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ABSTRACT

We describe a numerical code which has been developed to calculate images of
various effects occurring in the close vicinity of a rotating (Kerr) black hole, as seen by
a distant observer. Null geodesics are first integrated numerically, fitted by Chebyshev
polynomials, and their shape stored in the computer. In this way, for a given set of
parameters describing the configuration of the black hole and position of the
observer, we obtain a ‘catalogue’ of photon paths which is then used by subsequent
codes adapted to specific problems. Several astrophysically meaningful examples are
given, in particular photometric light curves of a bright spot located on the surface of
an accretion disc and orbiting the black hole.

This approach enables us to speed up appropriate application codes by approxi-
mately two orders of magnitude. In comparison with a direct scheme where applica-
tion codes integrate many geodesics each time they are needed, our approach has
advantages when a number of tasks (with, for example, different models of the spot
shape and radiation) are computed for a given configuration of the black hole
parameters and the observer’s inclination angle.

Key words: accretion, accretion discs — black hole physics - radiative transfer -
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1 INTRODUCTION

Active galactic nuclei (AGN) are generally believed to
contain a compact object (presumably a supermassive black
hole) in their cores. The black hole is surrounded by a
plasma which forms an accretion disc. The angular
momentum of the black hole is probably non-zero. One of
the most promising approaches, the Blandford-Znajek
scenario (1977), employs the model of a rotating black hole
as a unified way of explaining the origin of energy release
from various types of AGN. On the other hand, despite great
effort over the last few decades, details of the configuration
remain unclear. Therefore it is of great astrophysical interest
to have an efficient tool for checking the observational
consequences of various processes which may occur in the
vicinity of a Kerr black hole. The gravitational field of a
rotating black hole is described by the Kerr metric to high
accuracy, because this is a unique metric corresponding to
the vacuum, axisymmetric, stationary and asymptotically flat

space-time (see for example Novikov & Frolov 1989 and
references therein) — conditions which are approximately
satisfied in the vicinity of an astrophysical black hole. The
Kerr metric can also describe, to some extent, the gravi-
tational fields of other compact objects like neutron stars
(Butterworth & Ipser 1976; Komatsu, Eriguchi & Hachisu
1989). Our approach can thus be useful in visualizing the
shapes of neutron stars, a problem that has been solved by
several authors (e.g. Winterberg & Phillips 1973; Nollert et
al. 1989; Bi¢dk & Ledvinka, in preparation). Extensive
integrations of photon paths in a curved geometry have been
performed by, e.g, Cunningham & Bardeen (1973),
Cunningham (1975, 1976), Luminet (1979), Polnarev &
Turchaninov (1979), Sikora (1979), Fukue & Yokoyama
(1988) and Zakharov & Polnarev (1988) to obtain the
appearance of a star orbiting round a rotating black hole or
of an accretion disc near the black hole.

The main aim of this paper is to introduce a series of
codes which are flexible enough to deal with various
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problems after minor modifications (specification of the
accretion disc model, for example). In the next section we
give a detailed description of our approach. We try not to go
into detail of particular problems in this paper. Nevertheless,
in Section 3 we demonstrate several applications, illustrating
how our code could be used in connection with some current
investigations in the field. For example, we discuss light
curves of a bright spot orbiting the black hole on an orbit
close to the black hole horizon, taking into account different
positions and lifetimes of the spot, evolution of its shape and
intrinsic luminosity, and the simultaneous contribution of a
large number of spots.

2 DETAILS OF THE NUMERICAL
APPROACH

2.1 Basic equations

We calculate observable effects in the reference frame of a
distant observer who is at rest with respect to Boyer-Lind-
quist coordinates (e.g. Misner, Thorne & Wheeler 1973)
(r=r,, 6=6,, =0, t). We use a geometrized radial coordi-
nate 7 in units of the mass of the black hole M [M = 10" M,
(cm) where Mg is mass in units of 108 My]; r is thus a
dimensionless quantity. For the gravitational radius in these
units we obtain r, =[1+(1—a*2)/2], where a* =a/M is the
angular momentum parameter of the black hole. The
equation of a null geodesic can be written in integral form
(Carter 1968):

r 0 [4
J R(r’)‘”zdr’=J @(0')'1’2d0'=J F(g')'dg,
o 6,

o

" A-2a%r
t—J: T dr, (2.1)

with

R(r)=r*+(a**= &= n)r* +2[n+(§ —a*}]r—a**y,
©(6)=n+a*?cos? 6— £2 cot? 6,
F(g)=[2a*r+(Z—2r)Ecsc? 9]A 1, (2.2)
and

A=r?=2r+a*? S=r2+a*2cos? 6,
A=(r2+a*22 = Aa*? sin? 6,

In (2.1) 7is an affine parameter along the photon trajectory.
The particular photon path is completely described by initial
conditions and two constants of the motion, £ and 7. In
general, for a locally non-rotating observer, we can associate
& and 5 with angles a and 8 on his local sky (Page & Thorne
1974; Polnarev & Turchaninov 1979) (0<a<m, 0<8<2m;
Fig. 1a) by the relations

_[A"”sin §sin asin B
E_ 2”26 ’
Tos 0,

1 -
17=X(r2+a*2 —a*é')z—Ee % cos’ a—§2+2a*§—a*2,,°,oo

(2.3)

where
€=(Z12AV2+2g*r3 ~125in @sin a sin f)A~1/2, (2.4)

In our applications, however, the observer is located far from
the black hole, r,~ , and we are interested in null lines
which asymptotically follow the straight lines going at the
inclination angle ,. We thus introduce two polar coordinates
in the plane perpendicular to the direction 6,, the impact
parameter o and azimuth ¢ (Fig. 1b), by the relations

sin @sin a cos B=cos 6, —cos a cos 6,
rcos 8 =r,cos 6,— psin 6, cos y,
rcos a=r,, (2.5)

with r=(r2+ p2)\2,

2.2 Description of the code

First we describe how the ‘catalogue’ of null geodesics is
generated. Each catalogue is characterized by two para-
meters: the angular momentum parameter of the black hole,
a*, and inclination angle of the observer, 6,. Each curve in
the catalogue is characterized by initial values p = o, ¥ = ¥,.
We find it useful for the applications under consideration to

@)

photon trajectory

®) direction of incoming photons
0, observer

Figure 1. Coordinates used in this paper.
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choose the range in impact parameter to be o <2007, , with
appropriate steps in o and y which give a finer grid for
geodesics that eventually enter the region close to the black
hole. One catalogue contains data for about 10* geodesics.
The curves are integrated (using the step-adaptive 4-5
Runge-Kutta method) until they cross the equatorial plane.
In practice, equations (2.1)-(2.4) in their exact form are used
only below some radial distance (5007, say); outside this
region the shape of the geodesics is approximated by straight
lines in a nearly flat space-time. After crossing the equatorial
plane, the curve is followed in the opposite direction to
check the accuracy of the integration routine. The curve is
then fitted with a Chebyshev polynomial. (It is a well-known
result of the theory of fitting numerical data that this form of
the fit minimizes, roughly speaking, the maximum deviation
of the approximation with a minimum order of the poly-
nomial; see, e.g., Press et al. 1986.) The fit has a parametric
form: x(7), y(7), z(7) and #(7) where {x, y, z} are related to
{r, 6, ¢} like spherical coordinates, by definition. [The
relationship between Boyer-Lindquist’s {r, 6, ¢, #} and the
{x, y, z, t} which are actually fitted is of course not unambigu-
ous. This simplest choice has an obvious advantage: far from
the hole the trajectories are nearly straight and they can be
fitted with a low-order polynomial.] The form of the trajec-
tories becomes complicated and differs substantially from
straight lines only very close to the horizon. It is also possible
to use Kerr ingoing coordinates, which may have some
advantages in comparison with Boyer-Lindquist coordinates
in describing frame-dragging effects on photon trajectories;
however, the shape of a general null geodesic near the
horizon is not much simpler in these coordinates. The actual
order of the polynomial (50 at maximum) is established
according to the prescribed accuracy of the approximation
(typically +0.02 in dimensionless units defined above).
Some curves in the close vicinity of the horizon have rather
complicated shapes and need to be split into two parts, each
of which is fitted separately.

In other words, integration of the curves in the catalogue
starts at the location of the observer and proceeds towards
the black hole. As we shall be mostly interested in light
signals coming from central regions of an accretion disc
toward the distant observer, we actually deal with the curves
in the opposite direction. We take into account that the
equations of null geodesics are invariant under the substitu-
tion £~ —§&, a*— —a* and 7— — 7 with simultaneous
change of the bounds of the last integral in (2.1), ¢ < ¢, (see
equations 2.1-2.4). This means that the shape of the light
rays will be the same as is stored in the catalogue, if we
interpret the curves in the coordinate system with oppositely
oriented azimuthal coordinate and {x, y, z}~{x, —y, z} and
we restore a* and & to their original values.

Coefficients of the Chebyshev polynomials are stored in
the form of direct access files. Data on any curve in the
catalogue are, therefore, directly accessible, which is
important for our applications. It should be emphasized that
there is enough information to restore not only the shape of
the curve in space but also the light traveltime and the effects
of time delay. To speed up the application program, one can
extract only the part of the catalogue which is immediately
relevant (for example, when only the innermost regions are
to be investigated), or one can merge two catalogues (when a
large disc is to be studied).
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Fig. 2 represents points of intersection of photon trajec-
tories included in our catalogue with the equatorial plane.
These points of intersection are marked by small circles.
Shown also is the finer grid (marked by the points) which has
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Figure 2. Intersections of null geodesics from the catalogue with
the equatorial plane in the region close to the black hole (up to r=6)
are marked by small circles. Points denote the finer grid of inter-
sections of the curves which are obtained from the catalogue by
approximations using the geodesic deviation equation. Values of the
angular momentum parameter a* =a/M and the inclination of the
observer 6, are given for each figure. The arrow denotes the
location of the observer. The solid curve is a projection of the circle
0 = constant in the observer’s frame on to the equatorial plane. Note
the deformation of the curve when the black hole rotates.
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been generated with the help of the catalogue. Each curve
corresponding to a point of this finer grid is constructed by
interpolation using three neighbouring curves of the
catalogue. In other words, in looking for a photon ray with
some specified initial conditions, we look for three geodesics
with nearby initial conditions and then, by linear approxima-
tion which is very similar to the method of geodesic devia-
tion, we find the initially specified curve. (The grid of the
reference catalogue should be certainly fine enough.) Operat-
ing in this way, the application program, suited to some
particular problem which uses the catalogue, can effectively
create as fine a grid as is required by the problem under
consideration.

Analogously, Fig. 3 shows the intersections of the grid
with a thick disc. We have chosen typical disc height profiles
which one meets in models of thick discs. Some parts of the
thick disc are self-eclipsed; the innermost visible region is, on
the other hand, larger when bending of light rays is taken into
account (cf. Karas & Bao 1992). It is a trivial but geometri-
cally rather complicated task to find these intersections, even
in a flat space-time, when thick discs of general shape are
considered.

2.3 Estimation of the speed

The efficiency of the code depends on the character of the
problem which is to be solved. For example, our scheme
appears especially convenient for studying the effects
connected with finite-sized bright spots located on the disc
surface (see Section 3), possibly with a complicated shape
and structure. In this way, our code is complementary to the
work of, e.g, Bao (1992) and others, who have studied
mainly point-like sources. The main advantage of our
approach comes when the application codes use the
catalogue many times and when large numbers of geodesics
are integrated repeatedly. This is the case of computing
observed radiation from different disc models which can be
non-stationary or contain evolving inhomogeneities (like
orbiting bright spots). Naturally, our method cannot be

Figure 3. As Fig. 2 but for a thick disc. Intersections of photon
paths with the disc surface are shown. The black hole is marked by a
cross in the centre of the disc. The region <200 is shown.

efficient if one computes only one kind of problem, so that
the CPU time required to create the catalogue is comparable
to that required to solve the problem directly.

The code has been written in FORTRAN 77 and run on an
IBM 3090 computer. Intersections of geodesics with the
equatorial plane can be found approximately two orders of
magnitude faster than by direct integration. The efficiency is
only slightly lower with a thick disc, when self-eclipses occur.

3 EXAMPLES

Now, without going into detail and discussion of any special
models, we give a few examples where the adoption of our
approach may be useful.

The photometric light curve of a bright object orbiting a
black hole was discussed in a classical paper by Cunningham
& Bardeen (1973). Astrophysical applications have been
considered by Asaoka (1989) and Bao (1992). Abramowicz
et al. (1992) suggested that periodic peaks in the light curve
of NGC 6814 may be due to the circular motion of a bright
spot, and Abramowicz (1992) discussed possible configura-
tions of the system in greater detail. Models with a large
number of spots have been discussed recently (Abramowicz
et al. 1991), and they appear relevant for the proper
modelling of AGN short-term variability. Spots with different
sizes, lifetimes, anisotropic radiation, etc. must be con-
sidered. These characteristics affect the light curves and they
probably have not been discussed in the literature.

Figs 4-6 show light curves of a single finite-sized spot.
The intrinsic luminosity of the spot decreases exponentially
with distance from the centre of the spot (with characteristic
radius 6r=0.5) and is time-independent. The figures are
drawn in dimensionless units; the flux F is obtained by inte-
grating the intensity over the observer’s local sky and
normalizing to its maximum value. Time is measured in revo-
lutions around the central object: time =2-(r*?+ a*), where
ris the radial distance of the spot. In conventional units, time
is rewritten in the following way:

t=8.2

M time (min) (3.1)
10° Mo ’ '

For large 6, the main peak occurs when the spot is behind
the black hole (fime = 0.5; exactly 0.5 in the Schwarzschild
case) and is a result of the focusing effect. The secondary
peak occurs approximately at time=0.75 and is caused by
the Doppler effect. The Doppler effect becomes important
for smaller inclination angles; the light curves in this case are
nearly symmetric with respect to time=0.75. However, for a
given inclination, the relative importance of the Doppler
effect with respect to the focusing effect decreases with
decreasing radial distance of the spot from the black hole. It
is easily seen, for the case in which the inclination is 80° and
the radial position of the spot r< 6, that the focusing effect
dominates the curve while the contribution from the Doppler
effect is negligible in comparison; for this reason the curve
becomes nearly symmetrical again, but now with respect to
time=0.5. An analogous effect would naturally occur in the
case of a non-rotating Schwarzschild black hole (a* =0), but
in the case of a rapidly rotating black hole (a* — 1) this effect
can be considerably more prominent because stable orbits of
matter extend closer to the black hole horizon.
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Figure 4. Typical profiles of the light curves in dimensionless units.
The radial position of the centre of the spot is given with each curve.
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Figure 5. Light curves corresponding to various positions of the
spot in the range 3r, <r<17r,. For small inclinations, each curve
has only one peak due to the Doppler effect. The flux is normalized
to its maximum value. The absolute value of F,_s, /F,_};,, =0.55.
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Figure 6. As Fig. 5 but for a larger inclination (more edge-on). Now
the peaks due to the focusing effect dominate, and for the absolute
value of the flux we have F,.;, /F,.y;,, =4.4. Note that this ratio
depends strongly on the mutual interplay between the gravitational
redshift, Doppler effect and focusing effect, and thus on the inclina-
tion angle, which may have important observational consequences.
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Fig. 7 shows the light curve due to a single spot as in the
previous figures, but now the shape and intrinsic luminosity
of the spot evolve with time. Initially the spot has a circular
shape. Each point element of matter in the spot revolves with
a Keplerian velocity corresponding to the radial position of
this element. Since, after several revolutions, the size of the
spot in the azimuthal direction is much larger than in the
radial direction, both Doppler and focusing effects integrated
over the spot become too small to affect the light curve.

Fig. 8 shows a weak dependence of the location of peaks
in the light curve on the radial position of the spot and the
inclination angle. This dependence is a result of gravitational
lensing (deflection of light) and the time-delay effect.

Fig. 9 illustrates that for smaller spots the profile of the
light curve gets narrower than for spots of larger size. This is
expected because the operation of both Doppler and
focusing effects is sharper when the spot becomes point-like.
The intensity integrated over frequency in the locally
comoving frame corotating with the spot is taken to be
T T4 with T, <exp(— gor?), where dr is the local distance
from the spot centre and ¢is a constant. Thus for =1, for
example, the intensity decreases to 1/e of its value in the
centre of the spot at a distance dr=0.5. Fig. 9 illustrates the
dependence of the FWHM of the light-curve profile on spot
size.

Fig. 10 shows the light curve produced by 10 spots
located in the region 37, <r<17r,. Two inclination angles
are considered in Figs 10(a) and (b), respectively. Intrinsic
luminosities of the spots are assumed to decrease expo-
nentially with time. Initial values for these luminosities,
e-folding times for their decay, and initial locations of the
spots have been chosen as random variables in some range,
given by a random number generator which started with
identical sequences of numbers for both cases (a) and (b).
Thus the difference between these two figures is due to
different inclination angles only. Fig. 11 shows the light curve
as in Fig. 10, but for a total number of spots equal to 100. It

1.0 -

Flux

0.5 A

0.0 d

0

Figure 7. Light curve of finite-sized spot (characteristic radius
0.5 M) which rotates differentially at r=6r, and becomes very
elongated after several revolutions. The solid curve corresponds to
a spot with constant intrinsic luminosity, while the dashed curve
corresponds to a spot the intrinsic luminosity of which decreases
exponentially with time (the e-folding time is 5 revolutions).
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Figure 8. Position of the peak in the light curve. For a spot which is
located far from the black hole, the focusing effect is a maximum at
phase =0.5 (when the spot is behind the black hole) and the
Doppler effect is a maximum at =~0.75 (when the spot approaches
the observer). Curve (a) corresponds to the peak due to focusing and
(d) to the peak due to the Doppler effect when 6,=_80° (cf. Fig. 6).
For inclinations of 40° (b; cf. Fig. 5) and 60° (c) there is no focusing
effect and the only peak is due to the Doppler effect. When the spot
is far from the black hole (r/M = 15 in this figure), the importance of
light bending decreases; the phase of the focusing peak approaches
0.5 and that of the Doppler peak goes to = 0.7. The difference from
0.75 is then caused solely by the time-delay effect.

At

0.08

0.06

0.04 - : : : '
0 10 20 30

o
Figure 9. FWHM of the light-curve profile as a function of its
characteristic radius which is equal to o~"? large o thus corre-
sponds to smaller spot-size.

has been suggested by Abramowicz et al. (1991) that the
short-term X-ray variability of AGN may be due to a large
number of spots located on the accretion disc. In both these
figures, time 7* is plotted in units of the orbital period of the
outermost spot [equation (3.1) with r=17r].

The code can also be used to compute spectra of accretion
discs, provided that their half-thicknesses, local luminosities,
distributions of radiation intensity in the local frame, orbital
velocities, etc. are given. The shapes of the spectra are much
more 6,-dependent when non-relativistic self-eclipses due to

(a) 1.90:400
6] & T T =] T T
) o
8% |°
%g | o " o o |
"é ,§ Individual spots

Total

Flux

1
0 2000 4000 6000

8000 10000 12000

T*
(b) "l9o=80°
g T SRR
2la °
OB |
*§§ Individual spots
N~

" 4 4 4 + +

Total

Flux

10000 12000
T *

1

1 1
0 2000 4000 6000 8000

Figure 10. (a) Superposition of the light curves due to 10 orbiting
spots with different intrinsic characteristics. The initial local lumi-
nosity of selected spots (normalized to the maximum value) is given
in the upper part of the figure. The lower part shows the resulting
simulated light curve. Alternatively, one could normalize the flux to
its average value. Then larger inclination would correspond to
larger variability of the source, because in that case the focusing
strongly affects the light of spots orbiting very close to the black
hole (we assume an isotropic distribution of the luminosity of indi-
vidual spots in their local frame). (b) As (a) but for 6, =80°.

finite thickness are taken into account (Madau 1988).
Spectra of relativistic discs have been studied by a number of
authors in various approximations (e.g. Cunningham 1975,
1976; Laor & Netzer 1989; Asaoka 1989). In particular, the
current interest in intensities and profiles of the iron Ka line
emitted from an accretion disc requires the repetition of the
calculations under various conditions (Fabian et al. 1989;
Laor 1991; Matt et al. 1992). The combination of geometri-
cal (i.e. due to finite thickness) and relativistic self-eclipses,
treated separately in numerous works, might result in conse-
quences which would turn out to be very important for the
comparison of previous disc models with observations.
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Figure 11. The light curve, as in Fig. 10, but for 100 randomly
generated spots.
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