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A B S T R A C T

The long-term evolution of a stellar orbit captured by a massive galactic centre via successive

interactions with an accretion disc has been examined. An analytical solution describing the

evolution of the stellar orbital parameters during the initial stage of the capture has been found.

Our results are applicable to thin Keplerian discs with an arbitrary radial distribution of density

and a rather general prescription for the star–disc interaction. Temporal evolution is given in

the form of quadrature which can be carried out numerically.
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1 I N T RO D U C T I O N

Evolution of the orbit of a star under the influence of interactions

with an accretion disc has been studied by numerous authors

because this situation is relevant to the inner regions of active

galactic nuclei. The trajectory of an individual star is determined

mainly by the gravity of the central mass and the surrounding stars

while periodic transitions through the disc act as a tiny perturbation.

The final goal is to understand the fate of a star, and the transfer of

mass and angular momentum between the star and the disc, and also

to determine how star–disc interactions influence the distribution of

stellar orbits near a massive central object. An important and

difficult task is to estimate the probability that a star is captured

from an originally unbound orbit, and to determine whether this

probability is significant compared with other mechanisms of

capture.

The orbital evolution of a body crossing an accretion disc has

been discussed with various approaches, first within the framework

of Newtonian gravity, both in the theory of the Solar system

(Pollack, Burns & Tauber 1979; McKinnon & Leith 1995) and

for active galactic nuclei (Goldreich & Tremaine 1980; Syer, Clarke

& Rees 1991; Artymowicz 1994; Podsiadlowski & Rees 1994).

These studies have been generalized in order to account for the

effects of general relativity (Vokrouhlický & Karas 1993) and to

model a dense star cluster in a galactic nucleus (Pineault & Landry

1994; Rauch 1995). It has been recognized that detailed physical

description of the star–disc interaction is a difficult task (Zurek,

Siemiginowska & Colgate 1994, 1996). In this Letter a simplified

analytical treatment of stellar orbital parameters is presented,

describing the initial stage of star–disc collisions (when the star

crosses the disc once per revolution). A great deal of our calculation

is independent of the microphysics of star–disc interaction. We

show how our solution matches the corresponding Rauch (1995)

solution which is valid in later stages, when the eccentricity of the

orbit becomes small enough.

In the next section our approach to the problem is formulated and

an analytical solution is given. Then, in Section 2.2, further details

about the derivation of the results are presented, and finally a simple

example of the orbital evolution is shown in Section 2.3.

2 S T E L L A R C A P T U R E B Y A D I S C

2.1 Formulation and results

The Newtonian gravitational law is assumed throughout this paper.

Our solution is based on the following assumptions:

(i) the disc is geometrically thin and its rotation is Keplerian;

(ii) at the moment of crossing the plane of the disc, the velocity

of the star is changed by a tiny amount; this impulse is collinear with

the relative velocity of the star with respect to the material forming

the disc;

(iii) the star crosses the disc once per revolution (the model is

applicable to the initial phase of the stellar capture).

Condition (i) is a standard simplification in which the disc is

treated in terms of vertically integrated quantities, while (ii) can be

expressed by the formula for an impulsive change of the star’s

velocity:

dv ¼ Sðr; vÞ vrel ; ð1Þ

S is an unconstrained function, given by a detailed model of the

star–disc interaction, and vrel is the relative velocity of the star and

the disc material. We stress that our results are uniquely based on

this assumption of collinearity, dv ~ vrel; the coupling factor S is

arbitrary and it can be as complex as necessary. In particular, S

contains information about the surface density k of the disc (k ¼ 0

outside the outer edge r ¼ Rd of the disc). The form of S must be

specified only for examination of the temporal evolution of the

orbital parameters. We will assume, in analogy with Rauch (1995),
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a simplified formula for

Sðr; vÞ ¼ ¹
pR

2
,

m,

kðrÞ
vrel

v'

y; ð2Þ

y < 1 þ
v,

v

� �4

ln L; ð3Þ

when it is needed for purpose of an example. In equation (2) R,

denotes the radius of the star, m, is its mass, v, is the escape velocity

(v
2
, ¼ 2Gm,=R,); v' is the normal component of the star’s velocity

to the disc plane, and ln L is the usual long-range interaction factor

(Coulomb logarithm).

The star’s orbit is traditionally characterized by the Keplerian

osculating elements: semimajor axis a, eccentricity e, inclination I

to the accretion disc plane, and longitude of pericentre q (measured

from the ascending node). A derived set of parameters turns out to

be better suited to our problem: a ¼ 1=a, h ¼
�������������
1 ¹ e2

p
, m ¼ cos I,

and k ¼ e cos q. We will show (Section 2.2) that the evolution of a

stellar orbit following the capture by a disc can be written in a

parametrical form:

aðzÞ ¼ fðzÞ a0f¹1
ðz0Þ þ j2 wðzÞ ¹ wðz0Þ

� �� 	
; ð4Þ

h2
ðzÞ ¼ zfðzÞ a0f¹1

ðz0Þj¹2
þ wðzÞ ¹ wðz0Þ
� �� 	

; ð5Þ

mðzÞ ¼
���
z

p
þ vðzÞ; ð6Þ

|kðzÞ| ¼ z ¹ 1; ð7Þ

where the auxiliary functions fðzÞ, vðzÞ and wðzÞ read

fðzÞ ¼
1

C
1 6

������������������������
1 ¹ C þ Cz

p� �2

; ð8Þ

vðzÞ ¼ 7
1

C

������������������������
1 ¹ C þ Cz

z

s

1 6
������������������������
1 ¹ C þ Cz

p� �
; ð9Þ

wðzÞ ¼
1

1 6
������������������������
1 ¹ C þ Cz

p 2 þ
C

1 6
������������������������
1 ¹ C þ Cz

p

 !

: ð10Þ

The formal parameter z of the solution decreases from its initial

value z0 ¼ 1 þ e0 | cos q0| to the final value z f , given by

z f ¼
2Rdj2

1 þ Rdj2
: ð11Þ

At this instant, the orbit starts crossing the disc twice per

revolution and our solution ceases to be applicable. Obviously,

the integration constants in (4)–(10) are determined in terms of the

initial Keplerian orbital elements ða0; e0; I0; q0Þ by

a0 ¼
1

a0

; ð12Þ

z0 ¼ 1 þ e0 | cos q0|; ð13Þ

j¹2
¼

a0h2
0

z0

; ð14Þ

C ¼
z0ðz0 þ 2Þ

ðz0 þ 1Þ2

1

1 ¹ z0

; ð15Þ

where

z0 ¼ ¹
1 ¹ z0�����

z0

p
ðcos I0 ¹

�����
z0

p
Þ
: ð16Þ

The upper signs in (8)–(10) are for the initial inclination I0 greater

than a critical value I, given by

cos I, ¼
1
�����
z0

p ; ð17Þ

the lower signs apply otherwise. The integration constant C is

singular (C → ∞) for I0 ¼ I, (z0 ¼ ¹1), and the solution can be

simplified further. For instance, mðzÞ ¼ 1=
���
z

p
for all values of z

down to z f .

Solution (4)–(7) can be extended easily to the case of

initially parabolic orbits by setting a0 ¼ 0, e0 ¼ 1 and

j2
¼ ðz0=2RpÞ. Here, Rp denotes the pericentre distance of

the initial parabolic orbit.

It is worth mentioning that the parameter z does not

determine the time-scale on which the evolution takes place.

Indeed, equations (4)–(7) do not provide temporal information

because it depends on the precise form of S in equation (1).

On the other hand, the strength and the beauty of the

parametric solution (4)–(7) lie in its independence of a

particular model for S. We will also illustrate an example

of temporal evolution later in the text, and only for this

purpose will the form of S be needed. Assuming relation (2)–(3)

one obtains

t ¹ t0 ¼
p

j3
��������
GM

p
Sc

�z0

z

j3
dz

z1=2a3=2ðzÞnðzÞvðzÞ
ð18Þ

where t0 is the initial time, M is the central mass, and

Sc ¼ ðpR
2
,=m,ÞkðrcÞy with rc ¼ j¹2 being the radial distance of

the point of intersection with the disc. Function n ¼ vrel=v' is

determined by orbital parameters which themselves depend on z

according to equations (4)–(7).

We note that Rauch (1995) conjectured that the func-

tion R ¼ ah2 cos4
ðI=2Þ remains nearly conserved along the

evolving stellar orbit, and he used this function for estimates of

the radius of the final, circularized orbit in the disc plane. In our

notation,

RðzÞ ¼
z

4j2
1 þ

���
z

p
þ v zð Þ

h i2

: ð19Þ

Hereinafter, we show that RðzÞ is a well-conserved quantity at later

stages of the orbital evolution (when eccentricity is sufficiently

small), but it fails to be conserved at the very beginning of the

capture when the orbit is still nearly parabolic, close to an unbound

trajectory.

2.2 Details of the solution

In this section, we present more details of the derivation of the

solution given above.

Taking into account the fundamental assumption (1), one can

easily demonstrate that the Keplerian orbital elements are perturbed

at each transition (due to interaction with the disc material) by

quantities

dð
���
a

p
Þ ¼ S

���
a

p
h f1; ð20Þ

dð
���
a

p
hÞ ¼ S

���
a

p
h f2; ð21Þ

dð
���
a

p
hmÞ ¼ S

���
a

p
h f3; ð22Þ

dðkÞ ¼ 2S ð1 þ kÞ f2: ð23Þ
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Here, we introduced auxiliary functions

f1 ¼ h¹3 1 þ kð Þ 1 ¹ m
�����������
1 þ k

ph i
þ e

2
þ k

n o
; ð24Þ

f2 ¼ 1 ¹
m
�����������
1 þ k

p ; ð25Þ

f3 ¼ m ¹
1
�����������
1 þ k

p : ð26Þ

Combining equations (21) and (23) we find that
�����������
1 þ k

p

���
a

p
h

¼ j ð27Þ

is conserved at the star–disc interaction. Hence, j is constant

whatever the evolution of elements a, e and k. In fact, condition

(27) states that the initial Keplerian orbit has the same radius of

intersection as the final orbit, after successive interactions with the

disc. The longitude of the node is also conserved and can be set to

zero without loss of generality. The above-given formulae (20)–

(27) correspond to k > 0 (i.e. |q| < p=2); for k < 0 one should

replace k → ¹k. We note that all these relations can be easily

reparametrized in terms of the binding energy E ¼ GM=ð2aÞ, the

angular momentum L ¼
����������
GMa

p
h, and the component of the

angular momentum with respect to the axis, Lz ¼
����������
GMa

p
hm.

Combining equations (21) and (22) with the help of (27), and

introducing auxiliary variables y ¼
���
a

p
hm and x ¼

���
a

p
h, we obtain

the differential equation

dy

dx
¼

xðjy ¹ 1Þ

jx2 ¹ y
: ð28Þ

(We were allowed to change variations, d, to differentials, d,

assuming an infinitesimally small perturbation of the stellar orbit

at each intersection with the disc.) The Abel-type differential

equation (28) can be solved beautifully by standard methods of

mathematical analysis (see, e.g., Kamke 1959). An appropriate

change of variables gives directly a solution for the evolution of

inclination, equation (6).

Similarly, considering (20) and (21) in terms of a ¼ 1=a, we

obtain, after brief algebraic transformations,

¹
���
z

p
vðzÞ

da

dz
þ aðzÞ ¼ j2 2 ¹ z þ

���
z

p
v zð Þ

h i
ð29Þ

with vðzÞ given by equation (9). This is a linear differential

equation, integration of which yields aðzÞ and then, by

equations (4)–(5), also hðzÞ.

At this point, one can see that Rauch’s (1995) ‘quasi-integral’ R is

changed at each passage across the disc according to

dðln RÞ ¼ 2S 1 ¹
1
�����������
1 þ k

p

 !

: ð30Þ

Realizing that k < e we conclude that ln R indeed stays nearly

constant at later stages of the orbit evolution, when eccentricity has

decreased enough. On the other hand, at the very beginning of the

capture process, when eccentricity is still high, R fails to serve as a

quasi-integral of the problem. Instead, its evolution is given by

equation (19).

For temporal evolution, equations (20)–(27) must be supplemen-

ted by an additional relation,

dðtÞ ¼
2p
��������
GM

p a
3=2

; ð31Þ

which determines the interval between successive intersections

with the disc. Combining equation (31) with (27) one obtains a

separated differential equation which yields formula (18). Recall

that this last step requires assumption (2) about the form of S. In the

present case,

nðzÞ ¼
1

z

�����������������������������������������������������
2zð1 ¹ z ¹

���
z

p
vÞ þ z ¹ h2

1 ¹ z ¹ 2
���
z

p
v ¹ v2

s

: ð32Þ

The relation for time is apparently too complicated to be integrated

analytically, but numerical evaluation is straightforward.

2.3 Example

We shall briefly demonstrate some properties of the analytical

solution from Section 2.1.

We examine parabolic orbits (a0 ¼ 0, e0 ¼ 1) with the pericentre

in the disc plane (q0 ¼ 0), and the pericentre distance Rp equal to

the disc radius (Rp ¼ Rd ¼ rc). The initial inclination I0 of the orbit

to the disc plane is a free parameter in this example. Evolution of

this set of orbits is split into two phases.

First, we let the orbits evolve according to the solution of

equations (4)–(7) from the initial value z0 ¼ 2 of the formal

parameter z to its final value z f ¼ 1. Fig. 1 illustrates the evolution

of the inclination IðzÞ, measured in terms of the initial value I0.

Notice that the critical inclination I, of equation (17) is 458: The

eccentricity of the orbits under consideration decreases according

to a simple formula eðzÞ ¼ z ¹ 1 (independently of I0), leading

eventually to circularized orbits at z ¼ z f . We observe that orbits

with I0 < I, terminate at the final state If ¼ 0, suggesting that the

circularization time-scale is comparable to that necessary for

tilting the orbit into the disc plane. On the other hand, when

I0 > I, the final circular orbits remain inclined significantly to the

disc plane. (I > 908 corresponds to retrograde orbits.) Hence, for

those orbits the circularization time-scale is shorter than the time

necessary for tilting the orbit to the disc plane. Additional time to
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Figure 1. Inclination IðzÞ of a captured stellar orbit (measured in units of the

initial inclination I0) versus I0. This graph corresponds to initially parabolic

orbits with pericentre distance equal to the disc radius. The curves are

parametrized by z. Temporal evolution of some particular orbit starts with

I ¼ I0; z ¼ 2; and goes down along the vertical line, across z ¼ constant

curves. Our analytic solution (solid lines) is valid in the region 2 $ z $ 1,

and it corresponds to eccentric orbits. The circularization time-scale is equal

to the time-scale necessary for tilting the orbit to the disc plane if

I0 < I, ¼ 458, while the former is shorter than the latter for orbits with

I0 > I,. At z ¼ 1, i.e. zero eccentricity, our solution matches Rauch’s

R ¼ constant solution (dashed lines).



incline a circularized orbit is not much longer than the circulariza-

tion time, however.1 The difference is typically a factor of 10 for

highly retrograde orbits.

Secondly, we examine the evolution of circularized orbits which

started with I0 > I, and have settled to non-zero Iðz ¼ 1Þ. Because

these orbits have zero eccentricity, there exists Rauch’s integral in

the form R1 ¼ j2
a cos4

ðI=2Þ ¼ z cos4
ðI=2Þ. Here, we adopt a formal

continuation of the z-parameter to values smaller than unity (in this

phase, z ¼ a=Rd). For each orbit, we calculate the value of

R1 ; Rðz ¼ 1Þ, so that the inclination is given by

mðzÞ ¼

��������
4R1

z

s

¹ 1 : ð33Þ

Obviously, a given orbit terminates its evolution at z ¼ 4R1 when it

is pushed completely into the disc plane. Dashed curves in Fig. 1

correspond to constant values of z < 1.

Fig. 2 illustrates how function RðzÞ changes during the first

circularization phase of the evolution. For each orbit we have

chosen the same steps in z (0.2) in the range 1:8 $ z $ 1:0, as in

Fig. 1, and we have computed the corresponding values of RðzÞ

from equation (19). Our results agree with Rauch’s (1995) finding,

namely that RðzÞ is conserved up to a factor of <2 for orbits with

large eccentricity. During the second phase of the evolution the R-

function is constant.

Fig. 3 shows time intervals teðzÞ which elapse in the course of

gradual circularization when the eccentricity decreases from

e ¼ z ¹ 1 to some terminal value (here, the terminal eccentricity

has been fixed to e ¼ 10¹3; notice that te goes to infinity for

terminal eccentricity e → 0). We have verified the graph also by

direct numerical integration of the corresponding orbits. The

numerical factor in front of the integral on the right-hand side of

equation (18) can be written in physical units in the form

107 rc

103 Rg

 !9=4
Rg

105R,

� �
103

Rg,

R,

 !
10

3

y

� �

yr; ð34Þ

Rg ¼ 2GM=c
2 and Rg, ¼ 2Gm,=c

2 are the gravitational radii of the

central mass and the star, respectively. A typical surface density

profile of the disc has been assumed, as in equation (1) of Rauch

(1995). The value of y < 10
3

corresponds to the estimate in

addendum to Zurek et al. (1996).

3 C O N C L U S I O N

We have found a solution describing the evolution of orbital

parameters of a star orbiting around a massive central body in a

galactic nucleus and interacting with a thin Keplerian disc. The

solution is in a parametrical form valid for an arbitrary radial

distribution of density and a very broad range of models of the star–

disc interaction. Temporal evolution can be given in terms of

quadrature provided that the star–disc interaction is specified

completely (in terms of the function S). Our approach can be

applied to other situations but the form of equation (28) is linked to

the assumption about interactions, equation (1). Also the situation

when the orbit intersects the disc twice per revolution requires a

specific form of S to be given and, most likely, it does not allow a

complete analytic solution.

Our solution thus describes the initial phases of the stellar capture

(large eccentricity) and it matches smoothly the low-eccentricity

approximation. Apart from an interesting form of the above-given

analytical expressions, our approach is useful as a part of more

elaborate calculations. In an accompanying detailed paper, addi-

tional effects are taken into account (e.g., gravity of the disc) and the

distribution of a large number of stars is investigated (Vokrouhlický

& Karas 1997).
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Figure 2. Function R (normalized to its initial value R0) versus the initial

inclination I0 of the orbit for different values of parameter z. The z-

dependence is stronger for orbits with smaller values of I0. Once the orbit

becomes circular with z ¼ 1, R reaches its terminal value and does not

change any more. Therefore, R does not acquire values below the bottom

curve.
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Figure 3. Time teðzÞ of orbital circularization of parabolic orbits with initial

inclination I0, as in Fig. 1. Here, time (arbitrary units on the vertical axis) is

recorded starting from eccentricity e ¼ z ¹ 1 (given with each curve) down

to e ¼ 10
¹3

(nearly circular orbit). Notice the change in form of the curves at

the critical inclination I, ¼ 458.
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Vokrouhlický D., Karas V., 1997, MNRAS, submitted

Zurek W. H., Siemiginowska A., Colgate S. A., 1994, ApJ, 434, 46

Zurek W. H., Siemiginowska A., Colgate S. A., 1996, ApJ, 470, 652

This paper has been typeset from a TEX=LATEX file prepared by the author.

Stellar capture by an accretion disc L5

q 1998 RAS, MNRAS 293, L1–L5


