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Introduction. The Kuiper belt, scattered disk, 

Oort cloud, and Jupiter/Neptune Trojans were derived 

from a primordial Kuiper belt (PKB) that likely once 

existed beyond 20 au. The end of the PKB was brought 

about by Neptune migrating through it at some early 

time, triggering a giant planet instability that led to our 

system of planets and small bodies [e.g., 1].  

Up to now, this scenario has mainly been tested 

using dynamical models, but enough progress has been 

made to now consider collisional processes and their 

constraints. For example, a major challenge for any 

model is to explain the paucity of primary D < 10-20 

km diameter craters found on Charon, Arrokoth, Euro-

pa, and Ganymede [2-3]. Collectively, these crater data 

indicate the KBO size frequency distribution (SFD) 

between d ~ 30 m and ~1 km is remarkably shallow 

(i.e., cumulative power law slope of q ~ -1) [4]. 

Here we use Boulder [5] to model collisional evo-

lution of the PKB/daughter populations. For con-

straints, we employed (i) crater SFDs on icy satellites 

and KBOs [e.g., 2-3; 6-7], and (ii) observed SFDs of 

populations derived from the PKB (e.g., Jupiter’s Tro-

jans) [8-9]. Note that craters on icy satellites allow us 

to infer the SFD of the PKB population scattered onto 

planet-crossing orbits as well as the portion that went 

to the scattered disk (i.e., source of Centaurs/JFCs).    

Model Setup. Boulder requires several input pa-

rameters that we get from other models. 

First, for the initial SFD of the PKB, we gave it a 

shape taken from hydrodynamical simulations of the 

streaming instability (Fig. 1) [10]. The initial mass was 

set to ~30 Earth masses; most in d ~ 100 km objects 

and relatively few in d < 100 km objects. Note that the 

shape of this SFD is similar to the one predicted for the 

primordial asteroid belt [11].    

Second, we delayed Neptune’s entry into the PKB 

after the gas disk was eliminated by tdelay = 0 to 50 Myr 

[1]. Longer values of tdelay mean more collisional evo-

lution takes place within a massive PKB excited by 

gravitational perturbations from a distant Neptune and 

embedded Pluto-sized bodies [4, 10].  

Third, dynamical simulations [10] were used to cal-

culate the intrinsic collision probability Pi, mean im-

pact speed V, and dynamical depletion values of ob-

jects residing within the PKB and those scattered into 

different daughter populations, such as those reaching 

giant planet-crossing orbits and those captured as Tro-

jans.  

Fourth, for each tdelay, we tested ~104 disruption law 

functions (i.e., QD* functions). They define the kinetic 

energy needed for a projectile to break up a target and 

> 50% of the ejecta away at escape velocity.  

Model Results. To reproduce the shallow slope be-

tween 30 m and 1 km (and other constraints), we 

adopted QD* functions where the easiest body to dis-

rupt from an energy/mass perspective was dmin ~ 20 m. 

A model SFD that matches data is shown in Fig. 1. 

Fig. 1. Collisional evolution of primordial Kuiper belt.   

The wavy SFD comes from a collisional cascade. 

Large objects disrupt and create fragments. Those with 

d < 20 m grind into a Dohnanyi SFD with q ~ -3, a 

slope that also explains dust observed by New Hori-

zons [4]. This steep SFD decimates d > 20 m objects, 

leading to q ~ -1 for 30 m < d < 1 km. This shallow 

branch means fewer projectiles exist to disrupt d > 1 

km bodies, with a “bump” constructed near d ~ 1 km.  

Similar grinding occurs in the main belt, but there 

dmin is ~200 m [11]. This leads to a similarly-shaped 

SFD, except q ~ -1 is between 200 m < d < 2 km and 

the steeper slope starts at d > 2 km [11]. This may ex-

plain why crater SFDs on icy satellites look like they 

were made by asteroids; the shape of our model SFD 

in Fig. 1 is not that different from the main belt SFD.   

Our model also suggests that most d < 10 km bod-

ies are fragments of larger bodies. This may explain 

why observed comets often have shapes comparable 

to similar-sized asteroids. 

Our best-fit model SFDs depends on two coupled 

parameters: tdelay and the disruption law of large KBOs. 

If tdelay is a few Myr, KBOs act like weak ice from [12]. 
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If tdelay is tens of Myr or more, KBOs act like strong ice 

and are harder to disrupt [e.g., 13].   

Crater/Impactor Results. Our model SFD from 

Fig. 1 can be compared to crater SFDs on different icy 

worlds. For example, primary craters from the Galilean 

satellites [6] are shown in Fig. 2. Using scaling laws 

discussed in [2], we find a match between model/crater 

SFDs. Comparable model/crater SFD plots can be 

made for most icy satellites and KBOs, provided we 

stick to craters made by d > 1 km projectiles [2, 7].    

 
Fig. 2.  Primary craters on the Galilean satellites [6].   

It is more difficult to match crater SFDs made by d 

< 1 km projectiles because secondaries/sesquinaries 

often dominate primary crater populations [3]. Hyperi-

on, however, avoids these issues, with the model SFD 

reproducing observed craters even at sub-km sizes [7]. 

 
Fig. 3. Phoebe craters counted by different authors.   

The steep SFD for d < 20 m also means ~20 d > 10 

m projectiles hit Jupiter per year, a match to ground-

based observations of Jupiter superbolide impacts [14]. 

Jupiter Trojans. A potential problem comes from 

the Jupiter Trojan SFD. Giant planet instability models 

show Trojans come from the PKB [1], yet the Trojan 

SFD, with q ~ -2 for d < 100 km bodies, does not 

match our model SFD (blue curve vs. black dots in Fig. 

4) [8-9]. Collisional evolution among the Trojans over 

the last ~4 Gyr is also too limited to fix this [8].   

The missing component may be collisional evolu-

tion taking place just prior to Trojan capture. Consider 

that enormous numbers of KBOs scattered out of the 

PKB readily move to ~5 au for a short time, where: 

 Collision probabilities scale with heliocentric dis-

tance r as Pi ~ r-3.5 [8] so Pi increases (25 au/5 

au)3.5 ~ 280 times near 5 au.    

 Impact velocities go up (~5 km/s vs. ~2-3 km/s).  

 To-be-captured Trojans move within a population 

equivalent of ~1% of the PKB for a few Myr.  

Our model runs show this short yet substantial burst 

in collisional evolution can modify the SFD of the cap-

tured bodies, giving them a Trojan-like SFD (Fig. 4).   

 
Fig. 4. Collisions create Trojan SFD prior to capture. 

Implications. The spatial densities of D > 10 km 

craters on most Saturnian satellites are near saturation 

[7] (e.g., Fig. 3). By combining dynamical simulations 

from [8] with our impacting SFDs, we find the most 

ancient surfaces on these satellites are > 4 Ga.  This 

challenges the idea many moons formed < 0.1 Ga [15].    
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