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1 Dynamical friction

This exercise deals with how gravitation affects the movement of a massive body as it
travels through a field of lighter bodies. Examples for such systems would be a massive
star moving through the many low-mass stars in a massive star cluster, or a satellite
galaxy that moves through the putative dark matter halo of a large host galaxy. We
start with discussing the gravitional interaction between two particles, draw conclusions
on the interaction with many particles from that and thereby arrive at the concept of
dynamical friction.

1. Consider a system consisting of a particle with the mass M at the position rM
and a particle with the mass m at the position rm (see Figure 1). The only forces
acting on these particles is their mutual gravitational attraction. The force acting
on the particle with the mass M is then

M r̈M = −GMm (rm − rM )

‖rm − rM‖3
(1)

where the dots represent total derivatives with respect to time and G is the grav-
itational constant. Use Newton’s laws to explain that

m r̈m +M r̈M = 0 (2)

and
m∆vm +M∆vM = 0 (3)

hold, where ∆vm and ∆vM is the change of the velocities of the two masses
through the encounter.

2. Use Newton’s laws to show that

r̈ = −GMm r

‖r‖3
(4)

where r = rm − rM . Equation describes the motion of a ficticious particle, called
the reduced particle, in a fixed gravitational potential created by the mass M+m.
Why can Equation (4) be rewritten as

r̈ = −GMm

r2
, (5)
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Figure 1: A sketch of a two-body system.

i.e. an equation where the vectors are replaced by their absolute values?

Equation (5) formulates Kepler’s problem, and a solution to it is

1

r
= C cos(ψ − ψ0) +

G(M +m)

L2
, (6)

where ψ is the angle that parameterizes the trajectory of the reduced particle, L is
the absolute value of the angular momentum vector, and ψ0 and C are constants
that are determined by the initial conditions.

3. Finding the solution to Equation (5) is not part of this exercise, but those who are
interested can find discussions of Kepler’s problem in basically any textbook on
theoretical mechanics. For the purpose here, only hyperbolic orbits are of interest,
i.e. orbits where the relative motion of the masses M and m is so large that they
are not bound to each other. Explain why in this case equation (6) becomes

1

r
= C cos(ψ − ψ0) +

G(M +m)

b2V 2
0

(7)

with the definitions in Figure (2), i.e. b is the impact parameter and V0 is the
absolute value of the initial velocity.

4. Show that the total time derivative of equation (7) is

ṙ = CbV0 sin(ψ − ψ0). (8)

5. Using that ψ → 0 for t→ −∞ with the definitions in Figure (2), show that ψ0 is
given as

tanψ0 = − bV 2
0

G(M +m)
. (9)

6. The point ψ = ψ0 is a very special one on the trajectory of the reduced particle.
Why?
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Figure 2: A hyperbolic trajectory of the reduced particle in a gravitational field.

7. The change of the relative velocitiy of the two masses through the encounter is
given through

∆V = ∆vm −∆vM . (10)

Using the identities

sin(2ψ0) =
2 tan(ψ0)

1 + tan2(ψ0)
(11)

and

cos(2ψ0) =
2

1 + tan2(ψ0)
, (12)

show that

‖∆V⊥‖ =
2bV 3

0

G(M +m)

[
1 +

b2V 4
0

G2(M +m)2

]−1
(13)

for the component of ∆V vertical to the relative velocity V0 at the time t = −∞
(i.e. before the encounter), and

‖∆V‖‖ = 2V0

[
1 +

b2V 4
0

G2(M +m)2

]−1
(14)
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for the component of ∆V parallel to the relative velocity V0 at the time t = −∞.

8. Show that the components of the change of the velocity of the particle with the
mass M are

‖∆vM⊥‖ =
2mbV 3

0

G(M +m)2

[
1 +

b2V 4
0

G2(M +m)2

]−1
(15)

for the component of ∆vM vertical to vM at the time t = −∞ (i.e. before the
encounter), and

‖∆vM‖‖ =
2mV0
M +m

[
1 +

b2V 4
0

G2(M +m)2

]−1
. (16)

for the component of ∆vM parallel to vM at the time t = −∞ (i.e. before the
encounter)

Now imagine that the mass M does not encounter only a single particle with the mass
m, but travels through a large homogeneous field of such particles. In this situation, the
individual ∆vM⊥ from the many bodies with mass m cancel out due to symmetry, but
the ∆vM‖ are all in the same direction and result into a non-zero change of the relative
velocity V0 = vm − vM , but in the opposite direction of V0.

The rate at which the mass M encounters particles with the mass m, velocities in the
velocity-space element d3v and impact parameters between b and b+ db is given as

2πb db× V0 × f(vm) d3vm, (17)

where f(vm) is the phase-space density.

9. Using Equations (16) and (17), show that integrating over all relevant inpact
parameters 0 < b < bmax yields

dvM

dt

∣∣∣∣
vm

= 2π ln(1 + Λ2)G2m(M +m)f(vm)
(vm − vM )

‖vm − vM‖3
d3vm (18)

where

Λ ≡ bmaxV
2
0

G(M +m)
. (19)

Equation (18) is the net rate of the velocity change of the mass M due to en-
counters with the ensemble of particles quantified with Equation (17).

The parameter bmax is taken to be distance from the mass M where the density of
particles of particles with mass m has dropped significantly compared to the density at
the current location of the mass M . Thus, bmax is not very well defined, but this is a
minor concern in practise, as we shall see.

The value of Λ is in practise usually very large when typical sets of parameters for V0,
bmax and M are used. Thus we will use the approximation

1

2
ln(1 + Λ2) ' ln(Λ). (20)

in the following. Λ being large also implies that ln(Λ) only changes slowly with variations
of Λ, and thus quite satisfactory estimates with Equation (18) can also be made without
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knowing precise values for bmax and V0 (which in practise is often replaced with a typical
velocity vtyp).

A remarkable property of Equation (18) is that its structure is equivalent to the one
that is used to relate the force acting on a particle with mass M due to a surrounding
matter density, only that that the density in the case of Equation (18) assumes the
form ρv(vm) = 4π ln(Λ)Gm(M + m) f(vm), and that Equation (18) is a function of
velocities instead of positions. Thus, one has to integrate over all relevant velocities
instead of positions in order to obtain the total force acting on the particle with the
mass M .

If the velocity distribution of the particles with mass m is isotropic, then only particles
with velocities vm < vM slow the moving mass M down (compare to the equivalent
problem with a matter distribution!), so that in order to obtain the total acceleration
acting to the moving mass M , one needs to integrate over the density ρv(vm) within a
sphere with radius vM . Thus,

dvM

dt
= −4π ln(Λ)G2m(M +m)

v3M

[ ∫ vM

0
f(vm) 4πv2m dvm

]
vM . (21)

This is the Chandrasekhar dynamical friction formula.
A well-known isotropic velocity distribution is the Maxwellian velocity distribution,

which is given as

f(vm) =
n0

(2πσ2)3/2
exp

(
− v

2
m

2σ2

)
(22)

where σ is the velocity dispersion, which measures the width of the velocity distribution.
The Chandrasekhar dynamical friction formula then becomes

dvM

dt
= −4π ln(Λ)G2n0m(M +m)

v3M

[
erf(X)− 2X√

π
exp(−X2)

]
vM , (23)

where the expression in the brackets is obtained through partial integration of Equa-
tion (22) using the substitution X ≡ vM/

√
2σ, and

erf(X) ≡ 2√
π

∫ X

0
exp(−y2) dy. (24)

In the limit M � m, this equation becomes

dvM

dt
= −4π ln(Λ)G2ρM

v3M

[
erf(X)− 2X√

π
exp(−X2)

]
vM , (25)

where also n0m has been replaced with the overall background matter density ρ.

10. Far outside the core, the rotation curve of the Milky Way is flat, like it is typical for
spiral galaxies. Show that the density distribution that would cause a flat rotation
curve is the one of the singular isothermal sphere, which can be written as

ρ(r) =
v2c

4πGr2
, (26)

where vc is a constant velocity.
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11. The velocity dispersion of the singular isothermal sphere is given as

2πGr2ρ(r) = σ2. (27)

Thus, what is the relation between vc and σ?

12. Now consider a body with mass M that moves on a circular orbit in this isothermal
sphere (a globular cluster or a dwarf galaxy within the dark matter halo of the
host galaxy, for instance). Show that the frictional force acting on that body is

FM = −D ln(Λ)
GM2

r2
vc

‖vc‖
(28)

with D ≈ 0.428. (Hint: There are tabulated values for the error function.)

13. Consider also a body with mass M that moves with a velocity vM � vc through
the isothermal sphere (perhaps because it comes from the outside with a large
peculiar velocity). What is the limit of Equation (28) for v →∞? Thus, what is
quantified with the factor D?

14. Let’s return to the body with mass M that initially moves on a circular orbit with
the velocity vc. What the force induced by the dynamical friction actually does is
changing the angular momentum. Show that this is quantified through

L̇M ≡
d

dt
‖LM‖ = −D ln(Λ)

GM2

r
. (29)

This change of LM will cause the body sink towards the center of the isothermal
sphere.

15. As the body moves towards the center, it maintains the velocity vc. Use the
angular momentum the body consequently has to show that

rṙ = −D ln(Λ)
GM

vc
. (30)

16. Integrate Equation (30) over time with appropriate boundary conditions to arrive
at

tsink =
1

2D ln(Λ)

r2inivc
GM

, (31)

where rini is the initial distance from the center. This equation quantifies the time
it takes the body to sink from rini to the center.

17. Let us now estimate tsink for some components of the Milky Way system, assuming
that they are embedded in a halo of cold dark matter whose profile is approximated
by a single isothermal sphere. Assume that vc = vM = 220 km/s and bmax = rini,
where rini is the present-day distance from the center of the Milky Way (MW), and
that the considered bodies indeed move on circular orbits. It is useful to remember
that G = 0.0045 pc3M−1� Myr−2 and 1 km/s is approximately 1 pc/Myr. Consider:

• The Large Magellanic Cloud (LMC). The LMC has a dynamical mass M ≈
1010 M� and its current distance from the center of the MW is approximately
50 kpc.
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• The Sculptor Dwarf Galaxy, whose current distance from the center of the
MW is approximately 80 kpc. According to Strigari et al. (2008, Nature,
Volume 454, Issue 7208, pp. 1096-1097), the satellite galaxies of the MW
may all be located in haloes of cold dark matter with a common approximate
mass of 109 M�. Thus, assume this as the mass of Scuptor. (Remember
however that it is by no means certain that dwarf galaxies, or even galaxies
in general, contain dark matter.)

• The most massive globular cluster of the Milky Way, ωCen, has a dynamical
mass M ≈ 2.5 × 106 M� and its current distance from the center of the
MW is approximately 6.4 kpc.

• ωCen is not only unusually massive, but is also unusually distant from the
center of the MW. Thus, also consider the values M ≈ 105 M� and rini=1.5
kpc, which are more representative for MW globular clusters.

• The Sun. The distance of the Sun from the galactic center is approxmately
8 kpc.

What do the numbers calculated above imply for the stability of disks of satellite
galaxies, systems of globular clusters and stellar orbits over the age of the Universe?

Naturally, the above results are only approximative. However, simulations have shown
that the analytic approximation given with Chandrasekhars formula for dynamical friction
is remarkably accurate, provided that i) the mass M is less than approximately 20% of
the mass of the larger system, and that ii) the orbit is not cofined near the center of the
larger system or beyond its outer boundary.

2 A rotating disk of satellites

Consider a major galaxy which is accompanied by a disk of satellites that consists of 15
dwarf elliptical galaxies, as sketched in Figure (3).

1. Assuming that the velocities of satellite galaxies are in principle isotropic with
respect to their host, how probable is it then that at least 13 out of the 15
satellites show the same sense of rotation with respect to the host galaxy, i.e. that
the scalar product of the normal vector of the best-fitting plane with the angular
momentum vectors has the same sign in at least 13 out of 15 cases, and the
opposite sign only in the remaining cases?

2. Out of the more than 20 known satellite galaxies of the Andromeda Galaxy, 15
constitute a disk of satellites, which we happen to see almost edge-on from our
position (Ibata et al. 2013, Nature, Volume 493, Issue 7430, pp. 62-65). 13 out of
these 15 satellites show the same sense of rotation around the Andromeda Galaxy.
Is this observational finding consistent with the hypothesis that the motions of
satellites around their host are isotropic in principle? What are the implications
for the ΛCDM-model, according to which many dwarf galaxies would form in
dark-matter haloes that are bound to larger dark-matter haloes?

3 The mass of Segue I

Segue I is a faint stellar system in the vicinity of the Milky Way that has been discovered
about 10 years ago. It contains of the order of 1000 stars, all of which are resolved at
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Figure 3: A sketch of an edge-on view of a disk of satellites. The disk consists of 15 dwarf
galaxies, which are symbolized by the dots with the numbers, and the best-fitting plane (i.e. the
plane around which the satellites exhibit the smallest scatter) is symbolized by the red line. A
normal vector to this plane is indicated at a red arrow. The angular momenta of the satellites
with respect to the host galaxy, or more accurately their projections along the line of sight, are
shown as blue arrows.

the distance of Segue I. Their combined luminosity is about 340 L�. The line-of-sight
velocity dispersion σ of these stars is estimated to be 3.9 ± 0.8 km/s. The projected
half-light radius re of Segue I is given as 29 (-5/+8) pc.

1. Estimate the dynamical mass of Segue I. Use that KV ≡ rg/re ≈ 3 for many
self-gravitating stellar systems.

2. Given that the stellar population of Segue I consists of the order of 1000 old stars
with a total luminosity of 340 L�, make an estimate for the approximate total
mass of this stellar population. Is this consistent with the estimate of the mass
from the internal dynamics?, If not, can you give possible explanations for this
finding?
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