpc−1),
where c is the speed of light and H the Hubble constant. This
relation can be further developed in a fully relativistic approach to

MOND that allows the construction of cosmological models and
has the nonrelativistic MOND theory (Section 2.2) as a limiting
case (see, e.g., Bekenstein 2004; Skordis 2009; Famaey &
McGaugh 2012; Milgrom 2015). Updated fits to astronomical
observations, such as galactic rotation curves, have led to a0
values within the range 0.7× 10−10 m s−2–1.6× 10−10 m s−2,
depending on the choice of transition function (e.g., Hees et al.
2016).
In Equation (1) the relation between the Newtonian

acceleration gN and the actual acceleration g is algebraic, so
it is relatively simple to solve for g. This approach is
oversimplified and can only be applied to systems with a high
degree of symmetry (e.g., spherical or slab). Nevertheless,
Equation (1) introduces the useful concept of the MOND scale,
rM, in the context of solar system studies. This is where
gN= a0, or

⎜ ⎟
⎛
⎝

⎞
⎠

r
GM

a a
7030 au

1.2 10 m s
. 3M

0

10 2

0

1 2

( )= =
´ - -

Thus, MOND begins to influence the dynamics strongly at a
few thousand au from the Sun. This is the solar system
backyard that only LPCs visit. Since r aM 0

1 2µ - , the effects of
MOND on the outer solar system do not depend strongly on the
choice of a0. For instance, changing a0 within the above-
mentioned range would make rM span values from 6290 to
8610 au, and this has no effect on our conclusions (Figure 1).
Once the acceleration scale a0 has been set, the MOND

practitioner still needs to specify the transition or interpolating
function μ(x) in Equation (1). The literature offers many
suggestions that satisfy the abovementioned asymptotic behavior
of μ(x) at x= 1 and x? 1 (see, e.g., Famaey & McGaugh 2012).
Here we consider a family of transition functions:

x
x

x1
, 4n n n1

( )
( )

( )m =
+

parametrized by a positive integer n. One often needs to
express g as a function of gN from Equation (1); or, in other
words, to invert

x x y x y y . 5( ) ( ) ( )m n=  =

The νn(y) functions that correspond to μn(x) in Equation (4)
read

⎡
⎣⎢

⎤
⎦⎥

y
y1 1 4

2
. 6n

n n1 2 1

( ) ( ) ( )n =
+ + -

In the weak-field limit (y= 1) one has νn(y)→ y−1/2, such that
the gravitational acceleration g g aN 0 , as required to have
asymptotically constant rotation velocities in galaxies. In the
strong-field limit (y? 1), the non-Newtonian acceleration
g g g g y 1nN N [ ( ) ]d n= - = - behaves as

⎜ ⎟
⎛
⎝

⎞
⎠

g
a

n

a

g
. 7

n
0 0

N

1

( )d 
-

For the most gradual transition function, n= 1, we would have
δg→ a0 (Figure 1). A constant acceleration of this magnitude
conflicts with observations of the orbits of the inner planets
(e.g., Blanchet & Novak 2011; Fienga et al. 2018; Fienga &
Minazzoli 2024). For n� 2 the non-Newtonian acceleration δg
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in the inner solar system is much smaller but can still be
significant. Analyses of the precession of planetary perihelia
require that n� 6–8 (e.g., Blanchet & Novak 2011; Hees et al.
2014, 2016). The most careful comparison to planetary
ephemerides yields an even stronger constraint, n� 20 (Fienga
et al. 2018).

Figure 1 shows the behavior of the transition functions in the
μn(x) family for various values of n (left panel) and also
displays the non-Newtonian acceleration δg scaled by a0 (right
panel). The right panel also shows δg/a0 for an alternative class
of transition functions,

y y y1 exp 1 1 2 exp ,
8

1 2( ) [ ( )] ( ) ( )
( )

n a= - - + - -a
a a a-

that were found to be consistent with constraints from galactic
dynamics and planetary ephemerides by Hees et al. (2016) only
for α� 2. They are consistent with planetary ephemerides
because they decay suitably fast in the strong-field limit.
However, in the Oort-cloud zone, they produce a non-
Newtonian acceleration δg similar or larger than our tested
class of transition functions (Equation (4)). For this reason, we
do not consider the να(y) class of transition functions in
our work.

The simple modification of Poisson’s equation described by
Equation (1) can lead to physical inconsistencies. The potential
u(r) associated with g, such that g = du/dr, may be obtained
with a simple quadrature:

u r u dr r , 9
r

r

0
0

( ) ( ) ( )ò= + ¢F ¢

where

r g r g r a . 10nN N 0( ) ( ) [ ( ) ] ( )nF =

At small radii, where νn; 1, this implies the usual Newtonian
behavior u(r)∝ 1/r. At large radii, where νn(y)∝ y−1/2, we
have

u r GMa rln const. 110( ) ( ) +

Therefore, unlike in the Newtonian case, the potential does not
approach a constant at large distances, but has a logarithmic
divergence. If taken literally, such a behavior would bind all
test bodies to the system. In practice, this unphysical behavior
is remedied by noting that no system is isolated to infinity. This
leads us to a more realistic prescription for MONDian effects,
in which an arbitrary, but nonzero, external field exists
(Section 2.2.1).

2.2. Nonrelativistic Field Theory Resulting in MOND

Bekenstein & Milgrom (1984) anchored MOND in the
standard concepts of theoretical physics by developing a
nonrelativistic Lagrangian approach to gravity from which
MOND emerges (this is known as the AQUAL theory of
gravity, short for “aquadratic Lagrangian”). The fundamental
field equation for the gravitational potential U, yielding the
acceleration g=∇U of a test particle, reads

g G4 12· ( ) ( )m p r = -

in the Bekenstein–Milgrom theory. Here ρ is the density of matter,
g= |g|, and μ=μ(g/a0) is the MOND transition function. When

g?a0, μ(g/a0)→ 1 and Equation (12) becomes the familiar
Poisson equation of Newtonian gravity. Bekenstein & Milgrom
(1984, Appendix A) show that Equation (1) is recovered from the
more general Equation (12) at large distances from a bound system
of total mass M, since

g a g g O r1 130 N
3( ) ( ) ( )m = +

follows as a first integral. For isolated systems of high
symmetry, such as the spherical case, the second term on the
right-hand side of Equation (13) vanishes.
In general, though, the presence of g= |g| in the argument of

μ makes the partial differential Equation (12) nonlinear.
Therefore, its solutions are difficult to find, even when some
degree of symmetry is present (such as the axisymmetry that
applies in the case examined here; see Section 2.2.1), and
numerical methods are needed. Reorganizing terms in
Equation (12), one can also write

g G4 , 14pm· ( ) ( )p r r = - +

introducing the density of phantom matter by

g
G

1

4
, 15pm · ( ) ( )r

p
c= 

with χ(g/a0)= μ(g/a0)− 1. The MONDian effects are now
expressed as a matter density. Obviously, this reshuffling of
terms does not make the nonlinear problem easier, but it
provides a new way to look at the effects of MOND, and it may
offer a starting point for some approximations. For instance, if
the MONDian effects are small, one may plug the Newtonian
acceleration gN due to the mass distribution ρ (given by the
solution of the linear problem ∇ · gN=−4πGρ) into the
arguments of ρpm (e.g., Milgrom 2009). The simple Poisson
equation for the potential U is thus restored, and the whole
theory is easier to apply.
This approximation, proposed in Milgrom (2009), can be

generalized to a rigorous nonrelativistic theory of gravity
known as QUMOND (see Milgrom 2010). The analog of
Equation (12) for QUMOND is

g g g G, 4 , 16N N· · ( ) · ( )n p r =   = -

where gN is the Newtonian acceleration, gN= |gN|, and
ν= ν(gN/a0) is related to the transition function μ(g/a0) by
Equation (5). QUMOND requires the solution of two linear
differential equations, whereas AQUAL requires the solution of
one nonlinear differential equation. In this paper, we restrict
ourselves to the AQUAL formulation of MOND. We believe that
our conclusions would be very similar in QUMOND (compare,
for example, the distribution of non-Newtonian acceleration in
AQUAL, from Section 2.2.2., with the distribution in QUMOND,
from Figure 1 of Migaszewski 2023).
This brings us to the task of implementing a numerical solution

for Equation (12), in which we follow the methods of Blanchet &
Novak (2011). A choice of boundary conditions on the potential
U is also required (see discussion in Milgrom 1986a for context).
The boundary conditions play a double role, namely to make the
setup physically realistic (dropping the assumption of the system
being isolated), while at the same time removing the unphysical
logarithmic divergence of the gravitational potential at infinity
(Equation (11)).
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2.2.1. The External Field Effect in MOND

The solar system is embedded in a larger structure, namely
the Galaxy. The Galactic mass distribution generates a
gravitational field which, for a solar system observer, has two
components in the Galactic reference frame (which we assume
to be inertial, i.e., not accelerated): (i) a uniform acceleration
ge, and (ii) a tidal field gtide. In Newtonian dynamics, the first
component has no effect on the internal dynamics of the solar
system because it is freely falling in the Galactic field (the
strong equivalence principle), but the second affects the motion
of bodies (especially those at large heliocentric distances such
as distant TNOs or LPCs) bound to the solar system. The
effects of both (i) and (ii) are modified by MOND. In our initial
discussion in this section, we ignore the tidal field (ii); this is
actually the level at which the EFE has been described in the
previous literature. However, the tidal field (ii), together with
its MONDian correction, is needed for an accurate description
of the orbits of objects in the inner and outer Oort clouds
(∼2000–100,000 au). This description is developed in
Section 2.3.

The following analysis of Equation (12) is different from but
equivalent to that of Blanchet & Novak (2011). We assume an
exterior field ge that is independent of position, which is going
to be the asymptotic value of the MOND acceleration g=∇U
at large distances r→∞ from the solar system. The accelera-
tion vector ge points toward the center of the Galaxy
and is fixed in magnitude, i.e., we assume that the Sun is on
a circular orbit around the Galactic center and ge is the
centripetal acceleration. Blanchet & Novak (2011) consider
ge= 1.9×10−10 m s−2. In this paper, however, we adopt a
somewhat larger value, ge= 2.32× 10−10 m s−2, based on a
recent analysis of Gaia observations (Gaia Collaboration et al.
2021); the only exception is the results shown in Figure 2, in
which we use the Blanchet–Novak value for a direct
comparison with their work. We recall that the acceleration
scale a0 is a free parameter in MOND, while ge is an observable
feature of the astronomical system that we are examining. We
briefly explore the dependence of our results on the value of ge
in Section 2.2.3.

For simplicity, we neglect the planetary masses and thus
assume a spherical model for the mass distribution in the solar
system about the origin representing the Sun (Milgrom 2012
discusses the effects of the planetary contribution to the mass
distribution, but we neglect them in this work as they are small
at the heliocentric distance we are interested in). In principle,
the density ρ(r) inside the solar radius R should be determined
from a numerical solar model, but Blanchet & Novak (2011)
showed that the EFE does not depend significantly on the solar
internal structure so it is sufficient to assume a homogeneous
model in which the density is constant.
Following Blanchet & Novak (2011), in the region inside

the Sun (r� R, where for simplicity we set R= 0.01 au), we
impose μ(x)= 1; this results in a traditional Newtonian
potential uN(r) that is characterized by the boundary condition
∂uN/∂r= 0 at r= 0. This approximation is well justified since
the accelerations near and in the Sun are much larger than a0,
except in a very small zone near the center (the corresponding
small error has been estimated by Blanchet & Novak 2011).
Thus, we can write

⎜ ⎟
⎛
⎝

⎞
⎠

u
GM

R

r

R
r R

2
3 , for , 17N

2

2
 ( )= -

u
GM

r
r R, for , 18N  ( )=

where M is the solar mass. Obviously, these values are defined
up to an arbitrary constant.
We next solve for the MONDian gravitational field outside the

Sun, which is connected to the interior solution (Equation (17)) via
the appropriate boundary conditions at the solar surface (potential
and its radial derivative continuous at r=R). The gravitational
potential defining the heliocentric motion—as opposed to the
motion in the Galactic or inertial frame—of solar system bodies
(planets, asteroids, comets, etc.) is defined by u(r)=U(r)− ge · r,
which now has ulim 0r =¥ . We may also define the non-
Newtonian potential δu= u− uN, where uN is the conventional
Newtonian potential generated by the Sun (Equation (18)).

Figure 2. The quadrupole and octupole moment values Q2(0) (left) and −Q3(0) (right) for different degrees n (abscissa) of the family of transition functions {μn(x)}
(because this figure provides an opportunity to compare our results with those of Blanchet & Novak 2011, we computed these parameters for their assumed value of
the external acceleration, ge = 1.9 × 10−10 m s−2). Red diamonds show our values, blue triangles are from Table 1 in Blanchet & Novak (2011). Radar ranging to the
Cassini spacecraft constrains Q2(0) = (3 ± 3) × 10−27 s−2 (Hees et al. 2014) as indicated by the gray area (with the mean value shown by the horizontal dashed line).
Analyses of planetary motion (Blanchet & Novak 2011; Fienga et al. 2018; Fienga & Minazzoli 2024) require n � 6, or even n � 20 (Fienga et al. 2018).
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Following Blanchet & Novak (2011), we now rewrite the
MOND field Equation (12) in the form (recall g=∇u+ ge)

⎜ ⎟
⎛
⎝

⎞
⎠

u G
a

g g u
1

4 , , 19i
i

2

0
( ) ( )

m
p r

m
s r = - +

¢
¶ º

where μ(x) is the chosen (arbitrary) MOND transition function
and x d dx( )m m¢ = (x= g/a0). This way, Equation (19)
resembles a traditional Poisson equation, with the source term
on the right-hand side depending nonlinearly on the potential u
itself. Outside the Sun, r> R, the density ρ= 0.

Our goal is to solve for the potential u at an arbitrary position
r between zero at origin and infinity. Equation (19) is solved
numerically using successive iterations {un}, such that the new
value un+1 is computed by the linear Poisson equation

u u , , 20n n
2

1˜ ( ) ( )s r =+

with relaxation u u u1n n n1 1˜ ( )l l= + -+ + (λ ä (0, 1], equal
to 0.5 in our runs); u ,n( )s r is the right-hand side of
Equation (19), with un defining the inertial acceleration
g=∇un+ ge at the nth iterative step. The initial guess for
the solution is simply the Newtonian solution, u0= uN.

In order to simplify the functional form of the solution, we
assume that the coordinate system has the z-axis parallel to the
external field ge. Using spherical coordinates, all potentials are
then axisymmetric (independent of f) and thus depend only on
the radial distance r from the origin and the colatitude θ. We
use cost q= instead of θ itself to remove the coordinate
singularity at the poles. Obviously, the source term σ is also
axisymmetric, so it can be decomposed in Legendre poly-
nomials:

r u S r P, . 21n
ℓ

ℓ
n

ℓ
2

0

( ) ( ) ( ) ( )( )ås r t=
=

¥

In practice, we restrict ourselves to a finite maximum degree L in
the representation (Equation (21); we tested L between 15 and 30,
using L= 27 in the final simulations; see also Section 2.2.2). The
coefficients S rℓ

n ( )( ) are easily computed by Gaussian quadrature
once the source r u ,n

2 ( )s r is known on a predefined coordinate
grid. Then, if u r Pn ℓ

L
ℓ
n

ℓ1 0˜ ( ) ( )( )u t= å+ = , the radial functions

rℓ
n ( )( )u satisfy

r
d

dr
r

d

dr
ℓ ℓ S r2 1 . 22ℓ

n
ℓ
n

ℓ
n

ℓ
n2

2

2
( ) ( ) ( )

( ) ( )
( ) ( )u u

u+ - + =

To solve this linear inhomogeneous ordinary differential equation,
we implement spectral decomposition of rℓ

n ( )( )u and S rℓ
n ( )( ) in

Chebyshev polynomials (see, e.g., Grandclément & Novak 2009;
see also Appendix B). In order to keep the maximum degree of the
Chebyshev polynomials reasonably small (say, between 50 and
100), we must split the radial domain from R= 0.01 au to
R 500, 000 au¢ = into multiple zones, each having an inner
boundary ri

min and an outer boundary ri
max (i= 2,K,I, saving

index i= 1 for the innermost radial zone inside the Sun), such that
r Rmin

2 = and r RI
max = ¢. We use zones with a constant stretching

factor f r r 3i i
max min = –5, and employ I; 12–17 radial

zones. In each of these zones we map the radial coordinate r
onto an interval (−1, 1) on which the Chebyshev polynomials are
defined, using a linear transformation: r r ri ix= +- + and x =
r r ri i( )- + -, with r r ri i i1

2 max min( )=  (ξ is the needed argument

of the Chebyshev polynomials). At the boundaries of the adjacent
radial domains, we require that the potential u and its radial
derivative ∂u/∂r are continuous.
The general solution of Equation (22) is composed of a

particular solution of the inhomogeneous problem, plus an
arbitrary combination of the two fundamental solutions of the
homogeneous equation. The contributions of these superposed
terms are determined by the boundary conditions at the edges R
and R¢ of the radial coordinate domain. At the inner boundary,
r= R, we simply require that the potential and its derivative are
continuous with the spherically symmetric potential of the Sun
(Equation (17)). The outer boundary condition is that the
potential u must vanish as r→∞ . For that reason, we must
add a final radial zone extending from R¢ to infinity, in which
the variable r is replaced by s= 1/r; then, as for the other
zones, s is mapped by a linear transformation onto the interval
(−1, 1) and the functions sℓ

n ( )( )u and S sℓ
n ( ) are expanded in

Chebyshev polynomials. Care must be paid to (i) ensuring the
continuity and differentiability of the potential at the boundary
of this last radial zone, and (ii) the form of Equation (22) that
emerges when using 1/r instead of r as the independent
variable.
At convergence, which is attained when the fractional

change between the values un+1 and un is smaller than a
specified limit at all grid points (we use a threshold of 10−8),
we thus have

u r u r P, . 23n
ℓ

L

ℓ ℓ1
0

( ) ( ) ( ) ( )åt u t= =+
=

The typical number of iterations in our runs was between 30
and 200, depending on the degree n of the transition function
(Equation (4)).
In order to compare our results with Blanchet & Novak

(2011), we also define multipole-moment radial functions Qℓ(r)
using (ℓ� 1)

Q r ℓ
r

r
1 2 1 , 24ℓ

ℓ ℓ
ℓ

( ) ( ) ( ) !! ( ) ( )u
= - -

of which the first functions are

Q r
r

r
, 251

1( ) ( ) ( )u
= -

Q r
r

r
3 , 262

2
2

( ) ( ) ( )u
=

Q r
r

r
15 , 273

3
3

( ) ( ) ( )u
= -

(see Equation (29) in Blanchet & Novak 2011). The functions
Qℓ(r) are bounded as r→ 0. In the case of sharp transition
functions (e.g., μn(x) with n 10), they are roughly constant as
long as r r r g a GM ge e eM 0

1 2 ( )= = , but for the most
gradual transition functions (e.g., μ1(x) or μ2(x)) they change
even on a scale as small as a few hundred au (see Figure 3).
The behavior of υℓ(r) as r→∞ is discussed in Appendix A.
As a technical detail, we found it convenient to work with

nondimensional, scaled variables when solving Equation (19).
The potential u is normalized using unorm=GM/au, where M
is the solar mass and au is the value of the astronomical unit,
and we denote u u unorm¯ = . Similarly, the radial functions
υℓ(r) have their scaled counterparts r r uℓ ℓ norm¯ ( ) ( )u u= , and
the acceleration g is normalized with gnorm=GM/au2.
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We denote the direction of ge by e= ge/|ge| and the direction
of r by n= r/r. Then τ= e · n. Given the potential representa-
tion (Equation (23)), the MOND heliocentric acceleration of a
body orbiting the Sun is

r

e e n n

u
r

r P

r P

1

, 28
ℓ

L

ℓ ℓ

ℓ ℓ

0

{ ( ) ( )

( ) ( )[ ( · ) ]} ( )

å u t

u t

 = ¢

+ ¢ -
=

where rℓ ( )u¢ and Pℓ ( )t¢ denote derivatives with respect to the
corresponding argument. Note that the monopole term, ℓ= 0,
also contains the Newtonian acceleration due to the Sun.
Therefore, in order to represent the non-Newtonian acceleration
δg due to MOND, gN must be subtracted from Equation (28).

2.2.2. Nominal Parameter Set

The nominal value of the external acceleration of the
solar system in the Galaxy adopted in this paper is
ge= 2.32× 10−10 m s−2 (Gaia Collaboration et al. 2021).
This value is determined with a formal uncertainty of
0.16× 10−10 m s−2 and independent estimates are consistent
with this value within about ±0.2× 10−10 m s−2 (e.g.,
McMillan 2017). However, larger variations of ge may have
occurred in the past due to radial migration of the Sun in the
Galaxy. We explore the dependence of our results on this
parameter in the next subsection.

A lot of attention has been focused on testing MOND in the
inner solar system (i.e., the strong-acceleration regime).
Therefore, we can check some of our numerical results by
comparing them to previously published solutions in this
regime. Of particular interest are the values of the lowest-
degree multipole moments Qℓ(r) at the spatial origin r= 0.
First, we verified that in all our solutions the dipole vanishes,
namely Q1(0)= 0 to numerical accuracy (see Blanchet &
Novak 2011 for a proof of this property).7 Many of the
previous studies considered only the quadrupole term evaluated
at r= 0 (e.g., Hees et al. 2014; Maquet & Pierret 2015; Fienga
et al. 2018), and at best included the octupole term (e.g.,
Blanchet & Novak 2011). At the quadrupole level the
MONDian perturbation is simply expressed as δg=∇U2(r),
with

r r eU Q r
1

6
0 3 , 292 2

2 2( ) ( )[ ( · ) ] ( )= -

and similarly for the octupole part. Figure 2 shows the values of
the quadrupole and octupole moments Q2(0) and Q3(0)
(Equations (26) and (27)) for various transition functions
μn(x). In order to profit from the opportunity to compare our
results to those in Blanchet & Novak (2011, their Table 1 and

Figure 3. The magnitude of the non-Newtonian acceleration δg (normalized by a0) along three spatial directions: (i) parallel to the direction of the exterior acceleration
e = ge/|ge| (left column), (ii) perpendicular to the exterior acceleration (middle column), and (iii) antiparallel to the direction of the exterior acceleration (right
column); the little embedded diagrams show the sampled direction assuming the exterior acceleration is along the positive z-axis. The top row of panels is computed
for the gradual transition function μ2(x), the bottom row of panels for the sharp transition function μ10(x). The curves show different values of the maximum order L
used in the multipole expansion (Equation (28)): (i) the monopole term L = 0 is given by the black dashed line, (ii) the quadrupole representation with L = 2 is shown
in blue, (iii) the representation used in our models, L = 27, is shown as a black solid line, and (iv) some intermediate values of L are shown in gray (the blue lines in
the middle panels are overlaid by the black lines). The red dotted straight line is the prediction from the formula δg = ∇U2(r) (Equation (29)) often used to represent
the effects of MOND in the inner solar system. For the transition function μ2(x), when r ; 200 au the octupole and even ℓ = 4 multipole should be taken into account,
as well as the variations in the multipole components Qℓ(r) with radius.

7 In quantitative terms, our solutions obey |Q1(0)| � 10−15 m s−2 (see also
Table 1 and the discussion in Section 3.3 of Blanchet & Novak 2011). We note
that Qℓ is expected to be a rℓ

0 M
1~ - , which for ℓ = 1 implies ∼a0. The

numerical value of |Q1(0)| is therefore satisfactorily smaller.
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Figure 7), we use their original ge= 1.9× 10−10 m s−2 value
here (but not elsewhere in the paper). We find good agreement,
within 3% for n� 6 (even better for the n= 1 and n= 2 cases).
The agreement is slightly worse, within 6%, for 8� n� 12.
Only at n; 20 does the difference increase to about 9%. The
source of this mismatch is not known to us, but note that we
conduct a number of other internal tests of our numerical
results below and in Appendix A.

Hees et al. (2014) analyzed a decade of ranging data to the
Cassini spacecraft at Saturn. By approximating the potential
using Equation (29), they derived a limit:

Q 0 3 3 10  s . 302
27 2( ) ( ) ( )=  ´ - -

This range is marked in gray in the left panel of Figure 2. We
conclude that the transition functions μn(x) must have n� 6
(see also Blanchet & Novak 2011), i.e., the transition function
must rise steeply at x; 1 and stay near unity for x> 1. In other
words, the interior parts of the solar system must be strongly
shielded from the EFE. Fienga et al. (2018) analyzed a global
fit to a large data set of planetary observations and provide an
even stronger constraint, n� 20.

Restricting u(r, τ) from Equation (23), or acceleration ∇u(r,
τ) from Equation (28), to the quadrupole and octupole terms
with their multipole moments evaluated at the origin is
adequate at the distances of the planets, but cannot be used
to describe dynamics in the distant trans-Neptunian zone—
especially for gradual transition functions. To illustrate this, we
analyze the behavior of δg=∇u(r, τ)− gN at heliocentric
distances r� 1000 au, including the radial dependence of the
multipole moments Qℓ(r). In Figure 3, we show the results for
the transition functions μ2(x) (top) and μ10(x) (bottom) for
position vectors r along three directions relative to the external
acceleration e= ge/|ge|: (i) r∥e (left), (ii) r⊥e (middle), and
(iii) −r∥e (right). The little embedded diagrams show the
sampled direction assuming the exterior acceleration is along
the positive z-axis. These results confirm that for transition
functions like μ2(x), beyond ;200 au the evaluation of the
MONDian potential must include a large number of multiples
and account properly for the variation of the multipole
moments with radius.

At still greater distances, in particular beyond the MOND scale
rM of Equation (3), the solution becomes even more complicated,
because (i) the boundary condition at spatial infinity strongly
affects the behavior of the potential functions, and (ii) there is a
point near the radius r r g a GM ge M e 0 e

1 2( )= = at which
the phantom-mass density diverges, leading to nonanalytic
behavior of the acceleration field (see below for more detail). In
order to see how the solutions look, we show in Figure 4 the radial
potential functions υℓ(r), ℓ= 1,K,5, for two different MOND
transition functions: (i) the gradually varying μ2(x) (left panel),
and (ii) the sharply varying μ10(x) (right panel).

8 As a rule of
thumb, |υℓ(r)| has a global maximum near the MOND scale rM,
but the function often exhibits an additional extremum
near r r GM ge M eh= = (η= ge/a0) as discussed below
(and further in Appendix B). The limiting behavior at the
origin, vℓ(r)∝ r ℓ, corresponds to constant values of the
multipole functions Qℓ(r) (see Equation (24) and Blanchet &
Novak 2011), while the asymptotic behavior at infinity is

briefly discussed in Appendix A. The gradual transition
characterized by μ2(x) is reflected in the broad distribution of
υℓ(r), with the lowest multipoles decaying only slowly at
heliocentric distances up to many tens of thousands of au,
within the region of the traditional Oort cloud. There is also a
well-defined hierarchy in the magnitudes of the successive
multipoles, with the lowest-degree (ℓ= 1 and ℓ= 2) multipoles
dominating over the higher degrees. The dipole ℓ= 1
perturbation is very small in the inner parts of the solar system
(in fact Q1(0)= 0), but its contribution to the total perturbation
is comparable to that of the quadrupole (ℓ= 2) near rM. The
situation is quite different for the sharp transition function
μ10(x) shown in the right panel of Figure 4. The nonzero
contributions of the multipoles are more confined to the region
around the MOND scale rM. The low-degree multipoles are no
longer dominant over the high-degree multipoles, so an
accurate description of cometary dynamics requires us to
include terms up to large L in Equation (28). In our simulations
below, we take L= 27 (see later in this subsection for
justification of this choice).
The acceleration (Equation (28)) contains a contribution

from the monopole ℓ= 0 term as well. This is simply a radial
acceleration of magnitude dυ0/dr. Note that υ0(r) replaces the
badly behaved u(r) from Equation (11); the latter’s logarith-
mically divergent asymptotic behavior is now regularized, with
υ0(r)∝ 1/r, although its magnitude is GMw0/r rather than the
Newtonian value GM/r, with w0 given by Equation (A4). An
additional difference from the Newtonian case is that the
asymptotic potential is not spherically symmetric (see
Equation (A1)).
The properties of the acceleration field are explored further

in Figures 5, 6, 7, and 8. The non-Newtonian radial
acceleration δg/a0 is shown by the red curves in the top
panels of Figure 8, and this can be compared to the same
quantity described in Section 2.1 for an isolated system (shown
by the blue curves in Figure 8). If we choose the gradual
transition function μ2(x) (left panels), δg/a0 reaches a
maximum at a heliocentric distance of about 5000 au and then
declines, eventually following the usual δg∝ 1/r2 asymptotic
behavior (rather than the anomalous ∝1/r for isolated systems,
seen in the blue curve). At maximum, δg/a0; 0.14, namely
δg; 1.68× 10−11 m s−2. In the case of the sharp transition
function μ10(x) (right panels in Figure 8), the radial acceleration
δg is significantly smaller (the maximum δg/a0; 0.01).
Interestingly, it also flips from positive to negative near rM, a
reminder that the MONDian phantom mass may be negative
(see also Milgrom 1986b).
In order to explore the total value of the MONDian

contribution to the acceleration, and at the same time to test
what maximum multipole L is required in Equation (28), we
conducted the following numerical experiment, whose results
are summarized in Figure 5. We used the gradual transition
function μ2(x) in the left panels, and the sharp function μ10(x)
in the right panels. Given the symmetry axis e of the external
field (approximately the direction to the Galactic center), we
chose three representative radial directions along which the
heliocentric position r satisfies (i) r∥e (upper panel), (ii) r⊥e
(middle panel), and (iii) −r∥e (lower panel); the little diagrams
on the panel illustrate the geometry of r assuming e is directed
upward along the z-axis. In cases (i) and (iii), symmetry
requires that the MOND contribution to the acceleration is
along the radial (or z-) direction, and we denote this by δgr. In

8 As we have argued, the μ2(x) transition function is excluded by observations
of planetary ephemerides, but we use it here to illustrate the behavior of the
radial potential functions.
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case (ii), the MOND contribution has both radial and transverse
components, so we simply plot the magnitude |δg|.

When evaluating the MOND acceleration using Equation (28),
we sum the contribution of all values of ℓ between 0 and
L. Two extreme cases are highlighted in Figure 5, namely
(i) L= 0 (black dashed line; this is just the radial monopole
acceleration), and (ii) L L 27max= = (black solid line).
Intermediate values of L are shown by gray lines. Let us start
with the left panels, corresponding to the gradual transition
function μ2(x). The convergence of δg(L) with increasing L is
quite regular, and we are satisfied to stop at L L 27max= = .
The situation is more complicated in the case of the sharp
transition function μ10(x) in the right panels of Figure 5. The
fundamental reason is that the phantom-mass density is much
more localized, and thus higher multipoles L are needed to
resolve its effects. The convergence with L is slow, especially
in the configurations depicted on the middle and bottom
panels (r⊥e and −r∥e). There remains still some jitter at
L Lmax= , but we believe that this residual variation is
acceptable given that the computational costs grow rapidly
with Lmax.

The rapid evolution of the radial component δgr of the
acceleration along the positive z-axis is related to the presence
of a critical point P near heliocentric distance r re M h= =

GM ge (η= ge/a0). The radius re corresponds to a saddle
point of the Newtonian potential uN or zero of the corresp-
onding acceleration gN; the zero occurs when the acceleration
due to the Sun cancels the external acceleration ge. A number
of studies have discussed the role of P in relation to the
phantom-mass density distribution (see Milgrom 1986b;
Bekenstein & Magueijo 2006; Penner 2020b; Brown &
Mathur 2023; see also Appendix B). If the critical point P is at
rå∼ re, then near this point the phantom-mass density varies as
ρpm∝ |r− rå|

−α, with α< 1 (Bekenstein & Magueijo 2006,
their Section III, argue that α= 1/2 generically). Considering
for the sake of simplicity only the radial acceleration
component, one obtains δgr∝± |r− rå|

1−α locally (opposite
signs for r< rå and r> rå, respectively). This is a bow-shock-
type transition, implying that near P the acceleration δgr

undergoes a rapid change. The top panels on Figure 5 reflect
this phenomenon.
Figure 6 shows maps of the radial and transverse

components of the non-Newtonian accelerations δg for the
two example transition functions μ2(x) (top) and μ10(x)
(bottom). As expected, the perturbation in the latter case is
much more localized and centered at a heliocentric distance of
about rM in the direction e of the exterior acceleration.
There are two takeaway messages from this analysis. First,

the non-Newtonian acceleration field δg has a complex
geometry at heliocentric distances of a few thousand au, where
it influences the Oort-cloud structure and the orbital history of
LPCs. Unlike in the inner zone of the solar system, the
MONDian potential in this region cannot be approximated by a
simple analytic formula (e.g., Equation (29)), and must be
evaluated numerically. Second, the maximum values of δg
represent only a fraction of a0, and remain smaller than gN (in
contrast with the MONDian acceleration of an isolated,
spherically symmetric system from Figure 1). This means that
we can introduce MOND as a small perturbation in an N-body
integrator designed for Keplerian orbits, as described in
Section 3.1.

2.2.3. Effects of Changing the Exterior Acceleration

We briefly consider the sensitivity of the results to changes
in the magnitude of the external acceleration ge, keeping a0
fixed. There are three reasons for this exploration: (i) our
knowledge of this parameter is not exact; (ii) the external
acceleration might have been different in the past, in particular
because of migration of the Sun in the Galactic disk; (iii) it is
instructive to see the role of ge in general (in particular the
limits of small and large ge).
First, we determined the value of the quadrupole moment

Q2(0) at the origin as a function of ge (since this is well
constrained from planetary observations; see Equation (30)).
The results are shown in Figure 7, where we allow η= ge/a0 to
span a range from ;0.1 to ;20, with the nominal value from
Section 2.2.2 equal to ηå; 1.93. We explore three example
transition functions μ2(x), μ6(x), and μ10(x). At the nominal
value ηå the quadrupole moments differ by up to an order of

Figure 4. Radial potential functions r r uℓ ℓ norm¯ ( ) ( )u u= for the multipoles ℓ = 1,K,5 (labeled) of the potential u(r, θ) from Equation (23). The normalization
unorm = GMe/au makes the ordinate dimensionless. The vertical gray dashed line shows the MOND scale r GM aM 0= . The vertical blue dashed line at a
heliocentric distance r re M h= (η = ge/a0) refers to the approximate location of the singularity in the phantom-mass density (see the discussion in the main text, as
well as Figure 5 and Appendix B). Left panel: the gradual transition function μ2(x) is used. The dipole and quadrupole potentials dominate in this case. Right panel: the
sharp transition function μ10(x) is used. In this case higher multipoles contribute substantially to the potential, and their contributions are more tightly concentrated
around the region between re and rM.
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magnitude (as already shown in Figure 2) and only μ6(x) and
μ10(x) satisfy the constraints from planetary ephemerides
(shaded region). However, when ge is less than ∼0.6 times
the nominal value, the results for the different transition
functions converge. For η� 0.3, an order of magnitude smaller
than ηå, the planetary ephemerides are consistent with all three
transition functions. This is because when ge is small the
external effects do not penetrate deep into the planetary zone—
they are confined to larger heliocentric distances. Interestingly,
Q2(0) also shrinks for external accelerations ge larger than the
nominal one. This is because the MONDian effects disappear

when ge? a0 (e.g., Famaey & McGaugh 2012), making the
multipole moments approach zero. This trend is rapid for steep
transition functions, and somewhat slower for gradual trans-
ition functions—Figure 7 shows that Q2(0) is only a factor of 2
smaller for the μ2(x) case when η; 10 ηå, consistent with
Figure 6 in Blanchet & Novak (2011), while it drops much
more rapidly for the μ6(x) and μ10(x) cases.
Figure 8 illustrates the contribution of the lowest multipoles

in Equation (28) to the acceleration when ge is smaller than the
nominal value (when ge becomes larger than the nominal value,
the MONDian effects rapidly fade away, especially for sharp

Figure 5. Dependence of the non-Newtonian acceleration, δg/a0, on the maximum multipole L in the expansion (Equation (28)). The left panels are for the gradual
transition function μ2(x), the right panels for the sharp transition function μ10(x). The three rows show the perturbation to the acceleration (normalized by a0) along
three spatial directions: (i) parallel to the direction of the exterior acceleration ge (in this case the radial acceleration component δgr is shown), (ii) perpendicular to the
exterior acceleration (in this case the magnitude δg = |δg| is shown), and (iii) antiparallel to the exterior acceleration (in this case the radial acceleration component δgr
is shown); the little embedded diagrams show the sampled direction assuming the exterior acceleration is along the positive z-axis. Curves show different cutoff values
L of the multipole representation (Equation (28)): (i) L = 0 (black dashed line), (ii) maximum L = 27 (black solid line), and (iii) intermediate choices in gray. The
radial distribution of the phantom-matter density ρpm (Equation (15)) on the positive z-axis, normalized to a maximum absolute value of unity, is shown by the red line
in the top row of panels; note that ρpm may be negative. The dotted red line is located at the MOND scale rM (Equation (3)), and the dashed red line at r re M h=
(η = ge/a0) is the approximate location of the integrable singularity in the phantom-matter distribution on the positive z-axis, as discussed in the text and in Milgrom
(1986b) and Brown & Mathur (2023). The behavior of the radial acceleration δgr broadly reflects the radial distribution of ρpm. Figure 3 is similar to this figure, but
zoomed in to the region r < 1000 au.
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transition functions). We compare results for the gradual
transition function μ2(x) (left panels) and the sharp transition
function μ10(x) (right panels). The top panels show the
perturbation to the acceleration of the monopole term, namely
a purely radial acceleration dυ0/dr. We find it useful to
compare this to the corresponding radial acceleration
g g y 1niso N [ ( ) ]d n= - (Section 2.1) of the isolated MONDian
system, shown by the blue curve. The red curve shows δg,
normalized by a0, for the nominal external acceleration, ηå. The
green lines are for three cases where η< ηå. In the case of the
weakest external acceleration shown here (η= 0.17), the green
curve (label 3) closely follows the isolated-system perturbation
up to the beginning of the Oort cloud at ;15,000 au
heliocentric distance. The boundary conditions at spatial
infinity impose δg∝ 1/r2 as r→∞ for any nonzero ge, which

contrasts with δgiso∝ 1/r for an isolated MOND system. This
explains the divergence of the green and blue curves at the
largest heliocentric distances. The value of δg/a0 is negligible
up to heliocentric distances of a few thousand au in the case of
the sharp transition function μ10(x) (right panels). This result
holds even for small values of η, implying that the monopole
MONDian perturbation is efficiently expelled from radii
r rM. This is not true for the gradual transition function
μ2(x) (left panels), for which even the monopole perturbation
penetrates well below rM.
The bottom panels in Figure 8 show the dipole and

quadrupole potential functions υ1(r) and υ2(r). The red lines
are for ηå, and the three green lines for η< ηå as in the top
panels. A smaller value of the external acceleration ge generally
repels the MONDian effects to larger heliocentric distances. A

Figure 6. Global maps of the radial δgr = δg · n (left panels) and transverse g n e n e e ng 1t
2· [ ( · ) ] ( · )d d= - - (right panels) components of the perturbation to

the acceleration due to the EFE. The coordinate X∥ is parallel to the direction e of the external acceleration field and X⊥ is perpendicular to e. Yellow sectors are for
negative values, blue sectors for positive values of the displayed quantity. The color intensity is proportional to the corresponding value of δgr or δgt. The maximum
values, in units of a0, are shown at the top of each panel, and selected contours referred to this maximum value are labeled. The top panels are for the gradual transition
function μ2(x), and the bottom panels for the sharp transition function μ10(x). The origin of the coordinates is the Sun, and the characteristic radius rM ; 7 in thousands
of au, the units of the axes (Equation (3)). See Figure 1 of Migaszewski (2023) for similar plots.
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characteristic property of these dipole and quadrupole potential
functions is that they peak in absolute value near the
heliocentric distance r re M h= that characterizes the zero-
point of the Newtonian acceleration, rather than at the MOND
scale rM (at the same time, they extend to smaller radii than the
monopole perturbation δg/a0). The magnitude of the extrema
in υ1(r) and υ2(r) grows as η shrinks, suggesting that there is
more phantom mass beyond rM when η is small (see
Appendix A).

2.3. Tidal Field of the Galaxy

We turn now to the effects of the Galactic gravitational field
on the motion of bodies bound to the solar system, starting with
the Newtonian description. As discussed in Section 2.2.1, the
Galactic acceleration on a test particle near the Sun can be
divided into two terms, namely gex= ge+ gtide. The first term
ge is the uniform acceleration of the solar system; in the
heliocentric Newtonian description the effects of this
term vanish because the solar system is freely falling in the
Galactic field, but in the MONDian description this is the
source of the EFE, which has profound effects on the motion of
LPCs and other bodies at large heliocentric distances
(Section 2.2.1).

The gravitational tidal effects gtide arise from a quadrupole
tidal potential. We assume that the solar orbit around the
Galaxy is circular and lies in the Galactic midplane. Then the
tidal field is most conveniently described with respect to a
heliocentric, slowly rotating orthonormal reference frame
(ex, ey, ez), such that ex points away from the Galaxy center
(therefore in this system ge=−ge ex), ey points in the direction
of the solar motion in the Galaxy, and ez is normal to the
Galactic midplane. The tidal acceleration gtide is then a linear
function of the coordinates in this system (e.g., Heisler &
Tremaine 1986; Binney & Tremaine 2008; Rickman 2010):9

g e e ex y z1 2 2 2 . 31x y ztide 0
2[( ) ( ) ] ( )d d= W - - - -

The independent coefficients , ,0( )dW are often represented
using the Oort constants A and B and the mass density in the solar
neighborhood ρ0: δ=−(A+B)/(A−B);−0.09, Ω0=A−B;
2.78× 10−8 yr−1, and  G 2.750 0

2 p r= W . These values
assume A = 14.82 km s−1 kpc−1 and B=−12.37 km s−1 kpc−1

(Feast & Whitelock 1997), and ρ0; 0.15 Me pc−3. The
, ,0( )dW parameters are uncertain, in part because they are

based on the assumption that the Galaxy is in an axisymmetric
steady state, which is only approximately true. For example,
the model by McMillan 2017 has A = 14.2 km s−1 kpc−1,
B=−14.2 km s−1 kpc−1, and ρ0; 0.11 Me pc−3. In our
simulations (Section 4), we adopted these latter values and we
keep them constant, neglecting the effects of any possible radial
migration of the solar system in the Galaxy on Gyr timescales
(e.g., Kaib et al. 2011; Dones et al. 2015). To investigate the
effects of migration, we performed several simulations with larger
accelerations ge, corresponding to a past solar system location that
was closer to the Galactic center (Section 4), but (somewhat
inconsistently) we kept , ,0( )dW the same in order to isolate the
effects of changes in the acceleration.

It is relevant now to estimate the expected acceleration
regime of gex up to the heliocentric distance of the outer Oort
cloud. The uniform part is ge= 2.32× 10−10 m s−2∼ a0= 1.2×
10−10 m s−2, if the nominal values are assumed. The tidal part
gtide is largely subcritical, because g 4 10 autide 0

2 5 W ´
a10 3

0
- . Thus, we may describe the effects of MOND on the tidal

acceleration gtide using perturbation theory, which we now do.
MONDian correction of the quadrupolar tide. A full-fledged

MONDian description of the motion of distant solar system
bodies would require the inclusion of gtide in the solution
presented in Section 2.2.1.10 There, however, we kept only the
uniform component ge of the total Galactic acceleration gex.
This allowed us to take advantage of the axisymmetry of the
problem in developing a self-consistent numerical solution of
the nonlinear Equation (12). Including gtide in our treatment of
the EFE would have significantly complicated the problem. We
choose instead to treat the MONDian part of gtide in an
approximate way.
We start by noting that gtide=∇utide, where utide is a

diagonal quadratic form in the reference frame (ex, ey, ez)
introduced above, which can be derived from Equation (31).
At the Newtonian level it satisfies the Poisson equation
∇2utide=−4πGρ0, where ρ0 is the local density of Galactic
material (other stars and interstellar gas and dust). In MOND,
we need to replace utide according to the steps outlined in
Section 2.2. The total acceleration g=∇U, generalizing gex,
satisfies Equation (14), with two components on the right-hand
side, the homogeneous density ρ= ρ0, and the phantom matter
ρpm given by Equation (15). As before, U= ge · r+ w, with
gtide=∇w being the relevant acceleration component that

Figure 7. The quadrupole moment Q2(0) at the origin r = 0 for different values
of the external acceleration ge; a0 = 1.2 × 10−10 m s−2 is assumed. Solutions
are shown for three choices of the MOND transition function (Equation (4)): (i)
μ2(x) (red), μ6(x) (green), and μ10(x) (blue). Diamonds represent individual
numerical models, and the dashed connecting lines are cubic spline
interpolations. The vertical dashed line shows the nominal value ηå = 1.93,
corresponding to ge = 2.32 × 10−10 m s−2. The constraint Q2(0) = (3 ± 3) ×
10−27 s−2 from the Cassini spacecraft (Hees et al. 2014) is indicated by the
gray area (the mean value shown by the horizontal dashed line).

9 Some studies simplify gtide by considering only the first term in the bracket
multiplying the vertical tide component (i.e., along ez). This is because it
numerically dominates other contributions by an order of magnitude.

10 An alternative approach would be to adopt the Galactocentric reference
frame for the description of the MONDian corrections of the Galactic global
potential. Next, introduce the heliocentric reference frame, and the Sun as a
point mass, and consider the appropriate transformation of the equations of
motion.
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perturbs the motion of solar system bodies. Thus, we obtain

w G4 , 322
0 pm( ) ( )p r r = - +

where ρpm depends on w. We solve this nonlinear equation
approximately by replacing w with utide in Equation (15) for the
phantom-matter density, which then takes the explicit form

g
G

1

4
, 33pm ex ex· ( ) ( )r

p
c= 

with χex= μex− 1, μex= μ(gex/a0). The acceleration gex is
now the Newtonian approximation of the external field. Simple
algebra results in


g g

g4
, 34

pm

0

ex ex ex ex

ex
2 ex
· ·

( )
r

r
l m

c= -

where d x d xlog log x g aex ex 0( ) ∣l m= = , and the matrix  takes
the diagonal form diag 1 2 , 1, 2 2 [ ( )]d d= - - - - . To
estimate the order of magnitude of the MONDian correction,
one may further replace gex by ge in Equation (34). For
transition functions of the family μ= μn(x) (Equation (4)), we
have a particularly simple form:

x
x

1

1
. 35n n

( ) ( )l =
+

It is straightforward to check that the right-hand side of
Equation (34) is always small within the Oort cloud’s
heliocentric distance from the Sun. In particular, it reaches
;0.15 for the gradual transition function characterized by
n= 2, but is smaller than 10−3 when n� 10 (compare with
QUMOND-based estimates of ρpm/ρ0 in Paučo & Klačka 2016,
which are similar). As a result, the phantom-matter density is
always small compared to the matter density ρ0. This finding
already hints that the MONDian correction to the Galactic tide
is small, and justifies the approximate method we have used to
evaluate it.
Define the MONDian correction to the tidal field as

δutide= w− utide, corresponding to an acceleration δgtide=
∇w− gtide. Using Equation (32), we note that δgtide obeys

g g 0tide ex· ( )d c + = , with a general solution:

g g A, 36tide ex ex ( )d c= - + F +  ´

where Φ is an arbitrary harmonic function, a solution of the
Laplace equation ∇2Φ= 0, and A an arbitrary vector field. The
weak equivalence principle, satisfied in MOND (e.g., Beken-
stein & Milgrom 1984; Blanchet & Novak 2011), requires that
the acceleration is zero at the origin. This requirement is easily
satisfied by considering the appropriate linear field in Φ= F · r.
Other components in Φ, and A, still offer a large degree of
freedom. For instance, the exact solution of the nonlinear

Figure 8. Dependence of the perturbation to the acceleration on the value of η = ge/a0 for two choices of the MONDian transition function: (i) μ2(x) (left panels), and
(ii) μ10(x) (right panels). The top panels show the perturbation to the radial acceleration from the monopole term (the l = 0 term in Equation (28), with the Newtonian
acceleration gN subtracted). The blue line is the (unphysical) case of an isolated system (η = 0), in which g g y 1niso N [ ( ) ]d n= - (Equations (9) and (10)). The red line
corresponds to the nominal choice of the external acceleration ηå = 1.93 from Section 2.2.2. The three green lines are for smaller external accelerations: (i) η = 0.83
(label 1), (ii) η = 0.42 (label 2), and (iii) η = 0.17 (label 3). The bottom panels show the normalized radial functions r r uℓ ℓ norm¯ ( ) ( )u u= for the multipoles ℓ = 1
(dashed lines) and ℓ = 2 (solid lines). The colors and labels are the same as in the top panels (red for ηå, green for the three choices of η < ηå). The dotted lines in all
panels show the asymptotic behavior as r →∞, from Appendix A. The vertical dashed line shows the MOND scale r GM aM 0= , and the traditional locations of
the inner and outer Oort-cloud regions are indicated by the arrows in the top panels. Smaller external accelerations push the strongest MOND effects to larger
heliocentric distances. As the external acceleration shrinks, the monopole radial acceleration δg/a0 follows the isolated-system result more closely to larger r, but it
always eventually approaches zero more rapidly than the isolated-system result, due to the regular boundary conditions at spatial infinity for solutions that include
the EFE.
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MONDian equation for w may generate higher-order tidal
multipoles, whose presence already at the Newtonian level is
related to nonuniformity of the density term on the right-hand
side of Equation (32). Here, however, we restrict ourselves to
the simple assumption that w→ utide at spatial infinity. This
corresponds to

g g g , 37tide ex e e ex tide( ) ( )d c c c= - - -

where χe= μ(ge/a0)− 1. The second term can be directly
interpreted as an amplification of the usual tidal acceleration
gtide. This effect is small: less than 10−3 gtide for admissible
transition functions having n� 10. The first term is also quite
small, because χex− χe remains �10−6. Thus, the first-order
calculation we have used to evaluate the MONDian change in
gtide represents a small correction and should be quite accurate.

3. Methods

Before presenting our results, we briefly outline the overall
architecture of the numerical simulations we carry out. For the
most part, our approach is very close to that of Vokrouhlický
et al. (2019), and we refer the reader to that paper for more
detail.

3.1. Integration Method

Orbit integrations were performed using swift_rmvs4,
part of the swift N-body package.11 The core of swift is
the implementation of the symplectic integrator developed by
Wisdom & Holman (1991), which describes in properly chosen
canonical variables motion close to conics in planetary systems.
Specifically, denoting the time step by h, the second-order
scheme implemented in swift begins with execution of the
effects of the (mutual) planetary perturbations acting on
momenta for a duration h/2, followed by the free motion on
heliocentric conics for h, and finally completing the time step
by again performing the planetary perturbations acting on
momenta for h/2. This procedure is applied to N massive
bodies (planets, the Sun, and passing stars in our method) and
M massless particles (planetesimals/comets). An added feature
of swift, described by Levison & Duncan (1994), is the
careful treatment of close encounters between planets and
particles. This is achieved by an appropriate transformation
from a heliocentric to a planet-centric description for particles
within the Hill sphere of the planet. The code also applies
special treatment to particles in an intermediate zone between 1
and 3.5 Hill radii from a planet. In this case, the propagation
remains in the heliocentric description but the time step is
decreased, as described by Levison & Duncan (1994).

We have extended the original version of swift_rmvs4 by
including additional perturbing accelerations arising from the
Galactic tide, passing stars and MOND. The added accelera-
tions, like the accelerations due to planetary perturbations, are
implemented during the half-steps when positions are fixed and
momenta changed.

In some of our simulations, we also added artificial
accelerations that allowed us to mimic the planetesimal-driven
migration of the giant planets during the first tens to hundreds
of millions of years after the formation of the solar system. This
is an approximate method that replaces the full-scale

simulations presented in Nesvorný & Morbidelli (2012), in
which the planetesimals feel the planetary perturbations and at
the same time make the planets migrate. The scheme
implemented here is the one developed by Nesvorný &
Vokrouhlický (2016), which closely reproduces the simulations
from Nesvorný & Morbidelli (2012) and leads to a final state
that matches the current architecture of the giant planets.
Following the currently emerging picture of planet formation in
the protoplanetary nebula, the giant planets were left in a
resonant and compact configuration at the moment of gas
dispersal. This moment sets the initial time in our simulations.
The fine details of giant-planet migration determine the
architecture of the populations of small bodies (Kuiper Belt
objects) currently found in the immediate trans-Neptunian
region (e.g., Nesvorný 2018). Fortunately, the populations
currently located farther out, such as the detached disk, the
scattered disk, and the Oort cloud, are less sensitive to the
details of the migration history (see Appendix C). We may thus
simplify the situation and let Jupiter and Saturn reside on their
current orbits during the whole duration of our simulations.
Uranus and Neptune are started on nearly circular orbits at
17 au and 22 au, respectively, in the plane defined by the total
orbital momentum of Jupiter and Saturn (the terrestrial planets
are not modeled). The artificial accelerations acting on Uranus
and Neptune make them approach their current orbits with
semimajor axes 19 and 30 au. During the initial phase, the
evolution is characterized by an e-folding timescale of 10Myr.
When Neptune reaches 27.5 au its orbit is allowed to jump
forward by 0.4 au (see Nesvorný 2015), the sole trace of a
giant-planet instability, otherwise a major event of the inner
solar system dynamics. At that moment, Neptune’s eccentricity
is assumed to be excited to 0.1. After the instability, the
e-folding pace of the orbital evolution of Uranus and Neptune
is slowed to 30Myr. Figure 1 in Nesvorný et al. (2020)
illustrates the planetary evolution in our simple model, and its
ability to reproduce the more realistic case in which
planetesimals drive the planetary migration. We complete this
evolution in the first 100Myr of our simulation. For the
remaining 4.4 Gyr of the simulation, the planets are fixed on
their current orbits. For readers who are skeptical of this
migration model, we contrast the results with those from a
model with no planetary migration in Appendix C.
The simulation also contains a population of planetesimals,

modeled by massless particles. When Neptune sets off on its
outward migration, it enters a disk of planetesimals (described
later in Section 3.2), scattering them both inward (toward the
Sun) and outward. This process is most intense during the
initial ;100Myr in which the outer planets are migrating. At
the end of this period, the initial planetesimal disk is dispersed
and a tiny fraction (�1%) is transformed into a structure called
the scattered disk (or SD; there are other, even smaller, orbitally
stable populations of planetesimals as well). The SD is a
collection of orbits extending beyond the orbit of Neptune
(semimajor axes �30 au), but for the most part still
gravitationally communicating with this planet (perihelia
�38 au). Orbits in the SD are unstable because of their
repeated interactions with Neptune, but the characteristic
timescale involved in their evolution is hundreds of millions
to billions of years. Exterior resonances with Neptune may
temporarily lock the SD orbits into quasi-stable islands (e.g.,
Kaib & Sheppard 2016; Nesvorný et al. 2016), but more

11 See Levison & Duncan (1994) and http://www.boulder.swri.edu/~hal/
swift.html.
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efficient processes cause most of them to evolve into two quasi-
stable populations:

1. in MOND, the EFE may apply a torque that moves
particles from the SD to larger perihelion distances (>38
au) at which the orbits are largely unaffected by Neptune
and the other planets; this population is called the
detached disk (see already cited Paučo & Klačka 2016;
Paučo 2017); and

2. Galactic tides and stellar encounters, perhaps assisted by
the EFE, transfer SD orbits beyond ;2000 au heliocentric
distance to the Oort cloud.

Current sky surveys have discovered dozens of objects in the
detached disk, enabling us to probe the efficiency of the
dynamical processes—including MOND—that feed the region
of phase space occupied by the detached disk. At the same
time, both the detached disk and the Oort cloud feed the
population of LPCs, so the distribution of orbital properties of
the LPCs offers a second potential test of the influence of
MOND. The Galactic tides implemented in our simulations
(Section 2.3) are computed for the present Galactic environ-
ment of the solar system. They were likely stronger in the past
for two reasons: (i) solar system migration from smaller
Galactocentric distance, and (ii) there was a brief period when
the solar system still resided in its natal cluster of stars. In a
previous work (Nesvorný et al. 2023), we studied (ii) and found
that during this period the detached disk may be also efficiently
populated beyond semimajor axes of a few hundred au by
fierce cluster tides and perturbations by close stellar passages
(in accord with a number of previous studies, e.g., Morbidelli
& Levison 2004; Brasser et al. 2006). An example from these
simulations is shown in Figure 9. One could thus wonder
whether this process in the Newtonian model may not mimic
MONDian perturbations, which are expected to produce a
similar result. However, this is not the case. There is a
fundamental difference between the detached disk populations
at hundreds to thousands of au that are produced by Newtonian
cluster tides and encounters, as compared to MOND. In the
former case, the detached disk is a fossil structure, in which the
orbits do not evolve and do not contribute to the current LPC
population. In contrast, in MOND the orbits in the detached
disk are continually exchanging places with orbits in the LPC
population (Figure 10).

The MONDian dynamics implemented in our simulations
was described at length in Section 2. The effects of Galactic
tides and stellar encounters are briefly recalled in Section 3.3.

3.2. Planetesimal Disk

Various lines of evidence indicate that the primordial
planetesimal disk was divided in two parts. The first, extending
in our model from the initial orbit of Neptune at 22 au to about
30 au, had an estimated mass of ;15–20 M⊕. This mass,
comparable to that of Neptune, is required to make Neptune
migrate some ;6–8 au across the whole extent of the disk (as
demanded by the orbital architecture of the Plutino population,
planetesimals captured in the exterior 3/2 mean-motion
resonance with Pluto). Figure 14 in Nesvorný et al. (2017)
provides a hint about the size distribution of planetesimals in
this part of the disk. Beyond 30 au heliocentric distance, the
disk mass dropped considerably, to only a few times 10−3 M⊕,
even though this component of the disk extended to nearly
50 au. The initial radial profile of the planetesimal surface

density outside Neptune is not well known, and we adopt a
plausible model, denoted as the hybrid model in Figure 2 of
Nesvorný et al. (2020): (i) a simple power law ∝1/r at radii
<28 au, (ii) followed by an exponential decay with an e-folding
length of ;2 au beyond 28 au.
Each of our simulations included initially one million zero-

mass disk particles on nearly circular and coplanar orbits. Their
semimajor axis distribution matched the assumed surface
density of the disk, and their eccentricities and inclinations
followed a Rayleigh distribution with scale parameters of 0.05
in eccentricity and 2° in inclination. All other initial orbital
elements of the disk particles were uniform in the interval from
0° to 360°. The large number of test particles in our simulations
is necessary to achieve adequate statistics to model accurately
the distribution of particles in the detached disk and the LPCs
that visit the inner solar system from the distant Oort cloud. In
practical terms, we performed each of the simulations on 2000
cores of the NASA Pleiades supercomputer, with each core
following the massive bodies and 500 massless disk particles.

3.3. Galactic Tide and Stellar Encounters

Two dynamical effects shape the structure of the Oort cloud
at large heliocentric distances: (i) the Galactic tidal field, and
(ii) the gravitational perturbations from individual stellar
encounters with the solar system (see reviews by Rickman 2010
and Dones et al. 2015). Both are due to the gravitational effects
of masses outside the solar system, but it is convenient to split
them into (i) a collective, smooth, steady-state component and
(ii) individual transitory effects (Heisler & Tremaine 1986;
Collins & Sari 2010).
Our model for the Galactic tide, including the MONDian

correction, was developed in Section 2.3. We implemented this
perturbation, as described by Equations (31) and (37), in
swift. As in Nesvorný et al. (2017) and Vokrouhlický et al.
(2019), we model stellar encounters by introducing passing
stars in swift as additional massive bodies at their entry to a
sphere of 1 pc heliocentric radius, and removing them from the
simulation at their exit from this sphere. We use the statistical
method discussed in Rickman et al. (2008) to generate a
sequence of stellar encounters through the history of the
solar system, with the distribution of stellar masses, velocity
dispersion and frequency of encounters taken from
García-Sánchez et al. (2001). These data are taken from
observations by the Hipparcos spacecraft. Data Releases 2 and
3 from the Gaia spacecraft (e.g., Bailer-Jones et al. 2018;
Bailer-Jones 2018, 2022) give more accurate estimates of the
properties of the population of stars in the solar neighborhood.
However, given the approximations and uncertainties else-
where in our analysis, the somewhat older Hipparcos-based
data are satisfactory for our purposes. Statistically, there are
;12 stellar encounters per million years within the chosen 1 pc
heliocentric distance. Most encounters (more than 65%) are
with dwarf stars of subsolar mass (;0.25 Me) passing with
relatively high speeds (30 km s−1 or so). A typical encounter in
our simulations lasts from a few tens of thousands to hundreds
of thousands of years. The characteristic distance of closest
approach between a planetesimal roaming in the Oort cloud
and a star passing through the cloud is several tens of thousands
of au. As a result, the induced acceleration to the heliocentric
planetesimal motion from a stellar encounter is typically small,
except during rare close encounters (e.g., Rickman 2010).
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In an ideal model, we would treat the gravitational
interaction between the passing stars and planetesimals on
heliocentric orbits using MONDian dynamics rather than

Newtonian dynamics. We justify the Newtonian approximation
by recalling the very different role of the Sun and the passing
stars in the orbital history of planetesimals. Those of them that

Figure 9. Distribution of barycentric orbital elements, eccentricity e vs. semimajor axis a (top parts), and inclination I relative to the ecliptic vs. semimajor axis a
(bottom parts), at the final epoch of four simulations: (a) Newtonian dynamics, similar to the results in Vokrouhlický et al. (2019) or the “Galaxy” simulation in
Nesvorný et al. (2023); (b) Newtonian dynamics, with the effects of a solar system birth cluster included (from the Cluster1 simulation in Nesvorný et al. 2023); (c)
MONDian dynamics with the sharp transition function μ10(x) (the 2 simulation); (d) MONDian dynamics with the gradual transition function μ2(x) (the 1
simulation). The plots focus on the region of the distant TNOs (a � 2000 au); red triangles are the presently known objects in multi-opposition orbits with a � 100 au
and perihelion q � 30 au. The blue dot is the orbit of Neptune. A few notable objects are labeled in the a–e plots: 2014 US277 (label 1), 2012 VP113 (label 2), and
(90377) Sedna (label 3). The dashed and solid gray lines in the a–e plots show perihelion distances q = 30 and q = 40 au, roughly delimiting the region occupied by
the Neptune SD objects. The orbits with larger perihelia, such as the labeled cases, belong to the detached disk. The dotted vertical line indicates the position of the
exterior 6:1 mean-motion resonance with Neptune.
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eventually become observed LPCs travel around the Sun for a
few billion years, on orbits that typically reach far beyond the
heliocentric MOND scale rM. It is thus essential to model the
statistical parameters of this population in the context of
MOND. The effect of passing stars is to introduce a time-
localized, random component in the heliocentric motion of the
planetesimals which leads to a random walk of their orbital
elements (causing, for instance, the distribution of orbital
planes in the outer Oort cloud to be isotropic in space).
Provided the diffusion coefficients of this process are roughly
correct (and we argue that they are), it would basically not even
matter what is the origin of the diffusion.

3.4. Long-period Comet Modeling

We use the same approach as in Vokrouhlický et al. (2019)
to obtain the synthetic population of LPCs. We record all

particle approaches to the inner solar system with perihelia
�15 au during the last 500Myr of our simulations. At the
moment of perihelion passage, we save the heliocentric state
vectors of the particle and all the planets. This information is
used in the postprocessing phase, in which we perform a short
numerical integration of each such recorded comet visit
backward in time, until the comet reaches a heliocentric
distance of 250 au. We use Newtonian mechanics for these
runs. At this heliocentric distance, we compute the barycentric
orbital elements of the particle. This procedure is necessary to
characterize the LPC orbits properly, because the heliocentric
orbital elements at pericenter passage are perturbed by the solar
motion about the barycenter of the solar system and the
gravitational potentials of the planets. The binding energy of
LPCs with orbits in the Oort cloud is so small that these
corrections are significant. In particular, many heliocentric LPC
orbits appear to be hyperbolic at perihelion even though their
barycentric orbits are elliptical as they approach the planetary
system, with the corresponding semimajor axis termed the
“original” semimajor axis, aori. While the perihelion distance
and inclination are little changed, as the maximum solar
distance from the barycenter is only ;0.01 au, aori deviates
significantly from the heliocentric a. The same correction is
carried out for observed comets before their orbits are recorded
in catalogs; see Królikowska & Dybczyński (2020) for the
analysis of nearly parabolic LPCs, and Marsden & Williams
(2008) for all comets.
After the orbital elements of the observable LPCs have been

processed to obtain their original, barycentric values, we need
to account for the cometary fading process. The simulated
comets in our simulations are indestructible and are removed
from the simulation only if they physically hit one of the
massive bodies or are ejected from the solar system (which we
operationally define as reaching a heliocentric distance of
500,000 au). Real comets, however, have lives limited
primarily by a still debated physical process (i.e., they either
disintegrate, or cease to be active and observable by exhausting
their volatile components, or disappear through some unknown
process). The need to include comet fading in models of the
LPC distribution was already recognized in the pioneering
work of Oort (1950). The fading phenomenon remains poorly
understood, as it is not exactly known to what heliocentric
distances it operates (see, e.g., Kaib 2022 for a surprising result
arguing for a comet fading well beyond the orbit of Saturn), or
what is the minimum necessary set of parameters to describe it
(see, e.g., Jewitt 2022, who argues that fading may be primarily
dependent on cometary size in contrast to the more traditional
description by number of returns to perihelion in the inner solar
system). Fortunately, our conclusions do not depend strongly
on these details.
We adopt an extension of the popular model by Whipple

(1962), who argues that most LPCs fade within the first few
returns to the inner solar system, with about a 15% fraction
surviving much longer (e.g., Weissman 1980). The fading
process thus depends only on the number of LPC returns to the
inner solar system. Following Wiegert & Tremaine (1999), we
define Φm, the probability that a given comet survives fading
for at least m perihelion passages, and adopt the offset power
law

⎛
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Figure 10. Seven orbits from the simulation 2 that detached from the SD.
Barycentric orbital elements—semimajor axis, eccentricity and inclination
from top to bottom—are shown as a function of time. While spending most of
the time with perihelia �38 au, the orbits periodically visit the SD region of
phase space, where close encounters with Neptune may excite a random walk
in semimajor axis (if soft enough), or extract the particles to the comet
population (if stronger).
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with κ and c positive constants (Wiegert & Tremaine 1999 also
review a number of other fading models). The parameters (κ, c)
are adjusted to obtain the best fit to the observed distribution of
the original semimajor axes of LPCs. We consider the
following range of values: κ ä (0, 1) and c ä [0, 10].

In order to verify the robustness of our results to the choice
of the fading function, we also explored a two-population
model consisting of (i) a population of LPCs that disappear
with probability λ at each perihelion passage, and (ii) a
population that does not fade at all (fractionally expressed with
a parameter f; e.g., Weissman 1979, 1980). This is again a two-
parameter fading family, given by

f f1 1 . 39m
m 1( )( ) ( )lF = - - +-

The parameters (λ, f ) are adjusted in the intervals λ ä (0, 1) and
f ä [0, 1] to obtain the best match between our model and the
data in the Marsden–Williams catalog of LPCs.

3.5. Data Sets: Distant Trans-Neptunian Objects and Long-
period Comets

The results of our simulations are compared with two
observational data sets: the orbital elements of the distant
TNOs and the binding energies (or original semimajor axes) of
LPCs.12 The first of these data sets is relatively small, as not
many TNOs have been detected at very large heliocentric
distances. However, many new detections are expected from
forthcoming large surveys such as those of the Vera C. Rubin
Observatory. At present, the distribution of original semimajor
axes of the LPCs provides a stronger test of MOND.

Distant TNOs. To generate input for the Dark Energy Survey
(DES) simulator (see below), all numerical integrations are
continued, with MOND effects included, from t= 4.5 Gyr to
t= 4.51 Gyr. The orbits of all bodies are recorded with a 105 yr
cadence. The main purpose of this integration is to increase the
statistics such that the DES simulator generates a large enough
number of detections to be compared with actual DES
detections. We rotate the reference system such that Neptune’s
position on the sky approximately corresponds to its position
during DES observations, as needed to correctly model
azimuthal biases related to Neptune resonances. The orbits of
the same TNO obtained at different times are supplied to the
simulator as if they were orbits of different TNOs.

We collect all orbits in this simulation with semimajor axes
100< a< 500 au and perihelion distances q> 35 au, nearly
800,000 orbits in total. This selection corresponds to a class of
TNOs known as detached disk objects (Gladman et al. 2008);
all orbital elements are referred to the barycenter of the solar
system. The detached TNOs are largely immune to perturba-
tions from the planets. Their orbits are therefore difficult to
populate from a planetesimal disk in standard models of the
evolution of TNOs, which makes them a good diagnostic of
MOND. We also ignore orbits with a< 100 au, which are
strongly affected by various resonances with the giant planets,
and orbits with a> 500 au, where we have no observational
data (with only a few exceptions).

The distribution of these orbits is compared with DES
detections. Bernardinelli et al. (2022) searched for outer solar
system objects during the 6 yr of DES operations between 2013
and 2019. They found 817 TNOs, including over 200 objects in

the SD with a> 50 au. There were 33 detections satisfying our
selection criteria (100< a< 500 au and q> 35 au). The
relatively small number of distant TNOs observed by DES
reflects the difficulty of detecting objects with large perihelion
distances.
The DES team developed a survey simulator, which is

publicly available on GitHub. The DES simulator enables
comparisons between test models and the DES data by
simulating the discovery probability of each member of the
test population; that is, the model is biased in the same way as
the data.
The DES simulator needs an absolute magnitude distribution

of the distant TNOs as input. Following previous publications
on the subject (e.g., Bernstein et al. 2004; Beaudoin et al.
2023), we adopted a piece-wise power-law model for the size
distribution with two break points at diameters D1 and D2

(D2>D1). The small (D<D1), intermediate (D1<D<D2),
and large (D>D2) TNOs were assumed to have cumulative
size distributions N(>D) that satisfied dN D dD D 1( )> µ a- -

with different slopes α. The free parameters are D1, D2, and the
three αʼs. These were adjusted, after accounting for observa-
tional bias, to provide an adequate match to the absolute
magnitude distribution of distant TNOs detected by DES. As
DES reported their detections in the red absolute magnitude Hr,
the bolometric absolute magnitudes H are mapped to Hr using
the relation Hr=H− 0.6 (Bernardinelli et al. 2022). In order to
translate the absolute magnitudes to sizes, we assumed a visual
albedo pV= 0.05. We adjusted the parameters of the size
distribution such that the observationally biased magnitude
distribution of distant TNOs, as it comes from the DES
simulator, matches the actual DES detections. We obtained
D1= 100 km, D2= 250 km, αsmall= 2.1, αinterm= 5.0, and
αlarge= 2.0. The shape of this size distribution is consistent
with constraints from observations of Jupiter Trojans and
TNOs with a< 100 au (e.g., Nesvorný 2018). The results
reported in Section 4.1 do not depend sensitively on the
adopted size distribution.
Long-period comets. The method of generating the synthetic

population of LPCs from our simulations has been already
described in Section 3.4. For general information on the orbits
of observed LPCs, we refer the reader to several review
chapters published in the past decade (e.g., Dones et al. 2015),
as well as a detailed description in Section 2 of Vokrouhlický
et al. (2019). Here we provide just a brief overview.
The determination of the orbital distribution of the extreme

LPCs with the weakest binding energies to the solar system
(also called the nearly parabolic comets) has been a long-term
project of the Warsaw school founded by Grzegorz Sitarski in
the 1970s. A recent series of papers from this school
(Królikowska et al. 2014; Królikowska 2014; Królikowska &
Dybczyński 2017) culminated in Królikowska & Dybczyński
(2020), where a catalog of 277 nearly parabolic comets was
presented. We use the Class 1 subsample of these orbits, in total
228 comets, for which the astrometric observations provide the
most accurate determination of the orbital parameters. In order
to minimize the role of observational biases, we further restrict
the sample to LPCs with perihelion distance q� 4 au,
representing finally 116 comets.
The determination of the orbital distribution of all LPCs also

has a long tradition. It had already commenced in the late
1960 s and for several decades was coordinated by Brian
Marsden and his collaborators. Here we use the 17th edition of

12 In Appendix D, we also compare with the distribution of aphelion directions
of LPCs.
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the catalog of Marsden & Williams (2008). As in Vokrouhlický
et al. (2019), we use orbital data from 318 LPCs with the most
accurately determined solutions (about 60% of the whole
catalog). Once again, we focus on orbits with perihelia
q� 4 au. This is a compromise between the number of
available orbital solutions and their completeness (see the
discussion in Wiegert & Tremaine 1999). While the data set we
are using may still suffer some degree of incompleteness, we
believe that this does not affect our conclusions.

4. Results

Table 1 provides an overview of our core set of simulations.
For brevity, we use the identifiers 0 to 3.

We first analyze a class of reference simulations, denoted 0,
based on Newtonian dynamics. We discuss two flavors of these
simulations: the simpler ones are based on the present Galactic
environment of the solar system, while a second set includes
the effects of its birth cluster (Adams 2010). These provide
context for our simulations using MOND.

All other simulations assume the same MOND acceleration
scale a0= 1.2× 10−10 m s−2. The simulations sample two
different values of the external acceleration ge, and two
transition functions from the μn(x) family (Equation (4)).

We use the nominal (present-day) value ge= 2.32×
10−10 m s−2 in 1 and 2, and a larger value ge=
3.35× 10−10 m s−2 in 3. The larger value corresponds to
the centripetal acceleration at a radius that is 70% of the Sun’s
current distance from the Galactic center, a plausible estimate
for the distance over which it may have migrated since its birth.

In 1, we use the gradual function μ2(x) popular in many
applications of MOND to Galactic and extragalactic dynamics,
and in 2 and 3, we use the sharper transition function μ10(x),
which unlike μ2(x) is consistent with constraints from planetary
ephemerides (see Section 2.2.2).

In all of these simulations we included the initial migration
of Uranus and Neptune, as described in Section 3.1. While
many lines of evidence indicate that migration must have taken
place, the details remain somewhat uncertain. Therefore, we
also performed a smaller-scale variant of the simulation 2
without planetary migration; that is, the planetary orbits were
static throughout the simulation. This simulation, called 2¢, is
discussed in Appendix C. Its purpose is to show that our

conclusions do not depend on the details of planetary
migration.
We start with a discussion of the population of planetesimals

detached from the SD and its consistency with DES
observations (Section 4.1). Next, we discuss constraints from
the binding energy distribution of the observed LPCs
(Section 4.2). In Appendix D, we provide a brief analysis of
possible MONDian effects on the distribution of the aphelion
directions of nearly parabolic LPCs.

4.1. Implications for Distant Trans-Neptunian Objects

Figure 9 provides a first glimpse at the results, which we use
to highlight the main dynamical processes. For that purpose,
we show two Newtonian simulations by Nesvorný et al. (2023,
top panels), and two of our MOND simulations, 1 and 2
(bottom panels).
Consider first the basic simulation named “Galaxy” in

Nesvorný et al. (2023), equivalent to those in Vokrouhlický
et al. (2019), shown on the top-left panel. This simulation
assumes that the Galactic environment at all times is the same
as the current environment of the solar system. The properties
of the distant heliocentric populations are basically determined
by (i) Neptune’s radial migration through the planetesimal disk,
and (ii) its terminal semimajor axis of 30 au. During this
evolution, a fraction of the planetesimals was scattered by
Neptune into the SD, characterized by large values of
semimajor axis but perihelia remaining in the range
30–38 au. Unless the planetesimal orbit becomes unbound to
the solar system, which is unlikely in the lifetime of the solar
system because of Neptune’s low mass, the planetesimals in the
SD population remain there for a long time. In this simple
model, it is not easy to transfer planetesimals to orbits with
larger perihelia than ;38 au, namely into the detached disk.13

The interaction with Neptune mean-motion resonances is one
possible process that can do so. In Figure 9 this possibility of a
transfer to the detached disk is illustrated by 2014 US277
(identified by label 1), an object residing in the 6: 1 mean-
motion resonance with Neptune at a; 100 au. However, the
efficiency of this process decreases with the order of the
resonance, such that detached orbits with a� 150 au have a
very small chance to be produced by this resonant mechanism
(e.g., Crompvoets et al. 2022).
Recent wide-angle surveys have revealed a significant popula-

tion of nonresonant detached TNOs beyond a= 100–150 au (see,
e.g., Beaudoin et al. 2023). Something beyond the basic model of
this simulation is needed to explain this population. This challenge
has resulted in a vast literature, which we do not intend to review
here, that mainly discusses two distinct models: (i) if Neptune is
not the most distant planet in the solar system, and one or more
planetary-mass objects are hidden on distant heliocentric orbits,
their perturbations can pull the SD objects onto orbits with larger
perihelia (Gladman & Chan 2006; Silsbee & Tremaine 2018;
Batygin et al. 2019); or (ii) close stellar encounters during the
period when the young solar system was still in its natal cluster of
stars can excite orbits in the SD to larger perihelia (see, e.g.,
Morbidelli & Levison 2004 as a representative of early studies of
this possibility). The results shown on the top-right panel of
Figure 9 illustrate the second class of models. They are based on

Table 1
List of the Principal Simulations

Transition Function External Acceleration
Equation (4) ge

(m s−2)

Reference simulation
0a L L

Nominal simulations
1 μ2(x) 2.32 × 10−10

2 μ10(x) 2.32 × 10−10

Extended simulations
3 μ10(x) 3.35 × 10−10

Notes. The first column is the simulation label, the second column specifies the
transition function, and the third column gives the value of the external
acceleration. In all runs a0 = 1.2 × 10−10 m s−2.
a A Newtonian simulation using the results in Nesvorný et al. (2023) and
Vokrouhlický et al. (2019).

13 In this work, we define the detached disk by simple orbital constraints,
q � 38 au and a � 50 au, close to but not exactly the same as the proposed
terminology in Gladman et al. (2008).
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the “Cluster1” simulation in Nesvorný et al. (2023), where a
simplified model for stellar encounters in the natal cluster was
considered. During the brief period before the cluster dissolves,
close stellar encounters form a fossil extension of the Oort cloud
down to several hundred au heliocentric distance. The orbit of the
archetypal detached object (90377) Sedna (identified by label 3;
e.g., Brown et al. 2004) may be readily explained by this
mechanism (if a more violent initial phase is assumed, one could
even generate an object with the orbit of 2012VP113, identified by
label 2). For what follows, it is important to stress that this
innermost part of the Oort cloud—to which the Sedna-type orbits
belong—is inactive today in this model. This means that both
planetary perturbations and Galactic tides are very weak in this
zone; thus, once they are detached from the SD, Sedna-type
objects remain in more-or-less fixed orbits for billion-year
timescales or more. For that reason, they do not contribute to the
observed cometary populations today. As confirmation of this
argument, both the “Galaxy” and “Cluster1” simulations, very
different in some aspects as seen in the top panels of Figure 9,
provide a population of LPCs with the same orbital characteristics.

As already demonstrated by Paučo & Klačka (2016), Paučo
(2017), and more recently discussed by Brown & Mathur
(2023), MOND offers yet another mechanism for transferring
planetesimals from the SD to the detached disk. Our
simulations confirm this conclusion. Results from the 1 and
2 runs are shown in the bottom panels of Figure 9. The
analysis in Section 2.2.2 showed that the MONDian perturba-
tion is weaker, and spatially isolated to a narrower range of
heliocentric distance, in the case of the sharp transition function
μ10(x). As a result, the torque exerted by the EFE that lifts SD
orbits to larger perihelia in the 2 simulation is limited to orbits
with semimajor axes 400 au; in contrast, with the gradual
transition function μ2(x) used in the 1 simulation, the detached
disk is populated down to semimajor axes ∼150 au.

The orbit distribution in the detached disk formed in the 2
simulation is comparable to that of the detached disk formed in
the “Cluster1” simulation by stellar encounters in the solar
system birth cluster. The main difference, though, is that the
MONDian perturbation is active until the present epoch,
providing a continued and vigorous exchange between the

detached disk and the SD (see Figure 10 for a few examples of
orbital evolution of the detached particles in the simulation 2).
In the next section, we show that this process produces a
mismatch between the predicted and observed distribution of
the LPC binding energies. This problem is only amplified in the
1 simulation, which allows a stronger MONDian perturbation
that penetrates to smaller heliocentric distances. The bottom-
right panels in Figure 9 show that in this case the SD extends to
orbits with semimajor axes as small as 150–200 au. In fact, in
this model the EFE is strong enough beyond ;1000 au that
this region—the inner Oort cloud—is depleted of particles by
the current age of the solar system.
While this qualitative discussion contributes to our under-

standing of the main processes, the predictions from a specific
simulation can be confirmed or refuted only by a careful
quantitative comparison with observations. This is not an easy
task, as the observed population of distant TNOs (represented
by the red triangles in Figure 9) is heavily biased by the
limitations and selection effects of existing surveys. Thus, the
synthetic population resulting from our simulation must be
culled by an accurately known detection probability before it is
compared with the observations. Here we conduct such a
comparison between the results of our MOND simulations 1
to 3, and TNO discoveries made during the six years of
operations of the DES (Bernardinelli et al. 2022), using the
approach described in Section 3.5.
Without MOND, the simulations accurately reproduce the

orbital distribution of distant TNOs (see Figures 8 and 9 in
Nesvorný et al. 2023), including their perihelion distances and
orbital inclinations. With MOND, as implemented in the 1
model, the observationally biased orbital distributions do not
give a good fit to the DES discoveries (Figure 11). In particular,
the simulation contains relatively too many TNOs with large
perihelia and large inclinations. This problem arises because
torques from the EFE cause distant TNOs to evolve to very
large perihelion distances (Figure 9), so if simulation 1 were
correct, DES should have detected many more objects with
q> 38 au. Similarly, the inclination distribution of distant
TNOs is very extended in the 1 model. DES observations are
not strongly biased in orbital inclination; note that the solid and

Figure 11. A comparison between the orbital distributions of the observationally biased MOND-based 1 model (black lines) and DES observations (red dots) of
distant TNOs (100 < a < 500 au and q > 35 au). The observationally biased model sample was determined using the DES simulator. The intrinsic model distributions
(i.e., without the DES observational bias) are shown as dashed lines. The shaded areas are 1σ envelopes. From left to right, the panels show the distributions of
perihelion distance, orbital inclination relative to the ecliptic, and red absolute magnitude.
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dashed lines in panel (b) of Figure 11, representing the
observationally biased and intrinsic inclination distributions,
are quite similar. Yet, only 10% of the distant TNOs detected
by DES have i> 40°. In contrast, about 40% of the TNOs in
simulation 1 are detected with i> 40°. A Kolmogorov–
Smirnov (KS) test applied to the inclination distribution shows
only a 0.7% probability that the distributions shown in panel
(b) of Figure 11 can be obtained from the same underlying
distribution. This argument is already sufficient on its own to
rule out the 1 model.

The 2 and 3 simulations, with a sharper MOND transition
function, cannot be ruled out from the same argument. The
perihelion distance and orbital inclination distributions
obtained in these models are consistent with DES detections
of distant TNOs. This is because with the sharp transition
function the effects of MOND are negligible at the semimajor
axes explored by the detectable TNOs, and we already know
that Newtonian models fit the distribution of distant TNOs
reasonably well (Nesvorný et al. 2023).

Finally, we briefly comment on the results of Brown &
Mathur (2023), who suggest that MOND produces an anti-
alignment between the direction e toward the Galactic center
and the perihelion direction p̂ of the detached TNOs. In order
to quantify this effect, Brown & Mathur (2023) analyzed the
distribution of the parameter e pu 1 2( · ˆ )= + , determined
for a small sample (N= 6) of objects in the detached disk. They
observed a statistical pileup of u near zero, which they
interpreted as capture in a stable Kozai-type island from a
secular quadrupole that arose through the EFE. In order to test
this hypothesis, we computed the value of the u parameter for
all particles in the detached disk at the end of the simulations
1 to 3 (orbits with barycentric semimajor axis in the range
100 au�a� 1000 au, with perihelion q� 38 au). In all of these
simulations, we found that u has a distribution inconsistent with
the strong asymmetry found by Brown & Mathur (2023) in the
limited observational data (〈u〉= 0.16 for N= 6 bodies in the
detached disk) and predicted by them if MOND is correct. The
red and blue curves in Figure 12 show the distribution of u for
particles at the end of simulations 1 and 2. While not strictly
uniform—we do not expect this, because of the EFE—the
differences from the uniform model are very small. The KS
distance of the 1 and 2 distributions from the uniform model
is 0.04 at maximum. The gray curves in Figure 12 provide the u
distributions during the last 500Myr in these integrations with
a step of 100Myr. Overall, there is no systematic and
substantial deviation from an uniform distribution. Other
concerns with the analysis of Brown & Mathur (2023) are
discussed in Section 1.

4.2. Implications for the Oort Cloud and Long-period Comets

We first briefly review results from Newtonian simulations.
We used a reference simulation performed by Nesvorný et al.
(2023), which provides results equivalent to those discussed in
Vokrouhlický et al. (2019). Both references used a very similar
methodology to this paper, the planetary migration model in
particular, but they are not identical. For instance, Vokrouh-
lický et al. (2019) used the same initial trans-Neptunian disk
model as we use in the MONDian simulations described below,
while Nesvorný et al. (2023) had a broader initial disk of
planetesimals extending from Jupiter’s initial location to 30 au
heliocentric distance. Additionally, several simulations in
Nesvorný et al. (2023) modeled the dynamical effects from

the solar system’s birth cluster. The presence or absence of the
birth cluster does not affect the distribution of binding energies
of currently observed LPCs, at least in the simulations of
Nesvorný et al. (2023).
Figure 13 shows the simulated distribution of original

semimajor axes a for LPCs having perihelion q� 4 au,
compared with the same orbits in the Marsden–Williams
catalog. In the left panel, we show the a-distribution for a set of
models in which the observable comets are allowed to perform
a maximum number of perihelion passages with q� 4 au
before they disappear from the sample. This family starts with
the class 1 of comets at their first visit (“new” comets),
continuing with the class 2 of comets visiting the target zone
at most twice, and so on. In each case, we normalized the
simulated distribution to contain the same number of LPCs as
the data. We see from the figure that the classes with too few
visits (1, 2, or 3) overexaggerate the strength of the Oort
peak (a� 104 au), while those for classes with many visible
returns (m with m� 15, say) exaggerate the strength of the
hump of returning LPCs (a� 104 au). Clearly a compromise is
needed, in which a combination of results from the m families
with a weighting function depending on m would provide a
final model that fits the data properly. This was known already
to Oort (1950), and since then models with various weighting
schemes have been developed. Here we use the simple but
successful model of Whipple (1962), in which the probability
that a comet survives m returns (i.e., m perihelion passages with
q� 4 au) is the offset power law given by Equation (38). The
best-fit solution is shown by the red curve on the right panel of
Figure 13 and has κ= 0.82 and c = 1.14 (this solution is only
slightly better than κ; 0.6–0.7 and c= 0, the power-law
model that was used, for example, by Whipple 1962, Wiegert
& Tremaine 1999, and Vokrouhlický et al. 2019). The

Figure 12. Cumulative distribution of the u parameter defined in Brown &
Mathur (2023), normalized to unity, for our core simulations 1 (red) and 2
(blue). We used particles at the end of those simulations, epoch 4.5 Gyr, that
were detached from the SD (q � 38 au) in heliocentric orbits with semimajor
axes in the range 100 � a � 1000 au. The dashed black diagonal is the uniform
distribution in u. The gray curves are distributions of the u parameter from the
two simulations at five equally spaced times in the last 500 Myr.
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normalized χ2 for this model is 1.5, somewhat larger than
would be expected from Poisson statistics (a summary of the
best-fit solutions for all models is given in Table 2). Taken
literally, the likelihood of the best-fitting model is rather small,
only 0.02 (see the Q parameter in Chapter 15.1 of Press et al.
2007). However, the model is not expected to fit the data
perfectly because it does not account for nongravitational
accelerations due to cometary activity (e.g., outgassing; see
Królikowska 2020), and any fading model based solely on the
number of perihelion passages is oversimplified. Despite these
limitations, the model is able to correctly reproduce the
principal characteristics of the distribution of observed LPC
orbits, namely (i) the Oort peak composed of very weakly

bound cometary orbits (a= 104–105 au), (ii) the hump of more
strongly bound returning comets (a< 104 au), and (iii) the
correct relative proportion of these two classes.
Figure 14 provides a zoomed-in view of the LPC population

with semimajor axes a> 5000 au. Following the tradition since
Oort (1950), we use the inverse of the original semimajor axis
1/a as the abscissa instead of a directly. The gray histogram
shows 116 comets from the Warsaw catalog with q� 4 au, and
the color-coded histograms represent the sequence of m

(m� 1) models from our simulation, each normalized to the
total number of comets in the data. Here the new comets (1
class; blue histogram) dominate, representing nearly 90% of the
signal in the Oort peak with 1/a� 10−4 au−1. As a result, the
properties of the Oort peak are only weakly dependent on the
uncertain modeling of the fading process. The match to the data
is satisfactory. The main discrepancy is that the simulated Oort
peak is slightly too narrow. Previous studies have shown that
nongravitational accelerations (which we ignore in our model)
are the most likely explanation of the differences between the
model and the data (e.g., Wiegert & Tremaine 1999;
Królikowska 2020; Królikowska & Dones 2023). Nongravita-
tional forces are likely important for all of the small number of
comets on apparently hyperbolic orbits (1/a< 0).
The Newtonian models we have described provide a

benchmark for the success that can be achieved in matching
the data. The agreement with the data is rather good, although
not perfect. If MOND is the correct theory of gravity, then our
MONDian simulations of the evolution of LPCs ought to match
the data at least as well and probably better.
Simulations with MOND and the nominal external accel-

eration (1 and 2). Next, we discuss simulations assuming
the nominal value of the external acceleration, ge= 2.32×
10−10 m s−2. We use the same analysis as we did above for the
Newtonian simulation.

Figure 13. The gray histograms in both panels show the original semimajor axes a (in au) for a sample of 224 LPCs with perihelion q � 4 au, from the Marsden–
Williams catalog. The error bars on the right panel are simply N . The colored lines show the results from the Newtonian simulation 0, as described in Section 4.2.
Left panel: the histograms show the distribution of observed LPCs with if we assume that they disappear after N perihelion passages with q � 4 au: (i) new comets,
N = 1 (1; blue curve), (ii) N = 2,3 (2 and 3; green curves), and (iii) N = 5, 10, 15, 20, 25 (5, etc.; red curves). As N increases the fraction of comets in the Oort
peak (a � 104 au) declines, and the fraction in the returning hump (a � 104 au) grows. All histograms are normalized to the number of observed comets. Right panel:
the results shown in the left panel are combined using the fading law (Equation (38); e.g., Whipple 1962; Wiegert & Tremaine 1999), with its parameters κ and c
adjusted to fit the observations (red curve). The best-fit parameters are given in Table 2.

Table 2
Best-fit Parameters of the Fading Laws for Different Simulations

κ c χ2 λ f χ2

Equation (38) Equation (39)

Reference simulation
0a 0.82 1.1 1.5 0.18 0.08 1.5

Nominal simulations
1 0.67 0.0 3.6 0.44 0.09 3.3
2 0.85 7.8 4.8 0.09 0.19 4.8

Extended simulations
3 0.60 0.0 3.6 0.35 0.12 3.6
2¢b 0.47 0.1 4.2 0.17 0.18 4.1

Notes. The parameters (κ, c) and (λ, f ) of the fading models of Equations (38)
and (39), respectively, corresponding the best fit to the distribution of original
semimajor axes for LPCs with q � 4 au. The last column gives the minimum
reduced χ2 of each fit.
a Labels of the simulations from Table 1.
b See Appendix C.

23

The Astrophysical Journal, 968:47 (35pp), 2024 June 10 Vokrouhlický, Nesvorný, & Tremaine



Figure 15 compares the distribution of the original semimajor
axes a of the observed LPCs with q� 4 au to the results of our
simulation 1. The changes due to MOND are best illustrated by
the distribution of new comets (1 class; blue histogram). While
previously the outer Oort cloud (a� 15,000 au) was the only
source of new comets, the vigorous MONDian torques at
heliocentric distances of a few thousand au (roughly the MOND
scale ∼rM) provide an additional source of new comets. The 1

class thus is dominated by much smaller semimajor axes. At
subsequent returns (classes m, m� 2), the comets tend to bind
more strongly to the solar system, corresponding to even smaller
semimajor axes. In these classes there is no concentration of
comets in the Oort peak between 104 and 105 au. A combination
of the classes m, weighted by Whipple’s fading law
(Equation (38)), may again be used to find the formal best fit
to the data (right panel on Figure 15, and Table 2). The best fit,
with parameter values κ= 0.67 and c= 0, is poor, as the
minimum reduced χ2 is ;3.6. The fit is not improved
significantly with our alternative fading law (Table 2).

Figure 16 provides a zoomed-in view of the nearly parabolic
LPCs. The simulation shows only modest excursions from a
nearly uniform distribution in 1/a, even for the new comets
(class 1), and is inconsistent with the data because it does not
reproduce the width and height of the Oort peak. Moreover, the
simulated distribution now includes far more LPCs on
hyperbolic orbits (1/a< 0) than the data. In the simulation,
these comets are bound to the solar system, but their orbits have
been significantly affected by MONDian effects. Because the
original semimajor axis value is computed by a Newtonian
model (the same way as the data are processed), these objects
appear be approaching the inner solar system on unbound
hyperbolic orbits. We have verified, using smaller-scale
simulations, that this apparent hyperbolic population of new
LPCs becomes increasingly significant for smaller values of the

external acceleration value ge and for more gradual MONDian
transition functions (see Figure 8 for context).
The simulation 2, with a sharp transition function, is shown

in Figures 17 and 18. This simulation is also inconsistent with
the data. The fit using Whipple’s fading model (Equation (38))
has parameter values κ= 0.85 and c= 7.8, and the normalized
χ2; 4.8. The statistical likelihood of a valid model to have this
level of χ2 is now in the land of despair, 3× 10−16. The
principal mismatch between the model and observations is in
the height and width of the Oort peak. No plausible fading
model can build the Oort peak out of nothing.
The simulation 2 used μ10(x) as an example of a sharp

transition function. Using a smaller simulation, we verified that
the results are similar for an even sharper transition function,
μ20(x). This is not surprising since Figure 1 shows that the
difference between these two transition functions is not very
large.
Simulation with MOND and a larger external acceleration

(3). Finally, we performed a simulation 3 using the sharp
transition function μ10(x) and a 45% larger value of the external
acceleration, ge= 3.35× 10−10 m s−2. This test was motivated
by current ideas about the migration of the solar system in the
Galaxy: the solar system probably formed closer to the Galactic
center and subsequently evolved outward to its current
location. This would imply that the external acceleration ge
was larger in the past. Ideally, we should conduct simulations
in which ge has a time dependence determined by the Sun’s
migration history. Unfortunately, (i) the solar migration history
is still poorly constrained, and (ii) such simulations would
require the determination of a continuous set of radial functions
υℓ(r, ge) (Equation (23)). Given these difficulties, we decided to
run a single additional simulation (3) in which the external
acceleration was constant, and set to the largest value likely to
have been experienced by the solar system during its history.
Recall that with larger values of ge the MONDian effects are
generally reduced, which might help to remove the incon-
sistencies between the simulated orbital distribution of the
LPCs and the observational data. Using the maximum possible
value thus provides a strong test of whether MOND is
consistent with the orbits of LPCs.
Figures 19 and 20 show the simulated distribution of the

original semimajor axes of LPCs with q� 4 au, and the 1/a
distribution for nearly parabolic comets. While the latter
distribution is in relatively good agreement with the data, the
problem with the distribution of semimajor axes in the whole
LPC population persists. Even the new comets (class  ;1 blue
histogram) still have a significant maximum below the 104 au
inner boundary of the Oort peak. For that reason, an attempt to
fit the observations using Whipple’s fading law (Figure 19,
right panel) still underrepresents the Oort peak. The normalized
χ2= 3.6, while still much larger than in the Newtonian
simulation (χ2= 1.5), is lower than in simulation 2,
confirming that the predictions of MOND become less
inconsistent with the observations when the external field ge
is pushed to higher values.

5. Discussion and Conclusions

The basic conclusion from this work is that the predictions of
the MOND theory of gravity are in conflict with solar system
observations. However, there are several layers in this
statement, which deserve to be discussed in more detail. This
is because MOND has more degrees of freedom than

Figure 14. The gray histogram shows the inverse of the original semimajor
axes 1/a (in units of 10−4 au−1) for a sample of 116 nearly parabolic LPCs
with perihelion q � 4 au, from the Warsaw catalog. The colored lines show the
results from the Newtonian simulation 0. As in Figure 13, the colored
histograms show the simulated distributions of new comets (blue), comets
returning up to two and three times (green), and multiply visiting comets (red),
all normalized to the number of observed comets in the data. The new comets
contribute about 80% of the total number, and nearly 90% in the Oort peak
with 1/a � 10−4 au−1.
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conventional theories of gravity (Newtonian gravity and
general relativity).

The most severe conflicts with the observational data occur
in the versions of MOND with gradual transition functions. In
this paper, we have mostly studied a particular example of a
gradual transition function, μ2(x) (Equation (4)). MOND
theories with this transition function disagree with solar system
data in at least three ways. (i) They predict planetary
ephemerides that disagree with observations (Blanchet &
Novak 2011; Hees et al. 2014; Fienga et al. 2018). (ii) The
torques from the EFE produce relatively broad distributions of
perihelion distances and orbital inclinations of distant TNOs,

which are inconsistent with DES observations. (iii) The
distribution of binding energies of the LPCs with perihelia
q� 4 au is inconsistent with the data, because orbits with
original semimajor axes >10,000 au (the Oort peak) are
underrepresented relative to those with smaller semimajor
axes. This statement holds for any fading law that depends only
on the number of perihelion passages close to the Sun.
In spite of its multiple failures, variants of MOND with slow

transition functions are still popular in studies of galaxies
because they fit galaxy rotation curves more accurately (see,
e.g., Famaey & McGaugh 2012; Candlish et al. 2015;
Lüghausen et al. 2015; Nagesh et al. 2021; Desmond et al.
2024). This result may indicate that the transition function is
asymmetric, i.e., μ(x)→ 1 rapidly when x? 1, but μ(x)→ x
gradually when x= 1 (see, e.g., the transition function favored
by Desmond et al. 2024). Such a transition function would not
affect our conclusions since we have shown that MOND is
incompatible with the LPC data even if we only consider the
regime x 1, i.e., r rM.
The conflicts with the data are less severe for versions of

MOND with sharp transition functions. We illustrate this class
using the transition function μ10(x). Adopting the external
acceleration ge= 2.32× 10−10 m s−2 from Gaia Collaboration
et al. (2021; an independent estimate, from McMillan 2017, is
only 7% smaller), this model is consistent with planetary
ephemerides as well as with the currently available survey
constraints on the population of TNOs detached from the SD.
However, the model still predicts a semimajor axis distribution
of LPCs that is inconsistent with the data between a few
hundred au and 105 au—the Oort peak at a> 10,000 au is still
too small compared to the population of comets on more tightly
bound orbits (see Figures 17 and 18).
We find that larger values of the external acceleration ge reduce

the inconsistencies between MOND models with sharp transition
functions and the observational data. Our results imply that in
order to be consistent with the data, ge must be substantially more

Figure 15. The same as Figure 13, but now for the simulation 1 based on the gradual transition function μ2(x) and the nominal external acceleration
ge = 2.32 × 10−10 m s−2. Because of the strength of the MONDian torques at heliocentric distances ∼rM ; 7000 au (Figures 5 and 6), the distribution of new comets
(class  ;1 blue histogram) extends down to semimajor axes as small as 103 au. With more returns (classes  m, 2;m  green and red histograms) the distribution
spreads to even smaller heliocentric distances. The observed Oort peak of LPCs is not reproduced. This flaw is highlighted for the best-fit distribution in the right
panel.

Figure 16. The same as Figure 14, but now for the simulation 1 based on the
gradual transition function μ2(x) and the nominal external acceleration
ge = 2.32 × 10−10 m s−2. The Oort peak is too broad in the model. In
addition, a population of LPCs on (formally) hyperbolic orbits emerges in this
model.
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than 50% larger than its current value during much of the history
of the solar system. It is unlikely that this constraint can be satisfied
in plausible models of the migration history of the solar system;
however, (i) the migration history is not well understood and (ii)
simulations that would take into account a fully consistent model
of solar system migration have not yet been done.

Our simulations have other limitations, although we do not
believe that any of these compromise our conclusions:

1. We have only tested MOND using a specific one-
parameter family of models for the transition function,
μn(x) (Equation (4)). However, we believe that this family
is general enough that there are no plausible transition
functions that would be consistent with the observational
data on the LPCs.

2. We only tested two fading laws (Equations (38) and
(39)), each with two free parameters that we fit to the
data. Both assume that the probability of fading depends
only on the number of perihelion passages close to the
Sun. Other fading laws, which might depend on
parameters such as the size of the nucleus rather than
the number of perihelion passages (e.g., Jewitt 2022),
might offer better fits to the data. However, we note that
the MONDian simulations of the distribution of semi-
major axes of LPCs already overpredict the number of
comets with a< 104 au relative to the number in the Oort
peak for comets on their first perihelion passage (“new”
comets), and any fading law that allows comets to remain
visible in subsequent passages makes the disagreement
worse.

3. Perturbations due to nongravitational forces have been
neglected in our analysis. These forces arise from
outgassing, which typically begins at a heliocentric
distance of a few au, where water ice starts sublimating
from the cometary surface. While the inclusion of the
effects of outgassing on the orbit are important for
modeling the details of the binding energy distribution of
LPCs, especially for the Oort-cloud component, their
inclusion is unlikely to cure the differences between the
MONDian simulations and the observational data. The
work of Królikowska (2020) suggests the average effect
of nongravitational forces on the orbits of LPCs is a slight
shift toward a more bound distribution in 1/a
(Δ(1/a) 10−5 au−1), which is much too small and in
the wrong direction to make the results in our  1 3–
simulations agree with the observed data.

4. All of our simulations based on MONDian dynamics
ignore the possibility that tidal fields and stellar
encounters were much stronger during the brief period
when the Sun was still part of its birth cluster. However,
the effects of the birth cluster were examined in our
Newtonian models (Figure 9); the presence or absence of
the birth cluster did not affect the distribution of binding

Figure 17. The same as Figure 15, but now for the simulation 2 based on the sharp transition function μ10(x) and the nominal external acceleration
ge = 2.32 × 10−10 m s−2. The problems in matching the distribution of the observed LPCs are the same as for simulation 1.

Figure 18. The same as Figure 16, but now for the simulation 2 based on the
sharp transition function μ10(x) and the nominal external acceleration
ge = 2.32 × 10−10 m s−2. The signature of the Oort peak is absent in the
simulated data.
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energies of the currently observed LPCs in the Newtonian
simulations, and we believe that it is unlikely to do so
in MOND.

5. We have only examined a single value of the critical
acceleration, a0= 1.2× 10−10 m s−2. Fits to galactic
rotation curves have led to a0 values that vary from the
one we have used by up to ±40% (e.g., Hees et al. 2016).
However, (i) the best-fit value of a0 depends on the
transition function, and for the sharp transition functions
that we have argued are required by solar system
observations the allowed range of a0 is smaller; (ii) the
characteristic MOND radius rM varies only as the inverse
square root of a0, so the range of possible values of rM
remains much smaller than the range of semimajor axes
in the Oort cloud.

6. We have ignored the possibility that there is an
undiscovered planet (“Planet 9”) orbiting far beyond
Neptune, for several reasons: (i) the effects of Planet 9
depend on its current orbit, its mass, and when and how it
was injected into its current orbit, and this parameter
space is too large to explore thoroughly (see Nesvorný
et al. 2017 for a limited examination of the effects on
Planet 9 on short-period comets in the context of
Newtonian mechanics); (ii) the most important problem
with MONDian models of the formation and evolution of
the Oort cloud is that the energy distribution of new
comets is too broad (see, e.g., Figure 18) and adding an
additional perturber such as Planet 9 should not make the
distribution narrower; (iii) the rms energy change induced
in new comets by a perturber of mass m and semimajor
axis a is ∼(m/Me)(1au/a) in units of au−1; assuming
m= 5–10M⊕ and a= 400–800 au (Batygin et al. 2019),
we find an rms energy change 10−7 au−1, far smaller
than the observed width of the Oort cloud, 10−4 au−1.

It is not our intention to review the many tests of MOND on
the scale of galaxies and clusters of galaxies (see, e.g., Famaey

& McGaugh 2012). We note, however, that another potential
test of Newtonian dynamics and gravity, on comparable length
and mass scales to the LPCs, is provided by wide binary stars
(Chae 2023; Hernandez et al. 2024; Hernandez 2023;
Chae 2024). These papers argue for a breakdown of Newtonian
dynamics in binary systems when the semimajor axis exceeds a
few thousand au, which for these systems corresponds to a
mutual acceleration a0. The analysis is challenging, however,
for several reasons: (i) only two of the three components of the
spatial separation of the two stars can be measured; (ii) only
two of the three relative velocity components can be measured
(the referenced papers derive the kinematics from Gaia
measurements of the relative proper motion), and the observa-
tional errors in the velocity are significant, though well
understood; (iii) the binary systems may contain unseen third
components, either bound or unbound (e.g., Clarke 2020).
Indeed, other authors argue from similar data that the dynamics
of this class of binaries is well described by Newtonian
mechanics (e.g., Pittordis & Sutherland 2023; Banik et al.
2024; Desmond et al. 2024; but see Hernandez & Chae 2023).
Chae (2023) reports a statistically significant acceleration
excess g/gN− 1 of ;(12± 3)% at gN= 10−8.91 m s−2, or
gN= 10.25 a0. If (i) this excess is due to MOND, (ii) the
AQUAL formulation is correct, and (iii) the transition function
belongs to the family {μn(x)} (Equation (4)), then the transition
function must be gradual, with n 1 (see Figure 1). As
summarized in Section 2.2.2, such gradual transition functions
are excluded on solar system scales from planetary and comet
dynamics, although it is easy to construct an ad hoc transition
function, slowly varying for x 10 and rapidly approaching
unity for larger values of the argument, that would be
compatible with both sets of observations.
The heliocentric acceleration of comets in the Oort cloud is

significantly less than the critical MOND acceleration a0, and
comparable to the acceleration measured in the outer parts of
the rotation curves of galaxies. However, the Oort cloud differs
from galaxies in at least three relevant aspects: the mass scale is

Figure 19. The same as Figure 17, but now for the simulation 3 based on the sharp transition function μ10(x) and a larger external acceleration, ge = 3.35 × 10−10

m s−2. Due to the stronger external acceleration the MONDian perturbation is weaker and the signature of the Oort peak emerges more clearly. However, even in the
class 1 of new comets there is a large population of LPCs with semimajor axes as small as 103 au. The best-fit model using Whipple’s fading law (38),
underrepresents the Oort peak.
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much smaller (1Me versus 1011Me), the spatial scale (0.1 pc
versus 104 pc), and the strength of the external field ge (1.9 a0
versus a few per cent of a0). If MOND is correct, one or more
of these differences may explain why the theory works on
galaxies but fails in the Oort cloud.

Other theories of MOND. AQUAL is only one of a number
of theories of gravity and dynamics that reproduce the most
important features of MOND on galactic scales: the breakdown
of Newtonian dynamics and/or gravity at small accelerations,
the asymptotic flatness of galaxy rotation curves, etc. The
simplest alternative is QUMOND (Milgrom 2010), which we
discussed briefly around Equation (16), and we believe that
simulations based on QUMOND would give very similar
results. More elaborate alternatives include modified-inertia
theories (Milgrom 2011, 2023a), generalized QUMOND
(Milgrom 2023b), tripotential MOND (Milgrom 2023c), a
MOND adaptation of Galileon k-mouflage theory (Babichev
et al. 2011), etc.

Ideally, we should repeat our simulations for these other
theories. However, there are obstacles to doing so:

1. In some cases, the theory contains an adjustable screening
length Rsc that suppresses MONDian effects on small
scales. For example, Babichev et al. (2011; see also
Milgrom 2023b and similar comments in the concluding
section of Banik et al. 2024) proposed a relativistic theory
of gravitation of the tensor-scalar class, for which
MOND is the weak-field limit.14 The model has
negligible deviations from general relativity on scales
below the screening length Rsc. Although the screening

phenomenon is constructed only for this purpose, the
resulting theory is self-consistent and admissible. Gen-
eralizations of QUMOND that depend on higher
derivatives of the potential may also have screening
lengths below which the MONDian effects are strongly
suppressed (Milgrom 2023b). In such theories, our
simulations would not test MOND but would only
increase the lower limit to Rsc from the size of the
planetary system (a few au) to the size of the Oort cloud
(5–10 × 104 au).

2. In some cases, the theory contains enough degrees of
freedom that it is impractical to test with a limited set of
numerical simulations. For example, in tripotential
MOND (Milgrom 2023c), the transition function depends
on three variables, not one.

3. As discussed already by Milgrom (1983a), some MOND
theories preserve Poisson’s equation and instead modify
the law of inertia. Modern variants of this approach are
developed in Milgrom (1994, 2011) and Milgrom
(2023a). The more complicated modified-inertia theories
bring a time-nonlocal (memory) effect into the dynamics.
For that reason, a thorough analysis of modified-inertia
models in specific astronomical problems has not been
carried out so far; in particular, standard N-body
techniques could not be used for simulations of orbit
evolution.

The simulations in this paper appear to rule out AQUAL,
one of the simplest and most well-defined MOND theories. All
existing MOND theories are heuristic, and thus will eventually
be superseded by a “fundamental” MOND theory (if one
exists). Whatever form this theory takes, it will be strongly
constrained by the requirement that it reproduce the orbital
distributions of the LPCs and TNOs.
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Appendix A
Testing the Accuracy of the Numerical Solution for the

MOND Potential with Analytical Results

The radial functions υℓ(r) of the MOND potential u(r)
(Equation (23)) are determined numerically in terms of
Chebyshev polynomials, segmented in a number of radial
zones between the origin and spatial infinity (see Section 2.2.1
and Appendix B). We seek tests of the accuracy of our
solutions using comparisons to previously published numerical
results and analytic asymptotic behaviors at r→∞ (tests of the
solution near the origin r= 0 have already been discussed in
Section 2.2.2).
Testing the far zone: ∝1/r asymptotic behavior. At spatial

infinity, Blanchet & Novak (2011) rederive in their Appendix A
an earlier result of Bekenstein & Milgrom (1984), namely an

Figure 20. The same as Figure 18, but now for the simulation 3 based on the
sharp transition function μ10(x) and a larger external acceleration,
ge = 3.35 × 10−10 m s−2. Here the correspondence between the model and
the observations of the distribution of binding energy 1/a for nearly parabolic
LPCs appears satisfactory (i.e., comparable to that in the Newtonian
simulation, Figure 14). The problem with the simulation, namely the large
population of new comets with semimajor axes of 103–104 au (Figure 19), is
beyond the range displayed here.

14 In fact, the work of Babichev et al. (2011) builds on a more general
framework, in which theorists aim at constructing gravity theories modified at
large, usually cosmological, distances, while preserving the validity of well-
tested general relativity on small spatial scales (e.g., Babichev et al. 2009;
Ishak 2019).
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asymptotic behavior of u:
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where μe= μ(xe) and d x d xlog loge xe[ ( ) ]l m= , with xe=
ge/a0. To connect this asymptotic approximation of u with
its multipole series representation (Equation (23)), we rewrite
this in terms of Legendre polynomials (recall cost q= ):
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where αe= λe/(1+ λe), κ2ℓ are numerical coefficients, and
ℓ e2 ( )a and ℓ e2 ( )a are polynomials of order ℓ and ℓ− 1. For

the first few terms,15 we obtained κ0= 1, κ2= 15/4,
κ4= 945/64, κ6= 15015/256, κ8= 3828825/16384, and
κ10= 61108047/65536, and the  and  polynomials read
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In the limit xe→ 0 the exterior field becomes negligible, and we
obtain λe→ 1, αe→ 1/2, and μe→ 0. In this case, however,
the limit is discontinuous, as the assumption u(r)∝ 1/r from
Equation (A1) does not hold—recall from Section 2 that the
MONDian potential of an isolated spherical system has a
logarithmic divergence at infinity (Equation (11)). In the
opposite limit xe→∞ , we have λe→ 0, αe→ 0 and
μe→ 1—in this situation the MONDian effects are removed,

w0→ 1, w2ℓ→ 0 for ℓ� 1, and u(r, τ)=GM/r, the Newtonian
result.
We used both the complete asymptotic expression

(Equation (A1)) and the coefficients of its lowest multipoles in
Equation (A2) computed using Equations (A3)–(A9) to verify
the accuracy of our numerical evaluation of u(r, θ). First, we
computed the potential u at the outermost radial domain
r RI
max = ¢, thus u R ,( )q¢ , and we compared it with
Equation (A1). The values matched with a fractional accuracy
of ;10−4

–10−5 for all our solutions. Second, we used the
behavior of the radial functions υℓ(r) at the outermost radial
zone to determine the coefficients w2ℓ numerically. Their
correspondence to the analytic form in Equation (A3) was
again very accurate (see Figure 8).
Testing the far zone: ∝1/r2 asymptotic behavior. As

indicated in Equation (A2), the above analysis permits us to
test our numerical evaluation of the even-degree multipoles of
the MOND potential u(r, θ), which asymptotically vary ∝1/r.
The odd-degree multipoles decay faster (∝1/r2). We would
like to check their asymptotic behavior, in particular to verify
the dipole and octupole terms, which are important in the
formulation of the MONDian potential. We generalized
Equation (A1) using the expression
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where g2(θ) is an unknown function at this moment. Following
the approach in the Appendix of Blanchet & Novak (2011), we
seek g2(θ) such that g=∇U satisfies ∇ · (μg)= 0 far from
mass sources (Equation (12)). Switching to a new independent
variable cost q= , introducing G2(τ)= g2(θ), and collecting
terms in straightforward algebra results in a linear, second-
order differential equation in the Sturm–Liouville form:
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with 1 e
2( )f f t a t= = - . Further simplification follows

from a transformation 1 et z a t f = - , which brings
Equation (A11) to a Legendre differential equation for
eigenvalue equal to 2. Choosing a dipole solution which is
bound on the interval [−1, 1], explicitly G2(ζ)= ζ, we thus
finally obtain the remarkably simple form
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All terms asymptotically behaving as ∝1/r2 are antisymmetric
under the τ→−τ transformation. They become the leading-
order odd-degree terms in a Legendre series representation of u

15 Milgrom (2010), Equation (65), derives within the QUMOND variant of
MOND a result equivalent to our monopole term given in Equation (A4) with
Equation (A3). In particular, he shows that the effective dynamical mass of the
system is equal to M w0 (in our notation), whose excess over M arises due to
the MONDian phantom mass. However, this interpretation must be taken with
some caution, since the asymptotic acceleration is not spherically symmetric
(see Equation (A1)).
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(r, θ), namely
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Here again κ2ℓ+1 are numerical coefficients, while ℓ e2 1 ( )a+

and ℓ e2 1 ( )a+ are polynomials of the order ℓ. For the lowest
terms we obtained κ1= 3, κ3= 105/4, κ5= 10395/64, and
κ7= 225225/256, and the  and  polynomials read
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We did not find a constraint on the scaling constant K2 in
Equation (A13) because Equation (A23) is at the 1/r3 level in μg
and is automatically satisfied by virtue of the antisymmetry of the
odd-degree multipoles. As a result, our procedure can only check
the relative (rather than absolute) values of the multipole
coefficients w2ℓ+1. Nevertheless, this still provides a stringent test
of our numerical solution for the potential u(r, θ). For instance, we
easily find that w1:w3:w5:w7;1: 8.73: 115.03: 1754.99 for the
transition function μ2(x) and the nominal external acceleration
ge= 2.32× 10−10 m s−2, and we verified these ratios hold exactly
in the full-scale solution of u(r, θ) shown in Figure 4.

Testing the far zone: ∝1/r3 asymptotic behavior. The
procedure outlined above may be pushed to further orders in
the power 1/r, but it becomes more algebraically complicated.
Here we briefly comment on the ∝1/r3 asymptotics. Introdu-
cing the corresponding term in the non-Newtonian potential,

u r
K

r

g
,

1 sin
, A19

e

3
3

3
2 3 2

( )
( )

( )
( )d q

q
l q

=
+

we seek again g3(θ) to satisfy the source-free field equation
∇ · (μg)= 0. Choosing cost q= as the independent variable,
and G3(τ)= g3(θ), we find
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where again 1 e
2f a t= - . The important novelty is the

source term S3(τ) (compare with Equation (A11)), which is a

nonlinear function of the potential asymptotics behaving as
∝1/r from Equation (A1), known at this moment. We do not
develop it in full detail here, just note that one can easily show
that S3(τ) is an antisymmetric function and may be developed
in odd-degree Legendre polynomials. The inhomogeneity of
Equation (A20) implies that a general solution is composed of a
free part, from the homogeneous reduction, and a forced part,
specific to the source on the right-hand side, therefore
G G G3 3

free
3
forced= + . Upon a final transformation to ( )z t =

1 ea t f- , as above, one easily finds that Equation (A20)
transforms to an inhomogeneous Legendre equation with
eigenvalue 6, unsurprisingly corresponding now to the
quadrupole solution. As a result,
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The free part can be multiplied by an arbitrary constant, and the
amplitudes γ2ℓ+1 of the forced part can be in principle
computed from the decomposition of the source term S3(τ).
We did not carry out this calculation here, but we have verified
that the odd-multipole terms υ2ℓ+1(r), comprising the general
MONDian potential u(r, θ) in Equation (23), have the
corresponding ∝1/r3 asymptotic behavior after the ∝1/r part
has been eliminated. The free solution G3

free projects onto the
even-multipole terms in u(r, θ). However, it is easy to see that
the contribution to the monopole is zero. Therefore, the
monopole radial function υ0(r) from Equation (23) must not
contain either the ∝1/r2 or the ∝1/r3 asymptotics. We have
verified that this conclusion holds in in all our numerical
solutions.
More tests. Other tests follow from integrating the field

Equation (12) over a sphere of arbitrary radius r (see also
Equation (31) in Blanchet & Novak 2011): The right-hand side
is equal to the source mass M multiplied by a constant factor
−4πG, while the left-hand side may be transformed to an
integral over the surface of the sphere using Gauss’s theorem. If
r is used to denote the surface of a sphere with radius r, we
have


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We may compute the integral in the left-hand side of
Equation (A24) at the boundaries of all the radial zones used
in our solution (typically 17 of them), and each time verify how
accurately Equation (A24) is satisfied; we find a fractional
accuracy better than 10−5.
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Appendix B
Technical Details about the Numerical Solution of the

MOND Equation

We first focus on the determination of the source term σ(u, ρ)
in Equations (19) and (20). Following Blanchet & Novak
(2011), we numerically solve for the MOND potential u outside
the Sun only, therefore in the region where the mass density is
zero (ρ= 0). With g=∇u+ ge, orientation of the external field
along the z-axis, and axisymmetry of u, we have ( cost q= )
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The source term on the right-hand side of Equation (20), given
u= un at some stage of the iterative process, reads
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with both μ and m¢ functions of x= g/a0. Choosing μ(x) from
one of the family {μn(x)} in Equation (4), we finally obtain
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Thus, if we know u(r, τ) we can use Equations (B1), (B2), and
(B4) to compute σ(r, τ) on a large grid of r and τ. All necessary
partial derivatives are determined analytically using the
Legendre and Chebyshev representations of the latitudinal
and radial dependence.

The iterative solution of the potential function u (Equation (19),
Section 2.2.1) starts with the Newtonian model (u= uN=GM/r)
of a mass monopole at the origin immersed in an asymptotically
homogeneous field ge along the z-axis of the coordinate system
(contributing to UN by a term ge · r: UN= uN+ ge · r). This simple
approximation defines a unique point P on the positive z-axis
at which the acceleration vanishes. Its distance from the origin
is r r GM ge M eh= = , with rM from Equation (3) and
η= ge/a0 as in Section 2.2.2. Define auxiliary functions
 r r r, e

2( ) ( )t t= - , r, 11
2 2( )z t t= - + , and r,2 ( )z t =

1 22 2t- - . Then the source term σ from Equation (B4) with
u= uN reads
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The right-hand side of Equation (B5)—the ratio ζ2/ζ1, in
particular—is well behaved except at the critical point P, where
it exhibits a singularity. As the iterations proceed, a critical
phenomenon around P develops, resulting eventually in an
integrable singularity (compare with similar discussion in
Milgrom 1986b, Penner 2020b, and Brown & Mathur 2023).
This phenomenon causes some loss of accuracy in our
numerical solution for the potential, especially for sharp
transition functions such as μ10(x); see Figure 5. Nevertheless,
we find this loss of accuracy is limited to a relatively small

region near P, and we do not believe that it affects our main
conclusions.
The solution of the Poisson Equation (20) is performed using

spectral decomposition, which proceeds in two steps. First, we
represent the angular part of the potential in a series of
Legendre polynomials (Equation (22)). Next, we develop all
radial functions (the potential and source) using series of
Chebyshev polynomials, such as

r T B6ℓ
n
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n

k
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and

S r s T , B7ℓ
n
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n

k
0
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(the relation between ξ and r is described in Section 2.2.1); N is
the adopted maximum degree of the development. For radial
zones of stretching factor 3 (the ratio between the outer and
inner boundary), we found N; 99 is sufficient. The coeffi-
cients sℓk

n( ) were computed using Gaussian quadrature.
Using the spectral decomposition, the differential operator

on the left-hand side of Equation (22) is represented with an
upper triangular matrix Mℓ, and the whole differential equation
becomes a matrix/algebraic relation between the coefficients

ℓk
n( )u and sℓk

n( ) (useful details can be found in Grandclément &
Novak 2009). The matrices Mℓ are singular, due to the
additional degrees of freedom expressed by an arbitrary
solution of the homogeneous Equation (22). This singularity
is constrained by the boundary conditions at ξ=± 1 of each
domain where we impose continuity of the potential and its
radial derivative. In the innermost radial domain, i.e., inside the
Sun, we require ∂u/∂r= 0 at the origin r= 0 (Equation (17)),
and in the outermost radial zone we require u= 0 at r→∞ . In
order to implement the set of all these boundary conditions, we
use the tau method discussed by Grandclément & Novak
(2009, Section 2.5.2). After this operation is done, the matrices
Mℓ are no longer singular, and are easily invertible using
singular value decomposition (e.g., Press et al. 2007).
In order to allow for the large dynamic range of the

numerical values of the variables manipulated during the
solution, and to ensure that rounding errors do not disturb the
method, we conservatively use quadruple precision for
representing all real quantities.

Appendix C
Simulation with MOND and No Planetary Migration

The core set of simulations discussed in Section 4 was
designed to test MOND within a scenario that conforms to our
best understanding of the evolution of the solar system. This
includes the assumptions that the source of the LPCs was a
planetesimal disk initially exterior to the giant planets, which
was dispersed when Uranus and Neptune migrated outward.
While many lines of evidence indicate that planetary migration
must have happened early in the history of the solar system
(e.g., Nesvorný 2018), the details of the migration history and
the architecture of the planetesimal disk are still debated.
Therefore, one may ask whether our conclusions about MOND
depend on a particular set of initial conditions for the
planetesimal disk and a particular model of planetary
migration. Here we test this issue. Instead of considering
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variants of the planetary migration history, we simply assume
that all of the giant planets are fixed on their present orbits, and
place the comets initially in a narrow range of semimajor axes
just outside Neptune. This is our model 2¢.

The giant-planet heliocentric orbits were taken from JPL
ephemerides at epoch J2000.0. Since the terrestrial planets
were not included, we performed a barycentric correction and
added their composite mass to the Sun. We used 50,000
massless particles (also known as comets or planetesimals)
placed initially in a compact and dynamically cold disk just
exterior to Neptune—this is much smaller than the population
of 106 particles used in our core simulations, but large enough
for our purposes here. Their semimajor axes were uniformly
spread between 31 and 34 au, the eccentricities and inclinations
were drawn from a Rayleigh distribution with scale parameters

0.05 and 2°, and all other angular variables were distributed
uniformly random between 0° and 360°. We then followed the
system for 4.5 Gyr using the same methods as for our other
simulations (Section 3). The MOND theory was the same as in
simulation 2 , that is, we used the sharp transition function
μ10(x) and an external Galactic field with acceleration
ge= 2.32× 10−10 m s−2.
We found that the results are nearly identical to those of

simulation 2 (Section 4), indicating that the details of the
initial distribution of planetesimals and the planetary migration
history do not strongly affect the currently observed population
of LPCs. We illustrate this conclusion by showing the
distribution of LPC binding energies for comets with perihelia
q� 4 au (Figures 21 and 22). These figures are to be compared
to Figures 17 and 18. While the details are slightly different,
and the noise in simulation 2¢ is larger because of the smaller
population of test particles, the principal message is the same.
We conclude that the mismatch between the orbital parameters
of the observed LPCs and the predictions of MOND cannot be
ascribed to particular assumptions about the initial spatial
distribution of the planetesimal disk or the planetary migration
history.

Appendix D
Distribution of Aphelion Directions of Nearly Parabolic

Long-period Comets

Finally, we briefly analyze the distribution of aphelion
directions for the original orbits of nearly parabolic LPCs.16

We use this subclass of LPCs as their extremely large aphelion
distances make them vulnerable to exterior perturbations.
While encounters with individual stars, if strong enough (i.e.,
high-mass star and/or small impact parameter and/or slow

Figure 21. The same as in Figure 17, but now for the simulation 2¢, which includes (i) a static configuration of the giant planets, the same as seen at present, and (ii) a
limited population of 50,000 test particles, initially located just exterior to Neptune. Here again the Oort peak, consisting of LPCs with semimajor axes �10,000 au, is
too small compared to the population of LPCs with semimajor axes �10,000 au.

Figure 22. The same as Figure 18, but now for the simulation 2¢.

16 As usual, the “original” orbital elements are the barycentric orbital elements
that the comets had at a heliocentric distance of 250 au, before the orbits are
influenced by planetary perturbations. Note that the aphelion direction is much
less sensitive to planetary perturbations than the semimajor axis.
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relative velocity), naturally leave their imprint in the LPC
population over a few million years interval (e.g., Feng &
Bailer-Jones 2014, 2015), some authors argued that there might
also be persistent anisotropies. For instance, Matese et al.
(1999) and Matese & Whitmire (2011) claimed to identify an
anomalous concentration of LPC aphelia along a great circle
located at Galactic longitudes −45° and 135°, and that this
concentration was evidence for a distant planetary companion
of a few Jupiter masses, residing in the Oort cloud. While it is
not our intention to discuss in detail such scenarios, we bring
up his topic here because Paučo & Klačka (2017) suggested
that a similar effect may be produced by MOND itself.

Here we use the simulations analyzed in Section 4 and
describe the aphelion distributions they predict. Similar to the
study of the semimajor axis distribution, we compare our
results with data in the Warsaw catalog of nearly parabolic
LPCs (Królikowska & Dybczyński 2020). In order to minimize
contamination by uncertain orbits and to focus on the largest
orbits, we select (i) class 1 solutions, (ii) with perihelia
q� 4 au, and (iii) with binding energies 1/a in the range
0.1� 104/a� 0.7 au−1 (these represent the bulk of the Oort
peak). We find 81 comets that satisfy these criteria in the
Warsaw catalog. The distribution of aphelion directions in
Galactic coordinates is shown by black triangles in Figure 23.
Without conducting a statistical analysis, we believe that the
evidence for a concentration about the great circle discussed in
Matese et al. (1999, a polar circle along longitudes 135° and

315°) is rather weak: The maxima in the corresponding
longitude bins, shown in the histogram at the top of the figure,
are not more than 1σ above the level set by a uniform
distribution. However, here we focus more on comparison of
our simulations.
The upper panel in Figure 23 shows results from the

reference model 0, which contains only Newtonian perturba-
tions (red circles). The longitude distribution is fairly uniform,
as expected. There is, however, a clear latitudinal variation with
maxima at ±45° Galactic latitude (see the gray histogram on
the right). A similar variation in seen in the observational data
(black histogram on the left), although the signal is biased by
the uneven geographical distribution of comet discoveries and
the difficulty of finding comets near the Galactic plane. This is
evidence for the substantial role of the smooth Galactic tide in
injecting new comets from the Oort cloud to the inner solar
system (e.g., Delsemme 1987; Rickman 2010). The remaining
panels of Figure 23 show the results from simulations 2
(middle) and 1 (bottom). These are based on MONDian
dynamics, with two forms of the transition function μ(x). While
there are some longitudinal variations in the distribution,
especially in the case of the 1 simulation that uses the gradual
μ2(x) transition function, neither simulation shows the level of
aphelion anisotropy that was described in Paučo & Klačka
(2017). We believe the methodology in that paper was too
simplified to realistically predict the angular distribution of the
observed comets.
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Figure 23. The aphelion directions of nearly parabolic LPCs in our simulations 0 (top), 2 (middle), and 1 (bottom) are shown by red symbols in the Galactic
coordinate system. This is a Mollweide projection, in which the direction to the Galactic center is at the origin and the north Galactic pole is at the top. The plot shows
LPCs from our simulations with (i) perihelion distance q � 4 au, (ii) inverse value of the original semimajor axis a in the range 0.1 � 104/a � 0.7 au−1, (iii) first visit
to the solar system (“new comet”). The data are collected from the last 500 Myr of our simulations. The black triangles show the aphelion direction for 81 class-1
LPCs from the Warsaw catalog using similar selection criteria (see text). The histograms on both sides of the figures show the latitude distribution of the aphelia, for
observed LPCs on the left, in black, and for the simulated data on the right, in gray. The histogram at the top shows the longitude distribution of the observed LPCs.
The bars at the bin center indicate a formal Poissonian uncertainty of the value.
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