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Abstract. We consider the perturbations of Near—Earth Astesunlight cause a synodic oscillation of the lunar geocentric dis-
oid orbits due to direct solar radiation pressure (both the absotgnce of about millimeters, a statistically important value given
tion and the reflection components). When the body is spheritiz¢ data precision (see, e.g., Williams et al. 1996). The motion
andthe surface albedo homogeneousthe effectis small (and aflgolar system dust particles, either interplanetary or circum-
short—periodic). However, when at least one of these restrictplanetary, is a good example of the applicability of (ii). In this
and unrealistic assumptions is relaxed, long—term orbital effectsse we do not have data about the individual orbits, but we
appear andthey may potentially lead to observable displacemmiaty determine statistical properties of a large ensemble of such
of the orbit. We illustrate this conclusion by computing the oparticles (such as the location and extension of the dust bands or
bital perturbations due to radiation pressure for objects wifossamerrings ofthe outer planets; e.g. Burnsetal. 1999). These
an odd-zonal distribution of albedo and for objects with ellipdata may be then matched with orbital histories undergoing a
soidal shape. Especially in the first case the effects are larigmg—term (or secular) effects due to the Poynting—Robertson
due to the long—term perturbations of the semimajor axis. Famd other effects. At somewhat larger sizes, the Yarkovsky ef-
high—eccentricity orbits observed over a long interval of timégct, a radiation recoil force due to the thermally reemitted sun-
the (v/c)—correction of the direct radiation pressure, known dight, takes the role of the Poynting—Robertson effect. Certain
Poynting—Robertson effect, should be also considered. As anltysical properties of meteorites (like the cosmic radiation ex-
ample we demonstrate that for the asteroid 1566 Icarus, durpasure ages) may indirectly indicate past orbital histories of the
its next close approach to the Earth, the orbit displacement dueteoroids with an important contribution of the Yarkovsky—
to the direct solar radiation forces might be, under reasonabléect—dominated phase (Vokrouhlick Farinella 2000). For
assumptions, comparable to the orbit determination uncertairthe motion of some artificial satellites both assumptions (i) and
thus potentially observable. (i) may be valid. For instance, the orbits of LAGEOS and other

geodynamics satellites are monitored with centimeter precision
Key words: celestial mechanics, stellar dynamics —minor plamver decades. This allowed to detect anomalous signals that
ets, asteroids were later recognized as a signature of various radiation effects
acting on orbits of these satellites.

In a recent paper, Vokrouhligiet al. (2000) advocated that
the motion of the Near—Earth Asteroids (NEAs) may also rep-
resent a problem in which both (i) and (ii) are satisfied. For ob-
Tiny non—gravitational effects may become important in thervations, we have very precise radar data for about 50 NEAs,
dynamics of the cosmic bodies provided one (or both) of thgit of which about a dozen have been observed by radar at
following two circumstances are satisfied: (i) orbital data of o close approaches to the Earth. Vokrouhiek al. (2000)
superb quality are available, and/or (ii) the effect leads to longomputed the orbit perturbation due to the Yarkovsky effect for
term perturbations accumulating over long time span. Thisdglected NEAs and demonstrated that the corresponding pertur-
also the case of radiation forces acting on orbits of natural aggtions can be observable during their next close approaches to
artificial cosmic bodies. the Earth. A secular change of the semimajor axis was the key

Radiation force effects in the motion of the Moon represefdature of the Yarkovsky orbit perturbation.
an outstanding example of the above mentioned case (i). The The goal of this paper is to prove that the so far neglected
lunar motion data acquired through the laser ranging to the sgiffect of direct solar radiation pressure (and that of reflected
face retroreflectors achieved a centimeter precision in the riidliation) should be also taken into account, since it can pro-
nineties, an unprecedented quality among the orbital datagice large orbit perturbations. These effects were believed by
a natural body. Vokrouhligk(1997) showed that the radiationsome to be unimportant for the following reasons: (a) the per-
forces due to the absorbed, reflected and thermally re—procesgging acceleration is exactly opposed to the gravitational at-
traction of the Sun and may be modeled by small change in its

1. Introduction
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mass, and (b) NEAs are too large objects. Though (b) is truedn is immediately re—radiated by the surface of the body. The
many cases, the argument (a) assumes an oversimplified fossmil force/acceleration due to this reflected radiation is con-
model, appropriate only for a spherical body with constant swidered in this paper and will be evaluated under specified as-
face albedo. None of these two conditions is typically satisfisdmptions in the next two sections. For sake of simplicity we
by the real NEAs. We prove that even the lowest order deviatiosizall always assume the Lambert law of reflection of the body’s
from spherical shape and/or constant albedo lead to long—tesunface (sometimes also called isotropic law in other contexts).
orbital effects. By estimating the order of magnitude of the calt-is well known that this assumption is not exactly satisfied for
responding perturbations we conclude that these effects mighsmic bodies, e.g., with the so called “opposition spike”, but
be potentially important for an accurate orbit determination generalization of the results for non—Lambert reflection laws is
the NEAs tracked with radar. beyond the scope of this paper.

To compute with top accuracy the highly eccentric NEAs There are two main factors resulting in a non constant recoil
orbits (like that of Icarus) requires to include also thgc)— force/acceleration due to the reflected radiation: (i) variations in
correction to direct radiation pressure known as Poyntingke albedo distribution over the surface, and (ii) non spherical
Robertson (PR) effect (e.g. Burns et al. 1979). At a first sighlhape of the body. Both factors will be illustrated in the next
this seems surprising, since the PR effect is typically assotito sections. However, to keep the formulation of the problem
ated with the orbital evolution of the dust particlesr(to mm comparatively simple and to be able to give exact analytical
size), while NEAs are macroscopic objects (e.g. Icarus’ sifrmulae for the resulting perturbations, we shall discuss only
is ~ 450 m). However, the secular change in the semimajaxisymmetric bodies. Of course real bodies would rotate, and
axis of the orbit due to the PR effect, appreciably increased psovided their rotation period is short with respect to the or-
a high eccentricity, results in a quadratic accumulation of théal period we can consider a rotation—averaged shape and a
transverse displacement. We argue that for Icarus the PR pentatation-averaged albedo, by definition axisymmetric, as a good
bation largely exceeds the observations uncertainty at the nagproximation for the purpose of computing these radiation ef-
close approach, though it is somewhat smaller that the orfatts.
determination uncertainty.

The paper is organized as follows: in Sect. 2 we compute
radiation force acting on a spherical asteroid with axially sym
metric albedo distribution and the force acting on a ellipsoidhi this section we give the recoil force/acceleration due to the
object with constant albedo. We prove that in both cases the orkifiected radiation on a spherical body with non constant but
undergoes long—term perturbations. The corresponding fornaxdally symmetric distribution of the albedo. In particular, we
lae for the PR effect are recalled. In Sect. 3 we show the expectsdll assume albedo modes that have an odd—symmetry with
order of magnitude and character of the orbit perturbation in th&spect to the equator of the body since these have more im-
case of two precisely known NEA orbits: Golevka and Icaruportant orbital effects than the even—symmetry terms (see be-
Sect. 4 contains some general comments and a discussion ofahg. A generic albedo distribution has then the following form:
future prospectives for this kind of research. A(0) = ag + ay, cos® 0 with an arbitrary odd—numbér. Here,
ap anday, are constants anlis the colatitude measured from
the symmetry axis (not necessarily identical with the rotation
axis). A linear combination of such terms i(6) would just
Letus consider a body of an arbitrary shape illuminated by sof@ean a linear combination of the perturbations, in a first order
radiation. The Sun is assumed to be infinitely remote, so that #ryturbative theory such as the one we are using, thus we shall
radiation field consists of parallel light-rays characterized byggsume the above description of the albedo distribution vith
unit vectorn (“outward from the Sun”). Denote the geometri@nd odd integer and}, an arbitrary constant.

IE(?L Anisotropic albedo distribution

2. Theory

cross—section of the body along the directioby P, . Then, The body-fixed frame direction-fm) towards the Sun is
the body’s acceleration due to the absorbed radiation is givergiven by the colatitudé, (measured from the symmetry axis;
by cosfyp = —n - s) and the longitude, = 0 (defining the origin
of the longitudep along the body’s equator). Let us also define
_ P n 1) the surface insolation functiof(d, ¢; 6,), yielding the flux of
me solar radiation absorbed by the surface elem&htat (9, ¢)

where€ is the solar—radiation fluxy: body’s mass and the coordinates (with respect to the symmetry axis and the chosen
light velocity. Part of the absorbed radiation is physically réfigin of longitudes). Theni (6, ¢; 6y) = —(n.n_ ) if positive,
processed in the body and later reemitted in the infrared batferwise zero, with , the unit vector orthogonalto the surface
(“thermal radiation of the body”). The recoil force/acceleratiofif the body atd, ¢),e.9.n1 = (sin 6 cos ¢, sin 0 sin ¢, cos §)”

due to this radiation field, also called Yarkovsky effect, has bef @ spherical body. In the development (e.g. Vokroulylick
extensively studied in the past years (e.g. Rubincam 1995, 195898b)

Vokrouhlicky 1998a,b, 1999; Vokrouhligket al. 2000) and it

is not a subject of this paper. The complementary part of they . ) = Z in(6,00) cosng )
absorbed radiation, a fraction given by the albedo coefficient >0
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the first two coefficients are 0A = ay cosf
+iy

2
i0(0;6p) = ;((b* cos 0 cos O + sin ¢, sin O sin by) 3)

1
i1(0;6p) = - {28111(,25* cos 6 cos 0 A0

1 sa<0

+ (@5 + sin ¢, cos ¢, ) sin 6 sin 00} , (4) |

where the auxiliary angle, is defined by

cos . (0,6p) = —1 forg < 6_
= —ctgf ctghy for0 e (0_,60,) (5) Fig. 1. Geometry of the solar radiation force on a spherical body with
-1 foro > 0 an axially symmetric distribution of albedo. The left panel shows the
= +

situation offy < 7/2 (0, is the angle between the local direction to
with 0. = g + 6. the Sun and the symmetry ax} the right panel shows the case of

Assuming the reflection from the surface follows Lambe?P > 7/2. The arrows indicate the directions along which the body is
. . . - accelerated (see the second term in the fornidla (7)).

diffusion law, the recoil force acting upon each surface element
is given by Milani et al. (1987), formula (4.7). Thus the recoil
acceleratiom’ due to the reflected radiation on the entire bod

can be expressed in integral form
, 2 £
@ =2 [ A6 16.6:600n. a5 ©®)

3 mc

For k = 1, dipole asymetry of the albedo distribution, the
ormula [@) simplifies to

a1:n(1+gao>n+m’(cosﬁon—s). (12)

In what follows, we shall use this case to exemplify the dynam-
with the integration assumed over the whole spheredshe-  ical effects of the albedo asymetry.

R? d(cos 0) do (R is the radius of the body). Assuming the sim-  Fig.[1 shows the geometry of the radiation pressure acceler-
ple albedo distributiomd () introduced above, the formuld (6)ation [); this will help in understanding the long—term orbital
may be integrated analytically. Adding the absorption radiati@ffects. Note that forn, > 0 the component along the sym-
pressure tern{{1) with*, = 7R? for a sphere we obtain themetry axis ( s) is always opposite to the unit vector defining

total radiation acceleration the origin of colatitudes and that the component in the solar
4 direction (x n) has a different orientation fé, < /2 and for
a; = K‘,(l-i— §ao)n—|—f<a’ [cos@o M (00)n (1) 6y > /2.

— (kcos? 0y My(6o) + sin®T16y) s
( o Mi(6) 0)} 2.2. Ellipsoidal-shape bodies

where In this section we shall investigate the effect of non—sphericity
TR2E 3 & of the body and evaluate the radiation force/acceleration due to
M= e " 1 oRe’ () the reflected sunlight. Unlike in the previous section, we shall
/ 4 N anl N assume a constant albedg but we shall consider bodies of a
K= 3k [ = pRe (k+3)° (9) ellipsoidal shape, with two equal axes (to maintain axial sym-

metry). The ratio of the polar{,) and the equatorialK.) radii
and the functiong/,(6y) satisfying recurrence relations &  will be denotede = R,/R.. In principle this parameter may

1,3,5,...) acquire an arbitrary value in the ran¢@ o), being smaller
o than unity for oblate ellipsoids and larger than unity for prolate
k Mp(00) = sin® " 0o + (k — 1) My—2(6o) , (10) ellipsoids; but of course for rotating bodies: 1.

o . . In what follows we shall use the mathematical formulation
initiated by M;(6y) = 1. The last expressions in Eqsl (8) and L i . X

(@) assume a spherical body ith average densinf course o EER BEN S8 T AR T R
for a real body the density would be poorly known. Note thgt -np ' P

the first term in the formula17) is the usual acceleration ggdlnates, but rather keep parameterizing the surface elements

a spherical body with homogeneous albedo As it will be S, normal vectorsr; and other quantities by spherical polar

pointed out below, this term has little importance since it cé:r(]mrdmatew’ ¢) as before is measured from the symmetry

only result in short—periodic orbital effects. The second terﬁiﬂss of the body and thé_r_neasured from an arbitrary origin

in (@) is due to the axially symmetric albedo tetma;, cos” 6 atthe equa'.cor. (to be specified later). Co
and has much more important orbital effects (even thagh The radiation pressure due to the absorbed su'nllg'ht is still
is expected to be significantly smaller thay), as discussed in given by Eq.[1), where the geometric cross—secifons given
Sect. 2.3. A similar result for the specularly reflecting surfac

has been derived by &fris et al. (1997). P(6y) = mR2 J2(6y) , 12)



where we have again assumed the Sun direction at an an
0y from the symmetry axis, and where, following Vokrouh-
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licky (1998b), we introduce the auxiliary functiods(z) (n =
1,2,3,...) by

In(z) = Versin?z + cosz .

Interestingly, when evaluating the radiation force/accelera-
tion due to the reflected sunlight we may follow the formulation

(13)

D

used in the previous section provided the corresponding vétig. 2. Geometry of the solar radiation force on a spheroidal body with
ables are generalized to depend on the paramdteparticular, ¢ < 1. The left panel shows the situation éf < /2 (¢ is the
the integral formuld{6) is valid, provided the following changeangle between the local direction to the Sun and the symmetrghpxis
are made:

— the surface elememtS on the spheroid is given by
Ja(0)

dS = 2 R?

< J3(0)

d(cos 8)do ,

(14)

the right panel shows the caseff > /2. The arrows indicate the
directions along which the body is accelerated (see the forfndla (19)).

wheren = /1 —e? andy,,, (e) = ¢, () — ¥, (€) (see Fig. 1
in Vokrouhlicky 1998b for the functional dependence of the
functions on the oblateness parameferThe amplitudex is

and longitudey is given by

cos 0

€2 sin 6 cos ¢
e2sinfsing | ,

(15)

— the coefficients,, of the insolation functiod (6, ¢; 6y) (we

again assume, = 0 for the solar longitude) are given by

i0(0;60)

i1(0;60) =

2
— (qb* cos 0 cos By + €2 sin ¢, sin @ sin 90) ,
T

1
— [2 sin ¢ cos 6 cos 0
T

+€% (¢ + sin ¢, cos ¢, ) sin @ sin 90} ,

with the anglep, reading

CcoS d)* (0, 90) =

andctgfs = Fe2tgby.

-1

foro < 6_

(16)
17)

= —e Zctghctghy ford € (6_,60,) (18)

=1

foro > 0,

radiusR, of the spheroid in the second term and the polar radius
R, in the last term (this approximation corresponds again to a
body with constant density). Note that in the case of prolate
ellipsoids ¢ > 1) n becomes imaginary; in this case we can
use the following identity, holding for any complex numher

(i = /=1 is the complex unit):

In[(1+4 2)/(1 — 2)] = —2iarctg(iz) . (22)

Taking the limite — 1 we note that/x(6y) — 1, v, — 1
andy,, — 0, and Eq.[(IP) thus extends the usual formula for
the radiation pressure on a spherical body. As expected, when
e # 0 a symmetry—axis—alignedk(s) acceleration components
occurs with “seasonal” modulation due to the ¢,. See Fid.R

for a geometric insight.

2.3. Poynting—Robertson effect

We recall here the perturbing acceleration due to the Poynting—
Robertson effect but we shall not rederive the corresponding for-
mulae. They can be found in textbooks (e.g. Bertotti & Farinella
1990) or journal reviews (e.g. Burns et al. 1979).

The PR acceleration of a spherical body with constant sur-

These formulae generalize the corresponding variables fréaae albeday is given by
Sect. 2.1 for the # 1 case. . 4
AssumingA(#) = ag in Eq. (8), that is constant albedo, weaz = —— (1 + ,ao) [v + (v.n)n} , (23)

can still obtain an analytic result for the total radiation acceler-

ation of the ellipsoidal body in the form

a = w{ [ (9o) + gao ()] n

where we keep the notation of VokrouhlickL998b)

1
=)=
1-n

W (€)

b, (€)

4

9

apt, . (€) cosby s} ,

3 €2
dn?
3
2

|

i

1—&—7721

2n

62

2

'
d

1+m
1—n

)

(19)

(20)

(21)

9

wherex is the same radiation factor frofd (8)is the speed of
light, v the orbital velocity vector and the unit vector of the
asteroid heliocentric position.

2.4. Long—term orbital effects

As a first glimpse to understand the orbital perturbations due to
the radiation force§{11) and{[19) we compute the orbit averaged
values of the semimajor axig); eccentricity ¢) and inclination

(1) perturbation rate. Note that none of these elements under-
goes long—term perturbations in the case of the radiation force
acting on a spherical body with constant albedo. Only the new
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1 drags 1 accelerates

features (zonal albedo variations or non-spherical shape) yield
such perturbations and thus their effect can accumulate with
time and lead to observable effects. To compute these long term
perturbations we proceed by using the averaging principle (Mi-
lani et al. 1987, Sect. 3.4), which allows to compute them (t@
first orderin the perturbation small parameters) by averaging fhe
perturbation equations over one orbit. When performing this av-
eraging we should not overlook that the solar radiation &lurx
Egs. [8) and(9) decreases with square of the distance from the
Sun;€ o 1/r2. In fact this effect makes the averaging simpler,
since it makes easier to transform to the true anomaly as the 2 always drags
integratiop variable. o . . _Fig.3. The net long periodic semimajor axis drift due to the odd—
InC_Iudlng the radiation forc¢ (11) |n_to the Gauss equatlog mmetry zonal tergmpin the albedo diétribution (see alsdFig.1). The
an taking the average over one revolution we obtain (N0 trunGdmmetry axis & s) acceleration component 1 contributes to a drag

tion in eccentricity) over half of the orbital period (over the arc APB) while anti—drags over
the complementary half of the orbital period. The scalar product of

!
da = - Shig Sq % ) (24) theradial (x n) acceleration component 2 and the osculating velocity
dt n B is always negative for an elliptic orbit, resulting thus in net drag (for
de Kl 5 3458 (25) % > 0): thus in the long run this is the dominant effect.
dt 2na % 1+p8°
dl K €Ccosw

_ a

- Se ————— | (26) note that the semimajor axis effect disappears for circular or-
dt na = B(1+0) bits (¢ = 0) which, however, is not the case for NEA orbits,

with 8 = v/1 — ¢2, » mean motion and the longitude of peri- typically with hi.gh e. Fig.lg should _heIp in understanding the
center. The index in the quantitys’ indicates that the radiation 10Ng—term semimajor axis effect discussed above, at least for
flux € in « is to be evaluated at a distance from the Sun eqdf €a@s& = Q, thatis with the symmetry axis in the orbital

to the semimajor axia. The scalar quantities with different Plane, orthogonal to the line of apsides. _ _
indexes denote projection of the symmetry axisnto differ- Eq. [ZT) indicates that the orbit—averaged drift of the semi-

ent, orbit—defined directions;, = s - P (P in the direction major axis is zero (for orbits of arbitrary eccentricity) for ra-
of t,he pericenter)s. = s - ¢ (g in the direction of the orbital diation forces acting on spheroidal objects of constant albedo.
. =

angular momentum: henae is cosine of the obliquity angle), We may thus assume that the orbit—displacement would smaller

s, =s5-Q(Q=cxP) than in the previous case, thus difficult to observe. We shall
Similarly, including the acceleration terfi{19) in Gaus¥erify this conclusioniin Sect. 3 below. o
equations and taking the average over one orbit we obtain For the PR effect we remind the classical formulae, origi-
nally obtained by Wyatt & Whipple (1950), for the secular ef-
da -0 27) fects in the semimajor axis and the eccentricity (no inclination
dt ’ effect)
de 4 Kg el
— = ——ag— Y, () m——55 555, » 28 2
ai = 9% a9 (g e GO (e dg) e B (30)
dt 9 ¢ (1 —e2)3/2
ﬂ—éa @z/) (e)i[s + (1= p8) s, sinw], (29)
@t = 9" na Vx93 e S G e (14 Sa0) e (31)
dt 2c 9 (1 —e2)1/2

with the same notation as before and= s.a, with a being the dI
unit vector along the line of node. — =0. (32)

A few comments are in order. First, the most importarf?t
feature of the long—term orbital perturbation due to the odd-more thorough treatment of the PR orbital effects has been re-
symmetry albedo variation is the semimajor axis (24). Thizently given by Breiter & Jackson (1998), but the approximation
effectresults in the orbit displacement that accumulates quadediove is accurate enough for our purpose.
ically with time, compared to the linear perturbations due to the
eccentricity and inclination effect. It is easy to check that tk%e Examples
even—-symmetry zonal albedo terms do not yield this effect. To
be precise we mention that the semimajor axis effedt (24) is e illustrate the theory of the orbit perturbations due to the ra-
secular in a strict sense, but long—periodic, sinceQh&ector diation effects, as formulated in the previous sections, with two
typically undergoes a long—term circulation. This effect may bexamples, namely two near—Earth asteroids: 6489 Golevka and
however, neglected if we are interested in NEA orbit displac&566 Icarus. These objects have been found potentially interest-
ment during less than one century (typical node and perihelimy targets for detection of the Yarkovsky effect (Vokrouhfick
precession periods are of the ordei 6f — 105 years). We also et al. 2000). The orbital eccentricity is large in both cage®9
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and 0.827, which suggests the possibility of large long—term The results obtained with the less accurate perturbed two
orbital changes according to the formulas given in this papendy method are consistent, as far as the size of the perturbations
especially[[Z4). is concerned, with the results obtained with the more accurate
The technique used in this text is fairly similar to that iprocedure. This implies that nonlinear coupling of the radiation
Vokrouhlicky et al. (2000), but we add a preliminary step iiorces with gravitational perturbations is not important, at least
the analysis to obtain a first information about the orbit digver time spans of the order of tens of years.
placement produced by presence of the radiation forces in the
dynamical model. At this stage we disregard planetary and MY olevka
subtle (e.qg., relativistic) perturbations of the asteroid orbit and
considerthe solar gravitational influence and the radiation ford@slevka has been observed by radar in June 1991, 1995 and
only (“perturbed two—body problem”). 1999. Unfortunately, the 1999 data cannot be used as astromet-
Given the initial orbital elements at an epoch correspondinig data; thus the 91-95 baseline is rather short to detect subtle
to the weighted mean of the available observations, we numeen—gravitational phenomena in Golevka's orbit. Nevertheless,
ically integrate the asteroid orbit with the radiation fordds (7dhe next close approach to the Earth occurs on May 20, 2003.
(I9) and/or[(2B) included in the model. We readjust the initidokrouhlicky et al. (2000) considered the possibility to detect
orbital elements to match the integrated orbit by a Keplerian #e Yarkovsky perturbation using the radar data which we pre-
lipse in the sense of the least squares technique. Residuals aftene will be taken at this approach. Here we are going to in-
this fitting procedure give an information about the “true” orderestigate whether these data could reveal existence of the direct
of magnitude of the radiation—effect perturbations (keeping teelar radiation pressure perturbations on the orbit of Golevka.
initial elements unchanged the residuals would be polluted by We consider the physical parameters of Golevka as derived
unobservable free—Keplerian terms). by Hudson et al. (2000): notably surface albedg) (of 0.15,
Since the radar ranging yields the most precise observatiomgan radius at65 meters and spin axis orientatiswith eclip-
we project the orbit perturbation onto the geocentric line—ofic longitude and latitudé = 202° andb = —45°. These val-
sight direction of the asteroid. We thus obtain the perturbatioes superseed the previous model of Golevka by Mottola et al.
of the geocentric distancAR and of the corresponding rate(1997) and is consistent with indications Zaitsev et al. (1997).
dAR/dt. The first is related to the radar delay measuremehie shape model of Golevka, as derived from the radar obser-
and the second to the Doppler shift between the transmitted amations, is very complex and impossible to fit with a ellipsoidal
received signal. At this stage of our procedure we also chetkdel (to which our theory is limited). We can only obtain
validity of the formulael[Z4) £(26) and{27)=(29) for the longan order of magnitude of the non—sphericity effect by adopt-
term effects in the Keplerian elements. ing e ~ 0.8, a rather conservative value since the estimate of
Atthe second, and a more precise, stage we ugerhieit the longest to shortest geometric axes of Golevka is abdut
program that allows the orbit determination from the optical arftiudson et al. 2000).
radar astrometry data. An information about this software, and a In the first step, we use the perturbed two—body formula-
free download, may be obtained from http://newton.dm.unipi.itbn discussed above. FId. 4 shows the orbit perturbation for
“asteroid/orbfit/. We proceed in exactly the same way as @olevka projected onto the geocentric line—of—sight for the ef-
Vokrouhlicky et al. (2000); a complete dynamical model to théect of variable albedo (acceleratian from (7); note that the
post—Newtonian level is used for the orbit determination froabsorbed radiation pressure effect — the first ter]in (7) —is also
the available data. For the given asteroid, the initial state vectocluded). We have assuméd= 1 anda; = 0.01, which means
and the covariance matrix constructed at the weighted meara@f difference of the albedo values between the southern and
the observations is propagated to the next close approach totttrgenorthern hemisphere. Such a small albedo variation cannot
Earth (when the radar observation might be taken).#he3 be measured from the Golevka lightcurve data. In fact, Mag-
confidence region, as determined by the fit to the current datapissson (1991) indicates that smaller asteroids show in average
projected onto the space of the radar observables, notably thsger variation of the surface albedo. Thus the value- 0.01
tance from the Earth and rate of change of this quantity (widtdlopted in this text seems to be a conservative estimate. Never-
aberration effects and other small corrections included). THiwless, the dynamical effect is rather large — upi® meters
projection is performed with the algorithms discussed in Milaiuring the 1995 close approach. Moreover, the effect accumu-
(1999) and implemented i@rbFit both for optical astrome- lates with time so that the perturbation with still increase in the
try and radar astrometry. Such projection is constructed for tfigure. Notice the rapid change in the sign of the range perturba-
models: (i) a “nominal” model, not including the solar radiatiotion during the close approaches (especially in 1995). A typical
perturbation, and (ii) an “extended” model, including the soldime scale of this change is 40 days. During the 1995 closest
radiation perturbation. Position of the confidence regions p@sproach time the perturbation is close to zero. Since the obser-
dicted by the two models is compared. When no overlappinguations cover only abou® days around the close approach (and
theo = 3 level is observed, we can conclude that the radiati@mly 10 days in 1991), the maxima of the perturbation in range
effects might be detected during the next close approach of thight not be covered by the observations. In 2003, the close
asteroid. If the two confidence regions partially overlap, we capproach perturbation is somewhat smaller, alféumeters.
evaluate the probability (less then unity) of this detection.  This value is larger than the uncertainty of the observations (of
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Fig. 4. Simulated orbit displacemeni i along the line~of-sight from rjg 5 projection of theo confidence ellipses of the Golevka orbit un-
the Earth for the asteroid 6489 Golevka vs time between 1988 and 20Q+ainty onto the space of radar observables: the geocentric distance

An odd-symmetry zonal termx 0.01 cos 6 of the Golevka’s albedo p (in km) and the rate—of—change of the geocentric distalfRgdt
assumed (i.& = 1, a1 = 0.01 in the text). Radiusk = 265 meters) iy km/day). Results of the nominal model (without the radiation ef-
and the spin axis orientation from Hudson et al. (2000). The foufects) given by the dashed lines, while results of the extended model
close approaches to the Earth denoted by shaded strips. (including the radiation effects) given by the solid lines. Origin of axes
referred to the corresponding values of the nominal model. Data at the

. ... nearest future close approach of Golevka (20 May, 2003) are given by
the order o0 meters), but smaller than the orbit determlnatlomick lines. Similar result$ and 10 days before and after the close

uncertainty from the C“,”e”t data (abau km).. approach of the nominal orbit are shown by the lighter curves with
The results of the simpler model are confirmed by the angipels +5 and +10. The extended model is obtained by adding an
ysis of the complete solution shown in Hif). 5. The projection @fid—symmetry zonal term 0.01 cos @ in the albedo of Golevka (i.e.
the 30 uncertainty ellipsoid onto the plane of the radar obseri-= 1, a; = 0.01 in the text). RadiusR = 265 meters) and spin axis
ables, rangé? and range—ratéR/dt, is shown for two models: s orientation from Hudson et al. (2000).
(i) the nominal model that do not include the radiation effects
(dashed lines), and (ii) the extended model that includea the
acceleration (solid lines). The axes origin is always referred to
the nominal-model solution. The same parameters of the albedo sor
anisotropy as above. The thicker lines indeRezbrrespond to
the time of the closest approach of the nominal orbit (20 May,
2003). Similar confidence boundaries for five and ten days be-
fore and after this data are shown by thinner lines, labgied =
and£10. The confidence levels are computed from the leagt -
squares fit to the currently available astrometric data (both op-
tical and radar). Note that the mean displacement of about hun- _4go|
dred meters is in a good agreement with the previous simpler
analysis. However, the rather large orbit uncertainty prevents
detection of the radiation effect: the uncertainty regions overlap 180y
to a large extend. We have checked that the results are not much
sensitive on the degréeof the albedo distribution, provided 200
is not too large.
Fig[8 shows the result of the perturbed two—body approach

for the radiation pressure on a flattened Golevkadccelera- Fig. 6.Simulated orbit displacemert R along the line—of—sight from
tion from (I9)). A constant albedo 6f15 is assumed, and thethe Earth for the asteroid 6489 Golevka vs time between 1988 and 2006.
flattening parameter = 0.8 as discussed above. The effect isolevka is approximgted with a spheroid with oblateness parameter
smaller, but comparable, to the perturbation due to the radiatfory 0-8 and polar radiug?, = 212 meters. A constant surface albedo
pressure on a spherical body with variable albedo (above).’th = 0.15 is assumed, and the spin axi®rientation from Hudson

. . L et al. (2000). The four close approaches to the Earth are denoted by
Fig.[d we have assumed that the Golevka spin axis fixed haded strips
in space. However, we have verified that free precession with & '
cone aperture up tth degrees does not change our conclusions.
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We do not report the PR effect perturbation of the Golevka orbit, [ [ ' ' ' ' ' ' ! ' '
since it is quite small (smaller th&mmeters in range variation).

In general, we can conclude that though larger than the
observation uncertainty, the radiation effects could hardly be
detectable from the radar data taken during the next close ap-
proach. The main reason is a too short observed time span (the ok
1988-2003 interval covers little more thamevolutions of the g W
asteroid around the Sun). Thus the effect of the long periogic
perturbations it ande thus cannot accumulate to large orbik
displacements. In both cases reported above, the short periodic
effect due to the elementary radiation pressure (purely radial
force) contributes largely to the perturbation. 20

-10 -

3.2. Icarus

| | | | | 1 | 1 | |
Icarus is the first asteroid observed by the radar technique (June o0 fo75 fem o5 1900 1os 2000 2005 200 2015
1968). It has been also observed at the next close approach to the Date (vears)
Earth in June 1996 and returns back in June 2015. These daigS7. Simulated orbit displacement R along the line—of—sight from
define a suitably long time span over which we have a go@ Earth for the asteroid 1566 Icarus vs time between 1966 and 2018.
quality orbital data (despite the fact that all radar data availal®e odd-symmetry zonal term 0.01 cos @ is assumed in the albedo of
so far are Doppler measurements only). Moreover, Icarus’ hitglarus (i.ek = 1, a1 = 0.01 in the text). The radiusk = 450 meters)
eccentricity 0.827) results in high rates of long term drifts in theand the spin axis orientation are taken from De Angelis (1995). The
element, especially, as it is clear from[{24). For that reasorihree close approaches to the Earth are denoted by shaded strips.
Vokrouhlicky et al. (2000) considered a possibility to detect
the Yarkovsky effect in the motion of Icarus with the 2015 data.

Here, we complement their analysis by the investigation of oth#gj1 5. These facts indicate that the albedo variation effect might
radiation effects acting on the same orbit. be important for precise analysis of the 2015 radar data. We
As for the physical data about Icarus we refer to the Wogd§so mention that the range—rate perturbation is smaller than
of Veeder et al. (1989), De Angelis (1995) and Mahapatra et fi{e range perturbation. In both previous close approaches to the
(1999). Veeder et al. give a radius of abdit meters with Earth (1968 and 1996) the maxima of the range—rate perturba-
a surface albedo df.4 (these values are used in this papenjion (~ 3 km/day) were either comparable or smaller than the
Harris (1998) estimates a little larger radius (35 meters) formal uncertainty of the observations ¢ km/day for the 1968
corresponding to a somewhat lower albedo, but reanalysisgfservations and evenkm/day for the 1996 observations).
the 1996 radar data by Mahapatra et al. (1999) supports Icarus'The importance of the perturbation due to the Icarus non
small size. De Angelis (1995) reports a triaxial shape model wigiviform albedo is confirmed by the detailed analysis using the
ratios of the Semi-ax%/b ~ 1.23 andb/C ~ 1.4. Since we OrbFit program. F|g:B shows the = 3 uncertainty e|||p_
cannot yet model the radiation effect on a triaxial ellipsoid Wenids projected onto the radar observables for the 2015 close
approximate Icarus’ shape by a biaxial ellipsoid with a flatteningyproach of Icarus (dates before and after the close approach
parametet ~ 0.65. The spin axis orientation parametefs{ are also considered as before in the Golevka’s case). Compari-
214% andb = 5°) were taken from De Angelis (1995). son of the nominal model (no radiation effects) and the extended
We again start our analysis by considering the perturbgtbdel (including the perturbing acceleratmnwith the albedo
two—body problem with the perturbation given by the radiatiogsymmetry parameters as before) shows partial separation of the
acceleratiora; from (). The following parameters of the suryncertainty ellipses. Though even in this case the radiation effect
face albedo anisotropy are assumed= 1 anda; = 0.01.  wjll not be possibly “detected” during the next close approach
The 2% amplitude of the north/south asymmetry is very cofin 2015, it may potentially produce important orbit perturbation
servative and may even underestimate the real albedo variatigf a long-term because new radar data will potentially shrink
Fig.[7 shows the perturbation of the geocentric distance to #@ orbit determination uncertainty. We also note that the ob-
asteroid. Contrary to the Golevka example, the perturbationsisryed mean separation of the confidence intervals of the two
now much larger and is dominated by the secular effect in thghdels also confirms results of the simplified approach from
semimajor axis due to the albedo asymmetry (the short—periogie FigLT.
effect of the absorbed radiation pressure is negligible). The 2015 Secondly, we consider the effect of Icarus’ nonsphericity for
range perturbation may be as largeé&m, again with arapid the resulting radiation pressure — the accelerafiah (19). The flat-
change during a time span of about one month around the clgsing parameterare noted above. Fig. 9 shows the geocentric
est approach. This perturbation is significantly larger than thgnge perturbation as results from the perturbed two—body anal-

expected observation uncertainty (Mahapatra et al. 1999), byts. The effect is very small, if compared to the non uniform
litttle smaller than the current orbit uncertainty propagated ¥edo case studied above.
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Fig. 8. Projection of the3o confidence ellipses of the Icarus orbit unFig. 10.Simulated orbit displacemet R along the line—of-sight from

certainty onto the space of radar observables: the geocentric distahegEarth for the asteroid 1566 Icarus vs time between 1966 and 2018

R (in km) and the range—rat&R /dt (in km/day). Results of the nom- due to the Poynting—Robertson effect. A raditis= 450 meters con-

inal model (without the radiation effects) given by dashed lines, whitédered. The three close approaches to the Earth are denoted by shaded

results of the extended model (including the radiation effects) are giveiHips.

by solid lines. The origin of the axes refers to the corresponding values

of the nominal model. The results for the nearest future close approach

of Icarus (16 June, 2015) are shown by thick lines. Similar results for As a final example we consider the Icarus’ orbit perturbation

5 and10 days before and after the close approach of the nominal orliige to the Poynting—Robertson effect. Fid. 10 shows the geocen-

are shown by the lighter curves with labet$) and +10. An odd-tric range perturbation within the perturbed two—body problem.

symmetry zonal termx 0.01 cos 6§ is assumed for the Icarus albedorpough smaller than in the Fig. 7, the orbit displacement is still

(;e. k=1,a=001inthe teth)' The rad'“ﬁR = 450 meters) and ¢ 4 anpreciable order of magnitude § km during the 2015

the spin axis; orientation are from De Angelis (1995). close approach). Surprisingly thus, the PR effect must be taken
100 —— : , . , , , : : : into account for the orbit analysis of Icarus including and be-

yond the 2015 approach, at least for consistency.

% 4. Conclusions

We give explicit, analytic formulas for the solar radiation dy-

or 1 namical effects on the orbits of Near—Earth Asteroids: this in-
cludes the radiation pressure due to the absorbed and reflected
sunlight, not neglecting thév/c)—correction. The effects of

-50r 1 zonal albedo variations, with an odd—symmetry with respect to
the equator, and of a biaxial ellipsoidal shape are considered.
Both are interesting, since they produce long—term variations of
-1001 the orbital elements which produce accumulation of the orbit
perturbation.

For objects with observations spanning a long interval of
1801570 1975 1980 1985 1990 1995 2000 2005 2010 2015 time and with a high—eccentricity orbit, the dynamical effect
of a non uniform albedo can result in a perturbation consider-
ably larger than the other effects considered here. For instance,
Fig. 9. Simulated orbit displacemeni R along the line-of-sight from 5 conservative assumption about the north/south albedo asym-
the Earth for the asteroid 1566 Icarus vs time between 1966 and z%try, too small to be detected from the photometry, results in

Icarus is approximated with a spheroid with the oblateness Paramelel ikilometer perturbation of the orbit of the NEA Icarus dur-

€ ~ 0.65 and the polar radiu®, = 340 meters. A constant surface. .
albedoay = 0.4 takeninto account and the spin axisrientation from ing the next close approach to the Earth. When analyzing the

De Angelis (1995). The three close approaches to the Earth dendfed@ data which we presume will be taken during this future
by shaded strips. approach, one should pay a detailed attention to this effect. The

perturbation due to the nonsphericity of Icarus shape are still
larger then the observation uncertainty, but much smaller than

A R(m)

Date (years)
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