

Various topics to be addressed:

- Processes that govern ISM/nebular excitation and ionization
- Diagnostic information obtained from different kinds of transitions
- Why most ionized (nebular) regions have kinetic $T_e \sim 10^4$ K
- The Balmer decrement (H recombination spectrum)
- Why forbidden lines are prominent in ionized gas regions
- e-databases useful for spectroscopy

Reference Books:

- -Osterbrock, D. E. & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei 2nd edn (Sausalito: Univ. Sci. Books)
- -Pradhan, A.K. & Nahar, S.N. 2011, *Atomic Astrophysics & Spectroscopy* (Cambridge: Cambridge Univ. Press)
- -Bashkin, S. & Stoner, J. 1975, Atomic Energy Levels & Grotrian Diagrams (North-Holland: Amsterdam)
- v2.05 Atomic Line List website: http://www.pa.uky.edu/~peter/newpage/
- NIST Atomic Spectra Database website: https://www.nist.gov/pml/atomic-spectra-database

<u>Lecture 1</u>

- Emission spectra
- Spectroscopic notation
- Atomic processes
- Interaction rates
- Cross sections

Emission Spectrum

Define:

*

Intensity, I_v = radiant energy crossing surface per unit (area•time• solid angle•freq) [erg/(cm² sec ster Hz)]

Flux, F_v = radiant energy crossing surface *in all directions* per unit (area•time•freq) [erg/(cm² sec Hz)]

 $= \int \mathbf{I}_{\mathbf{v}} \cos \Theta \, \mathrm{d}\Omega$

Equation of Radiative Transfer:

$$dI_v/ds = j_v - \kappa_v I_v \longrightarrow I_v = \int j_v ds$$
 if no absorption

(Volume) Emission coefficient, j_v = energy emitted per unit (volume•time•solid angle) [erg/(cm³ sec ster)] for transition i →j

= $n_i A_{ij} hv_{ij}/4\pi$ for emission *line* transitions i $\rightarrow j$

(Volume) Absorption coefficient, $K_v = n a_v = 1/(\text{mean free photon path})$ [cm⁻¹] where n = density of absorbers [cm⁻³] $a_v = \text{absorption cross section [cm²]}$

Solar Corona & Chromosphere

Wavelength (Angstroms)

Ionized ISM Constituents

Η	II	Regions

1-100 pc

Mass	104-
Lifetime	107

Size

Abundances Expansion velocities Energy source

<u>Planetary Nebulae</u>

CNO~2 Solar

Nova & <u>Supernova Remnants</u>	Herbig-H <u>Object Jo</u>
1 - 50 рс	1,000 au
1-10 M ₃	10 ⁻⁶ M
10 ⁴ yr	10 ⁶ yr
>10 Solar	~Solar
10 ²⁻³ km/s	100 km/

Potential; mag field

Atomic Energy Levels

• Energy levels are determined by the Schroedinger Eqn

 $H\psi = E\psi$

where H is the Hamiltonian of a charged particle with spin in an electric field:

 $H = p^{2}/2m - Ze^{2}/4\pi\varepsilon_{0}r + () \underline{s} \cdot \underline{\ell} + () \underline{s} \cdot \underline{s}$

In quantum mechanics the momentum operator p can be replaced by $\hbar/i \partial/\partial x$. For a spherically symmetric system $H\psi = E\psi \longrightarrow -\hbar^2/2m \nabla^2\psi - Ze^2/4\pi\epsilon_o r = E\psi$

In spherical polar coordinates:

 $-\hbar^{2}/2mr^{2}\left[\partial/\partial r\left(r^{2}\partial\psi/\partial r\right) + 1/\sin\Theta\partial/\partial\Theta\left(\sin\Theta\partial\psi/\partial\Theta\right) + 1/\sin^{2}\Theta\left(\partial^{2}\psi/\partial\Phi^{2}\right] - Ze^{2}\psi/4\pi\epsilon_{o}r = E\psi$

The solution of the Schroedinger eqn for the single e^- atom can be written generally in the form

$$\psi_{nlm} = A_{nlm} L_{nl}(r) P_{lm}(\cos \Theta) e^{im\Phi}$$
 with eigenstate energy: E_{nlms}
Laguerre & Legendre polynomials

Energy Levels & Spectroscopic Notation

• The energy levels of many-electron atoms/ions are specified by the quantum numbers of the electrons:

 $n_i \rightarrow orbit of each electron i$

- $l_{i} \rightarrow \text{orbital angular momentum of each electron, with } l_{i} < n_{i}$ ($l_{i=0} [s], l_{i} = 1 [p]$)
- $L \rightarrow orbital angular momentum of the state = \sum \ell_i$ (vector) (L=1 [S], L=2 [P])
- $S \rightarrow spin angular momentum of the state = \sum s_i$ (vector) (where $s_i = \frac{1}{2}$)
- $J \rightarrow \text{total angular momentum of the state} = \underline{L} + \underline{S}$ (vector)
- Specification of these quantities represents a distinct state with a unique energy. For "L-S coupling", the <u>energy levels are most sensitive to the quantum numbers n_i - l_i - L - S - J in that order.
 </u>
- The spectroscopic notation of different energy states uses the convention:

 $(n_i, l_i)^{2S+1} L_J$ for example: $[1s^2 2s^2 2p^6] 3s^2 {}^1S_0$

For example, the configurations $1s^2 {}^1S_0 \& 1s2p {}^3P_2$ represent two different energy states of helium, with the second state $({}^3P_2)$ having the higher energy because one electron is in a higher orbit.

Many-Electron Energy Level Diagram

Ionized ISM Physical Processes

	Process	Description	Comments
R A D I A T I V E	Photoionization	$A^i + hv \rightarrow A^{i+1} + e^{-i}$	Energy threshold: hv $\geq \chi_{I}$. Main source of ISM ionization.
	Recombination	$A^{i+1} + e^{-} \rightarrow A^{i}_{*} + hv$	Source of bound-free continuum radiation. Inverse of photoionization
	Spontaneous Radiative Decay	$A^{i_*} \rightarrow A^i + hv_1$	No energy threshold. Most common form of de-excitation. Primary source of emission lines
	Photoexcitation/ Fluorescence Excitation	$A^i + hv \rightarrow A^i_*$	$hv = \Delta E$. Populates a few specific levels. Usually followed by spontaneous radiative decay
С	Collisional: Ionization	$A^i + e^- \rightarrow A^{i+1} + e^- + e^-$ (ionization)	Threshold: $\frac{1}{2} \mathbf{m_e v^2} \ge \chi_I$ (i.e., $kT_e \ge$
0	Excitation	\rightarrow A ⁱ _* + e ⁻ (excitation)	χ _I)
L L	De-excitation	$A^{i}_{*} + e^{-} \rightarrow A^{i} + e^{-}$ (de-excitation)	$^{1}\!\!/_{2}\ m_{e}v^{2} \geq \chi_{exc}$ (e ⁻ coolant) No energy threshold
I	Dielectronic Recombination	$A^{i+1} + e^{-} \rightarrow A^{i}_{**}$	No radiation emitted. Large cross
S			section, subject to condition. $1/2$ 2 -1
I			$\gamma_2 m_e v^2 = \chi^2_{exc} - \chi^2_{exc}$
0	Autoionization	$A^{i}_{**} \rightarrow A_{*}^{i+1} + e^{-i}$	Often follows dielectronic recombn if there is no stabilizing emission: A ⁱ →
Ν			$A^{i}_{*} + hv$
A L	Charge Exchange	$\mathbf{A}^{\mathbf{i}} + \mathbf{H}^{0} \leftrightarrow \mathbf{A}^{\mathbf{i}\cdot1} + \mathbf{H}^{+} + \Delta \mathbf{E}$	Large resonance ($\Delta E{\sim}0$) cross section. Controls ${\cal O}^0 \leftrightarrow {\rm O}^+$ ionization

 A^{i}_{*} = excited state of ion i; A^{i}_{**} = doubly excited state of ion i

General 'Interaction Rate' Equation

(from Transport Theory)

* Define $\sigma = \pi r_o^2$ as the cross section for interactions between particles of types A & B, so that if an A & B particle come within distance r_o the interaction occurs (statistically). For most interactions $\sigma(v) \propto v^{-n}$ (n>0) because higher velocity particles have greater self energy and spend less time influenced by the interaction field.

Let
$$n_A$$
, n_B = number density of particles A & B (cm⁻³)
 $f(v) dv = particle speed distribution function (usually Maxwell-Boltzmann) $\infty v^2 exp(-mv^2/2kT)$
 $\sigma(v) = interaction cross section (cm2) (typically σ ~10⁻¹⁶ cm² for particle interactions)
 $v_o = threshold velocity for interaction to occur (from energetics)$$$

Then, the no. of interactions per unit volume and time is easily shown to be

Number of A-B interactions/(cm³ sec) =
$$n_A n_B < \sigma(v) v >$$
 cm⁻³ s⁻¹
where $<\sigma(v) v > \equiv q(T) \equiv \int_{v_o}^{\infty} \sigma(v) v f(v) dv$
'collision coefficient' $\propto T^{-\frac{1}{2}} \exp(-mv_o^{2}/2kT)$ [for $\sigma(v) \propto v^{-2}$]

* For radiation the photon density n, is related to the mean intensity of radiation ${f J}_v$ by

$$n_v = 4\pi J_v/(chv)$$

Thus, the rate of radiative interactions (absorption, ionization, etc.) for an ion i is

Number of absorptions by ion i /(cm³ sec) = $n_v n_i < \sigma_v c > = n_i \int_{v_i} 4 \pi J_v \sigma_v /hv dv$ (typically $\sigma_v \sim 10^{-18}$ cm² for continuum radiative interactions)

Cross Sections

