Lecture 4

- Atomic physics e-databases
- Emission line identification
- Line identification exercise using edatabases

NIST Home > PML > Physical Reference Data > Atomic Spectra Database https://www.nist.gov/pml/atomic-spectra-database Select Language

Version History & Citation Information | Discla

Powered by Google Translate

NIST ATOMIC SPECTRA DATABASE

Version 5

Welcome to the NIST Atomic Spectra Database, NIST Standard Reference Database #78. The spectroscopic data may be selected and displayed according to wavelengths or energy levels by choosing one of the following options:

Spectral lines and associated energy levels displayed in wavelength order with all selected spectra intermixed or in multiplet order. Transition probabilities for the lines are also displayed where available.

LEVELS

Energy levels of a particular atom or ion displayed in order of energy above the ground state.

GROUND STATES & IONIZATION ENERGIES Ground states and ionization energies of atoms and atomic ions.

Additional information about the database may be obtained through the following links:

Atomic Spectroscopy Intro	Outlines basic atomic physics concepts, explains terminology and notation.
ASD Intro & Contents	Introduction to and contents of the Atomic Spectra Database.
Bibliography	Bibliography of data sources used for this database.
Help	On-line help in using the database.

This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The Atomic Spectroscopy Data Center has carried out these critical milations. The Data Contax is leasted in the Dhusias! Measurement I showtow at the

© minifilm7/2010 Shutterstock.com

NIST ASD Team

- Principal Developers (Currently Active): Alexander Kramida, Yuri Ralchenko, and Joseph Reader
- Data Compilers (Currently Active): Alexander Kramida, Edward B. Saloman, Jean E. Sansonetti, Jeffrey R. Fuhr, Larissa I. Podobedova, and Wolfgang L. Wiese
- Database Developers (Currently Active): Alexander Kramida, Yuri Ralchenko, and Karen Olsen

Students contributing to data entry:

Eric Carpentier, Thomas Carpentier, Amy Zimmerman, Adrian Hamins-Puertolas, Marko Hamins-Puertolas, Anna Sharova

Past Contributors:

John J. Curry, Gerry R. Dalton, Robert Dragoset, Fun-Chen (Jesse) Jou, William C. Martin,

NIST/ Atomic Spectr	a Database Lines Form.	pdf (pa	lge 1 of 2)						
ASD DATA INFORMATION Lines Levels Spectra Crowd States & E	Bibliography Help		National Institute of Standards and Technology Physical Meas. Laboratory						
NIST Atomic Spectra Database Lines Form									
Best viewed with the la	atest versions of Web browsers and JavaScript enable	d							
	SpectrumSpectrum		e.g., Fe I or Na; Mg;						
	Lower Wavelength:	or Upper Wavenumber (in cm ⁻¹)							
	Upper wavelength: Units:	nm O	or Lower Wavenumber (in cm ⁻¹)						
	Jinto								
Reset input			Retrieve Data						
Dynamic Plots Dynamic Plots Line Identification Plot:Line Identification Plot: O		Grotrian Diagram Java subwindow size: 040 x 640 0 800 x 640 0 1024 x 768 0							
Electron TemperatureElectron Temperature T _e (eV):	r-broadened spectrumDoppler-broadened spectrum		Group by configurationsGroup by configura multiplicityTerm multiplicity Show only radiatively linked levelsShow on						
Electron DensityElectron Density N _e (cm ⁻³); Ion Tem	peraturelon Temperature $T_i(eV)$: (if $T_i \neq T_e$)		Make Grotrian Diagram (requires Java2) Java Security Level should be Medium. For Java 8 Update 2 Java Control Panel exception site list.						
Output Options		Additio	onal Criteria						
Format output: No JavaScript	HTML (formatted)	Lines:	All Only with transition probabilities Only with energy level classifications Only with observed wavelengths Only with diagnostics						
			Include diagnostics data						
Energy Level Units:	cm-1 0	Bibliographic	TP references. Line references						
Display output:	in its entirety 0	Information:							
Page size: Output ordering:	Wavelength MultipletMultiplet	Wavelength Data:	Observed Ritz Observed - Ritz (difference) Wavenumber (in cm ⁻¹)						
Optional Search Criteria									
Maximum lower level energy:	(e.g., 100000)	Wavelengths	Vacuum (< 200 nm) Air (200 - 1,000 nm						
Maximum upper level energy:	(e.g., 400000)	ш.	Vacuum (< 200 nm) Air (200 - 2,000 nm						
			Vacuum (all wavelengths) Vacuum (< 185 nm) Air (> 185 nm) Wavenumber (all wavelengths)						
Transition strength bounds will apply to:	Aki 0	Transition							
Minimum transition strength:	(e.g., 1.2e+05)	strength:							
Maximum transition strength:		✓ Relative IntensityRelative Intensity							
		Transition Type:	Allowed (E1) Forbidden (M1,E2,)						
Accuracy minimum:Accuracy minimum:	(e.g., C+)								
Relative intensity minimum	(e.g., 1.2e-03)	Level	Configurations Terms Energies						

NIST Atomic Spectra Database Lines Data

All Spectra: 24 Lines of Data Found

Wavelength range: 5321 - 5323 Å Wavelength in: vacuum below 2000 Å, air between 2000 and 20000 Å, vacuum above 20000 Å

Highest relative intensity: 830

Example of how to reference these results:

Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2013). NIST Atomic Spectra Database (ver. 5.1), [Online]. Available: http://physics.nist.gov/asd [2014, April 2]. National Institute of Standards and Technology, Gaithersburg, MD. <u>BibTex Citation</u> (new window)

lon	Observed Wavelength Air (Å)	Ritz Wavelength Air (Å)	Rel. Int. (?)	A _{ki} (s ⁻¹)	Acc.	<i>Ei</i> (cm ⁻¹)	<i>E_k</i> (cm ⁻¹)	Lower Le Conf., Ten	vel m, J		Upper Le Conf., Ter	wel m, J		Туре	TP Ref.	Line Ref.
Fe I Zr I	5 321.1076 5 321.26	5 321.1074	355 25	2.13e+06	с	35 767.564	- 54 555.418	3d ⁷ (⁴ F)4p	z ³ G°	4	3d ⁷ (⁴ F)4d	e ³ H	4		T5720	L11631 L3475
Re I W I Ca III	5 321.28 5 321.282 5 321.288	5 321.259 5 321.287	35 3w 90	1.56e+08	в	18 116.84 341 601.46	- 36 904.16 - 360 388.68	5a ⁵ (⁴ G)6s 3s ² 3p ⁵ (² P°3/2)5p	⁵ G 2 _[3 _{/2]}	2 2	3s ² 3p ⁵ (² P°3/2)5d	° 2 _[5 _{/2]} °	2 3		u33	L3475 L153 L1405
Gd I Xe III Ni IV Co II Gd I	5 321.50 5 321.57 5 321.78	5 321.38+ 5 321.60 5 321.7033	130 1bl m(Co I) 280	1.0e-02 2.4e+07	E C+	181 684.94 24 651.4 91 408.494	- 200 471.83 - 43 437.5 - 110 194.244	5s ² 5p ³ (² D°)4f 3p ⁶ 3d ⁷ 3d ⁷ (⁴ F)4d	³ H ² P e ³ D	4 1 _{/2} 3	5s ² 5p ³ (² D°)6d 3p ⁶ 3d ⁷ 3d ⁷ (⁴ F9/2)4f	³ G° 2 _F 2[³ /2]°	5 5 _{/2} 2	E2	T4605 T6999	L3475 L7270 L9429 L3475
Fe I Sr III Kr I Fe I S II	5 321.8342 5 321.909 5 322.02 5 322.0404 5 322.205	5 321.8351 5 321.933 5 322.01+ 5 322.0405 5 322.216	347 12 2 830 7	5.29e+04	с	29 313.008 290 831.39 92 294.4012 18 378.186 140 708.89	 48 098.293 309 616.33 111 079.06 37 162.746 159 492.83 	$3d^{6}4s^{2}$ $4p^{5}(^{2}P^{\circ}1/2)4f$ $4s^{2}4p^{5}(^{2}P^{\circ}3/2)5p$ $3d^{6}4s^{2}$ $3s^{2}3p^{2}(^{1}D)4p$	a ¹ 1 2 _[⁷/2] 2 _[⁵/2] a ³ P2 2 _{D°}	6 3 3 2 5 _{/2}	$3d^{8}(^{3}H)4s4p(^{3}P^{\circ})$ $4p^{5}(^{2}P^{\circ}1/2)6d$ $4s^{2}4p^{5}(^{2}P^{\circ}3/2)9d$ $3d^{7}(^{4}F)4p$ $3s^{2}3p^{2}(^{3}P)4d$	1 _{1°} 2 _[5 _{/2]°} 2 _[5 _{/2]°} y ³ F° 2 _D	6 2 3 3 5/2		T5720	L11631 L1771 L7408 L11631 L5883
Fe II Rb I O II Fe III Pr II	5 322.2361 5 322.3800 5 322.525 5 322.74 5 322.76	5 322.2366 5 322.375+ 5 322.502	400 3 2 10 430	1.67e+07	C+	84 326.967 12 578.950 248 515.30	- 103 110.835 - 31 362.331 - 267 298.23	3a ⁶ (⁵ D)4d 4p ⁶ 5p 2s ² 2p ² (³ P)4p	⁶ р 2 _{Р°} 2 _{Р°}	⁵ /2 ¹ /2 ³ /2	3a ⁸ (⁵ D4)4f 4p ⁶ 10s 2s ² 2p ² (³ P)6s	² [1]° ² S ² P	³ /2 1/2 3/2		T6892c83	L18349c139 L7459 L10621 L1171 L3475
Kr II Xe III I II Tm II	5 322.77 5 322.80 5 322.80 5 322.99	5 322.74+ 5 322.88+ 5 322.81	60hl 1 400 16			139 101.568 184 594.45 84 222.19	- 157 883.65 - 203 376.04 - 103 004.04	4s ² 4p ⁴ (³ P)5p 5s ² 5p ³ (² P*)6p 5s5p ⁵	2 _{Р°} ³ D ³ Р°	1 _{/2} 3 1	4s ² 4p ⁴ (³ P)6s 5s ² 5p ³ (² D°)6d 5s ² 5p ³ (⁴ S°)6p	⁴ Р ¹ D° ³ Р	3 _{/2} 2 0			L7386 L10579 L7360 L3475

Query time: 0.9 sec

If you did not find the data you need, please inform the ASD Team.

http://www.pa.uky.edu/~peter/newpage/

Welcome to the atomic line list !

This is a beta version of the next release of the Atomic Line List. It has not been been fully tested and is likely to change without prior notice. It is being offered for testing purposes only. If you notice any problems with the content or the interface, please report these to the maintainer at the email listed at the bottom of this page.

This is a compilation of approximately 1.55 million allowed, intercombination and forbidden atomic transitions with wavelengths in the range from 0.6 Å to 1000 µm. It's primary intention is to allow the identification of observed atomic absorption or emission features. The wavelengths in this list are all calculated from the difference between the energy of the upper and lower level of the transition (except for hydrogenic lines, which are a weighted average of all the fine structure components). Only a very limited attempt has been made to include observed wavelengths.

When attempting to identify an observed line, usually many possible candidates can be found in this list. In order to facilitate narrowing down the number of possible identifications a selection tool is presented which allows imposing, apart from the wavelength, several additional criteria.

The following documentation is available:

- Instructions for querying the line list.
- · Documentation on how this line list was compiled.
- <u>Contents</u> of this line list.
- <u>Copyright Notice/Disclaimer.</u>

Please note that publication of the entire line list, or any large part of it, is only allowed with permission of the author.

Please acknowledge use of the Atomic Line List (including the URL) in each paper that contains data from this list.

The author kindly thanks the following people (in alphabetical order) who contributed to this list by providing data and/or helpful insights:

K.M. Aggarwal, M.A. Bautista, C.F. Fischer, R. Kisielius, S.N. Nahar, M.J. Seaton, T. Sochi, D.A. Verner.

Constructing this web page would be impossible without the continued efforts of many people generating the energy level and transition probability data, and making them publicly available. Please acknowledge this effort by citing the original source(s) of the data you include in your paper!

Recent Developments

The atomic line list has undergone extensive development in the past few years. Much of the software generating the line list, as well as the program doing the line selection for the web page have been replaced with 11,000 lines of new C++ code. All this work was necessary to restructure the internal data files and facilitate future upgrades of the line list. The primary goal will be to make the list complete for all elements, as far as data are available. This release starts this process by making the list complete for all 4th row elements. Future releases will start adding 5th, 6th, and 7th row elements. The second goal is to add more transition probability data from additional sources. Finally, an effort will be made to include observed wavelengths, especially for forbidden transitions. These are the most important user-visible changes that are implemented in this version:

- NEW. The request form has been improved. An option for specifying the radial velocity of the emitting source has been added, thus making Doppler-shift corrections by hand unnecessary. Multiplet searches can now be done by simply clicking on the term field in the output. The maximum number of lines in the output has been increased to 5000. Multiple wavelength ranges can now be supplied at once. Plain and LaTeX mode now produce truly HTML-free output when saved to disk.
- NEW. The search tool has been improved. The output will now always be correctly sorted, the search criteria are repeated in the output for later reference, and a few minor bugs have been solved.
- NEW. Selection rules for intercombination, magnetic dipole (M1) and electric quadrupole (E2) transitions have been improved. Magnetic quadrupole (M2) and electric octupole (E3) transitions have been added to the list. This makes the list more accurate and complete.
- NEW. The theory for calculating level energies of hydrogenic ions has been fully updated following Section IV of Mohr, Taylor, & Newell, 2008, Rev. Mod. Phys. 80, 633. Furthermore, data for the following ions have been updated/amended: He I, Be II, Be II, C IV, Ca III, Mn VII, Fe V, Ni X. Data for the elements Gallium through Krypton have been added. Transition probability data have been added from the NIST ASD v3.0 database and the MCHF/MCDHF collection (C.F. Fischer et al.).

Selection Criteria

	Selection Criteria
Send Query Clear Form	
	All fields in the request form have default values and may be left unspecified
Wavelength range:	
5322 2	
(e.g. 6500-6600, or 6545+/-1, the "-" or "+/-" symbols are or	ntional)
(multiple queries, each on a separate line, are allowed)	nuonen)
Wavelength Unit: Angstrom + Type: Air +	
Radial velocity: • Vrad (in km/s) • cosm	ological redshift z
A positive value means that the observed wavelength typed	t above
is redshifted w.r.t. the laboratory wavelengths in the output.	
Min. relative wavl. accuracy:	
Element/spectrum:	
<u>h-fe</u>	
(e.g. C II, or C II-IV, or C, or C-O; query is not case sensitive	e;
multiple lines of input are allowed)	
Minimum abundance: Depl. factor:	~ 양신이 방송을 것이 봐야 할 것이 같은 것은 것을 것을 것이 하는 수 있는 것이 같이 많이
Logarithmic number density, relative to log(H) = 12.	~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
Lower lever energy range.	
Upper level energy range:	
Maximum for principal quantum number n:	
Transition types: All Types Nebular Sela	ect: E1 C M1 E2 M2 E3
Transitions from auto-ionizing levels: O Suppress	• Show
Send Query Clear Form	
	A ANY GLOVE AN ANY GLOVE AND ANY GLOVE AND ANY
	Customize Output
Output format (Check each item you want included in the	output):
Wavelength accuracy	
Spectrum	
Transition type	
Configuration	
✓ Term	승규는 비행에는 여행에 가장 관계에 있는 것이 없다. 그는 비행에 가지 않는 것이 없는 것이 없는 것이 없는 것이 없다.
Angular momentum: • as J • a	as g 🔿 combine with term
Transition probability: 🗹 as Aki	or as gkAki 🗹 as fik 💿 as S 💿 as log(gf)

	Selection Criteria
Send Query Clear Form	
	All fields in the request form have default values and may be left unspecified
Wavelength range:	
5322 2	
(e.g. 6500-6600, or 6545+/-1, the "-" or "+/-" symbols are or	ntional)
(multiple queries, each on a separate line, are allowed)	nuonen)
Wavelength Unit: Angstrom + Type: Air +	
Radial velocity: • Vrad (in km/s) • cosm	ological redshift z
A positive value means that the observed wavelength typed	t above
is redshifted w.r.t. the laboratory wavelengths in the output.	
Min. relative wavl. accuracy:	
Element/spectrum:	
<u>h-fe</u>	
(e.g. C II, or C II-IV, or C, or C-O; query is not case sensitive	e;
multiple lines of input are allowed)	
Minimum abundance: Depl. factor:	~ 양신이 방송을 것이 봐야 할 것이 같은 것은 것을 것을 것이 하는 수 있는 것이 같이 많이
Logarithmic number density, relative to log(H) = 12.	~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
Lower lever energy range.	
Upper level energy range:	
Maximum for principal quantum number n:	
Transition types: All Types Nebular Sela	ect: E1 C M1 E2 M2 E3
Transitions from auto-ionizing levels: O Suppress	• Show
Send Query Clear Form	
	A ANY GLOVE AN ANY GLOVE AND ANY GLOVE AND ANY
	Customize Output
Output format (Check each item you want included in the	output):
Wavelength accuracy	
Spectrum	
Transition type	
Configuration	
✓ Term	승규는 비행에는 여행에 가장 관계에 있는 것이 없다. 그는 비행에 가지 않는 것이 없는 것이 없는 것이 없는 것이 없다.
Angular momentum: • as J • a	as g 🔿 combine with term
Transition probability: 🗹 as Aki	or as gkAki 🗹 as fik 💿 as S 💿 as log(gf)

Wavelength ra	inge: 5322 +/-	-2 Unit: Ang	strom Type:	Air				
Radial velocity	/: 0 km/s							
Wavelength ad	ccuracy upper	r limit: 5%						
Element/Spec	trum: H -Zn I-	IV						
Minimum line :	strength: no n	estrictions						
Include lines w	vithout atomic	data: true						
Minimum abur	ndance: no mi	inimum						
Lower level en	nergy range: r	no restrictions	Unit: eV					
Upper level en	nergy range: r	o restrictions						
Maximum for p	principal quan	tum number r	n: no restrictio	ins				
Transition type	es included: a	I						
Transitions fro	m auto-ionizir	ng levels: inclu	uded					
-LAB-WAVL-A	NG-AIR- SPE	CTRUM TT -	TERM	J_i-J_k A_ki f_ik -TPF- LEVEL-ENE	RGYEV -RE	F		
5270.	Bell E1	2D-2Do	5/2 - 5/2	133.100000 - 135.448000 050				
5270.	Bell E1	2D-2Do	5/2 - 3/2	133.100000 - 135.448000 050				
5270.	Bell E1	2D-2Do	3/2 - 5/2	133.100000 - 135.448000 050				
5270.	Bell E1	2D-2Do	3/2 - 3/2	133.100000 - 135.448000 050				
5319.7	Zn III E1	5Go-3/2[7/2	3-4	30.499000 - 32.829020 ASD				
5319.8	CII] E1	<u>4So-2P</u>	3/2 - 1/2	11.854420 - 14.184400 <u>ASD</u>				
5319.8	CII] E1	<u>4So-2P</u>	3/2 - 3/2	11.854420 - 14.184400 <u>ASD</u>				
5319.8	CII] E1	<u>4So-2D</u>	3/2 - 3/2	11.854420 - 14.184400 <u>ASD</u>				
5319.8	CII] E1	4So-2D	3/2 - 5/2	11.854420 - 14.184400 <u>ASD</u>				
5320.00	O II] E1	2Do-4P	3/2 - 3/2	30.749346 - 33.079230 ASD				
5320.0373	Fel] E1	b3D-v5Po	3 - 2	3.641640 - 5.971505 061				
5320.041	[V II] E2	a3P-c3F	1-3	1.427648 - 3.757512 ASD				
5320.1	Zn III E1 5	/2[3/2]-3F0	2-2	32.474140 - 34.804000 ASD				
5320.123	NIII] E1	4P-2Po	1/2 - 1/2	14.414626 - 16.744454 ASD				
5320.134	Mn II E1	x3Go-e3G	5-4	10.403808 - 12.733631 ASD				
5320.183	VIJ E1	26D0-64F	5/2 - 5/2	2.256274 - 4.586076 ASD	Atomic Line List	version: 2.05b18	Constructed:	2014-05-13 13:23 GMT
5320.202	NII E1	5Po-5P	2-1 4.2	20E+07 1.07E-01 3 27.974052 - 30.303845 03	Wavelength rang	e: 0 - inf Unit: A	nastrom Type	Air
5320.231	CIII] E1	3Po-3F	1-2	18.029934 - 20.359715 ASD	Radial velocity: 0	km/s		
5320.324	VIII] E1	<u>e4D-y4Go</u>	3/2 - 5/2	17.547722 - 19.877462 <u>ASD</u>	Element/Spectru	m: Fe II		
5320.3502	Fell E1	<u>y4Ho-e4G</u>	7/2 - 7/2	8.266315 - 10.596043 ASD				
5320.36?	Cul E1	2Po-2D	1/2 - 3/2	7.645595 - 9.97532? <u>ASD</u>	-LAB-WAVL-ANG	S-AIR-I-SPCITT	TERMJ	-J k-IA kiIf ikI-TPF-ILEVEL-ENEF
5320.36?	Cul E1	2P0-2D	3/2 - 3/2	7.645595 - 9.97532? <u>ASD</u>	5252.506	Fell E1 4F-v4F	0 9/2 - 9/2	9.099664 - 11.459484 ASD
5320.364	Cr IIJ E1	e6F-r4Go	11/2 - 9/2	10.910777 - 13.240499 <u>ASD</u>	5272.049	Fell E1 4F-v4F	o 5/2 - 3/2	9.099935 - 11.451007 ASD
5320.406	Crilj E1	<u>d2F-4F0</u>	5/2 - 5/2	6.284463 - 8.614167 ASD	5279.822	Fell E1 4F-v4F	o 7/2 - 9/2	9.111872 - 11.459484 ASD
5320.429	Calli El	3F0-1/2[1/	2 2-1	40.352644 - 42.662536.087	5280.046	Fell E1 4F-v4F	o 5/2 - 5/2	9.099935 - 11.447446 ASD
5320.430	Fell E1	4F-V4F0	112 - 112	9.111872 - 11.441566 ASD	5292.694	Fell E1 4F-v4F	o 9/2 - 7/2	9.099664 - 11.441566 ASD
5320.435	Crij Ei	<u>D3P-Y3F0</u>	1-2	3.369422 - 5.699113 ASD	5293.306	Fell E1 4F-v4F	o 5/2 - 7/2	9.099935 - 11.441566 ASD
5320.44		F[3]0-2D	5/2 - 3/2	31./5554/ - 34.085240 <u>ASD</u>	5307.034	Fell E1 4F-v4F	o 7/2 - 5/2	9.111872 - 11.447446 ASD
5320.440	FIL E1	3P-3D0	2-3 1.5	8E+07 9.37E-02 3 30.584679 - 32.914368 01	5320.430	Fell E1 4F-v4F	o 7/2 - 7/2	9.111872 - 11.441566 ASD
5320.4453	NIT E1	5F0-5/2[1/	2 2-1	3.739750 - 6.069437 ASD	5340.033	Fell E1 4F-v4F	0 3/2 - 3/2	9.129866 - 11.451007 ASD
5320.466	Ne III] E1	5G0-3G	4-3	58.520838 - 60.850516 008	5348.237	Fell E1 4F-v4F	o 3/2 - 5/2	9.129866 - 11.447446 ASD
5320.466	Ne III] E1	5G0-3G	2-3	58.520838 - 60.850516 008				
5320.466	Ne IIIJ E1	5G0-3G	3-3	58.520838 - 60.850516.008				
5320.467	Fell E1	14D-2[2]0	5/2 - 5/2	10.522645 - 12.852322 ASD				
5320.49	SCIJ E1	4P-2P0	5/2 - 3/2	4.534445 - 6.864110 ASD				
5320.55	Ar III] E1	1F-5D0	3-2	28.174670 - 30.504316 069,068				
53000,557B	NIG IL E1	20.000.00000		S 2854033 / 35-05,S 18381821 - 20 711281 (1000100	0.0 5.05		

Nova T Pyxidis (14 April 2011)

Summary Procedure for Line Identification

- Measure line wavelength (from flux median & profile fit)
- Correct Λ_{obs} for radial velocity shift obtained from other known lines, e.g., H β , or forbidden lines (best, because optically thin)
- Note types of lines present in spectrum, e.g., forbidden lines, heavy element lines, fluorescence excited, coronal, etc.
- Use v2.05 Line List and/or NIST line tables to list all lines within measured uncertainty of the observed wavelength, preferably with transition probabilities, A_{21} , and multiplet members listed
- Consider as potential IDs all lines of 'reasonable' abundance, level of ionization, excitation, & A_{21}
- For each candidate ID check for
 - 1. Other multiplet members expected to be observed
 - 2. Presence of lines originating from same levels of candidate line
 - 3. Other lines from the same (or similar) ion and excitation level, making use of Bashkin & Stoner.
- If all above criteria are met, candidate transition is reasonable ID
- The final ID assignment for any line should be consistent with the assemblage of all known lines that are present

<u>:tp://www.pa.uky.edu/~peter/newpage/__http://www.nist.gov/pml/data/</u>