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ABSTRACT

Radiation-induced torques on ellipsoids of revolution are discussed. Exact formulae for the thermal YORP torques are given in terms
of elliptic integrals. It is demonstrated that in the absence of thermal inertia, the average values of dynamically significant projections
of these torques are zero if a spheroid rotates around the axis of maximum inertia and if there are no resonances between rotation
and orbital motion. The thermal lag leads to a systematic drift in the obliquity, but it does not affect the rotation period. The direct
radiation pressure torques on spheroids are shown to be zero.
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1. Introduction

Radiation forces and torques on small bodies in the Solar System
have attracted considerable attention during the past decade or
so (e.g. Bottke et al. 2002, 2006). This is because, unlike grav-
itational perturbations, these effects can in the long-term per-
manently increase or decrease orbital and/or rotational energy.
As a result, the orbital semimajor axis is also secularly changed
and the body may migrate from one heliocentric zone to an-
other. Similarly, rotation rate and obliquity of the spin axis could
be permanently changed such that a normal rotator may be
moved to the category of fast or slow, or even tumbling, rotators.
Radiation forces and torques have been thus identified to drive
the most important transport processes for small bodies in the
Solar System. As an example, radiation torques are (i) a key el-
ement in explaining peculiar distribution of the rotation rate and
the pole orientation of large-size asteroids in the Koronis family
(e.g. Slivan 2002; Slivan et al. 2003; Vokrouhlický et al. 2003);
(ii) assist depletion of the main asteroid belt to the planet cross-
ing zone (e.g. Morbidelli & Vokrouhlický 2003); (iii) produce
uneven distribution of small asteroids in the asteroid families
(e.g. Vokrouhlický et al. 2006a,b,c); (iv) may be a viable mecha-
nism of binary asteroid formation (e.g. Pravec & Harris 2007) or
tumbling asteroids (e.g. Pravec et al. 2005; Vokrouhlický et al.
2007). The effects of radiation torques have been also directly
measured (Lowry et al. 2007; Taylor et al. 2007; Kaasalainen
et al. 2007) and many more detections are likely to result from
large projects equipped with a stable photometry system such as
Pan-STARRS (e.g. Ďurech et al. 2007).

The effects of radiation forces in thermal infrared, dubbed
the Yarkovsky effect, have been thoroughly investigated by
analytical methods (e.g. Rubincam 1995, 1998; Vokrouhlický
1998a, 1999), semi-analytical methods (e.g. Vokrouhlický &
Farinella 1999) and using a numerical approach (e.g. Čapek
& Vokrouhlický 2005). In contrast, the effects of radiation

torques, in both optical and infrared wavebands, commonly
called the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) ef-
fect (Rubincam 2000), have been analysed so far mainly by
numerical means (e.g. Rubincam 2000; Vokrouhlický & Čapek
2002; Čapek & Vokrouhlický 2004; Vokrouhlický et al. 2007).
Scheeres (2007) developed a semi-analytical method which nu-
merically precomputes coefficients of the YORP torque Fourier
representation and then uses a linearized theory for rotation rate
and pole orientation. So far no analytical analysis of the YORP
effect has been developed. Several important YORP results ac-
quired numerically to date thus are not well understood (e.g.,
why YORP ceases in the long term to act on bodies with ∼55◦
and ∼125◦ obliquity; what is the fundamental shape parameter
that makes YORP operational; why YORP does not seem to af-
fect bodies that have ellipsoidal shape, etc.).

In this paper, we attempt an analytical modeling of YORP.
We consider YORP torques acting on ellipsoids of revolution
(spheroids; Vokrouhlický (1998b) developed an analogous the-
ory for the Yarkovsky force). Our goal is to analytically prove
that YORP does not secularly change either rotation rate or
obliquity.

Unlike the Yarkovsky effect, the radiation torques may op-
erate even for a zero thermal inertia Γ of the surface (e.g.
Rubincam 2000; Vokrouhlický & Čapek 2002). Hereafter we as-
sume that the surface has Γ = 0, however we shall argue that our
conclusions will be the same even in the Γ � 0 case. The radia-
tion torques are generally due to both (i) the incoming sunlight
and its surface reflection in the optical band, and (ii) the proper
thermal radiation of the surface. The notion of YORP has been
used vaguely in the past years, since some works assumed YORP
was just the torque due to the thermal radiation of the surface,
while others included also the torque due to surface scattered
sunlight in the optical band.

After a brief discussion of three radiation-related effects in
Sect. 2, we proceed with the major thermal component (Sect. 3;
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note the albedo of Solar System bodies is typically low so that
most of the sunlight is absorbed), while in Sect. 4 we deal with
the torques due to absorbed sunlight and its component scattered
by the surface in the optical band.

2. Radiation-induced torques

The radiation flux reaching an infinitesimal surface element of
a celestial body leads to three kinds of force d f that may influ-
ence the body rotation: direct radiation pressure, thermal radia-
tion force, and scattered radiation force. In all cases the result-
ing torque T is obtained after integration over the whole body
surface

T =
∫

r × d f , (1)

where the radius vector r points to the surface element respon-
sible for d f . In this paper we will consider torques T expressed
in the “body frame” – a right-handed Cartesian system with the
origin O at the centre of mass of the illuminated body and the
axes aligned with the principal axes of inertia. The Ox axis (and
its unit vector ex) will be aligned with the minimum inertia axis,
whereas Oz and ez will lie on the maximum inertia axis.

2.1. Direct radiation pressure

When photons hit an infinitesimal surface element dS , their
momentum is transferred resulting in a force

d f = −Φ
vc

max

(
0,

dS
||dS|| · n�

)
n� dS , (2)

where Φ is the radiation flux at a given distance from the Sun,
vc is the speed of light, and n� is the unit vector directed to the
Sun. The vector dS has a length equal to the area of the surface
element dS , and the direction of the local outward normal vec-
tor n, i.e. dS = ndS . Thus the maximum function in Eq. (2) cuts
off this part of the body, where the Sun is below the horizon, and
dS · n� = 0, or n · n� = 0 is the implicit equation of termina-
tor line. The unit vector directed to the Sun has the components
in the body frame that will be either denoted as x�, y�, z�, or
expressed in terms of the polar variables: longitude λ� and the
sine/cosine of latitude s�, c�

n� =

⎛⎜⎜⎜⎜⎜⎜⎝ x�
y�
z�

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ c� cos λ�

c� sin λ�
s�

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

2.2. Radiation scattered in the optical band

Part of the incoming radiation – characterized by the “albedo
coefficient” – is directly scattered by the surface in the optical
waveband. In principle, this radiation component can also pro-
duce a net torque on the body. In what follows we give its brief
description.

The interaction of sunlight with planetary surfaces is compli-
cated, but well-studied. Let µ� stand for a cosine of zenith angle
measured from the local normal vector n, i.e. µ� = n · n�); the
radiation (specific) intensity I of the reflected sunlight at a local
direction nr (with µr a cosine of zenith angle measured from the
local normal vector n, i.e. µr = n · nr) is given by

I(nr; n�) = I(µr, µ�; nr · n�) = Φ ρ(µr, µ�; nr · n�). (4)

Here Φ is the intensity (flux) of the incident solar radiation as
above and ρ(µr, µ�; nr · n�) is the reflectance (scattering) func-
tion. The classical formulations of ρ by Hapke and Lumme-
Bowell are reviewed, for instance, by Bowell et al. (1989).

First, we note that the energy flux absorbed and conducted
to the body through a surface element dS is given by

E = Φµ� [
1 − AH (µ�)

]
, (5)

where

AH (µ�) =
1
Φµ�

[∫
Ω+

dΩr nr I(µr, µ�; nr · n�)

]
· dS (6)

is the hemispheric albedo (e.g. Irvine 1975; Bowell et al. 1989).
The integration domain Ω+ denotes a half space above the sur-
face element, such that if we use a spherical angle parametriza-
tion of nr

nr =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√

1 − µ2
r cosφr√

1 − µ2
r sinφr
µr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (7)

we have:
∫
Ω+

dΩr =
∫ 1

0
dµr

∫ 2π

0
dφr. In general, the hemispheric

albedo (6) is a function of the zenith angle µ� of the incident
solar radiation. Only in very special and simple cases, where
diffuse reflection obeys Lambert law

I(µr , µ�; nr · n�) = AΦ
µ�
π
, (8)

we do have AH = A = const.
The infinitesimal radiation recoil force due to the scattered

radiation in the optical band is given by (e.g. Mihalas 1978)

d f = − 1
vc

[∫
Ω+

dΩr nr nr I(µr, µ�; nr · n�)

]
· dS, (9)

that leads to the general form

d f =
[
a1 (n · n�) + a2 (n · n�)2 + . . .

]
dS (10)

+
[
b1 (n · n�) + b2 (n · n�)2 + . . .

]
n� dS .

Here (a1, a2, . . . ; b1, b2, . . .) are some coefficients that depend on
the scattering function ρ. In the special case of Lambert diffu-
sion (8) we have

a1 = −2
3
ΦA
vc
, (11)

while all other coefficients are zero. For the combination of dif-
fuse and specular reflection we have (a1, a2) nonzero (e.g. Milani
et al. 1987), while for more realistic scattering laws all a- and b-
coefficients are nonzero.

2.3. Thermal radiation

Part of the incident sunlight is absorbed and later re-emitted in
the infrared waveband. Assuming that thermal emission of the
body has the characteristics of blackbody radiation with isotropy
in all directions (see, however, discussion in Lagerros 1998), we
have

IThermal(nr) =
σT 4

π
, (12)
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which gives a thermal recoil force

d f = −2
3
σT 4

vc
dS. (13)

Here σ is the Stefan-Boltzmann constant and T is the temper-
ature of the surface element dS . To obtain T , one must solve
the heat diffusion in the body, a sufficiently complicated prob-
lem such that we restrict ourselves in this work to the zero-
conductivity limit where σT 4 = E = Φµ� [

1 − AH (µ�)
]
. If

moreover AH ∼ A = const., we have

d f = −2
3

(1 − A)Φ
vc

(n · n�) dS, (14)

(compare with Bottke et al. 2002, 2006), and this approximation
will be used in the following discussion. This force, substituted
into Eq. (1), leads to the YORP torque understood as the thermal
radiation effect. The recoil force due to the reflected sunlight
in the optical band has the same functional structure as in the
thermal band – Eq. (14) – such that their composite effect is
obtained by replacing (1 − A)→ 1.

3. Zero conductivity limit of thermal torques
for spheroids

Using the assumptions presented in Sect. 2.3, we consider the
YORP torque

T = −2
3

(1 − A)Φ
vc

∫
max

(
0,

dS
||dS|| · n�

)
r × dS, (15)

where the integral is taken over the surface of an ellipsoid of rev-
olution. Later we will also assume the rotation about the maxi-
mum inertia axis, and for this reason we distinguish two cases:
oblate spheroids with a = b > c, and prolate spheroids with
a > b = c. In both cases the semi-axes a and b lie in the
Oxy plane.

3.1. Oblate spheroid

3.1.1. Exact solution

Let the body be an ellipsoid of revolution with the semi-axes
c < b = a. In terms of the longitude λ and parametric latitude ϕ,
the ellipsoid surface is defined as

r = a

⎛⎜⎜⎜⎜⎜⎜⎝
ν cosλ
ν sin λ
η µ

⎞⎟⎟⎟⎟⎟⎟⎠ , (16)

where

µ = sinϕ, ν =
√

1 − µ2 = cosϕ, (17)

and

η =
√

1 − e2, e =

√
1 −

( c
a

)2
. (18)

The oriented surface element vector for the ellipsoid is

dS =
(
∂r
∂λ
× ∂r
∂µ

)
dλ dµ = a2

⎛⎜⎜⎜⎜⎜⎜⎝ η ν cosλ
η ν sin λ
µ

⎞⎟⎟⎟⎟⎟⎟⎠ dλ dµ, (19)

and its length is given by

|| dS
dλdµ

|| = a2
√
η2 + e2 µ2, (20)

so the unit normal vector is

n =
dS
||dS|| =

1√
η2 + e2 µ2

⎛⎜⎜⎜⎜⎜⎜⎝
η ν cos λ
η ν sin λ
µ

⎞⎟⎟⎟⎟⎟⎟⎠ . (21)

The cross product in Eq. (15) for the ellipsoid has the explicit
form

r × dS = a3 e2 µ ν

⎛⎜⎜⎜⎜⎜⎜⎝
sin λ
− cosλ

0

⎞⎟⎟⎟⎟⎟⎟⎠ dλ dµ, (22)

and we can already state an important conclusion: the z-
component of the YORP torque Tz = T · ez for the ellipsoid (16)
is 0.

Substituting Eq. (22) into the general formula (15), we have

To = α e2

1∫
−1

2π∫
0

max (0, n · n�) µ ν

⎛⎜⎜⎜⎜⎜⎜⎝
− sin λ

cos λ
0

⎞⎟⎟⎟⎟⎟⎟⎠ dλ dµ, (23)

where

α =
2
3

(1 − A)Φ a3

vc
=

2
3

(1 − A)Φ0 a3

vc

R2
0

R2�
, (24)

and Φ0 is the energy flux at the nominal distance R0 = 1 AU,
known as the solar constant, whereas R� is the actual distance
from the Sun.

Now, in order to evaluate the integral (23) over the illumi-
nated surface, we have to establish the integration limits defined
by the terminator equation n · n� = 0. For the ellipsoid

n · n� = s� µ + c� η ν cos (λ − λ�)√
η2 + e2 µ2

, (25)

and the terminator extends in parametric latitude from µ1 to µ2,
defined as

µ1 = − c�η√
1 − c2� e2

≤ 0, µ2 = −µ1 ≥ 0. (26)

Hence the integral over longitude in Eq. (23) should be taken
in the limits 0 ≤ λ ≤ 2π for the “polar day” zone, whereas on
partially illuminated latitudes the integration limits are

λ1,2 = λ� ± arccos

(
− s� µ
η c� ν

)
, (27)

with the minus sign for λ1 and plus for λ2. Thus the total YORP
torque becomes the sum To = T1 + T2, where

T1 = α e2

1∫
µ2

2π∫
0

(n · n�) µ ν

⎛⎜⎜⎜⎜⎜⎜⎝ − sin λ
cos λ
0

⎞⎟⎟⎟⎟⎟⎟⎠ dλ dµ, (28)

and

T2 = α e2

µ2∫
µ1

λ2∫
λ1

(n · n�) µ ν

⎛⎜⎜⎜⎜⎜⎜⎝
− sin λ

cos λ
0

⎞⎟⎟⎟⎟⎟⎟⎠ dλ dµ. (29)
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Thanks to symmetry, the above expressions hold true regardless
of the position of the Sun (i.e. of the sign of s�).

The integration of T1 is elementary. First we integrate with
respect to λ obtaining

T1 = α e2 η π

⎛⎜⎜⎜⎜⎜⎜⎝
−y�

x�
0

⎞⎟⎟⎟⎟⎟⎟⎠
1∫
µ2

µ (1 − µ2)√
η2 + e2 µ2

dµ, (30)

and then perform the integration with respect to µ, rendering

T1 =
2 η π α

3 e2

[
1 +
η (η2 − 3(1 − c2� e2))

2 (1 − c2� e2)3/2

] ⎛⎜⎜⎜⎜⎜⎜⎝ −y�x�
0

⎞⎟⎟⎟⎟⎟⎟⎠ . (31)

The second part of T is more cumbersome. The integration with
respect to λ is relatively straightforward and leads to

T2 = αW2

⎛⎜⎜⎜⎜⎜⎜⎝ −y�x�
0

⎞⎟⎟⎟⎟⎟⎟⎠ , (32)

where

W2 =
e2

c�

µ2∫
µ1

µ
√

1 − µ2√
η2 − µ2 e2

⎡⎢⎢⎢⎢⎢⎢⎢⎣s�µ

√
1 − s2�µ2

c2�η2(1 − µ2)

+c�η
√

1 − µ2 arccos

⎛⎜⎜⎜⎜⎜⎝− s�µ

c�η
√

1 − µ2

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ dµ. (33)

Let us take the argument of the arccos function as a new integra-
tion variable:

ξ =
σµ

η
√

1 − µ2
, (34)

where

σ =
s�
c�
· (35)

Then we have

dµ =
ησ2

(σ2 + η2ξ2)3/2
dξ, (36)

with ξ(µ1) = −1, ξ(µ2) = 1. The quadrature W2 becomes

W2 = −e2 η2 σ4

1∫
−1

ξ
[
ξ

√
1 − ξ2 + arccos (−ξ)

]
√
σ2 + ξ2

(
σ2 + η2ξ2

)5/2
dξ, (37)

and we can use integration by parts, with the expression in the
square bracket as one of factors. The result

W2 =
η2π
√

1 + σ2
(
2 η2 − η2σ2 + 3σ2

)
3e2

(
η2 + σ2

)3/2

+
2 η2

3 e2

1∫
−1

√
1 − ξ2 √

ξ2 + σ2
(
η2σ2 − 3σ2 − 2η2ξ2

)
(
η2ξ2 + σ2

)3/2
dξ, (38)

is significantly better than (37). The remaining integrand is a
purely algebraic, even function of ξ, so we can perform another
change of variables, using

t = ξ2, (39)

that turns W2 into

W2 =
η2π
√

1 + σ2
(
2 η2 − η2σ2 + 3σ2

)
3e2

(
η2 + σ2

)3/2
− 2 η2

3 e2
W3, (40)

where

W3 =

1∫
0

√
1 − t

√
t + σ2

(
(3 − η2)σ2 + 2η2t

)
√

t
(
η2t + σ2

)3/2
dt

=
(2 + e2)σ2

η3

1∫
0

√
(1 − t) (t + σ2)√
t
(
t + σ2η−2

)3/2
dt

+
2
η

1∫
0

√
t (1 − t) (t + σ2)(
t + σ2η−2

)3/2
dt. (41)

Both quadratures can be identified in the elliptic integral tables
of Byrd & Friedman (1971) and so, collecting all intermediate
results, we obtain the final form of the YORP torque for an oblate
spheroid

To = α s�Wo

⎛⎜⎜⎜⎜⎜⎜⎝
−y�

x�
0

⎞⎟⎟⎟⎟⎟⎟⎠ = αWo (ez · n�) (ez × n�), (42)

with

Wo =
4
3

1 − e2

e2 c2�

[
E(e c�) − (1 + c2

�) K(e c�) + c2
� Π(e2, e c�)

]
, (43)

expressed in terms of complete elliptic integrals of the first (K),
second (E) and third kind (Π)

K(k) =

1∫
0

dt√
(1 − t2) (1 − k2 t2)

, (44)

E(k) =

1∫
0

√
1 − k2 t2

√
1 − t2

dt, (45)

Π(n, k) =

1∫
0

dt

(1 − n t2)
√

(1 − t2) (1 − k2 t2)
· (46)

We emphasize that Tz = 0, and T 2
x +T 2

y does not depend on solar
longitude λ�.

3.1.2. Series approximation

Considering the eccentricity of spheroid as a small parameter,
we can expand the elliptic integrals in To using the standard
power series expressions (Byrd & Friedman 1971)

K(k) =
π

2

∑
j≥0

(
(2 j − 1)!!

(2 j)!!

)2

k2 j, (47)

E(k) =
π

2

∑
j≥0

(
(2 j − 1)!!

(2 j)!!

)2 k2 j

2 j − 1
, (48)

Π(n, k) =
π

2

∑
j≥0

j∑
q=0

(2 j)! (2q)! k2q n j−q

4 j 4q ( j!)2 (q!)2
· (49)
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Then Wo becomes a sum

Wo =
π

4

∑
j≥1

wje
2 j, (50)

where the first three terms are

w1 = 1, (51)

w2 =
1

12

(
3 − 5s2

�
)
, (52)

w3 =
5

384

(
9 − 38s2

� + 21s4
�
)
, (53)

and, generally, each w j is a j − 1 degree polynomial of s2�.

3.2. Prolate spheroid

3.2.1. Exact solution

Consider now the case of a prolate spheroid with semi-axes c =
b < a. A closed form expression for the YORP torque in this case
can also be obtained; however, instead of repeating the tedious
path from the previous section, we can start with Eq. (42) and
use some elementary transformations. Two basic steps consist of
first stretching out the shortest axis of the oblate spheroid, and
then swapping the coordinate axes to maintain the convention
of Ox aligned with the minimum inertia axis.

Stretching out the spheroid, i.e. making c > a, can be easily
achieved by using an imaginary eccentricity, such that for some
positive, real ε

e = i ε, e2 = −ε2, (54)

and so

c = a
√

1 − e2 = a
√

1 + ε2 ≥ a. (55)

Elliptic integrals in Eq. (42) can be transformed using the clas-
sical formulae for the imaginary modulus (Byrd & Friedman
1971)

K(ik) =
1√

1 + k2
K(k1), (56)

E(ik) =
√

1 + k2 E(k1), (57)

Π(n, ik) =
1

(n + k2)
√

1 + k2

[
k2 K(k1) + nΠ(n1, k1)

]
, (58)

k1 =
k√

1 + k2
, (59)

n1 =
n + k2

1 + k2
· (60)

The negative parameter of Π can be reduced using

Π(−n, k) =
k2

n + k2
K(k) +

n (1 − k2)
(n + 1) (n + k2)

×Π
(
(n + k2)(n + 1)−1, k

)
. (61)

So, if the new, stretched ellipsoid has the semi-axes a′, b′, c′
such that

a′ = a
√

1 + ε2,

b′ = b, (62)

c′ = a,

its new eccentricity e′ can be determined from c′ = a′
√

1 − e′2
and thus

a
√

1 + ε2
√

1 − e′2 = a,

leads to

e′ =
ε√

1 + ε2
, ε =

e′√
1 − e′2

· (63)

Concluding the first step, we obtain the YORP torque for the
spheroid with semi-axes a′ (aligned with Oz), and b′ = c′
(aligned with Oy and Ox) in the form

Tp = W

⎛⎜⎜⎜⎜⎜⎜⎝−y�x�
0

⎞⎟⎟⎟⎟⎟⎟⎠ , (64)

W =
8
9

(1 − A)Φ a′3

vc

1 − e′2

e′2
s�

c2�
√

1 − e′2s2�

×
[
(1 − e′2) (1 + c2

�) K(k3)

−(1 − e′2s2
�)E(k3) − c2

�(1 − e′2)2Π
(
e′2, k3

)]
. (65)

k3 =
e′c�√

1 − e′2s2�
· (66)

The second step consists of swapping the coordinate axes. A
right-handed system with Ox′ aligned with a′ is obtained if

x′ = z, y′ = −y, z′ = x. (67)

This means that instead of (64) we will have

Tp = W

⎛⎜⎜⎜⎜⎜⎜⎝ 0
−x�
y�

⎞⎟⎟⎟⎟⎟⎟⎠ , (68)

with the zero component along the symmetry axis, similarly to
the oblate case. But changing the axes also affects the coordi-
nates of the Sun:

x′� = z�, y′� = −y�, z′� = x�, (69)

so that

c� cos λ� = s′�,
c� sin λ� = −c′� sin λ′�, (70)

s� = c′� cos λ′�.

Hence

Tp = W

⎛⎜⎜⎜⎜⎜⎜⎝
0
−z′�
y′�

⎞⎟⎟⎟⎟⎟⎟⎠ , (71)

and

W =
8
9

(1 − A)Φ a′3

vc

1 − e′2

e′2

× c′� cosλ′�(
1 − (c′� cosλ′�)2

) √
1 − (e′c′� cosλ′�)2

×
[
(1 − e′2)

(
2 − (c′� cos λ′�)2

)
K(kp)

−
(
1 − (e′ c′� cos λ′�)2

)
E(kp)

−
(
1 − (c′� cos λ′�)2

)
(1 − e′2)2Π

(
e′2, kp

)]
, (72)

kp = e′
√

1 − (c′� cos λ′�)2

1 − (e′ c′� cosλ′�)2
· (73)
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Thus we have achieved the transformation, so we can drop the
“prime” symbols and, using the basic definitions (3, 18, 24) in
the Oxyz system aligned with the a, b, c semi-axes respectively,
the final YORP torques formula becomes

Tp = α x�Wp

⎛⎜⎜⎜⎜⎜⎜⎝
0
z�
−y�

⎞⎟⎟⎟⎟⎟⎟⎠ = −αWp (ex · n�) (ex × n�), (74)

Wp =
4
3

η2

e2 (1 − x2�)
√

1 − e2 x2�

[
η2(x2

� − 2)K(kp)

+ (1 − e2 x2
�)E(kp) + (1 − x2

�) η4Π(e2, kp)
]
, (75)

kp = e

√
1 − x2�

1 − e2 x2�
· (76)

We recall that e =
√

1 − (c/a)2 as usually.

3.2.2. Series approximation

Using the series expansion of elliptic integrals together with
binomial expansion formulae, we can approximate Tp using

Wp =
π

4

∑
j≥1

vje
2 j, (77)

with the leading terms

v1 = 1, (78)

v2 =
1

12

(
9 − 5x2

�
)
, (79)

v3 =
1

384

(
−51 − 110x2

� + 105x4
�
)
. (80)

Each v j term is a j − 1 degree polynomial of x2�.

3.3. Significant components

Suppose that the spheroidal body moves on a heliocentric or-
bit and it rotates around the axis of maximum inertia. Two dy-
namically significant components of the YORP torque are Ts,
responsible for the variations in the rotation rate, and T⊥ af-
fecting the obliquity of the spin axis with respect to the orbit.
The two components are defined in terms of the scalar products
(e.g. Rubincam 2000; Vokrouhlický & Čapek 2002; Čapek &
Vokrouhlický 2004)

Ts = T · s, T⊥ =
cos ε Ts − T · no

sin ε
, (81)

where s is the unit vector directed along the spin vector, no is
the unit vector normal to the orbital plane, and ε is the obliquity
angle between no and s.

Vector s expressed in the body frame is simply s = (0, 0, 1)T.
The same simplicity is attained by no expressed in the orbital
frame, but we have to transform it to the body frame in or-
der to evaluate the scalar product with T. This transformation
is achieved by two rotations (Fig. 1)

no = R3(−Ω) R1(−ε)
⎛⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝

sin ε sinΩ
− sin ε cosΩ

cos ε

⎞⎟⎟⎟⎟⎟⎟⎠ , (82)

where Ω is the longitude of the ascending node of the orbit on
the plane normal to the spin axis.

Fig. 1. A spheroid (prolate), the Sun, and the 3-1-3 Euler angles.

We will also need the expressions of the solar position in
terms of Ω, ε, and the argument of latitude ϑ. This is achieved
by the sequence of 3-1-3 rotations (Fig. 1)⎛⎜⎜⎜⎜⎜⎜⎝

x�
y�
z�

⎞⎟⎟⎟⎟⎟⎟⎠ = R3(−Ω) R1(−ε) R3(−ϑ)

⎛⎜⎜⎜⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , (83)

leading to the standard formulae⎛⎜⎜⎜⎜⎜⎜⎝
x�
y�
z�

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝

cosϑ cosΩ − cos ε sinϑ sinΩ
cosϑ sinΩ + cos ε sinϑ cosΩ

sin ε sinϑ

⎞⎟⎟⎟⎟⎟⎟⎠ . (84)

If we assume Keplerian orbit of the Sun and the rotation around
the axis of maximum inertia (spin vector aligned with ez), then
the obliquity angle ε is constant, the longitude of the ascending
nodeΩ reflects the “daily” rotation of the body and the argument
of latitude ϑ varies on a “yearly” scale due to the orbital motion.

3.3.1. Oblate spheroid

For the oblate spheroid, where the torque is given by Eq. (42),
we conclude that

Ts = 0, (85)

hence there is no YORP effect on the rotation rate. The evalua-
tion of T⊥ requires some simple manipulations with trigonomet-
ric functions, rendering

T⊥ =
α

2
Wo sin ε sin 2ϑ, (86)

where we substitute

c� =
√

1 − sin2 ε sin2 ϑ (87)

inside Wo.
As one could expect from the rotational symmetry, there is

no dependence onΩ. This means that Eq. (86) is also the average
of T⊥ over the revolution period, provided the body rotates fast
enough to assume a constant ϑ during one revolution. But the
values of T⊥ will vary with time because of the orbital motion.
The true anomaly of the Sun is present not only in ϑ = f + ω,
the sum of the true anomaly and of the argument of perihelion,
but also in the coefficient α that depends on the distance R�( f ).
Nevertheless, the average of T⊥ over one orbital period becomes
zero. This can be easily demonstrated if we use the change of
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variables from mean anomaly to the true anomaly in the quadra-
ture defining the mean value

〈T⊥〉 = 1
2π

∫ π

−π
T⊥

R2�( f )

a2�
√

1 − e2�
d f , (88)

involving the semi-major axis a� and the eccentricity e� of the
orbit (e� < 1). Recalling the definition (24), we observe that
R�( f ) in α and in the variable change factor cancel out, so the
integrand depends on f only through ϑ; thus we can directly
replace d f in Eq. (88) by dϑ. But then we note that according to
Eq. (86), the integrand in Eq. (88) is an odd function of ϑ, which
is a sufficient condition to claim

〈T⊥〉 = 0. (89)

3.3.2. Prolate spheroid

Considering the torque (74) on a prolate spheroid, we assume
that it also rotates around the axis of maximum inertia (the Oz
axis, which is no longer the axis of rotational symmetry). This
time, using the torque (74), we find that Ts is not zero in general,
because

Ts = −αWp x� y� (90)

is an asymmetric, periodic function of Ω, f , and ϑ. In these cir-
cumstances, we resort to the series approximation of Wp pre-
sented in Sect. 3.2.2. Recalling that Wp is a sum of polynomials
in x2�, we note that x� y� will be multiplied either by a constant
term or by some power of

x2
� =

1
4

[
1 + cos2 ε + sin2 ε (cos 2ϑ + cos 2Ω)

+
(1 − cos ε)2

2
cos 2(ϑ −Ω)

+
(1 + cos ε)2

2
cos 2(ϑ + Ω)

]
, (91)

involving only the cosines of ϑ andΩ. But the term x�y� consists
only of the sines of these angles

x� y� =
1
4

sin2 ε sin 2Ω − (1 − cos ε)2

8
sin 2(ϑ −Ω)

+
(1 + cos ε)2

8
sin 2(ϑ + Ω), (92)

and this means that no term independent of Ω can occur if we
reduce x2 j+1

� y� to the form of a trigonometric polynomial. Such
a polynomial will consist of sine terms with arguments 2 j1Ω +
2 j2ϑ, where j2 is any integer, but j1 is a nonzero integer. Thus,
the average of Ts over one revolution period becomes zero. Of
course, this means that the second averaging, over the orbital
period, also results in

〈Ts〉 = 0, (93)

and there is no secular variation in the rotation period of a prolate
ellipsoid.

The second component for the prolate ellipsoid is equal to

T⊥ = αWp x� z� cosΩ. (94)

Repeating the arguments from the case of Ts,

x� z� cosΩ =
sin ε

8
[ 2 sin 2ϑ

−2 cosε sin 2Ω + (1 − cos ε) sin 2(ϑ − Ω)

+(1 + cos ε) sin 2(ϑ + Ω)] . (95)

The presence of sin 2ϑ alone is enough to conclude that after
a product by a constant or by any power of x2�, periodic terms
sin 2 jϑ will remain after the averaging with respect to Ω. Thus
the average of T⊥ over the rotation period will be nonzero, but
then the second averaging with respect to ϑ will finally bring
us to

〈T⊥〉 = 0. (96)

3.4. Stability problem

The double averaging presented in this paper makes sense only
if the principal axis rotation state is stable. In other words, small
deviations of the rotation axis from the direction of the maxi-
mum inertia should not result in a systematic drift away from
the initial position. The proof that no such drift arises for a pre-
cessing spheroid and the YORP torque has been worked out in a
more general context and we will present it in a separate pa-
per. Nevertheless, restricting the discussion to the vicinity of
the principal axis rotation, one may draw the same conclusion
from the results of Scheeres (2007). For this purpose, we take
the Fourier series approximation of the YORP torques in terms
of the solar longitude λ�. For oblate spheroids we have a single
harmonic

To = C1 cosλ� + D1 sin λ�, (97)

with C1,x = D1,y = C1,z = D1,z = 0, and C1,y = −D1,x, using the
notation of Scheeres (2007). Prolate spheroid torques are less
trivial:

Tp =
∑
n≥1

Cn cos nλ� + Dn sin nλ�, (98)

where even coefficients are

C2n = 0, D2n =

⎛⎜⎜⎜⎜⎜⎜⎝ 0
0

D2n,z

⎞⎟⎟⎟⎟⎟⎟⎠ , (99)

and odd ones are

C2n+1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0

C2n+1,y
0

⎞⎟⎟⎟⎟⎟⎟⎠ , D2n+1 = 0. (100)

In the absence of thermal lag, such a set of coefficients will not
induce a systematic trend in the inclination of the spin axis ac-
cording to the linear theory of Scheeres (2007).

3.5. Thermal inertia

In all the previous considerations, we have used Rubincam’s ap-
proximation, assuming that incoming energy is re-emitted in-
stantaneously. In other words, we have neglected the thermal in-
ertia of the body. But the extension of the YORP-related results
to the case of nonzero thermal inertia is quite simple if we as-
sume rotation around the principal axis. It is enough to replace
the solar position vector n� = (x�, y�, z�)T with some “delayed
Sun” vector N� = (X�, Y�, Z�)T defined as

N� = R3(−δ) n�, (101)
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where the angle δ represents the constant lag. Note that z� =
Z� = s�, and x2� + y2� = X2� + Y2� = c2�. Hence, for an oblate el-
lipsoid, only the azimuth of the YORP torque vector will change
but not its magnitude. Thus, using the ‘delayed Sun’ has no in-
fluence on the conclusions concerning the average values of Ts,
because the scalar product T · s is invariant with respect to rota-
tion around s.

But the situation is different in the case of T⊥. Note that the
definition of no given by Eq. (82) is not modified by the occur-
rence of lag, hence the value of product T · no must depend on
the lag angle δ. Resorting to the series expansions, we can show
that the rotation/orbit average of T⊥ for oblate spheroids is

〈T⊥〉 = −α′ sin ε cos ε sin δ
∑
j≥1

e2 j b j, (102)

where

α′ =
π

12
(1 − A)Φ0a3

vc

√
1 − e2�

R2
0

a2�
, (103)

and the first few terms are

b1 = 1,
b2 =

1
16 (4 − 5 sin2 ε),

b3 =
5

1024 (24 − 76 sin2 ε + 35 sin4 ε).
(104)

Similarly, for prolate spheroids

〈T⊥〉 = −2α′ sin ε cos ε sin δ
∑
j≥1

e2 j c j, (105)

with

c1 = 1,
c2 =

1
64 (28 + 15 sin2 ε),

c3 = − 1
8192 (1448 + 780 sin2 ε − 875 sin4 ε).

(106)

Notably, these expressions agree with the linear theory of
Scheeres (2007), if we use the Fourier coefficients defined in
Sect. 3.4.

4. Direct radiation pressure for spheroids

The direct radiation pressure (DRP) torque exerted on an illumi-
nated body is given by Eqs. (1) and (2), i.e.

T =
∫

r × d f , (107)

where

d f = −Φ
vc

max (0, N · n�) n� dλ dµ, (108)

and N is the normal vector

N =
∂r
∂λ
× ∂r
∂µ
· (109)

Considering the oblate ellipsoid of revolution with a = b > c,
we have

Td = −γ
∫ π

−π

∫ 1

−1
U dλ dµ, (110)

where γ = Φ a3/vc and

U = (s� µ + c� η ν cos (λ� − λ))

×
⎛⎜⎜⎜⎜⎜⎜⎝
−c� η µ sin λ� + s� ν sin λ
c� η µ cos λ� − s� ν cosλ

c� η sin (λ� − λ)

⎞⎟⎟⎟⎟⎟⎟⎠ . (111)

For the sake of brevity, we use ν =
√

1 − µ2 as above.
The terminator equation and the partition into the polar day,

day-and-night, and polar night zones are made exactly as in
Sect. 3.1.1. But this time the resulting quadratures are elemen-
tary and we do not discuss the details, providing only the final
formulae. Thus, in the polar day zone

Td,1 = γ π
c� η2 s3�

(1 − c2� e2)
3
2

⎛⎜⎜⎜⎜⎜⎜⎝
y�
−x�

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (112)

Remarkably, in the partially illuminated area we obtain

Td,2 = −Td,1. (113)

The final conclusion that

Td = Td,1 + Td,2 = 0, (114)

proves that no DRP torque is exerted on an ellipsoid of revolu-
tion – neither oblate nor prolate.

5. Conclusions

The three principal results are:

1. We have obtained the exact formulae for the YORP torque
on an ellipsoid of revolution as a function of the solar posi-
tion in the body frame. To our knowledge it is the first and
only exact formula for a nontrivial body shape1. As such, it
can be a useful benchmark for the common algorithms us-
ing triangulated surface, Fourier series or other approximate
tools that model the YORP torques.

2. We have demonstrated that in the absence of thermal inertia,
if the spheroid rotates around its principal axis of inertia, the
two dynamically significant projections of the YORP torque
vanish during the double averaging (with respect to the ro-
tation and with respect to the orbital motion), provided the
two periods are not commensurable. Thus we confirm the
common opinion that the YORP torques do not contribute to
the long-term rotational evolution of a spheroid. But if the
thermal inertia is taken into account, the spin axis will suf-
fer a systematic deviation from the initial obliquity, although
there is still no secular trend in the rotation rate.

3. We have demonstrated that the direct radiation pressure
torques on ellipsoids of revolution vanish identically regard-
less of the solar position.
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1 Scheeres (2007) approached this goal quite closely, providing the
quadrature expressions for the YORP torques Fourier series of a trian-
gulated body shape.
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Systems, ed. Z. Knežević, & A. Milani (Cambridge: Cambridge University
Press), 171–178
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