
  

An introduction to dwarf galaxies

Last time:

● Formation scenarios for dwarf elliptical (galaxy-
like) dwarf galaxies, i.e. all galaxies with 
extensions that place them above the “Gilmore 
Gap”, i.e. dEs of all kinds.

● Spatial distribution of dwarf galaxies (i.e. UCDs 
and dEs)

● Are disks of satellites around major galaxies 
constituted by dEs a common occurrence, and 
what are the implications?



  

Formation scenarios for dwarf 
elliptical galaxies

Dwarf elliptical galaxies may form as 
primordial galaxies in dark-matter 
halos of the appropriate size, most 
of which are bound to larger halos 
according to the    CDM-model.

Dwarf elliptical galaxies may form 
as tidal dwarf galaxies from the 
matter ejected through tidal forces 
acting on encountering galaxies.

The formation off such galaxies 
observed, and also predicted in the  
    CDM-model, but they would be 
without dark matter according to 
that model.

Via Lactea Project / J. Diemand

Wetzstein+ (2007)



  

Spatial distribution of dwarf galaxies
● The spatial distribution UCDs is largely the same as the one of 

GCs – consistent with the notion that they are very large GCs.

● Rotating disks of satellites around major galaxies constituted by 
dEs do exist and they are quite common. They are found by 
applying statistical methods. Looking at plots (or animated 
figures) usually does not suffice to detect or to exclude them. 

Andromeda Milky Way

Pawlowski+
(2015)Ibata+

(2013)



  

Implications of disks of satellites
The observed distribution of 
satellite galaxies is much more 
anisotropic than simulations of 
galaxy formation in the    CDM-
model imply for the distribution 
of primordial dwarf galaxies 
around their hosts – this implies 
that at least the galaxies that 
constitute the disks of satellites 
are tidal dwarfs instead of 
primordial, dark-matter 
dominated dwarfs.

This is a very serious challenge 
for the     CDM-model! (The 
“missing-satellite problem” 
reborn.)Pawlowski+ (2017)

Via Lactea Project / J. Diemand



  

Implications of disks of satellites

Tidal dwarf galaxies 
do not contain 
significant amounts 
of dark matter, even 
if their progenitors 
did.

If many, if not most 
or all dwarf elliptical 
galaxies are in fact 
of tidal origin, why 
do they have such 
high mass-to-light 
ratios? Dabringhausen+ (2016)

Luminosity



  

An introduction to dwarf galaxies

This time:
● How to estimate the mass of a galaxy, and 
what can be learned from such an 
estimate.

● The stellar populations of galaxies and 
their implications on their mass.



  

Mass estimates for galaxies

1. The dynamical mass – estimated from 
the observed motion of a suitable tracer 
population (usually stars or gas).

2. The mass of the visible matter – for 
many galaxies essentially the mass of the 
stellar population (including stellar 
remnants).



  

The dynamical mass

Spiral galaxies rotate, and random motions are very small 
compared to this ordered motion.

Their mass can be estimated by comparing the gravitational 
force with the centrifugal force. 

r

Spiral galaxies



  

The dynamical mass
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The dynamical mass
Elliptical galaxies

Estimating the dynamical mass of Spiral galaxies is 
pretty easy once their rotation has been measured – 
thus mainly an observational problem.

However, dwarf galaxies are usually elliptical, where 
most kinetic energy is in random motion instead of 
rotation.

How to deal with them? – Lets start with something 
rather simple: The continuity equation.



  

The continuity equation

The continuity equation for an n-dimensional volume without 
sinks or sources:



  

The continuity equation

Divergence Theorem:

The continuity equation for an n-dimensional volume without 
sinks or sources:



  

The continuity equation

Divergence Theorem:

The continuity equation for an n-dimensional volume without 
sinks or sources:

Since the volume is arbitrary:



  

The continuity equation

The continuity equation:

Since the volume is arbitrary:

Using the divergence theorem:

A different formulation:



  

The distribution function or
phase space density

fulfills the continuity equation:

The phase-space density of stars (or matter in general) is given 
by the distribution function:



  

The distribution function or
phase space density

fulfills the continuity equation:

Let’s have closer look at the last term:

= 0 because
independent
variables in
phase space

use the
definition 
of the
vector

since force is
independent
of velocity:

The collisionless Boltzmann equation



  

The collisionless Boltzmann 
equation (CBE)

The CBE is one of the central equations in galactic dynamics.

Using the definition of      in order to express the CBE in terms of 
actual positions and velocities:

The CBE is the total time derivative of the phase space density:

A very popular formulation:



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
integrate the CBE over all velocities and see where this gets us:

because the range of velocities over which is integrated does 
not change time. Note also:

Note that:

because      and      are independent variables in phase space.



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
integrate the CBE over all velocities and see where this gets us:

Divergence
theorem for

Note that:



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
integrate the CBE over all velocities and see where this gets us:

We define the velocity moment of a quantity as its integral over 
all velocities, normalized with the matter density. Thus for       :

Note that:

This is just the matter density in space.

This can be understood as the
average velocity in i-direction.



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
integrate the CBE over all velocities and see where this gets us:

With                            and                                     :

This is again a continuity equation. Next step will be to multiply 
the CBE with      and do the integration over all velocities then.

First Jeans Equation



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
multiply the CBE with      and then integrate over all velocities and 
see where this gets us:

Note that:

because the range of velocities over which is integrated does not 
change time. Note also:

because      and      are independent variables in phase space.



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
multiply the CBE with      and then integrate over all velocities and 
see where this gets us:

Note that using the product rule                                              :

This term is 0, 
as can be 
shown with the 
divergence
theorem

This term 
is the 
interesting 
one



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
multiply the CBE with      and then integrate over all velocities and 
see where this gets us:

Note that:

Divergence
theorem for



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
multiply the CBE with      and then integrate over all velocities and 
see where this gets us:

Note that:

The density



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
multiply the CBE with      and then integrate over all velocities and 
see where this gets us:

        can be splitted in a component due to ordered motion and a 
component due to random motion:

Second
Jeans Equation



  

The Jeans equations
The Jeans equations are velocity moments of the CBE. Thus, lets 
multiply the CBE with      and then integrate over all velocities and 
see where this gets us:

        can be splitted in a component due to ordered motion and a 
component due to random motion:

Third Jeans Equation

Second
Jeans Equation



  

The virial equations
Multiply the second Jeans equation with        and integrate over all 
positions:

Note that using the product rule                                              :

with the divergence theorem and since for                 :



  

The virial equations
Multiply the second Jeans equation with        and integrate over all 
positions:

Note that using the product rule                                              :

The last term is more interesting because it is not zero:



  

The virial equations
Multiply the second Jeans equation with        and integrate over all 
positions:

Thus, the second term is the kinetic energy tensor:

This tensor is symmetric:

The third term is the potential energy tensor:

This tensor, too, is symmetric, as we will see



  

The potential energy tensor

 
The gravitational potential is

    and     are 
independent 
variables 

Do the
differentiation

Rearrange



  

The potential energy tensor

    and     are 
interchangeable 
dummy variables 

Add the two terms with the interchanged dummy variables: 

Thus, this tensor is symmetric:



  

The virial equations
Multiply the second Jeans equation with        and integrate over all 
positions:

Using the definitions of the kinetic energy tensor and the 
potential energy tensor and their symmetry, it follows for the first 
term in the equation above:

Thus:

The integration 
range does not
depend on time 



  

The virial equations
Multiply the second Jeans equation with        and integrate over all 
positions:

The first term in the equation above is:

By choosing an arbitrary, but then fixed position, the partial time 
derivative can be replaced with the total one:



  

The virial equations
Thus, with all the definitions and calculations so far, the virial 
equation reads:

This can be rewritten by defining the moment of inertia tensor 
(again replacing the partial time derivative with the total one):

Recall the first Jeans equation (the continuity equation):



  

The virial equations
Thus, with all the definitions and calculations so far, the virial 
equation reads:

This can be rewritten by defining the moment of inertia tensor 
(again replacing the partial time derivative with the total one):

Once again the
product rule.



  

The virial equations
Thus, with all the definitions and calculations so far, the virial 
equation reads:

This can be rewritten by defining the moment of inertia tensor 
(again replacing the partial time derivative with the total one):

Once again the divergence 
theorem rule and              
for               .



  

The virial equations
Thus, with all the definitions and calculations so far, the virial 
equation reads:

This can be rewritten by defining the moment of inertia tensor 
(again replacing the partial time derivative with the total one):



  

The virial equations

Thus, substituting the result from the time-derivation of the 
moment of inertia tensor, the virial equation

can also be expressed as

If the system is stationary (i.e. matter may move, but the matter 
density does not change with time):



  

The virial equations

The trace of the virial tensor is particularly interesting.

i.e. the total potential energy.



  

The virial equations

The trace of the virial tensor is particularly interesting.

i.e. the total kinetic energy.

Thus, for a stationary system:



  

The virial equations

For a stationary system:                            or  

More specifically, with                                         :  

with       being the density-profile dependent gravitational radius



  

The dynamical mass

The dynamical mass is given through:

where     is the distance to the center      and the circular velocity.

Special cases:

Spiral galaxies:

Elliptical galaxies:

where      is the projected half-mass radius,      is the line-of-sight 
velocity dispersion and        is a factor roughly between 1 and 10 
which depends on the density profile.

      



  

The mass of the baryonic matter

For many (especially elliptical) galaxies, the mass of their 
baryonic matter is essentially the mass of their stellar 
population, including stellar remnants.

Thus, knowing the composition of the stellar population 
(mass spectrum, age spectrum, metallicity spectrum) would 
be sufficient to estimate the mass of the galaxy.

Stellar isochrones – 
same metallicity, 

different ages

Stellar isochrones – 
same ages, different 

metallicities Bertelli+ (2008)VandenBerg+ (2014)

surface temperature surface temperature
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The mass of the baryonic matter
Knowing the composition of the stellar population (mass 
spectrum, age spectrum, metallicity spectrum) would be sufficient 
to estimate the mass of the galaxy.

Stars form in star clusters. Thus, the mass spectrum of stars in 
a galaxy is the combined mass spectrum of the stars in all its star 
clusters.

 ESA/Hubble & NASA; Judy Schmidt

NASA, ESA and 
A. Nota

 ESO



  

The mass of the baryonic matter
Knowing the composition of the stellar population (mass 
spectrum, age spectrum, metallicity spectrum) would be sufficient 
to estimate the mass of the galaxy.

Stars form in star clusters. Thus, the mass spectrum of stars in 
a galaxy is the combined mass spectrum of the stars in all its star 
clusters.

NASA, ESA and 
A. Nota

 ESO

The mass spectrum 
of forming stars was 
long found to be 
remarkably invariant 
in star clusters.

It is quantified with 
the canonical
stellar initial mass 
function (IMF)



  

The mass of UCDs
The canonical IMF is the standard assumption when 
estimating the stellar mass of a star cluster or a galaxy 
based on their photometry and / or spectroscopy and 
comparing it to its dynamical mass.

How does this work for UCDs?



  

The mass of UCDs
The canonical IMF is the standard assumption when 
estimating the stellar mass of a star cluster or a galaxy based 
on their photometry and / or spectroscopy and comparing it to 
its dynamical mass.

The dynamical 
mass-to-light ratios 
of UCDs are 
inconsistent with the 
mass-to-light ratios 
implied by any 
realistic stellar 
population, as long 
as the canonical 
IMF is assumed.

Dabringhausen+ (2009)



  

Explanations for the masses of UCDs
A top-heavy IMF – in old stellar 
populations, massive stars have 
turned into neutron stars (NSs) that 
add nothing to the luminosity. M/L-
ratios and NS-frequencies may agree. 
(Dabringhausen+ 2009, 2012)

A bottom-heavy IMF – low-mass 
stars have high mass-to-light ratios. 
A search of spectral features 
characteristic for low-mass stars 
were inconclusive so far (Mieske & 
Kroupa 2008)



  

Explanations for the masses of UCDs

Non-baryonic dark matter (DM) – 
UCDs have been speculated to be 
small, primordial galaxies in DM 
halos, but DM-halos are not compact 
enough  to have an impact on 
dynamics inside UCDs  (Murray 2009)

Super-massive black holes – would 
be expected if UCDs are remants of 
larger galaxies, and the best 
explanation for the UCDs with the 
most extreme M/L-ratios (Mieske+ 
2013, Seth+ 2014, Janz+ 2015)

Seth+ 2014

Via Lactea Project / J. Diemand



  

The mass of elliptical galaxies
The canonical IMF is the standard assumption when estimating 
the stellar mass of a star cluster or a galaxy based on their 
photometry and / or spectroscopy and comparing it to its 
dynamical mass.

This does not work well for elliptical galaxies, dwarf or giant.

Luminosity (Solar units) Luminosity (Solar units)

Dabringhausen+ 2016



  

Explanations for the masses of dEs
Non-baryonic dark 
matter – according to the 
    CDM-model, galaxies 
form in DM-haloes, which 
would explain the high 
M/L-ratios (e.g. Mateo 
1998, Strigari+ 2008)

Tidal fields – non-
equilibrium dynamics 
leads to higher velocity 
dispersions, which seem 
like high M/L-ratios if 
systems are assumed in 
equilibrium (e.g. Kroupa 
1997, Dominguez+ 2016)

Via Lactea Project /
J. Diemand

Wetzstein+
(2007)

Kroupa+ (2010)

Dabringhausen+
(2016)



  

Explanations for the masses of dEs
Unidentified binaries – they increase the observed velocity 
dispersion, but their contribution is not linked to the potential, 
and thus the mass of a galaxy. Doesn’t play a big role in 
practize. (McConnachie+ 2010, Dabringhausen+ 2016). 

Modified gravitational dynamics – Modified Newtonian 
Dynamics (MOND, Milgrom 1983) increases the gravitational 
forces in the limit of very small space-time curvature. Nicely 
explains the dynamics of spiral galaxies, but insufficient for 
dEs (Dabringhausen+ 2016).

Non-canonical IMF – Are 
there (early-type) galaxies, 
whose M/L-ratios could be 
explained with a variation 
of the IMF?



  

Variation of the IMF
1. A variation of the upper mass limit 

The mass of the most massive star in a star cluster depends on 
the total mass of the star cluster where it formed.

Weidner+ 2010
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Variation of the IMF
1. A variation of the upper mass limit 

The mass of the most massive star in a star cluster depends on 
the total mass of the star cluster where it formed.

Star formation in
the Orion Nebula
(Megeath+ 2012)
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Variation of the IMF
2. A variation of the high-mass IMF slope 

The mass-to-light ratios and the number of neutron star 
detections suggest consistently that massive star clusters (i.e. 
UCDs) have over-proportionally many massive stars.
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Dabringhausen+ (2012)



  

The galaxy-wide stellar initial mass 
function (IGIMF)

The IMF depends on 
star-cluster mass.

The star formation rate of a 
galaxy determines the mass of 
the most massive star cluster.

high SFR

low SFR

the IGIMF

the IMF

the star cluster
mass function



  

The galaxy-wide stellar initial mass 
function (IGIMF)

Luminosity  [ Solar units ] Luminosity  [ Solar units ]



  

With the canonical IMF, the accelerations inferred from the 
internal dynamics of early-type galaxies are systematically 
higher than the ones predicted from the mass of their stars.

The mass of elliptical galaxies



  

The mass of elliptical galaxies

By considering the effect of the IGIMF, the masses of the more 
massive early-type galaxies can easily be explained with stellar 
remnants. Are tidal fields bringing the low-mass galaxies out of 
equilibrium?

Tidal dwarfs?
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